Calculation of real optical model potential for heavy ions in the framework of the folding model
International Nuclear Information System (INIS)
Goncharov, S.A.; Timofeyuk, N.K.; Kazacha, G.S.
1987-01-01
The code for calculation of a real optical model potential in the framework of the folding model is realized. The program of numerical Fourier-Bessel transformation based on Filon's integration rule is used. The accuracy of numerical calculations is ∼ 10 -4 for a distance interval up to a bout (2.5-3) times the size of nuclei. The potentials are calculated for interactions of 3,4 He with nuclei from 9 Be to 27 Al with different effective NN-interactions and densities obtained from electron scattering data. Calculated potentials are similar to phenomenological potentials in Woods-Saxon form. With calculated potentials the available elastic scattering data for the considered nuclei in the energy interval 18-56 MeV are analysed. The needed renormalizations for folding potentials are < or approx. 20%
DEFF Research Database (Denmark)
Granados, Alba; Brunskog, Jonas; Misztal, M. K.
2015-01-01
When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...
Folding model analysis of alpha radioactivity
International Nuclear Information System (INIS)
Basu, D N
2003-01-01
Radioactive decay of nuclei via emission of α-particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the α-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the α nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic α-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields calculations for the half-lives of α decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations provide reasonable estimates for the lifetimes of α-radioactivity of nuclei
Mechanical Models of Fault-Related Folding
Energy Technology Data Exchange (ETDEWEB)
Johnson, A. M.
2003-01-09
The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).
Folding models for elastic and inelastic scattering
International Nuclear Information System (INIS)
Satchler, G.R.
1982-01-01
The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed
SDEM modelling of fault-propagation folding
DEFF Research Database (Denmark)
Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang
2009-01-01
and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...
Protein Folding: Search for Basic Physical Models
Directory of Open Access Journals (Sweden)
Ivan Y. Torshin
2003-01-01
Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.
A Rat Excised Larynx Model of Vocal Fold Scar
Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.
2009-01-01
Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…
Separable potential approach in the folding model. Pt. 2
International Nuclear Information System (INIS)
Lee, C.L.; Robson, D.
1982-01-01
A microscopic folding formalism using a separable potential approach is applied to the elastic scattering of the n-α system. Starting with a separable nucleon-nucleon (NN) potential model, a sum of separable nucleon-nucleus potentials is obtained. A simple structure of the α-particle is assumed and the Tabakin, the Doleschall and the Strobel NN potentials are considered. These phenomenological interactions are of Yukawa or gaussian form with variable parameters for each partial wave. Spin-orbit and tensor forces are included. The resulting potentials developed from our folding calculations give approximately the same ssub(1/2) phase shifts for the n-α elastic scattering. However, in the psub(1/2) and psub(3/2) phase-shift analysis, an effective interaction derived from the NN potential is necessary to reproduce the resonances. One free energy independent parameter is introduced in our approximate G-matrix concept to give a good fit for the phase shifts. Single-nucleon knockout exchange (SNKE) is considered throughout. (orig.)
Scattering of long folded strings and mixed correlators in the two-matrix model
International Nuclear Information System (INIS)
Bourgine, J.-E.; Hosomichi, K.; Kostov, I.; Matsuo, Y.
2008-01-01
We study the interactions of Maldacena's long folded strings in two-dimensional string theory. We find the amplitude for a state containing two long folded strings to come and go back to infinity. We calculate this amplitude both in the worldsheet theory and in the dual matrix model, the matrix quantum mechanics. The matrix model description allows to evaluate the amplitudes involving any number of long strings, which are given by the mixed trace correlators in an effective two-matrix model
Baxa, Michael C.; Haddadian, Esmael J.; Jumper, John M.; Freed, Karl F.; Sosnick, Tobin R.
2014-01-01
The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol−1 per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix−sheet = 0.5 kcal⋅mol−1), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR. PMID:25313044
Approximate self-similarity in models of geological folding
Budd, C.J.; Peletier, M.A.
2000-01-01
We propose a model for the folding of rock under the compression of tectonic plates. This models an elastic rock layer imbedded in a viscous foundation by a fourth-order parabolic equation with a nonlinear constraint. The large-time behavior of solutions of this problem is examined and found to be
International Nuclear Information System (INIS)
Ermer, M.; Clement, H.; Frank, G.; Grabmayr, P.; Heberle, N.; Wagner, G.J.
1989-01-01
High-quality data for elastic proton, deuteron and α-particle scattering on 40 Ca and 208 Pb at 26-30 MeV/N have been analyzed in terms of the model-unrestricted Fourier-Bessel concept. While extracted scattering potentials show substantial deviations from Woods-Saxon shapes, their real central parts are well described by folding calculations using a common effective nucleon-nucleon interaction with a weak density dependence. (orig.)
Visualization of protein folding funnels in lattice models.
Directory of Open Access Journals (Sweden)
Antonio B Oliveira
Full Text Available Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.
Measurement of flow separation in a human vocal folds model
Czech Academy of Sciences Publication Activity Database
Šidlof, Petr; Doaré, O.; Cadot, O.; Chaigne, A.
2011-01-01
Roč. 51, č. 1 (2011), s. 123-136 ISSN 0723-4864 R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal folds * flow separation * physical model Subject RIV: BI - Acoustics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/t81114611760jp23/
Mechanical Modeling and Computer Simulation of Protein Folding
Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene
2014-01-01
In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…
Equilibrium fission model calculations
International Nuclear Information System (INIS)
Beckerman, M.; Blann, M.
1976-01-01
In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling
Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations
Energy Technology Data Exchange (ETDEWEB)
Flank, A-M; Trcera, N; Itie, J-P; Lagarde, P [Synchrotron Soleil, L' Orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Brunet, F [Laboratoire de Geologie, CNRS-ENS-UMR8538, 24 rue Lhommond, 75005 Paris (France); Irifune, T [Geodynamics Research Center, Ehime University, Matsuyama 790-8577 (Japan)
2009-11-15
Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO{sub 4} groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO{sub 6} groups). This new coordination was achieved in AlPO{sub 4} doped SiO{sub 2} stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100{mu}m diameter) were embedded in the back-transformation products of high pressure form of AlPO{sub 4} matrix. They were identified by elemental mapping ({mu}-XRF). {mu}-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.
Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations
Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.
2009-11-01
Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.
Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations
International Nuclear Information System (INIS)
Flank, A-M; Trcera, N; Itie, J-P; Lagarde, P; Brunet, F; Irifune, T
2009-01-01
Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO 4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO 6 groups). This new coordination was achieved in AlPO 4 doped SiO 2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO 4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.
Cluster folding-model for quasi-elastic scattering of 23Na from 208Pb
International Nuclear Information System (INIS)
Kabir, A.; Johnson, R.C.; Tostevin, M.H.
1991-01-01
A cluster model of 23 Na is used to calculate the 23 Na-target interaction potentials by folding the cluster wavefunction with the cluster-target interaction potentials. Coupled channels calculations are carried out for the quasi-elastic scattering of polarized 23 Na from 208 Pb at 170 MeV and compared with recent experiments. Qualitative agreement with experiment is obtained when the interaction is adjusted by a single overall normalization constant. (author)
Glottal aerodynamics in compliant, life-sized vocal fold models
McPhail, Michael; Dowell, Grant; Krane, Michael
2013-11-01
This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.
On the single-mass model of the vocal folds
International Nuclear Information System (INIS)
Howe, M S; McGowan, R S
2010-01-01
An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low-pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region. (invited paper)
Developing guinea pig brain as a model for cortical folding.
Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji
2017-05-01
The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.
Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds
Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre
2018-04-01
We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.
The parametrization of Coulomb barrier heights and positions using the double folding model
International Nuclear Information System (INIS)
Qu, W.W.; Zhang, G.L.; Le, X.Y.
2011-01-01
The Coulomb barrier heights and positions are systematically shown with mass numbers and charge radii of the interacting nuclei. The nuclear potential is calculated by using the double folding model with the density-dependence nucleon-nucleon interaction (CDM3Y6). The pocket formulas are obtained for the Coulomb barrier heights and positions by analyzing several hundreds of heavy-ion systems with mass numbers from light nuclei to heavy nuclei. The parameterized formulas can reproduce the calculated barrier heights and positions by using the double folding model within the accuracy of ±1%. Moreover, the results are agreeable with the experimental data. The relation between the barrier height and the barrier position is also studied.
Folding-type coupling potentials in the context of the generalized rotation-vibration model
Chamon, L. C.; Morales Botero, D. F.
2018-03-01
The generalized rotation-vibration model was proposed in previous works to describe the structure of heavy nuclei. The model was successfully tested in the description of experimental results related to the electron-nucleus elastic and inelastic scattering. In the present work, we consider heavy-ion collisions and assume this model to calculate folding-type coupling potentials for inelastic states, through the corresponding transition densities. As an example, the method is applied to coupled-channel data analyses for the α + 70,72,74,76Ge systems.
Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments
Directory of Open Access Journals (Sweden)
Jacques Ninio
2011-07-01
Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.
DEFF Research Database (Denmark)
Amatori, Andrea; Ferkinghoff-Borg, Jesper; Tiana, Guido
2008-01-01
The thermodynamics of proteins designed on three common folds (SH3, chymotrypsin inhibitor 2 [CI2], and protein G) is studied with a simplified C alpha, model and compared with the thermodynamics of proteins designed on random-generated folds. The model allows to design sequences to fold within a...
Sloma, Michael F.; Mathews, David H.
2016-01-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924
Study of elastic scattering of polarized proton with 6He by folding model
International Nuclear Information System (INIS)
Iseri, Y.; Tanifuji, M.; Ishikawa, S.; Hiyama, E.; Yamamoto, Y.
2005-01-01
Experimental data of the elastic scattering of 6 He with polarized proton target has been analyzed using a simple folding model. As we regard 6 He as three bodies consisting of 4 He+n+n, the potential between the proton and 6 He is obtained by folding the two potentials, one between a proton and 4 He and another between a proton and a neutron, with the density distribution of 6 He. Calculated results of both the differential cross section and the vector analyzing power reproduce the experimental data satisfactorily. It is shown that the vector analyzing power of the p- 6 He scattering is mainly due to the spin orbit interaction between the proton and 4 He. (S. Funahashi)
Modeling Vocal Fold Intravascular Flow using Synthetic Replicas
Terry, Aaron D.; Ricks, Matthew T.; Thomson, Scott L.
2017-11-01
Vocal fold vibration that is induced by air flowing from the lungs is believed to decrease blood flow through the vocal folds. This is important due to the critical role of blood flow in maintaining tissue health. However, the precise mechanical relationships between vocal fold vibration and blood perfusion remain understudied. A platform for studying liquid perfusion in a synthetic, life-size, self-oscillating vocal fold replica has recently been developed. The replicas are fabricated using molded silicone with material properties comparable to those of human vocal fold tissues and that include embedded microchannels through which liquid is perfused. The replicas are mounted on an air flow supply tube to initiate flow-induced vibration. A liquid reservoir is attached to the microchannel to cause liquid to perfuse through replica in the anterior-posterior direction. As replica vibration is initiated and amplitude increases, perfusion flow rate decreases. In this presentation, the replica design will be presented, along with data quantifying the relationships between parameters such as replica vibration amplitude, stiffness, microchannel diameter, and perfusion flow rate. This work was supported by Grant NIDCD R01DC005788 from the National Institutes of Health.
Moisik, Scott R.; Esling, John H.
2014-01-01
Purpose: Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling.…
Self-organized critical model for protein folding
Moret, M. A.
2011-09-01
The major factor that drives a protein toward collapse and folding is the hydrophobic effect. At the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the protein. We study the fractal behavior of 5526 protein structures present in the Brookhaven Protein Data Bank. Power laws of protein mass, volume and solvent-accessible surface area are measured independently. The present findings indicate that self-organized criticality is an alternative explanation for the protein folding. Also we note that the protein packing is an independent and constant value because the self-similar behavior of the volumes and protein masses have the same fractal dimension. This power law guarantees that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem to fit well this class of systems.
Double folding model including the Pauli exclusion principle
International Nuclear Information System (INIS)
Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.
2002-01-01
A new method to incorporate the Pauli principle into the double folding approach to the heavy ion potential is proposed. It is shown that in order to take into account the Pauli blocking a redefinition of the density matrices of the free isolated nuclei must be one. A solution to the self-consistent incorporation of the Pauli-blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation [ru
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Ivan [Valparaiso Univ. (Chile). Inst. de Fisica y Astronomia; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Dept. de Ciencias Basicas; Notte-Cuello, Eduardo A. [La Serena Univ. (Chile). Dept. de Matematicas; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica; Rojas-Medar, Marko A. [Univ. de Tarapaca, Arica (Chile). Inst. de Alta Investigacion
2016-12-15
In this paper we proceed to study properties of Mellin-Barnes (MB) transforms of Usyukina-Davydychev (UD) functions. In our previous papers [Nuclear Physics B 870 (2013) 243], [Nuclear Physics B 876 (2013) 322] we showed that multi-fold Mellin-Barnes (MB) transforms of Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms and that the higher-order UD functions were obtained in terms of a differential operator by applying it to a slightly modified first UD function. The result is valid in d=4 dimensions and its analog in d=4-2ε dimensions exits too [Theoretical and Mathematical Physics 177 (2013) 1515]. In [Nuclear Physics B 870 (2013) 243] the chain of recurrent relations for analytically regularized UD functions was obtained implicitly by comparing the left hand side and the right hand side of the diagrammatic relations between the diagrams with different loop orders. In turn, these diagrammatic relations were obtained due to the method of loop reductions for the triangle ladder diagrams proposed in 1983 by Belokurov and Usyukina. Here we reproduce these recurrent relations by calculating explicitly via Barnes lemmas the contour integrals produced by the left hand sides of the diagrammatic relations. In such a way we explicitly calculate a family of multi-fold contour integrals of certain ratios of Euler gamma functions. We make a conjecture that similar results for the contour integrals are valid for a wider family of smooth functions which includes the MB transforms of UD functions.
Ansari, M. H.; Karami, M. Amin
2016-03-01
This paper studies energy harvesting from heartbeat vibrations for powering leadless pacemakers. Unlike traditional pacemakers, leadless pacemakers are implanted inside the heart and the pacemaker is in direct contact with the myocardium. A leadless pacemaker is in the shape of a cylinder. Thus, in order to utilize the available 3-dimensional space for the energy harvester, we choose a fan-folded 3D energy harvester. The proposed device consists of several piezoelectric beams stacked on top of each other. The volume of the energy harvester is 1 cm3 and its dimensions are 2 cm × 0.5 cm × 1 cm. Although high natural frequency is generally a major concern with micro-scale energy harvesters, by utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, we reduced the natural frequency to the desired range. This fan-folded design makes it possible to generate more than 10 μ W of power per cubic centimeter. The proposed device is compatible with Magnetic Resonance Imaging. Although the proposed device is a linear energy harvester, it is relatively insensitive to the heart rate. The natural frequencies and the mode shapes of the device are calculated analytically. The accuracy of the analytical model is verified by experimental investigations. We use a closed loop shaker system to precisely replicate heartbeat vibrations in vitro.
Galindo, Gabriel E.; Peterson, Sean D.; Erath, Byron D.; Castro, Christian; Hillman, Robert E.; Zañartu, Matías
2017-01-01
Purpose: Our goal was to test prevailing assumptions about the underlying biomechanical and aeroacoustic mechanisms associated with phonotraumatic lesions of the vocal folds using a numerical lumped-element model of voice production. Method: A numerical model with a triangular glottis, posterior glottal opening, and arytenoid posturing is…
Double-folding model including the Pauli exclusion principle
International Nuclear Information System (INIS)
Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.
2002-01-01
A new method for incorporating the Pauli exclusion principle into the double-folding approach to the heavy-ion potential is proposed. The description of the exchange terms at the level of the semiclassical one-body density matrix is used. It is shown that, in order to take into account Pauli blocking properly, the density matrices of free isolated nuclei must be redefined. A solution to the self-consistent incorporation of Pauli blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation
Protein folding simulations: from coarse-grained model to all-atom model.
Zhang, Jian; Li, Wenfei; Wang, Jun; Qin, Meng; Wu, Lei; Yan, Zhiqiang; Xu, Weixin; Zuo, Guanghong; Wang, Wei
2009-06-01
Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based Gō-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL
Computational Modeling of Proteins based on Cellular Automata: A Method of HP Folding Approximation.
Madain, Alia; Abu Dalhoum, Abdel Latif; Sleit, Azzam
2018-06-01
The design of a protein folding approximation algorithm is not straightforward even when a simplified model is used. The folding problem is a combinatorial problem, where approximation and heuristic algorithms are usually used to find near optimal folds of proteins primary structures. Approximation algorithms provide guarantees on the distance to the optimal solution. The folding approximation approach proposed here depends on two-dimensional cellular automata to fold proteins presented in a well-studied simplified model called the hydrophobic-hydrophilic model. Cellular automata are discrete computational models that rely on local rules to produce some overall global behavior. One-third and one-fourth approximation algorithms choose a subset of the hydrophobic amino acids to form H-H contacts. Those algorithms start with finding a point to fold the protein sequence into two sides where one side ignores H's at even positions and the other side ignores H's at odd positions. In addition, blocks or groups of amino acids fold the same way according to a predefined normal form. We intend to improve approximation algorithms by considering all hydrophobic amino acids and folding based on the local neighborhood instead of using normal forms. The CA does not assume a fixed folding point. The proposed approach guarantees one half approximation minus the H-H endpoints. This lower bound guaranteed applies to short sequences only. This is proved as the core and the folds of the protein will have two identical sides for all short sequences.
Pohl, Gábor; Beke, Tamás; Borbély, János; Perczel, András
2006-11-15
Because of their great flexibility and strength resistance, both spider silks and silkworm silks are of increasing scientific and commercial interest. Despite numerous spectroscopic and theoretical studies, several structural properties at the atomic level have yet to be identified. The present theoretical investigation focuses on these issues by studying three silk-like model peptides: (AG)(64), [(AG)(4)EG](16), and [(AG)(4)PEG](16), using a Lego-type approach to construct these polypeptides. On the basis of these examples it is shown that thermoneutral isodesmic reactions and ab initio calculations provide a capable method to investigate structural properties of repetitive polypeptides. The most probable overall fold schema of these molecules with respect to the type of embedded hairpin structures were determined at the ab initio level of theory (RHF/6-311++G(d,p)//RHF/3-21G). Further on, analysis is carried out on the possible hairpin and turn regions and on their effect on the global fold. In the case of the (AG)(64) model peptide, the optimal beta-sheet/turn ratio was also determined, which provided good support for experimental observations. In addition, lateral shearing of a hairpin "folding unit" was investigated at the quantum chemical level to explain the mechanical properties of spider silk. The unique mechanical characteristics of silk bio-compounds are now investigated at the atomic level.
Nuclear interaction potential in a folded-Yukawa model with diffuse densities
International Nuclear Information System (INIS)
Randrup, J.
1975-09-01
The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)
Modeling and imaging of the vocal fold vibration for voice health
DEFF Research Database (Denmark)
Granados, Alba
Identication of abnormalities on the vocal fold by means of dierent diagnostic methods is a key step to determine the cause or causes of a voice disorder, and subsequently give an adequate treatment. To this end, clinical investigations benet from accurate mathematical models for prediction......, analysis and inference. This thesis deals with biomechanical models of the vocal fold, specially of the collision, and laryngeal videoendoscopic analysis procedures suitable for the inference of the underlying vocal fold characteristics. The rst part of this research is devoted to frictionless contact...... modeling during asymmetric vocal fold vibration. The prediction problem is numerically addressed with a self-sustained three-dimensional nite element model of the vocal fold with position-based contact constraints. A novel contact detection mechanism is shown to successfully detect collision in asymmetric...
Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model.
Tsai, Min-Yeh; Yuan, Jian-Min; Teranishi, Yoshiaki; Lin, Sheng Hsien
2012-09-01
Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model's thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.
Directory of Open Access Journals (Sweden)
Yongping Yue
2016-01-01
Full Text Available Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.
Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator
International Nuclear Information System (INIS)
Cai Jin-Chi; Chen Huai-Bi; Hu Lin-Lin; Ma Guo-Wu; Chen Hong-Bin; Jin Xiao
2015-01-01
In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. (paper)
Recommendations for DSD model calculations
International Nuclear Information System (INIS)
Cvelbar, F.
1999-01-01
The latest achievements of the DSD (direct-semidirect) capture model, such as the extension to unbound final states or to densely distributed bound states, and the introduction of the consistent DSD model are reviewed. Recommendations for the future use of the model are presented. (author)
A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision.
Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas; Visseq, Vincent; Erleben, Kenny
2017-02-01
Analysis of voice pathologies may require vocal fold models that include relevant features such as vocal fold asymmetric collision. The present study numerically addresses the problem of frictionless asymmetric collision in a self-sustained three-dimensional continuum model of the vocal folds. Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold dynamics is examined by different variational methods for inequality constrained minimization problems, namely, the Lagrange multiplier method and the penalty method. In contrast to the penalty solution, which is related to classical spring-like contact forces, numerical examples show that the parameter-independent Lagrange multiplier solution is more robust and accurate in the estimation of dynamical and mechanical features at vocal fold contact. Furthermore, special attention is paid to the temporal integration schemes in relation to the contact problem, the results suggesting an advantage of highly diffusive schemes. Finally, vocal fold contact enforcement is shown to affect asymmetric oscillations. The present model may be adapted to existing vocal fold models, which may contribute to a better understanding of the effect of the nonlinear contact phenomenon on phonation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J
2011-07-01
The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.
Transition Models for Engineering Calculations
Fraser, C. J.
2007-01-01
While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
Fold catastrophe model of dynamic pillar failure in asymmetric mining
Energy Technology Data Exchange (ETDEWEB)
Yue Pan; Ai-wu Li; Yun-song Qi [Qingdao Technological University, Qingdao (China). College of Civil Engineering
2009-01-15
A rock burst disaster not only destroys the pit facilities and results in economic loss but it also threatens the life of the miners. Pillar rock burst has a higher frequency of occurrence in the pit compared to other kinds of rock burst. Understanding the cause, magnitude and prevention of pillar rock burst is a significant undertaking. Equations describing the bending moment and displacement of the rock beam in asymmetric mining have been deduced for simplified asymmetric beam-pillar systems. Using the symbolic operation software MAPLE 9.5 a catastrophe model of the dynamic failure of an asymmetric rock-beam pillar system has been established. The differential form of the total potential function deduced from the law of conservation of energy was used for this deduction. The critical conditions and the initial and final positions of the pillar during failure have been given in analytical form. The amount of elastic energy released by the rock beam at the instant of failure is determined as well. A diagrammatic form showing the pillar failure was plotted using MATLAB software. This graph contains a wealth of information and is important for understanding the behavior during each deformation phase of the rock-beam pillar system. The graphic also aids in distinguishing the equivalent stiffness of the rock beam in different directions. 11 refs., 8 figs.
Performance of a reduced-order FSI model for flow-induced vocal fold vibration
Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team
2017-11-01
Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.
FoldEco: A Model for Proteostasis in E. coli
Directory of Open Access Journals (Sweden)
Evan T. Powers
2012-03-01
Full Text Available To gain insight into the interplay of processes and species that maintain a correctly folded, functional proteome, we have developed a computational model called FoldEco. FoldEco models the cellular proteostasis network of the E. coli cytoplasm, including protein synthesis, degradation, aggregation, chaperone systems, and the folding characteristics of protein clients. We focused on E. coli because much of the needed input information—including mechanisms, rate parameters, and equilibrium coefficients—is available, largely from in vitro experiments; however, FoldEco will shed light on proteostasis in other organisms. FoldEco can generate hypotheses to guide the design of new experiments. Hypothesis generation leads to system-wide questions and shows how to convert these questions to experimentally measurable quantities, such as changes in protein concentrations with chaperone or protease levels, which can then be used to improve our current understanding of proteostasis and refine the model. A web version of FoldEco is available at http://foldeco.scripps.edu.
Kinematic evolution of fold and thrust belts. Insights from experimental modeling
International Nuclear Information System (INIS)
Ueta, Keiichi
2011-01-01
Physical experiments were performed to gain a better understanding on the kinematic evolution of fold and thrust belts. The present study focuses on deformation of sedimentary cover caused by thrust and reverse movements along the basement fault. Our physical models comprise dry quartz sand representing brittle sedimentary rock and viscous silicone polymer representing overpressured mudstone. Computerized X-ray tomography was applied to the experiments to analyze the kinematic evolution of fold and thrust belts. In the sand models, the width of deformation zone above thrust was wider than that above reverse fault, because back thrust developed on the hanging wall of reverse fault. Within the physical models composed of dry sand and silicone polymer, minor folds and thrusts with minor displacement developed on the footwall of the major monoclinal flexure. These results compare well with the geometry and kinematic evolution of the fold and thrust belts in Japan. (author)
Temperature Calculations in the Coastal Modeling System
2017-04-01
ERDC/CHL CHETN-IV-110 April 2017 Approved for public release; distribution is unlimited . Temperature Calculations in the Coastal Modeling...tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature
Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio
2016-04-01
Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.
Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model
Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu
2014-09-01
The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.
An optical flow-based state-space model of the vocal folds
DEFF Research Database (Denmark)
Granados, Alba; Brunskog, Jonas
2017-01-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni
2011-06-09
Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.
Suzuki, Ryo; Kawai, Yoshitaka; Tsuji, Takuya; Hiwatashi, Nao; Kishimoto, Yo; Tateya, Ichiro; Nakamura, Tatsuo; Hirano, Shigeru
2017-02-01
Vocal fold scarring, which causes severe hoarseness, is intractable. The optimal treatment for vocal fold scarring has not been established; therefore, prevention of scarring is important. The aim of this study was to clarify the effectiveness of basic fibroblast growth factor (bFGF) for prevention of postsurgical vocal fold scarring. Prospective animal experiments with controls. The vocal folds of Sprague-Dawley rats were injured unilaterally or bilaterally after local application of a 10 μL solution of bFGF. Larynges ware harvested for histological and immunohistochemical examination 2 months postoperation and for quantitative real-time polymerase chain reaction (qRT-PCR) analysis 1 week postoperation. Histological examination showed significantly increased hyaluronic acid and decreased deposition of dense collagen in the bFGF-treated group at 100 ng/10 μL compared with the sham-treated group. Immunohistochemical examination showed significantly decreased collagen type III deposition in the bFGF-treated group at 100 ng/10 μL compared with the sham-treated group. qRT-PCR revealed that hyaluronan synthase 2 (Has2), Has3, and hepatocyte growth factor were upregulated in bFGF-treated groups compared with sham-treated group. The current results suggest that local application of bFGF at the time of injury has the potential to prevent vocal fold scarring. Preventive injection of bFGF could be applied at the time of phonomicrosurgery to avoid postoperative scar formation. N/A. Laryngoscope, 2016 127:E67-E74, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
International Nuclear Information System (INIS)
Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N.; Schug, Alexander
2015-01-01
The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism
Distinct Element Method modelling of fold-related fractures in a multilayer sequence
Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard
2017-04-01
Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.
A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds
Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang
2017-04-01
3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.
Roles of beta-turns in protein folding: from peptide models to protein engineering.
Marcelino, Anna Marie C; Gierasch, Lila M
2008-05-01
Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Bergasa-Caceres, Fernando; Rabitz, Herschel A.
2013-06-01
A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.
Calculation models for a nuclear reactor
International Nuclear Information System (INIS)
Tashanii, Ahmed Ali
2010-01-01
Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)
Precipitates/Salts Model Sensitivity Calculation
International Nuclear Information System (INIS)
Mariner, P.
2001-01-01
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO 2 ) on the chemical evolution of water in the drift
Correlation of phonatory behavior with vocal fold structure, observed in a physical model
Krane, Michael; Walters, Gage; McPhail, Michael
2017-11-01
The effect of vocal fold shape and internal structure on phonation was studied experimentally using a physical model of the human airway. Model folds used a ``M5'' or a swept ellipse coronal cross-section shape. Models were molded in either 2 or three layers. Two-layer models included a more stiff ``body'' layer and a much softer ``cover'' layer, while the 3-layer models also incorporated an additional, thin, ``ligament/conus'' layer stiffer than the body layer. The elliptical section models were all molded in 3 such layers. Measurements of transglottal pressure, volume flow, mouth sound pressure, and high-speed imaging of vocal fold vibration were performed. These show that models with the ``ligament'' layer experienced much attenuated vertical deformation, that glottal closure was more likely, and that phonation was much easier to initiate. These findings suggest that the combination of the vocal ligament and the conus elasticus stabilize the vocal fold for efficient phonation by limiting vertical deformation, while allowing transverse deformations to occur. Acknowledge support from NIH DC R01005642-11.
Coupled channel folding model description of α scattering from 9Be
International Nuclear Information System (INIS)
Roy, S.; Chatterjee, J.M.; Majumdar, H.; Datta, S.K.; Banerjee, S.R.; Chintalapudi, S.N.
1995-01-01
Alpha scattering from 9 Be at E α = 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of 9 Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2 - (g.s.) and 5/2 - (2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries
Coupled channel folding model description of {alpha} scattering from {sup 9}Be
Energy Technology Data Exchange (ETDEWEB)
Roy, S.; Chatterjee, J.M.; Majumdar, H. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Datta, S.K. [Nuclear Science Centre, P.O.10502, New Delhi 110067 (India); Banerjee, S.R. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Calcutta 700064 (India); Chintalapudi, S.N. [Inter-University Consortium, Department of Atomic Energy Facilities, Bidhannagar, Calcutta 700064 (India)
1995-09-01
Alpha scattering from {sup 9}Be at {ital E}{sub {alpha}}= 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of {sup 9}Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2{sup {minus}}(g.s.) and 5/2{sup {minus}}(2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries.
Model cross section calculations using LAHET
International Nuclear Information System (INIS)
Prael, R.E.
1992-01-01
The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented
Zhang, Dawei; Lazim, Raudah; Mun Yip, Yew
2017-09-01
We conducted an all-atom ab initio folding of FSD-EY, a protein with a ββα configuration using non-polarizable (AMBER) and polarizable force fields (PHB designed by Gao et al.) in implicit solvent. The effect of reducing the polarization effect integrated into the force field by the PHB model, termed the PHB0.7 was also examined in the folding of FSD-EY. This model incorporates into the force field 70% of the original polarization effect to minimize the likelihood of over-stabilizing the backbone hydrogen bonds. Precise folding of the β-sheet of FSD-EY was further achieved by relaxing the REMD structure obtained in explicit water.
Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp
Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.
2012-11-01
The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Time-resolved transglottal pressure measurements in a scaled up vocal fold model
Ringenberg, Hunter; Krane, Michael; Rogers, Dylan; Misfeldt, Mitchel; Wei, Timothy
2016-11-01
Experimental measurements of flow through a scaled up dynamic human vocal fold model are presented. The simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine fundamental features of vocal fold oscillatory motion. Of particular interest was the temporal variation of transglottal pressure multiplied by the volume flow rate through the glottis throughout an oscillation cycle. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data have been presented in previous APS-DFD meetings. This talk will focus more on the relation between the flow and aeroacoustics associated with vocal fold oscillations. Supported by the NIH.
Finite Element Modelling of Bends and Creases during Folding Ultra Thin Stainless Steel Foils
Datta, K.; Akagi, H.; Geijselaers, Hubertus J.M.; Huetink, Han
2003-01-01
Finite Element Modelling of an ultra thin foil of SUS 304 stainless steel is carried out. These foils are 20 mm and below in thickness. The development of stresses and strains during folding of these foils is studied. The objective of this study is to induce qualities of paper in the foils of
A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision
DEFF Research Database (Denmark)
Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas
2016-01-01
. Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold...
Cross-tropopause Transport In Tropopause Folds: Mechanisms and Sensitivity To Model Resolution
Gray, S. L.
The rate and processes of transfer of mass and chemical species between the strato- sphere and troposphere (stratosphere-troposphere exchange) are currently uncertain. In the midlatitudes exchange appears to be dominated by processes associated with tropopause folds and cut-off lows. The development of a tropopause fold is a reversible process and thus irreversible processes must occur for the permanent transfer of ma- terial across the tropopause boundary. Proposed processes include turbulent mixing, quasi-isentropic mixing, convectively breaking gravity waves, deep convection and radiative heating. Numerical models run at typical climate or regional-scale resolutions are unable to re- solve the fine-scale features observed in tropopause folds. It is hypothesised that both the rate of exchange and its partitioning into different processes, as derived from nu- merical model simulations, are sensitive to model resolution. This hypothesis is tested through simulations of a tropopause folding event associated with a vigorous surface cold front which tracked across the British Isles. Climate to high-mesoscale resolution simulations incorporating passive tracers are performed using the mesoscale version of the Met Office Unified Model. The mechanism by which the parametrized convec- tion leads to exchange is the subject of further examination.
Folding model analysis of the nucleus–nucleus scattering based on ...
Indian Academy of Sciences (India)
... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 6. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates. F PAKDEL A A RAJABI L NICKHAH. Regular Volume 87 Issue 6 December 2016 Article ID 90 ...
Characteristics of phonation onset in a two-layer vocal fold model.
Zhang, Zhaoyan
2009-02-01
Characteristics of phonation onset were investigated in a two-layer body-cover continuum model of the vocal folds as a function of the biomechanical and geometric properties of the vocal folds. The analysis showed that an increase in either the body or cover stiffness generally increased the phonation threshold pressure and phonation onset frequency, although the effectiveness of varying body or cover stiffness as a pitch control mechanism varied depending on the body-cover stiffness ratio. Increasing body-cover stiffness ratio reduced the vibration amplitude of the body layer, and the vocal fold motion was gradually restricted to the medial surface, resulting in more effective flow modulation and higher sound production efficiency. The fluid-structure interaction induced synchronization of more than one group of eigenmodes so that two or more eigenmodes may be simultaneously destabilized toward phonation onset. At certain conditions, a slight change in vocal fold stiffness or geometry may cause phonation onset to occur as eigenmode synchronization due to a different pair of eigenmodes, leading to sudden changes in phonation onset frequency, vocal fold vibration pattern, and sound production efficiency. Although observed in a linear stability analysis, a similar mechanism may also play a role in register changes at finite-amplitude oscillations.
Hybrid reduced order modeling for assembly calculations
International Nuclear Information System (INIS)
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-01-01
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Youngsuk, E-mail: ysbang00@fnctech.com [FNC Technology, Co. Ltd., Yongin-si (Korea, Republic of); Abdel-Khalik, Hany S., E-mail: abdelkhalik@purdue.edu [Purdue University, West Lafayette, IN (United States); Jessee, Matthew A., E-mail: jesseema@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mertyurek, Ugur, E-mail: mertyurek@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2015-12-15
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
International Nuclear Information System (INIS)
Guo, Wei; Zhou, Jinxiong; Li, Meie
2013-01-01
Combination of soft active hydrogels with hard passive polymers gives rise to all-polymer composites. The hydrogel is sensitive to external stimuli while the passive polymer is inert. Utilizing the different behaviors of two materials subject to environmental variation, for example temperature, results in self-folding soft machines. We report our efforts to model the programmable deformation of self-folding structures with temperature-sensitive hydrogels. The self-folding structures are realized either by constructing a bilayer structure or by incorporating hydrogels as hinges. The methodology and the results may aid the design, control and fabrication of 3D complex structures from 2D simple configurations through self-assembly. (paper)
A Novel Hybrid Similarity Calculation Model
Directory of Open Access Journals (Sweden)
Xiaoping Fan
2017-01-01
Full Text Available This paper addresses the problems of similarity calculation in the traditional recommendation algorithms of nearest neighbor collaborative filtering, especially the failure in describing dynamic user preference. Proceeding from the perspective of solving the problem of user interest drift, a new hybrid similarity calculation model is proposed in this paper. This model consists of two parts, on the one hand the model uses the function fitting to describe users’ rating behaviors and their rating preferences, and on the other hand it employs the Random Forest algorithm to take user attribute features into account. Furthermore, the paper combines the two parts to build a new hybrid similarity calculation model for user recommendation. Experimental results show that, for data sets of different size, the model’s prediction precision is higher than the traditional recommendation algorithms.
Xu, Chet C; Chan, Roger W; Sun, Han; Zhan, Xiaowei
2017-11-01
A mixed-effects model approach was introduced in this study for the statistical analysis of rheological data of vocal fold tissues, in order to account for the data correlation caused by multiple measurements of each tissue sample across the test frequency range. Such data correlation had often been overlooked in previous studies in the past decades. The viscoelastic shear properties of the vocal fold lamina propria of two commonly used laryngeal research animal species (i.e. rabbit, porcine) were measured by a linear, controlled-strain simple-shear rheometer. Along with published canine and human rheological data, the vocal fold viscoelastic shear moduli of these animal species were compared to those of human over a frequency range of 1-250Hz using the mixed-effects models. Our results indicated that tissues of the rabbit, canine and porcine vocal fold lamina propria were significantly stiffer and more viscous than those of human. Mixed-effects models were shown to be able to more accurately analyze rheological data generated from repeated measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Generic framework for mining cellular automata models on protein-folding simulations.
Diaz, N; Tischer, I
2016-05-13
Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined.
Xuan, Yue; Zhang, Zhaoyan
2014-01-01
Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…
Three-dimensional laryngeal flow fields induced by a model vocal fold polyp
Energy Technology Data Exchange (ETDEWEB)
Erath, Byron D., E-mail: erath@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street NW, 739 Phillips Hall, Washington, DC 20052 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street NW, 739 Phillips Hall, Washington, DC 20052 (United States)
2012-06-15
Highlights: Black-Right-Pointing-Pointer Pathological speech with a unilateral polyp is modeled in a scaled-up flow facility. Black-Right-Pointing-Pointer Vortex shedding from the polyp disrupts normal flow behavior. Black-Right-Pointing-Pointer Hairpin vortices create spatial velocity asymmetries in the glottal flow. - Abstract: Pathological laryngeal flow fields are investigated in a dynamically-driven, scaled-up model of the vocal folds. Disruption of the flow field due to the presence of a geometric protuberance, representative of a sessile unilateral polyp, is investigated in both the streamwise and transverse flow directions using phase-averaged particle image velocimetry. It is shown that the protuberance disrupts the normal flow behavior of the glottal jet throughout the phonatory cycle. During the divergent portions of the glottal cycle, the flow is characterized by the formation of hairpin vortices downstream of the protuberance. The protuberance also introduces significant velocity gradients in the anterior-posterior direction, which cover {approx}30 - 40% of the vocal fold length. It is proposed that the disruption of the normal velocity behavior owing to the presence of a polyp will adversely impact the aerodynamic loadings that drive vocal fold motion, contributing to the temporal and spatial vocal fold asymmetries that are clinically-observed in patients with unilateral polyps.
Three-dimensional laryngeal flow fields induced by a model vocal fold polyp
International Nuclear Information System (INIS)
Erath, Byron D.; Plesniak, Michael W.
2012-01-01
Highlights: ► Pathological speech with a unilateral polyp is modeled in a scaled-up flow facility. ► Vortex shedding from the polyp disrupts normal flow behavior. ► Hairpin vortices create spatial velocity asymmetries in the glottal flow. - Abstract: Pathological laryngeal flow fields are investigated in a dynamically-driven, scaled-up model of the vocal folds. Disruption of the flow field due to the presence of a geometric protuberance, representative of a sessile unilateral polyp, is investigated in both the streamwise and transverse flow directions using phase-averaged particle image velocimetry. It is shown that the protuberance disrupts the normal flow behavior of the glottal jet throughout the phonatory cycle. During the divergent portions of the glottal cycle, the flow is characterized by the formation of hairpin vortices downstream of the protuberance. The protuberance also introduces significant velocity gradients in the anterior-posterior direction, which cover ∼30 − 40% of the vocal fold length. It is proposed that the disruption of the normal velocity behavior owing to the presence of a polyp will adversely impact the aerodynamic loadings that drive vocal fold motion, contributing to the temporal and spatial vocal fold asymmetries that are clinically-observed in patients with unilateral polyps.
Precipitates/Salts Model Sensitivity Calculation
Energy Technology Data Exchange (ETDEWEB)
P. Mariner
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.
A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.
Directory of Open Access Journals (Sweden)
Fabrizio Marinelli
2009-08-01
Full Text Available Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.
Multimodal imaging of vocal fold scarring in a rabbit model by multiphoton microscopy
Kazarine, Alexei; Bouhabel, Sarah; Douillette, Annie H.; Kost, Karen; Li-Jessen, Nicole Y. K.; Mongeau, Luc; Wiseman, Paul W.
2017-02-01
Vocal fold scarring as a result of injury or disease can lead to voice disorders which can significantly affect the quality of life. During the scarring process, the normally elastic tissue of the vocal fold lamina propria is replaced by a much stiffer collagen-based fibrotic tissue, which impacts the fold's ability to vibrate. Surgical removal of this tissue is often ineffective and can result in further scarring. Injectable biomaterials, a form of tissue engineering, have been proposed as a potential solution to reduce existing scars or prevent scarring altogether. In order to properly evaluate the effectiveness of these new materials, multiphoton microscopy emerges as an effective tool due to its intrinsic multiple label free contrast mechanisms that highlight extracellular matrix elements. In this study, we evaluate the spatial distribution of collagen and elastin fibers in a rabbit model using second harmonic generation (SHG), third harmonic generation (THG) and two photon autofluorescence (TPAF) applied to unlabeled tissue sections. In comparison to traditional methods that rely on histological staining or immunohistochemistry, SHG, THG and TPAF provide a more reliable detection of these native proteins. The evaluation of collagen levels allows us to follow the extent of scarring, while the presence of elastin fibers is thought to be indicative of the level of healing of the injured fold. Using these imaging modalities, we characterize the outcome of injectable biomaterial treatments in order to direct future treatments for tissue engineering.
EARTHWORK VOLUME CALCULATION FROM DIGITAL TERRAIN MODELS
Directory of Open Access Journals (Sweden)
JANIĆ Milorad
2015-06-01
Full Text Available Accurate calculation of cut and fill volume has an essential importance in many fields. This article shows a new method, which has no approximation, based on Digital Terrain Models. A relatively new mathematical model is developed for that purpose, which is implemented in the software solution. Both of them has been tested and verified in the praxis on several large opencast mines. This application is developed in AutoLISP programming language and works in AutoCAD environment.
A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma.
Kwag, Hye Rin; Serbo, Janna V; Korangath, Preethi; Sukumar, Saraswati; Romer, Lewis H; Gracias, David H
2016-04-01
A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.
De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas
2017-04-01
We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.
The ModFOLD4 server for the quality assessment of 3D protein models
McGuffin, Liam J.; Buenavista, Maria T.; Roche, Daniel B.
2013-01-01
Once you have generated a 3D model of a protein,\\ud how do you know whether it bears any resemblance\\ud to the actual structure? To determine the usefulness\\ud of 3D models of proteins, they must be assessed in\\ud terms of their quality by methods that predict their\\ud similarity to the native structure. The ModFOLD4\\ud server is the latest version of our leading independent\\ud server for the estimation of both the global and\\ud local (per-residue) quality of 3D protein models. The\\ud server ...
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Y.; Abdel-Khalik, H. S. [North Carolina State University, Raleigh, NC (United States); Jessee, M. A.; Mertyurek, U. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Model and calculations for net infiltration
International Nuclear Information System (INIS)
Childs, S.W.; Long, A.
1992-01-01
In this paper a conceptual model for calculating net infiltration is developed and implemented. It incorporates the following important factors: viability of climate for the next 10,000 years, areal viability of net infiltration, and important soil/plant factors that affect the soil water budget of desert soils. Model results are expressed in terms of occurrence probabilities for time periods. In addition the variability of net infiltration is demonstrated both for change with time and differences among three soil/hydrologic units present at the site modeled
Folding paper swans, modeling lives: the ritual of Filipina eldercare in Israel.
Mazuz, Keren
2013-06-01
This article examines the practices of folding paper swans by Filipina migrants employed as live-in caregivers for elderly, dying patients in Israel. These practices create a microsystem model of adjustment through precise, small-scale, and repetitive movements. This microsystem synchronizes a tripartite process: the swan's process of construction, the patient's process of decay, and the caregiver's process of self-creation. In the short term, the microsystem is sustained, but in the long term, the microsystem contains within it the seeds of its own self-destruction, as the patient eventually dies, the caregiver is reassigned to another patient or deported, and the swans are gifted. Therefore, the swan folding expands both medical anthropology understanding of caregiving as a ritual and the phenomenology of global caregivers who use immediately accessible materials-paper and glue-as an imaginative tool for ordering their daily experiences as dislocated and marginalized workers. © 2013 by the American Anthropological Association.
ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models.
Maghrabi, Ali H A; McGuffin, Liam J
2017-07-03
Methods that reliably estimate the likely similarity between the predicted and native structures of proteins have become essential for driving the acceptance and adoption of three-dimensional protein models by life scientists. ModFOLD6 is the latest version of our leading resource for Estimates of Model Accuracy (EMA), which uses a pioneering hybrid quasi-single model approach. The ModFOLD6 server integrates scores from three pure-single model methods and three quasi-single model methods using a neural network to estimate local quality scores. Additionally, the server provides three options for producing global score estimates, depending on the requirements of the user: (i) ModFOLD6_rank, which is optimized for ranking/selection, (ii) ModFOLD6_cor, which is optimized for correlations of predicted and observed scores and (iii) ModFOLD6 global for balanced performance. The ModFOLD6 methods rank among the top few for EMA, according to independent blind testing by the CASP12 assessors. The ModFOLD6 server is also continuously automatically evaluated as part of the CAMEO project, where significant performance gains have been observed compared to our previous server and other publicly available servers. The ModFOLD6 server is freely available at: http://www.reading.ac.uk/bioinf/ModFOLD/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kosinski, Jan; Gajda, Michal J; Cymerman, Iwona A; Kurowski, Michal A; Pawlowski, Marcin; Boniecki, Michal; Obarska, Agnieszka; Papaj, Grzegorz; Sroczynska-Obuchowicz, Paulina; Tkaczuk, Karolina L; Sniezynska, Paulina; Sasin, Joanna M; Augustyn, Anna; Bujnicki, Janusz M; Feder, Marcin
2005-01-01
In the course of CASP6, we generated models for all targets using a new version of the "FRankenstein's monster approach." Previously (in CASP5) we were able to build many very accurate full-atom models by selection and recombination of well-folded fragments obtained from crude fold recognition (FR) results, followed by optimization of the sequence-structure fit and assessment of alternative alignments on the structural level. This procedure was however very arduous, as most of the steps required extensive visual and manual input from the human modeler. Now, we have automated the most tedious steps, such as superposition of alternative models, extraction of best-scoring fragments, and construction of a hybrid "monster" structure, as well as generation of alternative alignments in the regions that remain poorly scored in the refined hybrid model. We have also included the ROSETTA method to construct those parts of the target for which no reasonable structures were generated by FR methods (such as long insertions and terminal extensions). The analysis of successes and failures of the current version of the FRankenstein approach in modeling of CASP6 targets reveals that the considerably streamlined and automated method performs almost as well as the initial, mostly manual version, which suggests that it may be a useful tool for accurate protein structure prediction even in the hands of nonexperts. 2005 Wiley-Liss, Inc.
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
Saidi, Hiba; Erath, Byron D.
2015-11-01
The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.
Communication: Role of explicit water models in the helix folding/unfolding processes
Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele
2016-09-01
In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.
A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.
Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur
2017-04-04
Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Matrix model calculations beyond the spherical limit
International Nuclear Information System (INIS)
Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.
1993-01-01
We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)
Folding model analysis of Λ binding energies and three-body ΛNN force
International Nuclear Information System (INIS)
Mian, M.; Rahman Khan, M.Z.
1988-02-01
Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ 5 He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs
Development of Dynamic Environmental Effect Calculation Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il
2010-01-01
The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed
Pratt, William B; Morishima, Yoshihiro; Gestwicki, Jason E; Lieberman, Andrew P; Osawa, Yoichi
2014-11-01
In an EBM Minireview published in 2010, we proposed that the heat shock protein (Hsp)90/Hsp70-based chaperone machinery played a major role in determining the selection of proteins that have undergone oxidative or other toxic damage for ubiquitination and proteasomal degradation. The proposal was based on a model in which the Hsp90 chaperone machinery regulates signaling by modulating ligand-binding clefts. The model provides a framework for thinking about the development of neuroprotective therapies for protein-folding diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and the polyglutamine expansion disorders, such as Huntington's disease (HD) and spinal and bulbar muscular atrophy (SBMA). Major aberrant proteins that misfold and accumulate in these diseases are "client" proteins of the abundant and ubiquitous stress chaperone Hsp90. These Hsp90 client proteins include tau (AD), α-synuclein (PD), huntingtin (HD), and the expanded glutamine androgen receptor (polyQ AR) (SBMA). In this Minireview, we update our model in which Hsp90 acts on protein-folding clefts and show how it forms a rational basis for developing drugs that promote the targeted elimination of these aberrant proteins. © 2014 by the Society for Experimental Biology and Medicine.
Cost Calculation Model for Logistics Service Providers
Directory of Open Access Journals (Sweden)
Zoltán Bokor
2012-11-01
Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly
Use of the peritracheal fold in the dog tracheal transplantation model.
Gannon, P J; Costantino, P D; Lueg, E A; Chaplin, J M; Brandwein, M S; Passalaqua, P J; Fliegelman, L J; Laitman, J T; Marquez, S; Urken, M L
1999-09-01
To investigate the technical aspects of the canine model of human tracheal transplantation for potential application to reconstruction of extremely long tracheal defects (> 10 cm). In phase 1, long tracheal segments were skeletonized and pedicled with the thyroid glands, cranial thyroid arteries and veins, and internal jugular vein branches. The segments were elevated completely, attached to the vascular pedicle only, and replaced with primary tracheal anastomoses. In phase 2, long segments were elevated along with a diffuse soft tissue "blanket" that envelops the trachea and thyroid glands. Because this study was designed to primarily address, in situ, tracheal perfusion territories of a cranially located vascular pedicle, microvascular anastomoses were not conducted. Two small-bodied beagles (10-15 kg) and 5 large-bodied mixed-breed dogs (20-30 kg) were humanely killed 2 to 41 days after surgery, and anatomic and histological analyses were conducted. Unlike that of humans, the thyroid gland complex of dogs is not intimately associated with the trachea but is conjoined with a peritracheal soft tissue "fold." Within this fold, blood is transmitted to the trachea via a diffuse, segmental vascular plexus. In phase 1, pronounced tracheal necrosis occurred within 2 to 5 days. In phase 2, extremely long tracheal segments (10-12 cm), based only on a cranially located pedicle, were still viable at 2 to 6 weeks. Preservation of the "peritracheal fold" in the dog model of tracheal transplantation is critical to the onset and maintenance of vascular perfusion in a long tracheal segment. Furthermore, the use of large-bodied dogs is necessary to provide for a usable venous efflux component.
Spherical aberration correction with an in-lens N-fold symmetric line currents model.
Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji
2018-04-01
In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.
A replica exchange Monte Carlo algorithm for protein folding in the HP model
Directory of Open Access Journals (Sweden)
Shmygelska Alena
2007-09-01
Full Text Available Abstract Background The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@-hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP lattice models. Results We demonstrate that REMC is highly effective for solving instances of the square (2D and cubic (3D HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily. Conclusion We demonstrate that REMC utilizing the pull move
Effective hamiltonian calculations using incomplete model spaces
International Nuclear Information System (INIS)
Koch, S.; Mukherjee, D.
1987-01-01
It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations
Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta
2015-04-01
The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the
Model for fission-product calculations
International Nuclear Information System (INIS)
Smith, A.B.
1984-01-01
Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined
Gradmann, Sofie; Beaumont, Christopher; Albertz, Markus
2009-04-01
The Perdido Fold Belt (PFB) is a prominent salt-cored deep water structure in the northwestern Gulf of Mexico. It is characterized by symmetric, kink-banded folds of a ˜4.5 km thick prekinematic layer and its vicinity to the extensive Sigsbee Salt Canopy. We use 2-D finite element numerical models to study the evolution of the PFB as a gravity-driven fold belt both in a local context and in the context of the larger-scale passive margin, influenced by adjacent allochthonous salt structures. We show that parameters such as overburden strength, salt geometry, or salt viscosity determine timing, extent, and location of the modeled fold belt. Simplified models of the Gulf of Mexico show that toe-of-slope folding is a viable mechanism to develop diapirs in the deep salt basin and to delay folding of the distal overburden. In this scenario, the PFB likely represents the terminal folding of a much larger, diachronously formed fold belt system.
Ban, Myung Jin; Park, Jae Hong; Kim, Jae Wook; Park, Ki Nam; Lee, Jae Yong; Kim, Hee Kyung; Lee, Seung Won
2017-12-01
This study assessed the regenerative efficacy of basic fibroblast growth factor (FGF) in a rabbit model of chronic vocal fold scarring and then confirmed its utility and safety in a prospective trial of patients with this condition. FGF was injected three times, at 1-week intervals, into a chronic vocal fold scar created in a rabbit model. After 1 month, mRNA level of procollagen I, hyaluronic acid synthetase 2 (HAS 2), and matrix metalloproteinase 2 (MMP 2) were analyzed by real-time polymerase chain reaction. The relative densities of hyaluronic acid (HA) and collagen were examined 3 months post-injection. From April 2012 to September 2014, a prospective clinical trial was conducted at a tertiary hospital in Korea. FGF was injected into the mild vocal fold scar of 17 consecutive patients with a small glottic gap. The patients underwent perceptual, stroboscopic, acoustic aerodynamic test, and Voice Handicap Index (VHI) survey prior to and 3, 6, and 12 months after FGF injection. FGF injection of the vocal fold scar decreased the density of collagen and increased mRNA level of HAS 2 and MMP 2 expression significantly compared to the control group injected with phosphate buffered solution in a rabbit model (Pvocal fold injections of FGF in patients with mild chronic vocal fold scarring can significantly improve voice quality for as long as 1 year and without side effects. Our results recommend the use of FGF vocal fold injection as an alternative treatment modality for mild chronic vocal fold scarring.
Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael
2012-01-01
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511
Acceleration methods and models in Sn calculations
International Nuclear Information System (INIS)
Sbaffoni, M.M.; Abbate, M.J.
1984-01-01
In some neutron transport problems solved by the discrete ordinate method, it is relatively common to observe some particularities as, for example, negative fluxes generation, slow and insecure convergences and solution instabilities. The commonly used models for neutron flux calculation and acceleration methods included in the most used codes were analyzed, in face of their use in problems characterized by a strong upscattering effect. Some special conclusions derived from this analysis are presented as well as a new method to perform the upscattering scaling for solving the before mentioned problems in this kind of cases. This method has been included in the DOT3.5 code (two dimensional discrete ordinates radiation transport code) generating a new version of wider application. (Author) [es
Investigation of the three-dimensional lattice HP protein folding model using a genetic algorithm
Directory of Open Access Journals (Sweden)
Fábio L. Custódio
2004-01-01
Full Text Available An approach to the hydrophobic-polar (HP protein folding model was developed using a genetic algorithm (GA to find the optimal structures on a 3D cubic lattice. A modification was introduced to the scoring system of the original model to improve the model's capacity to generate more natural-like structures. The modification was based on the assumption that it may be preferable for a hydrophobic monomer to have a polar neighbor than to be in direct contact with the polar solvent. The compactness and the segregation criteria were used to compare structures created by the original HP model and by the modified one. An islands' algorithm, a new selection scheme and multiple-points crossover were used to improve the performance of the algorithm. Ten sequences, seven with length 27 and three with length 64 were analyzed. Our results suggest that the modified model has a greater tendency to form globular structures. This might be preferable, since the original HP model does not take into account the positioning of long polar segments. The algorithm was implemented in the form of a program with a graphical user interface that might have a didactical potential in the study of GA and on the understanding of hydrophobic core formation.
Rf modeling and design of a folded waveguide launcher for the Alcator C-Mod tokamak
International Nuclear Information System (INIS)
Bigelow, T.S.; Fogelman, C.F.; Baity, F.W.; Carter, M.D.; Hoffman, D.J.; Ryan, P.M.; Yugo, J.J.; Golovato, S.N.; Bonoli, P.
1993-01-01
The folded waveguide (FWG) launcher is being investigated as an improved antenna configuration for plasma heating in the ion cyclotron range of frequencies (ICRF). A development FWG launcher was successfully tested at Oak Ridge National Laboratory (ORNL) with a low-density plasma load and found to have significantly greater power density capability than current strap-type antennas operating in similar plasmas. To further test the concept on a high density tokamak plasma, a collaboration has been set up between ORNL and Massachusetts Institute of Technology (MIT) to develop and test an 80-MHz, 2-MW FWG on the Alcator C-Mod tokamak at MIT. The radio frequency (rf) electromagnetic modeling techniques and laboratory measurements used in the design of this antenna are described in this paper. A companion paper describes the mechanical design of the FWG
Accuracy of simple folding model in the calculation of the direct part ...
Indian Academy of Sciences (India)
(3) is expanded in relative r and centre of mass R coordinates and truncated beyond the second-order derivatives to yield such simple form of the ground state energy Vd. In eq. (4), gsl(kFr) = 35. 2(kFr)3 j3(kFr). j3 is the spherical Bessel function of third order and the local Fermi momentum kF = (1.5π2ρ)1/3. 2.3 Derivation of ...
Accuracy of simple folding model in the calculation of the direct part ...
Indian Academy of Sciences (India)
2014-04-30
Apr 30, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 5 ... School of Physics, Sambalpur University, Jyoti Vihar, Sambalpur 768 019, India; Panchayat College, Bargarh 768 028, India; Department of Physics, National Institute of Technology, Jamshedpur 831 ... Please take note of this change.
Histological Effect of Basic Fibroblast Growth Factor on Chronic Vocal Fold Scarring in a Rat Model.
Tateya, Ichiro; Tateya, Tomoko; Sohn, Jin-Ho; Bless, Diane M
2016-03-01
Vocal fold scarring is one of the most challenging laryngeal disorders to treat and there are currently no consistently effective treatments available. Our previous studies have shown the therapeutic potential of basic fibroblast growth factor (bFGF) for vocal fold scarring. However, the histological effects of bFGF on scarred vocal fold have not been elucidated. The aim of this study was to examine the histological effects of bFGF on chronic vocal fold scarring. Sprague-Dawley rats were divided into phosphate buffered saline (sham) and bFGF groups. Unilateral vocal fold stripping was performed and the drug was injected into the scarred vocal fold for each group 2 months postoperatively. Injections were performed weekly for 4 weeks. Two months after the last injection, larynges were harvested and histologically analyzed. A significant increase of hyaluronic acid was observed in the vocal fold of the bFGF group compared with that of the sham group. However, there was no remarkable change in collagen expression nor in vocal fold contraction. Significant increase of hyaluronic acid by local bFGF injection was thought to contribute to the therapeutic effects on chronic vocal fold scarring.
The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model
Zhang, Zhaoyan
2014-01-01
Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284
Expression of tenascin-C in a rat vocal fold injury model and its regulation of fibroblasts.
Li, Juan; Liu, Yiqiong; Wang, Yiming; Xu, Wen
2018-03-23
Tenascin-C (Tnc) is an extracellular matrix (ECM) glycoprotein that plays a vital role in wound healing and fibrotic disease. Tnc is highly upregulated soon after vocal fold injury, but its function in the vocal fold has not yet been defined. In this study, we investigated Tnc expression in a rat vocal fold injury model in vivo and its roles in fibroblasts in vitro. In vivo and in vitro. Tnc mRNA and protein expression levels were quantified on days 3, 7, 14, 28, and 56 after vocal fold injury in Sprague-Dawley rats. In vitro, immunocytochemistry, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed in primary rat vocal fold fibroblasts following Tnc or transforming growth factor (TGF)-β1 stimulation to investigate the phenotypic effects. Tnc mRNA and protein expression was upregulated dramatically on days 3 and 7 after injury, and significant differences were observed by qRT-PCR (P vocal fold fibroblasts. Following incubation with Tnc for 72 hours, α-smooth muscle actin, collagen I, and fibronectin expression was significantly upregulated (P vocal fold fibroblast migration, transdifferentiation, and ECM protein synthesis in vitro. Tnc was induced by TGF-β1 in a SMAD3-dependent manner. Transient expression of Tnc is likely to promote regeneration, but its potential role in fibrosis requires further study. NA Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun
2015-10-01
Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.
A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies.
Directory of Open Access Journals (Sweden)
Ingo R Titze
2010-08-01
Full Text Available Male Rocky Mountain elk (Cervus elaphus nelsoni produce loud and high fundamental frequency bugles during the mating season, in contrast to the male European Red Deer (Cervus elaphus scoticus who produces loud and low fundamental frequency roaring calls. A critical step in understanding vocal communication is to relate sound complexity to anatomy and physiology in a causal manner. Experimentation at the sound source, often difficult in vivo in mammals, is simulated here by a finite element model of the larynx and a wave propagation model of the vocal tract, both based on the morphology and biomechanics of the elk. The model can produce a wide range of fundamental frequencies. Low fundamental frequencies require low vocal fold strain, but large lung pressure and large glottal flow if sound intensity level is to exceed 70 dB at 10 m distance. A high-frequency bugle requires both large muscular effort (to strain the vocal ligament and high lung pressure (to overcome phonation threshold pressure, but at least 10 dB more intensity level can be achieved. Glottal efficiency, the ration of radiated sound power to aerodynamic power at the glottis, is higher in elk, suggesting an advantage of high-pitched signaling. This advantage is based on two aspects; first, the lower airflow required for aerodynamic power and, second, an acoustic radiation advantage at higher frequencies. Both signal types are used by the respective males during the mating season and probably serve as honest signals. The two signal types relate differently to physical qualities of the sender. The low-frequency sound (Red Deer call relates to overall body size via a strong relationship between acoustic parameters and the size of vocal organs and body size. The high-frequency bugle may signal muscular strength and endurance, via a 'vocalizing at the edge' mechanism, for which efficiency is critical.
Multimodality pH imaging in a mouse dorsal skin fold window chamber model
Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.
2013-03-01
Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.
Airflow visualization in a model of human glottis near the self-oscillating vocal folds model
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Uruba, Václav; Radolf, Vojtěch; Veselý, Jan; Bula, Vítězslav
2011-01-01
Roč. 5, č. 1 (2011), s. 21-28 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of human voice * voice production modelling * PIV measurement of streamline patterns Subject RIV: BI - Acoustics
Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code
International Nuclear Information System (INIS)
Luk'yanov, K.V.
2008-01-01
Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented
Concurrent algorithms for nuclear shell model calculations
International Nuclear Information System (INIS)
Mackenzie, L.M.; Macleod, A.M.; Berry, D.J.; Whitehead, R.R.
1988-01-01
The calculation of nuclear properties has proved very successful for light nuclei, but is limited by the power of the present generation of computers. Starting with an analysis of current techniques, this paper discusses how these can be modified to map parallelism inherent in the mathematics onto appropriate parallel machines. A prototype dedicated multiprocessor for nuclear structure calculations, designed and constructed by the authors, is described and evaluated. The approach adopted is discussed in the context of a number of generically similar algorithms. (orig.)
Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben
2011-10-01
Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.
Implementation of a 3d numerical model of a folded multilayer carbonate aquifer
Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta
2016-04-01
The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and
Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio
2014-05-01
We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.
Shell model calculations for exotic nuclei
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1991-01-01
A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs
Folding model analysis of 58Ni + 64Ni elastic and inelastic scattering at Elab=203.8 and 219.2 MeV
International Nuclear Information System (INIS)
Ruiz, J.A.; Ferrero, J.L.; Bilwes, B.; Bilwes, R.
1992-01-01
Angular distributions of elastic scattering of 58 Ni by 64 Ni and inelastic scattering leading to the first 2 + state in 58 Ni or in 64 Ni were measured at E lab =203.8 and 219.2 MeV. The data were analyzed in the frame of the folding model. A renormalization N of the folding potential consistently lower than unity (N∼0.65) is needed to reproduce the elastic scattering data. Coupled-channel calculations including the main inelastic channels explain partly this discrepancy. They reproduce the elastic and inelastic scattering data with a renormalization of N∼0.8 at both energies. Interference between Coulomb and nuclear excitation is shown to play an important role in the repulsive character of the polarization potential. (author) 38 refs.; 6 figs.; 1 tab
Uncertainty calculation in transport models and forecasts
DEFF Research Database (Denmark)
Manzo, Stefano; Prato, Carlo Giacomo
Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...
Ringenberg, Hunter; Rogers, Dylan; Wei, Nathaniel; Krane, Michael; Wei, Timothy
2017-11-01
The objective of this study is to apply experimental data to theoretical framework of Krane (2013) in which the principal aeroacoustic source is expressed in terms of vocal fold drag, glottal jet dynamic head, and glottal exit volume flow, reconciling formal theoretical aeroacoustic descriptions of phonation with more traditional lumped-element descriptions. These quantities appear in the integral equations of motion for phonatory flow. In this way time resolved velocity field measurements can be used to compute time-resolved estimates of the relevant terms in the integral equations of motion, including phonation aeroacoustic source strength. A simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine symmetric, i.e. `healthy', oscillatory motion of the vocal folds. By using water as the working fluid, very high spatial and temporal resolution was achieved. Temporal variation of transglottal pressure was simultaneously measured with flow on the vocal fold model mid-height. Experiments were dynamically scaled to examine a range of frequencies corresponding to male and female voice. The simultaneity of the pressure and flow provides new insights into the aeroacoustics associated with vocal fold oscillations. Supported by NIH Grant No. 2R01 DC005642-11.
Shell model calculations at superdeformed shapes
International Nuclear Information System (INIS)
Nazarewicz, W.; Dobaczewski, J.; Van Isacker, P.
1991-01-01
Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three dimensional harmonic oscillator. The classifications and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. The ''superdeformed'' symmetries lead to new quantum numbers and new effective interactions that can be employed in microscopic calculations. New classification schemes can be directly related to certain geometrical properties of the nuclear shape. 63 refs., 7 figs
Finite element modeling of the vocal folds with deformable interface tracking
DEFF Research Database (Denmark)
Granados Corsellas, Alba; Brunskog, Jonas; Misztal, Marek Krzysztof
2014-01-01
Continuous and prolonged use of the sp eaking voice may lead to functional sp eech disorders that are not apparent for voice clinicians from high-sp eed imaging of the vo cal folds' vibration. However, it is hyp othesized that time dep endent tissue prop erties provide some insight into the injury...... pro cess. To infer material parameters via an inverse optimization problem from recorded deformation, a self sustained theoretical mo del of the vo cal folds is needed. With this purp ose, a transversely isotropic three-dimensional nite element mo del is prop osed and investigated. Sp ecial attention...
Models for Automated Tube Performance Calculations
International Nuclear Information System (INIS)
Brunkhorst, C.
2002-01-01
High power radio-frequency systems, as typically used in fusion research devices, utilize vacuum tubes. Evaluation of vacuum tube performance involves data taken from tube operating curves. The acquisition of data from such graphical sources is a tedious process. A simple modeling method is presented that will provide values of tube currents for a given set of element voltages. These models may be used as subroutines in iterative solutions of amplifier operating conditions for a specific loading impedance
Samlan, Robin A.; Story, Brad H.
2011-01-01
Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…
Rogers, Dylan; Wei, Nathaniel; Ringenber, Hunter; Krane, Michael; Wei, Timothy
2017-11-01
This study builds on the parallel presentation of Ringenberg, et al. (APS-DFD 2017) involving simultaneous, temporally and spatially resolved flow and pressure measurements in a scaled-up vocal fold model. In this talk, data from experiments replicating characteristics of diseased vocal folds are presented. This begins with vocal folds that do not fully close and continues with asymmetric oscillations. Data are compared to symmetric, i.e. `healthy', oscillatory motions presented in the companion talk. Having pressure and flow data for individual as well as phase averaged oscillations for these diseased cases highlights the potential for aeroacoustic analysis in this complex system. Supported by NIH Grant No. 2R01 DC005642-11.
Czech Academy of Sciences Publication Activity Database
Šidlof, Petr; Švec, J. G.; Horáček, Jaromír; Veselý, Jan; Klepáček, I.; Havlík, R.
2008-01-01
Roč. 41, - (2008), s. 985-995 ISSN 0021-9290 R&D Projects: GA AV ČR IAA2076401 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal fold geometry * glottal channel shape * quantitative description Subject RIV: BI - Acoustics Impact factor: 2.784, year: 2008
Self-similar voiding solutions for a single layered model of folding rocks
Dodwell, T.J.; Peletier, M.A.; Budd, C.J.; Hunt, G.W.
2011-01-01
In this paper we derive an obstacle problem with a free boundary to describe the formation of voids at areas of intense geological folding. An elastic layer is forced by overburden pressure against a V-shaped rigid obstacle. Energy minimization leads to representation as a non-linear fourth-order
Numerical Simulation of Interaction of Fluid Flow and Elastic Structure Modelling Vocal Fold
Czech Academy of Sciences Publication Activity Database
Valášek, J.; Sváček, P.; Horáček, Jaromír
2016-01-01
Roč. 821, č. 2016 (2016), s. 693-700 ISSN 1660-9336 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : finite element method * 2D Navier-Stokes equations * vocal folds * aeroelasticity Subject RIV: BI - Acoustics
Czech Academy of Sciences Publication Activity Database
Klepáček, I.; Jirák, D.; Dušková-Smrčková, Miroslava; Janoušková, Olga; Vampola, T.
2016-01-01
Roč. 30, č. 5 (2016), s. 529-537 ISSN 0892-1997 R&D Projects: GA ČR(CZ) GAP101/12/1306 Institutional support: RVO:61389013 Keywords : human vocal fold * vocal ligamentous complex * lamina propria Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.381, year: 2016
Beyond standard model calculations with Sherpa
Energy Technology Data Exchange (ETDEWEB)
Hoeche, Stefan [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Kuttimalai, Silvan [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Siegert, Frank [Institut fuer Kern- und Teilchenphysik, TU Dresden, Dresden (Germany)
2015-03-01
We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level. (orig.)
International Nuclear Information System (INIS)
Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G
2008-01-01
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity
Energy Technology Data Exchange (ETDEWEB)
Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)
2008-04-21
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.
Model calculations for electrochemically etched neutron detectors
International Nuclear Information System (INIS)
Pitt, E.; Scharmann, A.; Werner, B.
1988-01-01
Electrochemical etching has been established as a common method for visualisation of nuclear tracks in solid state nuclear track detectors. Usually the Mason equation, which describes the amplification of the electrical field strength at the track tip, is used to explain the treeing effect of electrochemical etching. The yield of neutron-induced tracks from electrochemically etched CR-39 track detectors was investigated with respect to the electrical parameters. A linear dependence on the response from the macroscopic field strength was measured which could not be explained by the Mason equation. It was found that the reality of a recoil proton track in the detector does not fit the boundary conditions which are necessary when the Mason equation is used. An alternative model was introduced to describe the track and detector geometry in the case of a neutron track detector. The field strength at the track tip was estimated with this model and compared with the experimental data, yielding good agreement. (author)
Model calculation of thermal conductivity in antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.
2015-11-01
A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.
Structurally and functionally characterized in vitro model of rabbit vocal fold epithelium.
Mizuta, Masanobu; Kurita, Takashi; Kimball, Emily E; Rousseau, Bernard
2017-06-01
In this paper, we describe a method for primary culture of a well differentiated electrically tight rabbit vocal fold epithelial cell multilayer and the measurement of transepithelial electrical resistance (TEER) for the evaluation of epithelial barrier function in vitro. Rabbit larynges were harvested and enzymatically treated to isolate vocal fold epithelial cells and to establish primary culture. Vocal fold epithelial cells were co-cultured with mitomycin C-treated feeder cells on collagen-coated plates. After 10-14 days in primary culture, cells were passaged and cultured until they achieved 70-90% confluence on collagen-coated plates. Epithelial cells were then passaged onto collagen-coated cell culture inserts using 4.5cm 2 membrane filters (1.0μm pore size) with 10% fetal bovine serum or 30μg/mL bovine pituitary extract to investigate the effects of growth-promoting additives on TEER. Additional experiments were performed to investigate optimal seeding density (1.1, 2.2, 4.4, or 8.9×10 5 cells/cm 2 ), the effect of co-culture with feeder cells, and the effect of passage number on epithelial barrier function. Characterization of in vitro cultures was performed using hematoxylin and eosin staining and immunostaining for vocal fold epithelial cell markers and tight junctions. Results revealed higher TEER in cells supplemented with fetal bovine serum compared to bovine pituitary extract. TEER was highest in cells passaged at a seeding density of 2.2×10 4 cells/cm 2 , and TEER was higher in cells at passage two than passage three. Ultrastructural experiments revealed a well-differentiated epithelial cell multilayer, expressing the epithelial cell markers CK13, CK14 and the tight junction proteins occludin and ZO-1. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Standard Model theory calculations and experimental tests
International Nuclear Information System (INIS)
Cacciari, M.; Hamel de Monchenault, G.
2015-01-01
To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings
Swartjes F; ECO
2003-01-01
Twenty scenarios, differing with respect to land use, soil type and contaminant, formed the basis for calculating human exposure from soil contaminants with the use of models contributed by seven European countries (one model per country). Here, the human exposures to children and children
Calculations of Inflaton Decays and Reheating: with Applications to No-Scale Inflation Models
Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A
2015-01-01
We discuss inflaton decays and reheating in no-scale Starobinsky-like models of inflation, calculating the effective equation-of-state parameter, $w$, during the epoch of inflaton decay, the reheating temperature, $T_{\\rm reh}$, and the number of inflationary e-folds, $N_*$, comparing analytical approximations with numerical calculations. We then illustrate these results with applications to models based on no-scale supergravity and motivated by generic string compactifications, including scenarios where the inflaton is identified as an untwisted-sector matter field with direct Yukawa couplings to MSSM fields, and where the inflaton decays via gravitational-strength interactions. Finally, we use our results to discuss the constraints on these models imposed by present measurements of the scalar spectral index $n_s$ and the tensor-to-scalar perturbation ratio $r$, converting them into constraints on $N_*$, the inflaton decay rate and other parameters of specific no-scale inflationary models.
Directory of Open Access Journals (Sweden)
Konstantin B Zeldovich
2007-07-01
Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.
Precipitates/Salts Model Calculations for Various Drift Temperature Environments
International Nuclear Information System (INIS)
Marnier, P.
2001-01-01
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b)
DIGA/NSL new calculational model in slab geometry
International Nuclear Information System (INIS)
Makai, M.; Gado, J.; Kereszturi, A.
1987-04-01
A new calculational model is presented based on a modified finite-difference algorithm, in which the coefficients are determined by means of the so-called gamma matrices. The DIGA program determines the gamma matrices and the NSL program realizes the modified finite difference model. Both programs assume slab cell geometry, DIGA assumes 2 energy groups and 3 diffusive regions. The DIGA/NSL programs serve to study the new calculational model. (author)
Muscular anatomy of the human ventricular folds.
Moon, Jerald; Alipour, Fariborz
2013-09-01
Our purpose in this study was to better understand the muscular anatomy of the ventricular folds in order to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and nonphonatory tasks. Four human larynges were decalcified, sectioned coronally from posterior to anterior by a CryoJane tape transfer system, and stained with Masson's trichrome. The total and relative areas of muscles observed in each section were calculated and used for characterizing the muscle distribution within the ventricular folds. The ventricular folds contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers that were in the lower half of the ventricular fold posteriorly, and some ventricularis muscle was evident in the upper and lateral portions of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the ventricular fold was largely devoid of any muscle tissue. All 4 larynges contained muscle bundles that coursed superiorly and medially through the upper half of the fold, toward the lateral margin of the epiglottis. Although variability of expression was evident, a well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens.
Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds
Czech Academy of Sciences Publication Activity Database
Šidlof, Petr; Horáček, Jaromír; Řidký, V.
2013-01-01
Roč. 80, č. 1 (2013), s. 290-300 ISSN 0045-7930 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical simulation * vocal folds * glottal airflow * inite volume method * parallel CFD Subject RIV: BI - Acoustics Impact factor: 1.532, year: 2013 http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-268060849&_sort=r&_st=13&view=c&_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=7c5b5539857ee9a02af5e690585b3126&searchtype=a
A universal calculation model for the controlled electric transmission line
International Nuclear Information System (INIS)
Zivzivadze, O.; Zivzivadze, L.
2009-01-01
Difficulties associated with the development of calculation models are analyzed, and the ways of resolution of these problems are given. A version of the equivalent circuit as a six-pole network, the parameters of which do not depend on the angle of shift Θ between the voltage vectors of circuits is offered. The interrelation between the parameters of the equivalent circuit and the transmission constants of the line was determined. A universal calculation model for the controlled electric transmission line was elaborated. The model allows calculating the stationary modes of lines of such classes at any angle of shift Θ between the circuits. (author)
ECP evaluation by water radiolysis and ECP model calculations
Energy Technology Data Exchange (ETDEWEB)
Hanawa, S.; Nakamura, T.; Uchida, S. [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan); Kus, P.; Vsolak, R.; Kysela, J. [Nuclear Research Inst. Rez plc, Rez (Czech Republic)
2010-07-01
In-pile ECP measurements data was evaluated by water radiolysis calculations. The data was obtained by using an in-pile loop in an experimental reactor, LVR-15, at the Nuclear Research Institute (NRI) in Czech Republic. Three types of ECP sensors, a Pt electrode, an Ag/AgCl sensor and a zirconia membrane sensor containing Ag/Ag{sub 2}O were used at several levels of the irradiation rig at various neutron flux and gamma rates. For water radiolysis calculation, the in-pile loop was modeled to several nodes following their design specifications, operating conditions such as flow rates, dose rate distributions of neutron and gamma-ray and so on. Concentration of chemical species along the water flow was calculated by a radiolysis code, WRAC-J. The radiolysis calculation results were transferred to an ECP model. In the model, anodic and cathodic current densities were calculated with combination of an electrochemistry model and an oxide film growth model. The measured ECP data were compared with the radiolysis/ECP calculation results, and applicability the of radiolysis model was confirmed. In addition, anomalous phenomenon appears in the in-pile loop was also investigated by radiolysis calculations. (author)
Comparative calculations and validation studies with atmospheric dispersion models
International Nuclear Information System (INIS)
Paesler-Sauer, J.
1986-11-01
This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de
Model calculations of nuclear data for biologically-important elements
International Nuclear Information System (INIS)
Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.
1994-05-01
We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed
Kapoor, Abhijeet; Travesset, Alex
2014-03-01
We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Masago, Akira; Suzuki, Naoshi
2001-01-01
By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins
In-Drift Microbial Communities Model Validation Calculations
Energy Technology Data Exchange (ETDEWEB)
D. M. Jolley
2001-09-24
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.
In-Drift Microbial Communities Model Validation Calculation
Energy Technology Data Exchange (ETDEWEB)
D. M. Jolley
2001-10-31
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
D.M. Jolley
2001-12-18
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.
In-Drift Microbial Communities Model Validation Calculations
International Nuclear Information System (INIS)
Jolley, D.M.
2001-01-01
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
International Nuclear Information System (INIS)
D.M. Jolley
2001-01-01
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data
Hualien forced vibration calculation with a finite element model
International Nuclear Information System (INIS)
Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.
1995-01-01
The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs
The accuracy of heavy ion optical model calculations
International Nuclear Information System (INIS)
Kozik, T.
1980-01-01
There is investigated in detail the sources and magnitude of numerical errors in heavy ion optical model calculations. It is shown on example of 20 Ne + 24 Mg scattering at Esub(LAB)=100 MeV. (author)
NLOM - a program for nonlocal optical model calculations
International Nuclear Information System (INIS)
Kim, B.T.; Kyum, M.C.; Hong, S.W.; Park, M.H.; Udagawa, T.
1992-01-01
A FORTRAN program NLOM for nonlocal optical model calculations is described. It is based on a method recently developed by Kim and Udagawa, which utilizes the Lanczos technique for solving integral equations derived from the nonlocal Schroedinger equation. (orig.)
Experimental evaluation of analytical penumbra calculation model for wobbled beams
International Nuclear Information System (INIS)
Kohno, Ryosuke; Kanematsu, Nobuyuki; Yusa, Ken; Kanai, Tatsuaki
2004-01-01
The goal of radiotherapy is not only to apply a high radiation dose to a tumor, but also to avoid side effects in the surrounding healthy tissue. Therefore, it is important for carbon-ion treatment planning to calculate accurately the effects of the lateral penumbra. In this article, for wobbled beams under various irradiation conditions, we focus on the lateral penumbras at several aperture positions of one side leaf of the multileaf collimator. The penumbras predicted by an analytical penumbra calculation model were compared with the measured results. The results calculated by the model for various conditions agreed well with the experimental ones. In conclusion, we found that the analytical penumbra calculation model could predict accurately the measured results for wobbled beams and it was useful for carbon-ion treatment planning to apply the model
A methodology for constructing the calculation model of scientific spreadsheets
Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.
2015-01-01
Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are
Mathematical models for calculating radiation dose to the fetus
International Nuclear Information System (INIS)
Watson, E.E.
1992-01-01
Estimates of radiation dose from radionuclides inside the body are calculated on the basis of energy deposition in mathematical models representing the organs and tissues of the human body. Complex models may be used with radiation transport codes to calculate the fraction of emitted energy that is absorbed in a target tissue even at a distance from the source. Other models may be simple geometric shapes for which absorbed fractions of energy have already been calculated. Models of Reference Man, the 15-year-old (Reference Woman), the 10-year-old, the five-year-old, the one-year-old, and the newborn have been developed and used for calculating specific absorbed fractions (absorbed fractions of energy per unit mass) for several different photon energies and many different source-target combinations. The Reference woman model is adequate for calculating energy deposition in the uterus during the first few weeks of pregnancy. During the course of pregnancy, the embryo/fetus increases rapidly in size and thus requires several models for calculating absorbed fractions. In addition, the increases in size and changes in shape of the uterus and fetus result in the repositioning of the maternal organs and in different geometric relationships among the organs and the fetus. This is especially true of the excretory organs such as the urinary bladder and the various sections of the gastrointestinal tract. Several models have been developed for calculating absorbed fractions of energy in the fetus, including models of the uterus and fetus for each month of pregnancy and complete models of the pregnant woman at the end of each trimester. In this paper, the available models and the appropriate use of each will be discussed. (Author) 19 refs., 7 figs
Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia
2014-05-01
performed a dip-domain analysis that allowed to categorize the different fold limbs and reduce the uncertainty in the reconstruction of the fault network topology in map view. This enabled us to reconstruct a high-quality, low-uncertainty 3D structural and geological model, which unambiguously proves that deformations with a top-to-WSW Dinaric transport direction propagate farther to the west than previously supposed in this part of the Southern Alps. Our new structural reconstruction of the Vajont valley have also clarified the structural control on the 1963 catastrophic landslide (which caused over 2000 losses). Besides being a challenging natural laboratory for testing analysis and modelling methodologies to be used when reconstructing in 3D this kind of complex interference structures, the Vajont area also provides useful clues on the still-enigmatic structures in the frontal part of the Friuli-Venetian Southern Alps, buried in the Venetian Plain foredeep. These include active seismogenic thrust-faults and, at the same time, represent a growing interest for the oil industry.
Model for calculating the boron concentration in PWR type reactors
International Nuclear Information System (INIS)
Reis Martins Junior, L.L. dos; Vanni, E.A.
1986-01-01
A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt
Microbial Communities Model Parameter Calculation for TSPA/SR
International Nuclear Information System (INIS)
D. Jolley
2001-01-01
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed
A model to calculate the burn of gadolinium in PWR
International Nuclear Information System (INIS)
Sannazzaro, L.R.
1983-01-01
A cell model to calculate the burnup of a PWR fuel element with gadolinium as a poison, projected by KWU, is presented. With the model proposed, the burn of the gadolinium isotopes is analyzed, as well as the effect of these isotopes in the fuel element behaviour. The results obtained with this cell model are compared with those obtained by a conventional cell model. (E.G.) [pt
batman: BAsic Transit Model cAlculatioN in Python
Kreidberg, Laura
2015-11-01
I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .
Hadwin, Paul J; Peterson, Sean D
2017-04-01
The Bayesian framework for parameter inference provides a basis from which subject-specific reduced-order vocal fold models can be generated. Previously, it has been shown that a particle filter technique is capable of producing estimates and associated credibility intervals of time-varying reduced-order vocal fold model parameters. However, the particle filter approach is difficult to implement and has a high computational cost, which can be barriers to clinical adoption. This work presents an alternative estimation strategy based upon Kalman filtering aimed at reducing the computational cost of subject-specific model development. The robustness of this approach to Gaussian and non-Gaussian noise is discussed. The extended Kalman filter (EKF) approach is found to perform very well in comparison with the particle filter technique at dramatically lower computational cost. Based upon the test cases explored, the EKF is comparable in terms of accuracy to the particle filter technique when greater than 6000 particles are employed; if less particles are employed, the EKF actually performs better. For comparable levels of accuracy, the solution time is reduced by 2 orders of magnitude when employing the EKF. By virtue of the approximations used in the EKF, however, the credibility intervals tend to be slightly underpredicted.
Comparison of Calculation Models for Bucket Foundation in Sand
DEFF Research Database (Denmark)
Vaitkunaite, Evelina; Molina, Salvador Devant; Ibsen, Lars Bo
The possibility of fast and rather precise preliminary offshore foundation design is desirable. The ultimate limit state of bucket foundation is investigated using three different geotechnical calculation tools: [Ibsen 2001] an analytical method, LimitState:GEO and Plaxis 3D. The study has focused...... on resultant bearing capacity of variously embedded foundation in sand. The 2D models, [Ibsen 2001] and LimitState:GEO can be used for the preliminary design because they are fast and result in a rather similar bearing capacity calculation compared with the finite element models of Plaxis 3D. The 2D models...
Statistical Model Calculations for (n,γ Reactions
Directory of Open Access Journals (Sweden)
Beard Mary
2015-01-01
Full Text Available Hauser-Feshbach (HF cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well-observed result that diﬀerent nuclear input models sensitively aﬀect HF cross section calculations. Less well known however are the eﬀects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, back-shift and giant dipole parameters, as well as eﬀects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the eﬀects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative eﬀects of these model details will be discussed.
Interacting boson model: Microscopic calculations for the mercury isotopes
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Pittel, S.; Barrett, B.R.; Duval, P.D.
1987-05-15
Microscopic calculations of the parameters of the proton--neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka--Arima--Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l = 4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels. copyright 1987 Academic Press, Inc.
The interacting boson model: Microscopic calculations for the mercury isotopes
Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.
1987-05-01
Microscopic calculations of the parameters of the proton-neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka-Armia-Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l=4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels.
Optimal Height Calculation and Modelling of Noise Barrier
Directory of Open Access Journals (Sweden)
Raimondas Grubliauskas
2011-04-01
Full Text Available Transport is one of the main sources of noise having a particularly strong negative impact on the environment. In the city, one of the best methods to reduce the spread of noise in residential areas is a noise barrier. The article presents noise reduction barrier adaptation with empirical formulas calculating and modelling noise distribution. The simulation of noise dispersion has been performed applying the CadnaA program that allows modelling the noise levels of various developments under changing conditions. Calculation and simulation is obtained by assessing the level of noise reduction using the same variables. The investigation results are presented as noise distribution isolines. The selection of a different height of noise barriers are the results calculated at the heights of 1, 4 and 15 meters. The level of noise reduction at the maximum overlap of data, calculation and simulation has reached about 10%.Article in Lithuanian
Recoil corrected bag model calculations for semileptonic weak decays
International Nuclear Information System (INIS)
Lie-Svendsen, Oe.; Hoegaasen, H.
1987-02-01
Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large
Optical model calculations with the code ECIS95
Energy Technology Data Exchange (ETDEWEB)
Carlson, B V [Departamento de Fisica, Instituto Tecnologico da Aeronautica, Centro Tecnico Aeroespacial (Brazil)
2001-12-15
The basic features of elastic and inelastic scattering within the framework of the spherical and deformed nuclear optical models are discussed. The calculation of cross sections, angular distributions and other scattering quantities using J. Raynal's code ECIS95 is described. The use of the ECIS method (Equations Couplees en Iterations Sequentielles) in coupled-channels and distorted-wave Born approximation calculations is also reviewed. (author)
Use of nuclear reaction models in cross section calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1975-03-01
The design of fusion reactors will require information about a large number of neutron cross sections in the MeV region. Because of the obvious experimental difficulties, it is probable that not all of the cross sections of interest will be measured. Current direct and pre-equilibrium models can be used to calculate non-statistical contributions to neutron cross sections from information available from charged particle reaction studies; these are added to the calculated statistical contribution. Estimates of the reliability of such calculations can be derived from comparisons with the available data. (3 tables, 12 figures) (U.S.)
Realistic shell-model calculations for Sn isotopes
International Nuclear Information System (INIS)
Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.
1997-01-01
We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)
Approximate dynamic fault tree calculations for modelling water supply risks
International Nuclear Information System (INIS)
Lindhe, Andreas; Norberg, Tommy; Rosén, Lars
2012-01-01
Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.
Comparison of the performance of net radiation calculation models
DEFF Research Database (Denmark)
Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.
2009-01-01
. The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...
Paul, Fabian; Noé, Frank; Weikl, Thomas R
2018-03-27
Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109 Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.
EMPIRE-II statistical model code for nuclear reaction calculations
Energy Technology Data Exchange (ETDEWEB)
Herman, M [International Atomic Energy Agency, Vienna (Austria)
2001-12-15
EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)
Evaluation of calculational and material models for concrete containment structures
International Nuclear Information System (INIS)
Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.
1984-01-01
A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)
Precipitates/Salts Model Calculations for Various Drift Temperature Environments
Energy Technology Data Exchange (ETDEWEB)
P. Marnier
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).
A Three Dimension Model to Demonstrate Head and Tail Fold Formation in Mammalian Embryos
Bressler, Robert S.
1977-01-01
Many students have difficulty visualizing the delineation of the embryonic body from the flat germ disc. An easily-constructed model is described that has been used successfully to convey the dynamics of embryological events at Mount Sinai School of Medicine. (LBH)
Impact stress in a self-oscillating model of human vocal folds
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Bula, Vítězslav; Radolf, Vojtěch; Šidlof, Petr
2016-01-01
Roč. 4, č. 3 (2016), s. 183-190 ISSN 2321-3558 R&D Projects: GA ČR(CZ) GAP101/12/1306 Institutional support: RVO:61388998 Keywords : fluid-structure interaction * flutter * biomechanics of voice modeling * phonation * aeroelasticity Subject RIV: BI - Acoustics Impact factor: 0.259, year: 2016 http://www.tvi-in.com/Journals/journaldetail.aspx?Id=2016062811045074383592dcc719793
Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions
International Nuclear Information System (INIS)
Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard
2014-01-01
Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space
Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions
Energy Technology Data Exchange (ETDEWEB)
Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)
2014-09-21
Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.
Numerical seismic modelling of fault-fold structures in a mountainous setting
Energy Technology Data Exchange (ETDEWEB)
Kirtland Grech, M.G.; Lawton, D.C.; Spratt, D.A. (Calgary Univ., AB (Canada))
1999-01-01
Experiments were conducted to determine the performance of different prestack migration algorithms in complex structural areas, particularly in the presence of rugged topography and thrust faults that result in severe lateral and vertical velocity changes, using a series of numerical seismic models. The numerical model used was based on a cross section through the Rocky Mountains Front Ranges of Western Canada and is 33 km wide and 11 km deep. The best migrated section was obtained with FD shot migration in depth and from topography, using the known velocity model. This result was superior to Kirchhoff depth migration from topography and from a flat datum. As the velocities departed from their true value, the deeper events were most affected, because of the accumulation of velocity errors with depth. The small-scale features of Target A, in the shallower part of the section, could still be interpreted even when the velocities were inaccurate. In the presence of velocity errors, the different structures could still be interpreted, but were at the wrong depth and had the wrong structural shape and size. Layers that were of the order of 1 km in width and 500 km in thickness, such as Layer 4, were the most poorly imaged and focussed, both with time migration and with depth migration. Fault planes were not imaged in the absence of a velocity contrast across them, making some FW cutoffs difficult to interpret. 2 refs.
Numerical seismic modelling of fault-fold structures in a mountainous setting
Energy Technology Data Exchange (ETDEWEB)
Kirtland Grech, M.G.; Lawton, D.C.; Spratt, D.A. [Calgary Univ., AB (Canada)
1999-11-01
Experiments were conducted to determine the performance of different prestack migration algorithms in complex structural areas, particularly in the presence of rugged topography and thrust faults that result in severe lateral and vertical velocity changes, using a series of numerical seismic models. The numerical model used was based on a cross section through the Rocky Mountains Front Ranges of Western Canada and is 33 km wide and 11 km deep. The best migrated section was obtained with FD shot migration in depth and from topography, using the known velocity model. This result was superior to Kirchhoff depth migration from topography and from a flat datum. As the velocities departed from their true value, the deeper events were most affected, because of the accumulation of velocity errors with depth. The small-scale features of Target A, in the shallower part of the section, could still be interpreted even when the velocities were inaccurate. In the presence of velocity errors, the different structures could still be interpreted, but were at the wrong depth and had the wrong structural shape and size. Layers that were of the order of 1 km in width and 500 km in thickness, such as Layer 4, were the most poorly imaged and focussed, both with time migration and with depth migration. Fault planes were not imaged in the absence of a velocity contrast across them, making some FW cutoffs difficult to interpret. 2 refs.
The models of internal dose calculation in ICRP
International Nuclear Information System (INIS)
Nakano, Takashi
1995-01-01
There are a lot discussions about internal dose calculation in ICRP. Many efforts are devoted to improvement in models and parameters. In this report, we discuss what kind of models and parameters are used in ICRP. Models are divided into two parts, the dosimetric model and biokinetic model. The former is a mathematical phantom model, and it is mainly developed in ORNL. The results are used in many researchers. The latter is a compartment model and it has a difficulty to decide the parameter values. They are not easy to estimate because of their age dependency. ICRP officially sets values at ages of 3 month, 1 year, 5 year, 10 year, 15 year and adult, and recommends to get values among ages by linear age interpolate. But it is very difficult to solve the basic equation with these values, so we calculate by use of computers. However, it has complex shame and needs long CPU time. We should make approximated equations. The parameter values include much uncertainty because of less experimental data, especially for a child. And these models and parameter values are for Caucasian. We should inquire whether they could correctly describe other than Caucasian. The body size affects the values of calculated SAF, and the differences of metabolism change the biokinetic pattern. (author)
Interactions of model biomolecules. Benchmark CC calculations within MOLCAS
Energy Technology Data Exchange (ETDEWEB)
Urban, Miroslav [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava, Slovakia and Department of Physical and Theoretical Chemistry, Faculty of Natural Scie (Slovakia); Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Hobza, Pavel [Institute of Organic Chemistry and Biochemistry and Center for Complex Molecular Systems and biomolecules, Academy of Sciences of the Czech Republic, Prague (Czech Republic)
2015-01-22
We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.
Laminated materials with plastic interfaces: modeling and calculation
International Nuclear Information System (INIS)
Sandino Aquino de los Ríos, Gilberto; Castañeda Balderas, Rubén; Diaz Diaz, Alberto; Duong, Van Anh; Chataigner, Sylvain; Caron, Jean-François; Ehrlacher, Alain; Foret, Gilles
2009-01-01
In this paper, a model of laminated plates called M4-5N and validated in a previous paper is modified in order to take into account interlaminar plasticity by means of displacement discontinuities at the interfaces. These discontinuities are calculated by adapting a 3D plasticity model. In order to compute the model, a Newton–Raphson-like method is employed. In this method, two sub-problems are considered: one is linear and the other is non-linear. In the linear problem the non-linear equations of the model are linearized and the calculations are performed by making use of a finite element software. By iterating the resolution of each sub-problem, one obtains after convergence the solution of the global problem. The model is then applied to the problem of a double lap, adhesively bonded joint subjected to a tensile load. The adhesive layer is modeled by an elastic–plastic interface. The results of the M4-5N model are compared with those of a commercial finite element software. A good agreement between the two computation techniques is obtained and validates the non-linear calculations proposed in this paper. Finally, the numerical tool and a delamination criterion are applied to predict delamination onset in composite laminates
Use of results from microscopic methods in optical model calculations
International Nuclear Information System (INIS)
Lagrange, C.
1985-11-01
A concept of vectorization for coupled-channel programs based upon conventional methods is first presented. This has been implanted in our program for its use on the CRAY-1 computer. In a second part we investigate the capabilities of a semi-microscopic optical model involving fewer adjustable parameters than phenomenological ones. The two main ingredients of our calculations are, for spherical or well-deformed nuclei, the microscopic optical-model calculations of Jeukenne, Lejeune and Mahaux and nuclear densities from Hartree-Fock-Bogoliubov calculations using the density-dependent force D1. For transitional nuclei deformation-dependent nuclear structure wave functions are employed to weigh the scattering potentials for different shapes and channels [fr
New insights into chromatin folding and dynamics from multi-scale modeling
Olson, Wilma
The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of roughly 150 DNA base pairs and eight histone proteins-found on chromatin fibers. We have developed a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs with 3-25 evenly spaced nucleosomes. The correspondence between the predicted and observed effects of nucleosome composition, spacing, and numbers on long-range communication between regulatory proteins bound to the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We have extracted effective nucleosome-nucleosome potentials from the mesoscale simulations and introduced the potentials in a larger scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable influence of nucleosome spacing on chromatin flexibility. Small changes in the length of the DNA fragments linking successive nucleosomes introduce marked changes in the local interactions of the nucleosomes and in the spatial configurations of the fiber as a whole. The changes in nucleosome positioning influence the statistical properties of longer chromatin constructs with 100-10,000 nucleosomes. We are investigating the extent to which the `local' interactions of regularly spaced nucleosomes contribute to the corresponding interactions in chains with mixed spacings as a step toward the treatment of fibers with nucleosomes positioned at the sites mapped at base-pair resolution on genomic sequences. Support of the work by USPHS R01 GM 34809 is gratefully acknowledged.
Precision calculations in supersymmetric extensions of the Standard Model
International Nuclear Information System (INIS)
Slavich, P.
2013-01-01
This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)
Do calculated conflicts in microsimulation model predict number of crashes?
Dijkstra, Atze; Marchesini, Paula; Bijleveld, Frits; Kars, Vincent; Drolenga, Hans; Maarseveen, Martin Van
2010-01-01
A microsimulation model and its calculations are described, and the results that are subsequently used to determine indicators for traffic safety are presented. The method demonstrates which changes occur at the level of traffic flow (number of vehicles per section of road) and at the vehicle level
A shell-model calculation in terms of correlated subsystems
International Nuclear Information System (INIS)
Boisson, J.P.; Silvestre-Brac, B.
1979-01-01
A method for solving the shell-model equations in terms of a basis which includes correlated subsystems is presented. It is shown that the method allows drastic truncations of the basis to be made. The corresponding calculations are easy to perform and can be carried out rapidly
TTS-Polttopuu - cost calculation model for fuelwood
International Nuclear Information System (INIS)
Naett, H.; Ryynaenen, S.
1999-01-01
The TTS-Institutes's Forestry Department has developed a computer based cost-calculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation, chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486- level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY-research programme. (orig.)
Calculation of extreme wind atlases using mesoscale modeling. Final report
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Badger, Jake
This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies as explai...
Overview of models allowing calculation of activity coefficients
Energy Technology Data Exchange (ETDEWEB)
Jaussaud, C.; Sorel, C
2004-07-01
Activity coefficients must be estimated to accurately quantify the extraction equilibrium involved in spent fuel reprocessing. For these calculations, binary data are required for each electrolyte over a concentration range sometimes exceeding the maximum solubility. The activity coefficients must be extrapolated to model the behavior of binary supersaturated aqueous solution. According to the bibliography, the most suitable models are based on the local composition concept. (authors)
The Complexity of Folding Self-Folding Origami
Directory of Open Access Journals (Sweden)
Menachem Stern
2017-12-01
Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.
The Complexity of Folding Self-Folding Origami
Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind
2017-10-01
Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.
Shell model calculations for stoichiometric Na β-alumina
International Nuclear Information System (INIS)
Wang, J.C.
1985-01-01
Walker and Catlow recently reported the results of their shell model calculations for the structure and transport of Na β-alumina (Naβ). The main computer programs used by Walker and Catlow for their calculations are PLUTO and HADES III. The latter, a recent version of HADES II written for cubic crystals, is believed to be applicable to defects in crystals of both cubic and hexagonal symmetry. PLUTO is usually used in calculating properties of perfect crystals before defects are introduced into the structure. Walker and Catlow claim that, in some respects, their models are superior to those of Wang et al. Yet, their results are quite different from those observed experimentally. In this work these differences are investigated by using a computer program designed to calculate lattice energies for s Naβ using the same shell model parameters adopted by Walker and Catlow. The core and shell positions of all ions, as well as the lattice parameters, were fully relaxed. The calculated energy difference between aBR and BR sites (0.33 eV) is about twice as large as that reported by Walker and Catlow. The present results also show that the relaxed oxygen ion positions next to the conduction plane in this case are displaced from their observed sites reported. When the core-shell spring constant of the oxygen ion was adjusted to minimize these displacements, the above-mentioned energy difference increased to about 0.56 eV. These results cast doubt on the fluid conduction plane structure suggested by Walker and Catlow and on the defect structure and activation energy obtained from their calculations
Woo, Jeong-Soo; Hundal, Jagdeep S; Sasaki, Clarence T; Abdelmessih, Mikhail W; Kelleher, Stephen P
2008-10-01
The aim of this study was to identify a panel of sensory nerves capable of eliciting an evoked glottic closure reflex (GCR) and to quantify the glottic closing force (GCF) of these responses in a porcine model. In 5 pigs, the internal branch of the superior laryngeal nerve (iSLN) and the trigeminal, pharyngeal plexus, glossopharyngeal, radial, and intercostal nerves were surgically isolated and electrically stimulated. During stimulation of each nerve, the GCR was detected by laryngeal electromyography and the GCF was measured with a pressure transducer. The only nerve that elicited the GCR in the 5 pigs was the iSLN. The average GCF was 288.9 mm Hg. This study demonstrates that the only afferent nerve that elicits the GCR in pigs is the iSLN, and that it should remain the focus of research for the rehabilitation of patients with absent or defective reflex vocal fold adduction.
Cluster model calculations of alpha decays across the periodic table
International Nuclear Information System (INIS)
Merchant, A.C.; Buck, B.
1988-10-01
The cluster model of Buck, Dover and Vary has been used to calculate partial widths for alpha decay from the ground states of all nuclei for which experimental measurements exist. The cluster-core potential is represented by a simple three-parameter form having fixed diffuseness, a radius which scales as A 1/3 and a depth which is adjusted to fit the Q-value of the particular decay. The calculations yield excellent agreement with the vast majority of the available data, and some typical examples are presented. (author) [pt
Modelling of Control Bars in Calculations of Boiling Water Reactors
International Nuclear Information System (INIS)
Khlaifi, A.; Buiron, L.
2004-01-01
The core of a nuclear reactor is generally composed of a neat assemblies of fissile material from where neutrons were descended. In general, the energy of fission is extracted by a fluid serving to cool clusters. A reflector is arranged around the assemblies to reduce escaping of neutrons. This is made outside the reactor core. Different mechanisms of reactivity are generally necessary to control the chain reaction. Manoeuvring of Boiling Water Reactor takes place by controlling insertion of absorbent rods to various places of the core. If no blocked assembly calculations are known and mastered, blocked assembly neutronic calculation are delicate and often treated by case to case in present studies [1]. Answering the question how to model crossbar for the control of a boiling water reactor ? requires the choice of a representation level for every chain of variables, the physical model, and its representing equations, etc. The aim of this study is to select the best applicable parameter serving to calculate blocked assembly of a Boiling Water Reactor. This will be made through a range of representative configurations of these reactors and used absorbing environment, in order to illustrate strategies of modelling in the case of an industrial calculation. (authors)
Modelling and parallel calculation of a kinetic boundary layer
International Nuclear Information System (INIS)
Perlat, Jean Philippe
1998-01-01
This research thesis aims at addressing reliability and cost issues in the calculation by numeric simulation of flows in transition regime. The first step has been to reduce calculation cost and memory space for the Monte Carlo method which is known to provide performance and reliability for rarefied regimes. Vector and parallel computers allow this objective to be reached. Here, a MIMD (multiple instructions, multiple data) machine has been used which implements parallel calculation at different levels of parallelization. Parallelization procedures have been adapted, and results showed that parallelization by calculation domain decomposition was far more efficient. Due to reliability issue related to the statistic feature of Monte Carlo methods, a new deterministic model was necessary to simulate gas molecules in transition regime. New models and hyperbolic systems have therefore been studied. One is chosen which allows thermodynamic values (density, average velocity, temperature, deformation tensor, heat flow) present in Navier-Stokes equations to be determined, and the equations of evolution of thermodynamic values are described for the mono-atomic case. Numerical resolution of is reported. A kinetic scheme is developed which complies with the structure of all systems, and which naturally expresses boundary conditions. The validation of the obtained 14 moment-based model is performed on shock problems and on Couette flows [fr
Double folded Yukawa interaction potential between two heavy ions
International Nuclear Information System (INIS)
Bulgac, A.; Carstoiu, F.; Dumitrescu, O.
1980-02-01
A simple semi-analytical formula for the heavy ion interaction potential within the double-folding model approximation is obtained. The folded interaction is assumed to be expressed in Yukawa terms or the derivatives of them. The densities used can be both experimental or theoretical (of simple ''step-wise'', ''Fermi-Saxon-Woods'' or complicated ''shell model'' structure) densities. A way of inserting the exchange terms is discussed. Numerical calculations for some colliding partners are reported. (author)
Diffusion theory model for optimization calculations of cold neutron sources
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations
Calculation of the 3D density model of the Earth
Piskarev, A.; Butsenko, V.; Poselov, V.; Savin, V.
2009-04-01
The study of the Earth's crust is a part of investigation aimed at extension of the Russian Federation continental shelf in the Sea of Okhotsk Gathered data allow to consider the Sea of Okhotsk' area located outside the exclusive economic zone of the Russian Federation as the natural continuation of Russian territory. The Sea of Okhotsk is an Epi-Mesozoic platform with Pre-Cenozoic heterogeneous folded basement of polycyclic development and sediment cover mainly composed of Paleocene - Neocene - Quaternary deposits. Results of processing and complex interpretation of seismic, gravity, and aeromagnetic data along profile 2-DV-M, as well as analysis of available geological and geophysical information on the Sea of Okhotsk region, allowed to calculate of the Earth crust model. 4 layers stand out (bottom-up) in structure of the Earth crust: granulite-basic (density 2.90 g/cm3), granite-gneiss (limits of density 2.60-2.76 g/cm3), volcanogenic-sedimentary (2.45 g/cm3) and sedimentary (density 2.10 g/cm3). The last one is absent on the continent; it is observed only on the water area. Density of the upper mantle is taken as 3.30 g/cm3. The observed gravity anomalies are mostly related to the surface relief of the above mentioned layers or to the density variations of the granite-metamorphic basement. So outlining of the basement blocks of different constitution preceded to the modeling. This operation is executed after Double Fourier Spectrum analysis of the gravity and magnetic anomalies and following compilation of the synthetic anomaly maps, related to the basement density and magnetic heterogeneity. According to bathymetry data, the Sea of Okhotsk can be subdivided at three mega-blocks. Taking in consideration that central Sea of Okhotsk area is aseismatic, i.e. isostatic compensated, it is obvious that Earth crust structure of these three blocks is different. The South-Okhotsk depression is characteristics by 3200-3300 m of sea depths. Moho surface in this area is at
International Nuclear Information System (INIS)
Khoa, Dao T.; Thang, Dang Ngoc; Loc, Bui Minh
2014-01-01
The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ( 3 He, t) reaction, can be considered as ''elastic'' scattering of proton or 3 He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ( 3 He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3 He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3 He optical potential to the cross section of the charge-exchange (p, n) or ( 3 He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ( 3 He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)
2014-02-15
The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)
A Summary of Coupled, Uncoupled, and Hybrid Tectonic Models for the Yakima Fold Belt--Topical Report
Energy Technology Data Exchange (ETDEWEB)
Chamness, Michele A.; Winsor, Kelsey; Unwin, Stephen D.
2012-08-01
This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize the range of opinions and supporting information expressed by the expert community regarding whether a coupled or uncoupled model, or a combination of both, best represents structures in the Yakima Fold Belt. This issue was assessed to have a high level of contention with up to moderate potential for impact on the hazard estimate. This report defines the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some possible approaches for reducing uncertainties regarding this issue.
Hindle, David; Kley, Jonas
2016-04-01
The ultimate validation of any numerical model of any geological process comes when it can accurately forward model a case study from the geological record. However, as the example of the Jura-Molasse fold thrust belt demonstrates, geological information on even the most basic aspects of the present day state of such systems is highly incomplete and usually known only with large uncertainties. Fold thrust-belts are studied and understood by geologists in an iterative process of constructing their subsurface geometries and structures (folds, faults, bedding etc) based on limited subsurface information from boreholes, tunnels or seismic data where available, and surface information on outcrops of different layers and their dips. This data is usually processed through geometric models which involve conservation of line length of different beds over the length of an entire cross section. Constructing such sections is the art of cross section balancing. A balanced cross section can be easily restored to its pre-deformation state, assuming (usually) originally horizontal bedding to remove the effects of folding and faulting. Such a pre-deformation state can then form an initial condition for a forward mechanical model of the section. A mechanical model introduces new parameters into the system such as rock elasticity, cohesion, and frictional properties. However, a forward mechanical model can also potentially show the continuous evolution of a fold thrust belt, including dynamic quantities like stress. Moreover, a forward mechanical model, if correct in most aspects, should match in its final state, the present day geological cross section it is simulating. However, when attempting to achieve a match between geometric and mechanical models, it becomes clear that many more aspects of the geodynamic history of a fold thrust belt have to be taken into account. Erosion of the uppermost layers of an evolving thrust belt is the most obvious one of these. This can potentially
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
Bang, Youngsuk
Reduced order modeling (ROM) has been recognized as an indispensable approach when the engineering analysis requires many executions of high fidelity simulation codes. Examples of such engineering analyses in nuclear reactor core calculations, representing the focus of this dissertation, include the functionalization of the homogenized few-group cross-sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, etc. This is done via assembly calculations which are executed many times to generate the required functionalization for use in the downstream core calculations. Other examples are sensitivity analysis used to determine important core attribute variations due to input parameter variations, and uncertainty quantification employed to estimate core attribute uncertainties originating from input parameter uncertainties. ROM constructs a surrogate model with quantifiable accuracy which can replace the original code for subsequent engineering analysis calculations. This is achieved by reducing the effective dimensionality of the input parameter, the state variable, or the output response spaces, by projection onto the so-called active subspaces. Confining the variations to the active subspace allows one to construct an ROM model of reduced complexity which can be solved more efficiently. This dissertation introduces a new algorithm to render reduction with the reduction errors bounded based on a user-defined error tolerance which represents the main challenge of existing ROM techniques. Bounding the error is the key to ensuring that the constructed ROM models are robust for all possible applications. Providing such error bounds represents one of the algorithmic contributions of this dissertation to the ROM state-of-the-art. Recognizing that ROM techniques have been developed to render reduction at different levels, e.g. the input parameter space, the state space, and the response space, this dissertation offers a set of novel
Rahmat, M.; Modarres, M.
2018-03-01
The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.
Directory of Open Access Journals (Sweden)
Fukang Ma
2017-05-01
Full Text Available The scavenging process for opposed-piston folded-cranktrain (OPFC diesel engines can be described by the time evolution of the in-cylinder and exhaust chamber residual gas rates. The relation curve of in-cylinder and exhaust chamber residual gas rate is called scavenging profile, which is calculated through the changes of in-cylinder and exhaust chamber gas compositions determined by computational fluid dynamics (CFD simulation. The scavenging profile is used to calculate the scavenging process by mono-dimensional (1D simulation. The tracer gas method (TGM is employed to validate the accuracy of the scavenging profile. At the same time, the gas exchange performance under different intake and exhaust state parameters was examined based on the TGM. The results show that the scavenging process from 1D simulation and experiment match well, which means the scavenging model obtained by CFD simulation performs well and validation of its effectiveness by TGM is possible. The difference between intake and exhaust pressure has a significant positive effect on the gas exchange performance and trapped gas mass, but the pressure difference has little effect on the scavenging efficiency and the trapped air mass if the delivery ratio exceeds 1.4.
TTS-Polttopuu - cost calculation model for fuelwood
International Nuclear Information System (INIS)
Naett, H.; Ryynaenen, S.
1998-01-01
The TTS-Institutes's Forestry Department has developed a computer based costcalculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486-level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY Research Programme. (orig.)
Calculations of dose distributions using a neural network model
International Nuclear Information System (INIS)
Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J
2005-01-01
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map
Model and calculation of in situ stresses in anisotropic formations
Energy Technology Data Exchange (ETDEWEB)
Yuezhi, W.; Zijun, L.; Lixin, H. [Jianghan Petroleum Institute, (China)
1997-08-01
In situ stresses in transversely isotropic material in relation to wellbore stability have been investigated. Equations for three horizontal in- situ stresses and a new formation fracture pressure model were described, and the methodology for determining the elastic parameters of anisotropic rocks in the laboratory was outlined. Results indicate significantly smaller differences between theoretically calculated pressures and actual formation pressures than results obtained by using the isotropic method. Implications for improvements in drilling efficiency were reviewed. 13 refs., 6 figs.
Perturbation theory instead of large scale shell model calculations
International Nuclear Information System (INIS)
Feldmeier, H.; Mankos, P.
1977-01-01
Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de
Calculation of relativistic model stars using Regge calculus
International Nuclear Information System (INIS)
Porter, J.
1987-01-01
A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)
Structure-dynamic model verification calculation of PWR 5 tests
International Nuclear Information System (INIS)
Engel, R.
1980-02-01
Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Ordinary Mathematical Models in Calculating the Aviation GTE Parameters
Directory of Open Access Journals (Sweden)
E. A. Khoreva
2017-01-01
Full Text Available The paper presents the analytical review results of the ordinary mathematical models of the operating process used to study aviation GTE parameters and characteristics at all stages of its creation and operation. Considers the mathematical models of the zero and the first level, which are mostly used when solving typical problems in calculating parameters and characteristics of engines.Presents a number of practical problems arising in designing aviation GTE for various applications.The application of mathematical models of the zero-level engine can be quite appropriate when the engine is considered as a component in the aircraft system to estimate its calculated individual flight performance or when modeling the flight cycle of the aircrafts of different purpose.The paper demonstrates that introduction of correction functions into the first-level mathematical models in solving typical problems (influence of the Reynolds number, characteristics deterioration of the units during the overhaul period of engine, as well as influence of the flow inhomogeneity at the inlet because of manufacturing tolerance, etc. enables providing a sufficient engineering estimate accuracy to reflect a realistic operating process in the engine and its elements.
Freeway travel speed calculation model based on ETC transaction data.
Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang
2014-01-01
Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers.
Mathematical model of kinetostatithic calculation of flat lever mechanisms
Directory of Open Access Journals (Sweden)
A. S. Sidorenko
2016-01-01
Full Text Available Currently widely used graphical-analytical methods of analysis largely obsolete, replaced by various analytical methods using computer technology. Therefore, of particular interest is the development of a mathematical model kinetostatical calculation mechanisms in the form of library procedures of calculation for all powered two groups Assyrians (GA and primary level. Before resorting to the appropriate procedure that computes all the forces in the kinematic pairs, you need to compute inertial forces, moments of forces of inertia and all external forces and moments acting on this GA. To this end shows the design diagram of the power analysis for each species GA of the second class, as well as the initial link. Finding reactions in the internal and external kinematic pairs based on equilibrium conditions with the account of forces of inertia and moments of inertia forces (Dalembert principle. Thus obtained equations of kinetostatical for their versatility have been solved by the Cramer rule. Thus, for each GA of the second class were found all 6 unknowns: the forces in the kinematic pairs, the directions of these forces as well as forces the shoulders. If we study kinetostatic mechanism with parallel consolidation of two GA in the initial link, in this case, power is the geometric sum of the forces acting on the primary link from the discarded GA. Thus, the obtained mathematical model kinetostatical calculation mechanisms in the form of libraries of mathematical procedures for determining reactions of all GA of the second class. The mathematical model kinetostatical calculation makes it relatively simple to implement its software implementation.
Hirarchical emotion calculation model for virtual human modellin - biomed 2010.
Zhao, Yue; Wright, David
2010-01-01
This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.
Modeling and Calculation of Dent Based on Pipeline Bending Strain
Directory of Open Access Journals (Sweden)
Qingshan Feng
2016-01-01
Full Text Available The bending strain of long-distance oil and gas pipelines can be calculated by the in-line inspection tool which used inertial measurement unit (IMU. The bending strain is used to evaluate the strain and displacement of the pipeline. During the bending strain inspection, the dent existing in the pipeline can affect the bending strain data as well. This paper presents a novel method to model and calculate the pipeline dent based on the bending strain. The technique takes inertial mapping data from in-line inspection and calculates depth of dent in the pipeline using Bayesian statistical theory and neural network. To verify accuracy of the proposed method, an in-line inspection tool is used to inspect pipeline to gather data. The calculation of dent shows the method is accurate for the dent, and the mean relative error is 2.44%. The new method provides not only strain of the pipeline dent but also the depth of dent. It is more benefit for integrity management of pipeline for the safety of the pipeline.
RNA folding: structure prediction, folding kinetics and ion electrostatics.
Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua
2015-01-01
Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.
Theoretical model for calculation of molecular stopping power
International Nuclear Information System (INIS)
Xu, Y.J.
1984-01-01
A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field
Total energy calculations from self-energy models
International Nuclear Information System (INIS)
Sanchez-Friera, P.
2001-06-01
Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-03-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.
Improved SVR Model for Multi-Layer Buildup Factor Calculation
International Nuclear Information System (INIS)
Trontl, K.; Pevec, D.; Smuc, T.
2006-01-01
The accuracy of point kernel method applied in gamma ray dose rate calculations in shielding design and radiation safety analysis is limited by the accuracy of buildup factors used in calculations. Although buildup factors for single-layer shields are well defined and understood, buildup factors for stratified shields represent a complex physical problem that is hard to express in mathematical terms. The traditional approach for expressing buildup factors of multi-layer shields is through semi-empirical formulas obtained by fitting the results of transport theory or Monte Carlo calculations. Such an approach requires an ad-hoc definition of the fitting function and often results with numerous and usually inadequately explained and defined correction factors added to the final empirical formula. Even more, finally obtained formulas are generally limited to a small number of predefined combinations of materials within relatively small range of gamma ray energies and shield thicknesses. Recently, a new approach has been suggested by the authors involving one of machine learning techniques called Support Vector Machines, i.e., Support Vector Regression (SVR). Preliminary investigations performed for double-layer shields revealed great potential of the method, but also pointed out some drawbacks of the developed model, mostly related to the selection of one of the parameters describing the problem (material atomic number), and the method in which the model was designed to evolve during the learning process. It is the aim of this paper to introduce a new parameter (single material buildup factor) that is to replace the existing material atomic number as an input parameter. The comparison of two models generated by different input parameters has been performed. The second goal is to improve the evolution process of learning, i.e., the experimental computational procedure that provides a framework for automated construction of complex regression models of predefined
Freight Calculation Model: A Case Study of Coal Distribution
Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.
2018-03-01
Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.
Nuclear model calculations on cyclotron production of {sup 51}Cr
Energy Technology Data Exchange (ETDEWEB)
Kakavand, Tayeb [Imam Khomeini International Univ., Qazvin (Iran, Islamic Republic of). Dept. of Physics; Aboudzadeh, Mohammadreza [Nuclear Science and Technology Research Institute/AEOI, Karaj (Iran, Islamic Republic of). Agricultural, Medical and Industrial Research School; Farahani, Zahra; Eslami, Mohammad [Zanjan Univ. (Iran, Islamic Republic of). Dept. of Physics
2015-12-15
{sup 51}Cr (T{sub 1/2} = 27.7 d), which decays via electron capture (100 %) with 320 keV gamma emission (9.8 %), is a radionuclide with still a large application in biological studies. In this work, ALICE/ASH and TALYS nuclear model codes along with some adjustments are used to calculate the excitation functions for proton, deuteron, α-particle and neutron induced on various targets leading to the production of {sup 51}Cr radioisotope. The production yields of {sup 51}Cr from various reactions are determined using the excitation function calculations and stopping power data. The results are compared with corresponding experimental data and discussed from point of view of feasibility.
Optical model calculation of neutron-nucleus scattering cross sections
International Nuclear Information System (INIS)
Smith, M.E.; Camarda, H.S.
1980-01-01
A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs
A relativistic point coupling model for nuclear structure calculations
International Nuclear Information System (INIS)
Buervenich, T.; Maruhn, J.A.; Madland, D.G.; Reinhard, P.G.
2002-01-01
A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock approximations. Different fitting strategies for the determination of the parameters have been applied and the quality of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field approaches both formally and in the context of applications to ground-state properties of known and superheavy nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order Fierz transformation are discussed briefly. (author)
Model for calculation of electrostatic contribution into protein stability
Kundrotas, Petras; Karshikoff, Andrey
2003-03-01
Existing models of the denatured state of proteins consider only one possible spatial distribution of protein charges and therefore are applicable to a limited number of cases. In this presentation a more general framework for the modeling of the denatured state is proposed. It is based on the assumption that the titratable groups of an unfolded protein can adopt a quasi-random distribution, restricted by the protein sequence. The model was tested on two proteins, barnase and N-terminal domain of the ribosomal protein L9. The calculated free energy of denaturation, Δ G( pH), reproduces the experimental data essentially better than the commonly used null approximation (NA). It was demonstrated that the seemingly good agreement with experimental data obtained by NA originates from the compensatory effect between the pair-wise electrostatic interactions and the desolvation energy of the individual sites. It was also found that the ionization properties of denatured proteins are influenced by the protein sequence.
Physical model and calculation code for fuel coolant interactions
International Nuclear Information System (INIS)
Goldammer, H.; Kottowski, H.
1976-01-01
A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)
Intravascular brachytherapy: a model for the calculation of the dose
International Nuclear Information System (INIS)
Pirchio, Rosana; Martin, Gabriela; Rivera, Elena; Cricco, Graciela; Cocca, Claudia; Gutierrez, Alicia; Nunez, Mariel; Bergoc, Rosa; Guzman, Luis; Belardi, Diego
2002-01-01
In this study we present the radiation dose distribution for a theoretical model with Montecarlo simulation, and based on an experimental model developed for the study of the prevention of restenosis post-angioplasty employing intravascular brachytherapy. In the experimental in vivo model, the atherosclerotic plaques were induced in femoral arteries of male New Zealand rabbits through surgical intervention and later administration of cholesterol enriched diet. For the intravascular irradiation we employed a 32P source contained within the balloon used for the angioplasty. The radiation dose distributions were calculated using the Monte Carlo code MCNP4B according to a segment of a simulated artery. We studied the radiation dose distribution in the axial and radial directions for different thickness of the atherosclerotic plaques. The results will be correlated with the biologic effects observed by means of histological analysis of the irradiated arteries (Au)
MODEL OF FEES CALCULATION FOR ACCESS TO TRACK INFRASTRUCTURE FACILITIES
Directory of Open Access Journals (Sweden)
M. I. Mishchenko
2014-12-01
Full Text Available Purpose. The purpose of the article is to develop a one- and two-element model of the fees calculation for the use of track infrastructure of Ukrainian railway transport. Methodology. On the basis of this one can consider that when planning the planned preventive track repair works and the amount of depreciation charges the guiding criterion is not the amount of progress it is the operating life of the track infrastructure facilities. The cost of PPTRW is determined on the basis of the following: the classification track repairs; typical technological processes for track repairs; technology based time standards for PPTRW; costs for the work of people, performing the PPTRW, their hourly wage rates according to the Order 98-Ts; the operating cost of machinery; regulated list; norms of expenditures and costs of materials and products (they have the largest share of the costs for repairs; railway rates; average distances for transportation of materials used during repair; standards of general production expenses and the administrative costs. Findings. The models offered in article allow executing the objective account of expenses in travelling facilities for the purpose of calculation of the proved size of indemnification and necessary size of profit, the sufficient enterprises for effective activity of a travelling infrastructure. Originality. The methodological bases of determination the fees (payments for the use of track infrastructure on one- and two-element base taking into account the experience of railways in the EC countries and the current transport legislation were grounded. Practical value. The article proposes the one- and two-element models of calculating the fees (payments for the TIF use, accounting the applicable requirements of European transport legislation, which provides the expense compensation and income formation, sufficient for economic incentives of the efficient operation of the TIE of Ukrainian railway transport.
... here Home » Health Info » Voice, Speech, and Language Vocal Fold Paralysis On this page: What is vocal fold ... Where can I get additional information? What is vocal fold paralysis? Structures involved in speech and voice production ...
Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section
International Nuclear Information System (INIS)
Kimura, Yusuke
2017-01-01
We determine the discrete gauge symmetries that arise in F-theory compactifications on examples of genus-one fibered Calabi-Yau 4-folds without a section. We construct genus-one fibered Calabi-Yau 4-folds using Fano manifolds, cyclic 3-fold covers of Fano 4-folds, and Segre embeddings of products of projective spaces. Discrete ℤ 5 , ℤ 4 , ℤ 3 and ℤ 2 symmetries arise in these constructions. We introduce a general method to obtain multisections for several constructions of genus-one fibered Calabi-Yau manifolds. The pullbacks of hyperplane classes under certain projections represent multisections to these genus-one fibrations. We determine the degrees of these multisections by computing the intersection numbers with fiber classes. As a result, we deduce the discrete gauge symmetries that arise in F-theory compactifications. This method applies to various Calabi-Yau genus-one fibrations.
Practical model for the calculation of multiply scattered lidar returns
International Nuclear Information System (INIS)
Eloranta, E.W.
1998-01-01
An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America
The calculation of exchange forces: General results and specific models
International Nuclear Information System (INIS)
Scott, T.C.; Babb, J.F.; Dalgarno, A.; Morgan, J.D. III
1993-01-01
In order to clarify questions about the calculation of the exchange energy of a homonuclear molecular ion, an analysis is carried out of a model problem consisting of the one-dimensional limit of H 2 + . It is demonstrated that the use of the infinite polarization expansion for the localized wave function in the Holstein--Herring formula yields an approximate exchange energy which at large internuclear distances R has the correct leading behavior to O(e -R ) and is close to but not equal to the exact exchange energy. The extension to the n-dimensional double-well problem is presented
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
Determination of appropriate models and parameters for premixing calculations
Energy Technology Data Exchange (ETDEWEB)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-15
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.
Determination of appropriate models and parameters for premixing calculations
International Nuclear Information System (INIS)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-01
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested
Corti, Alessio
2007-01-01
This edited collection of chapters, authored by leading experts, provides a complete and essentially self-contained construction of 3-fold and 4-fold klt flips. A large part of the text is a digest of Shokurov's work in the field and a concise, complete and pedagogical proof of the existence of 3-fold flips is presented. The text includes a ten page glossary and is accessible to students and researchers in algebraic geometry.
Calculating excess lifetime risk in relative risk models
International Nuclear Information System (INIS)
Vaeth, M.; Pierce, D.A.
1990-01-01
When assessing the impact of radiation exposure it is common practice to present the final conclusions in terms of excess lifetime cancer risk in a population exposed to a given dose. The present investigation is mainly a methodological study focusing on some of the major issues and uncertainties involved in calculating such excess lifetime risks and related risk projection methods. The age-constant relative risk model used in the recent analyses of the cancer mortality that was observed in the follow-up of the cohort of A-bomb survivors in Hiroshima and Nagasaki is used to describe the effect of the exposure on the cancer mortality. In this type of model the excess relative risk is constant in age-at-risk, but depends on the age-at-exposure. Calculation of excess lifetime risks usually requires rather complicated life-table computations. In this paper we propose a simple approximation to the excess lifetime risk; the validity of the approximation for low levels of exposure is justified empirically as well as theoretically. This approximation provides important guidance in understanding the influence of the various factors involved in risk projections. Among the further topics considered are the influence of a latent period, the additional problems involved in calculations of site-specific excess lifetime cancer risks, the consequences of a leveling off or a plateau in the excess relative risk, and the uncertainties involved in transferring results from one population to another. The main part of this study relates to the situation with a single, instantaneous exposure, but a brief discussion is also given of the problem with a continuous exposure at a low-dose rate
Recent Developments in No-Core Shell-Model Calculations
International Nuclear Information System (INIS)
Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.
2009-01-01
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Recent Developments in No-Core Shell-Model Calculations
Energy Technology Data Exchange (ETDEWEB)
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Modeling and calculation of open carbon dioxide refrigeration system
International Nuclear Information System (INIS)
Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong
2015-01-01
Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration
Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.
2015-12-01
Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research
Computational models for probabilistic neutronic calculation in TADSEA
International Nuclear Information System (INIS)
Garcia, Jesus A.R.; Curbelo, Jesus P.; Hernandez, Carlos R.G.; Oliva, Amaury M.; Lira, Carlos A.B.O.
2013-01-01
The Very High Temperature Reactor is one of the main candidates for the next generation of nuclear power plants. In pebble bed reactors, the fuel is contained within graphite pebbles in the form of TRISO particles, which form a randomly packed bed inside a graphite-walled cylindrical cavity. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite. In order to simulate the TADSEA correctly, the double heterogeneity of the system must be considered. It consists on randomly located pebbles into the core and randomly located TRISO particles into the fuel pebbles. These features are often neglected due to the difficulty to model with MCNP code. The main reason is that there is a limited number of cells and surfaces to be defined. In this paper a computational tool, which allows to get a new geometrical model for fuel pebble to neutronic calculation with MCNPX, was presented. The heterogeneity of system is considered, and also the randomly located TRISO particles inside the pebble. There are also compared several neutronic computational models for TADSEA's fuel pebbles in order to study heterogeneity effects. On the other hand the boundary effect given by the intersection between the pebble surface and the TRISO particles could be significative in the multiplicative properties. A model to study this e ect is also presented. (author)
Volume-based geometric modeling for radiation transport calculations
International Nuclear Information System (INIS)
Li, Z.; Williamson, J.F.
1992-01-01
Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed
Development of nuclear models for higher energy calculations
International Nuclear Information System (INIS)
Bozoian, M.; Siciliano, E.R.; Smith, R.D.
1988-01-01
Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs
Updated thermal model using simplified short-wave radiosity calculations
International Nuclear Information System (INIS)
Smith, J.A.; Goltz, S.M.
1994-01-01
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Updated thermal model using simplified short-wave radiosity calculations
Energy Technology Data Exchange (ETDEWEB)
Smith, J. A.; Goltz, S. M.
1994-02-15
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Finkelstein, A. V.; Galzitskaya, O. V.
2004-04-01
Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.
Cluster model calculations of the solid state materials electron structure
International Nuclear Information System (INIS)
Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.
1997-01-01
Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs
Selection of models to calculate the LLW source term
International Nuclear Information System (INIS)
Sullivan, T.M.
1991-10-01
Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab
Calculational models of close-spaced thermionic converters
International Nuclear Information System (INIS)
McVey, J.B.
1983-01-01
Two new calculational models have been developed in conjunction with the SAVTEC experimental program. These models have been used to analyze data from experimental close-spaced converters, providing values for spacing, electrode work functions, and converter efficiency. They have also been used to make performance predictions for such converters over a wide range of conditions. Both models are intended for use in the collisionless (Knudsen) regime. They differ from each other in that the simpler one uses a Langmuir-type formulation which only considers electrons emitted from the emitter. This approach is implemented in the LVD (Langmuir Vacuum Diode) computer program, which has the virtue of being both simple and fast. The more complex model also includes both Saha-Langmuir emission of positive cesium ions from the emitter and collector back emission. Computer implementation is by the KMD1 (Knudsen Mode Diode) program. The KMD1 model derives the particle distribution functions from the Vlasov equation. From these the particle densities are found for various interelectrode motive shapes. Substituting the particle densities into Poisson's equation gives a second order differential equation for potential. This equation can be integrated once analytically. The second integration, which gives the interelectrode motive, is performed numerically by the KMD1 program. This is complicated by the fact that the integrand is often singular at one end point of the integration interval. The program performs a transformation on the integrand to make it finite over the entire interval. Once the motive has been computed, the output voltage, current density, power density, and efficiency are found. The program is presently unable to operate when the ion richness ratio β is between about .8 and 1.0, due to the occurrence of oscillatory motives
International Nuclear Information System (INIS)
Mueller, R.G.
1987-06-01
Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de
Directory of Open Access Journals (Sweden)
M. Mihalikova
2012-09-01
Full Text Available Tropopause folds are one of the mechanisms of stratosphere–troposphere exchange, which can bring ozone rich stratospheric air to low altitudes in the extra-tropical regions. They have been widely studied at northern mid- or high latitudes, but so far almost no studies have been made at mid- or high southern latitudes. The Moveable Atmospheric Radar for Antarctica (MARA, a 54.5 MHz wind-profiler radar, has operated at the Swedish summer station Wasa, Antarctica (73° S, 13.5° W during austral summer seasons from 2007 to 2011 and has observed on several occasions signatures similar to those caused by tropopause folds at comparable Arctic latitudes. Here a case study is presented of one of these events when an ozonesonde successfully sampled the fold. Analysis from European Center for Medium Range Weather Forecasting (ECMWF is used to study the circumstances surrounding the event, and as boundary conditions for a mesoscale simulation using the Weather Research and Forecasting (WRF model. The fold is well resolved by the WRF simulation, and occurs on the poleward side of the polar jet stream. However, MARA resolves fine-scale layering associated with the fold better than the WRF simulation.
Tark-Dame, M.; Jerabek, H.; Manders, E.M.M.; Heermann, D.W.; van Driel, R.
2014-01-01
Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control
Calculating ε'/ε in the standard model
International Nuclear Information System (INIS)
Sharpe, S.R.
1988-01-01
The ingredients needed in order to calculate ε' and ε are described. Particular emphasis is given to the non-perturbative calculations of matrix elements by lattice methods. The status of the electromagnetic contribution to ε' is reviewed. 15 refs
Ruh, Jonas B.; Gerya, Taras
2015-04-01
The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.
Comparative analysis of calculation models of railway subgrade
Directory of Open Access Journals (Sweden)
I.O. Sviatko
2013-08-01
Full Text Available Purpose. In transport engineering structures design, the primary task is to determine the parameters of foundation soil and nuances of its work under loads. It is very important to determine the parameters of shear resistance and the parameters, determining the development of deep deformations in foundation soils, while calculating the soil subgrade - upper track structure interaction. Search for generalized numerical modeling methods of embankment foundation soil work that include not only the analysis of the foundation stress state but also of its deformed one. Methodology. The analysis of existing modern and classical methods of numerical simulation of soil samples under static load was made. Findings. According to traditional methods of analysis of ground masses work, limitation and the qualitative estimation of subgrade deformations is possible only indirectly, through the estimation of stress and comparison of received values with the boundary ones. Originality. A new computational model was proposed in which it will be applied not only classical approach analysis of the soil subgrade stress state, but deformed state will be also taken into account. Practical value. The analysis showed that for accurate analysis of ground masses work it is necessary to develop a generalized methodology for analyzing of the rolling stock - railway subgrade interaction, which will use not only the classical approach of analyzing the soil subgrade stress state, but also take into account its deformed one.
Accurate Holdup Calculations with Predictive Modeling & Data Integration
Energy Technology Data Exchange (ETDEWEB)
Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Cacuci, Dan [Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering
2017-04-03
In facilities that process special nuclear material (SNM) it is important to account accurately for the fissile material that enters and leaves the plant. Although there are many stages and processes through which materials must be traced and measured, the focus of this project is material that is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate over time into significant quantities. Accurately estimating the holdup is essential for proper SNM accounting (vis-à-vis nuclear non-proliferation), criticality and radiation safety, waste management, and efficient plant operation. Usually it is not possible to directly measure the holdup quantity and location, so these must be inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple source configurations and crude radiation transport models aided by ad hoc correction factors. This project seeks an alternate method of performing measurement-based holdup calculations using a predictive model that employs state-of-the-art radiation transport codes capable of accurately simulating such situations. Inverse and data assimilation methods use the forward transport model to search for a source configuration that best matches the measured data and simultaneously provide an estimate of the level of confidence in the correctness of such configuration. In this work the holdup problem is re-interpreted as an inverse problem that is under-determined, hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting inverse problem. This approach rates possible solutions according to their plausibility given the measurements and initial information. This is accomplished through the use of Bayes’ Theorem that resolves the issue of multiple solutions by giving an estimate of the probability of observing each possible solution. To use
Directory of Open Access Journals (Sweden)
Oswin Aichholzer
2014-05-01
Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.
Glass operational file. Operational models and integration calculations
International Nuclear Information System (INIS)
Ribet, I.
2004-01-01
This document presents the operational choices of dominating phenomena, hypotheses, equations and numerical data of the parameters used in the two operational models elaborated for the calculation of the glass source terms with respect to the waste packages considered: existing packages (R7T7, AVM and CEA glasses) and future ones (UOX2, UOX3, UMo, others). The overall operational choices are justified and demonstrated and a critical analysis of the approach is systematically proposed. The use of the operational model (OPM) V 0 → V r , realistic, conservative and robust, is recommended for glasses with a high thermal and radioactive load, which represent the main part of the vitrified wastes. The OPM V 0 S, much more overestimating but faster to parameterize, can be used for the long-term behaviour forecasting of glasses with low thermal and radioactive load, considering today's lack of knowledge for the parameterization of a V 0 → V r type OPM. Efficiency estimations have been made for R7T7 glasses (OPM V 0 → V r ) and AVM glasses (OPM V 0 S), which correspond to more than 99.9% of the vitrified waste packages activity. The very contrasted results obtained, illustrate the importance of the choice of operational models: in conditions representative of a geologic disposal, the estimation of R7T7-type package lifetime exceeds several hundred thousands years. Even if the estimated lifetime of AVM packages is much shorter (because of the overestimating character of the OPM V 0 S), the release potential radiotoxicity is of the same order as the one of R7T7 packages. (J.S.)
Groundwater flow modelling under ice sheet conditions. Scoping calculations
Energy Technology Data Exchange (ETDEWEB)
Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))
2010-10-15
The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the
Groundwater flow modelling under ice sheet conditions. Scoping calculations
International Nuclear Information System (INIS)
Jaquet, O.; Namar, R.; Jansson, P.
2010-10-01
The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the
Models for calculation of dissociation energies of homonuclear diatomic molecules
International Nuclear Information System (INIS)
Brewer, L.; Winn, J.S.
1979-08-01
The variation of known dissociation energies of the transition metal diatomics across the Periodic Table is rather irregular like the bulk sublimation enthalpy, suggesting that the valence-bond model for bulk metallic systems might be applicable to the gaseous diatomic molecules and the various intermediate clusters. Available dissociation energies were converted to valence-state bonding energies considering various degrees of promotion to optimize the bonding. The degree of promotion of electrons to increase the number of bonding electrons is smaller than for the bulk, but the trends in bonding energy parallel the behavior found for the bulk metals. Thus using the established trends in bonding energies for the bulk elements, it was possible to calculate all unknown dissociation energies to provide a complete table of dissociation energies for all M 2 molecules from H 2 to Lr 2 . For solids such as Mg, Al, Si and most of the transition metals, large promotion energies are offset by strong bonding between the valence state atoms. The main question is whether bonding in the diatomics is adequate to sustain extensive promotion. The most extreme example for which a considerable difference would be expected between the bulk and the diatomics would be that of the Group IIA and IIB metals. The first section of this paper which deals with the alkaline earths Mg and Ca demonstrates a significant influence of the excited valence state even for these elements. The next section then expands the treatment to transition metals
Explicit calculation of indirect global warming potentials for halons using atmospheric models
Directory of Open Access Journals (Sweden)
D. J. Wuebbles
2009-11-01
Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived
Energy Technology Data Exchange (ETDEWEB)
Matsuoka, T; Tamagawa, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-05-27
Pre-stacking depth migration treatment is studied for the estimation of the fold configuration from seismic survey cross sections. The estimation of a velocity structure is necessary for the execution of such treatment, and the utilization of structural-geological knowledge is required for its interpretation. The concept of balanced cross section in relation to the fault-bend fold constructs a stratum structure model under conditions that the deformation during fold and fault formation is a planar strain, that there is no change in volume due to deformation, and that a fold is a parallel fold. In addition to the above geometric and kinetic approach, there is another fold formation process simulation model using a Newtonian fluid for study from the viewpoint of dynamics. This simulation stands on the presumption that the boundary contains a ramp that had been in presence before fold formation and that an incompressible viscous matter is mounted on the top surface. The viscous matter flows and deforms for the formation of an anticline on the ramp. Such enables the reproduction of a fault-bend fold formation process, and helpful discussion may be furthered on the dynamic aspect of this simulation. 5 refs., 4 figs.
The COST model for calculation of forest operations costs
Ackerman, P.; Belbo, H.; Eliasson, L.; Jong, de J.J.; Lazdins, A.; Lyons, J.
2014-01-01
Since the late nineteenth century when high-cost equipment was introduced into forestry there has been a need to calculate the cost of this equipment in more detail with respect to, for example, cost of ownership, cost per hour of production, and cost per production unit. Machine cost calculations
Improvements in the model of neutron calculations for research reactors
International Nuclear Information System (INIS)
Calzetta, Osvaldo; Leszczynski, Francisco
1987-01-01
Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results are researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements, by one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author) [es
International Nuclear Information System (INIS)
Ainsworth, T.L.
1983-01-01
The Δ(1232) plays an important role in determining the properties of nuclear and neutron matter. The effects of the Δ resonance are incorporated explicitly by using a coupled channel formalism. A method for constraining a lowest order variational calculation, appropriate when nucleon internal degrees of freedom are made explicity, is presented. Different N-N potentials were calculated and fit to phase shift data and deuteron properties. The potentials were constructed to test the relative importance of the Δ resonance on nuclear properties. The symmetry energy and incompressibility of nuclear matter are generally reproduced by this calculation. Neutron matter results lead to appealing neutron star models. Fermi liquid parameters for 3 He are calculated with a model that includes both direct and induced terms. A convenient form of the direct interaction is obtained in terms of the parameters. The form of the direct interaction ensures that the forward scattering sum rule (Pauli principle) is obeyed. The parameters are adjusted to fit the experimentally determined F 0 /sup s/, F 0 /sup a/, and F 1 /sup s/ Landau parameters. Higher order Landau parameters are calculated by the self-consistent solution of the equations; comparison to experiment is good. The model also leads to a preferred value for the effective mass of 3 He. Of the three parameters only one shows any dependence on pressure. An exact sum rule is derived relating this parameter to a specific summation of Landau parameters
Energy Technology Data Exchange (ETDEWEB)
Li, Chunhua [College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124 (China); Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108 (United States); Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin [College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124 (China); Su, Jiguo, E-mail: jiguosu@ysu.edu.cn, E-mail: zhng@umich.edu [College of Science, Yanshan University, Qinhuangdao 066004 (China); Zhang, Yang, E-mail: jiguosu@ysu.edu.cn, E-mail: zhng@umich.edu [Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108 (United States)
2016-07-07
Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.
Comparison of standard fast reactor calculations (Baker model)
Energy Technology Data Exchange (ETDEWEB)
Voropaev, A I; Van' kov, A A; Tsybulya, A M
1978-12-01
Compared are standard fast reactor calculations performed at different laboratories using several nuclear data files: BNAB-70 and OSKAR-75 (the USSR), CARNAVAL-4 (France), FD-5 (Great Britain), KFK-INR (West Germany), ENDF/B4 (the USA). Three fuel compositions were chosen: (1) /sup 239/Pu and /sup 238/U; (2) /sup 239/Pu, /sup 238/U and fission products; (3) /sup 239/Pu, /sup 240/Pu, /sup 238/U and fission products. Medium temperature was 300K. The calculations have been conducted in the diffusion approximation. Data on critical masses and breeding ratios are tabulated. Discrepancies in the calculations of all the characteristics are small since all the countries possess practically the same nuclear data files.
Calculational advance in the modeling of fuel-coolant interactions
International Nuclear Information System (INIS)
Bohl, W.R.
1982-01-01
A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials
Power plant reliability calculation with Markov chain models
International Nuclear Information System (INIS)
Senegacnik, A.; Tuma, M.
1998-01-01
In the paper power plant operation is modelled using continuous time Markov chains with discrete state space. The model is used to compute the power plant reliability and the importance and influence of individual states, as well as the transition probabilities between states. For comparison the model is fitted to data for coal and nuclear power plants recorded over several years. (orig.) [de
Calculation of single chain cellulose elasticity using fully atomistic modeling
Xiawa Wu; Robert J. Moon; Ashlie Martini
2011-01-01
Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...
Model calculation for energy loss in ion-surface collisions
International Nuclear Information System (INIS)
Miraglia, J.E.; Gravielle, M.S.
2003-01-01
The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces
Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.
Risser, Steven Michael
This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb
Energy Technology Data Exchange (ETDEWEB)
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
International Nuclear Information System (INIS)
Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)
Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël
2014-07-01
Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.
Carbon dioxide fluid-flow modeling and injectivity calculations
Burke, Lauri
2011-01-01
At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.
Quark model calculations of current correlators in the nonperturbative domain
International Nuclear Information System (INIS)
Celenza, L.S.; Shakin, C.M.; Sun, W.D.
1995-01-01
The authors study the vector-isovector current correlator in this work, making use of a generalized Nambu-Jona-Lasinio (NJL) model. In their work, the original NJL model is extended to describe the coupling of the quark-antiquark states to the two-pion continuum. Further, a model for confinement is introduced that is seen to remove the nonphysical cuts that appear in various amplitudes when the quark and antiquark go on mass shell. Quite satisfactory results are obtained for the correlator. The authors also use the correlator to define a T-matrix for confined quarks and discuss a rho-dominance model for that T-matrix. It is also seen that the Bethe-Salpeter equation that determines the rho mass (in the absence of the coupling to the two-pion continuum) has more satisfactory behavior in the generalized model than in the model without confinement. That improved behavior is here related to the absence of the q bar q cut in the basic quark-loop integral of the generalized model. In this model, it is seen how one may work with both quark and hadron degrees of freedom, with only the hadrons appearing as physical particles. 12 refs., 16 figs., 1 tab
Real-time dispersion calculation using the Lagrange model LASAT
International Nuclear Information System (INIS)
Janicke, L.
1987-01-01
The LASAT (Lagrange Simulation of Aerosol Transport) dispersion model demonstrates pollutant transport in the atmosphere by simulating the paths of representative random samples of pollutant particles on the computer as natural as possible. The author demonstrates the generated particle paths and refers to literature for details of the model algorithm. (DG) [de
Long-Term Calculations with Large Air Pollution Models
DEFF Research Database (Denmark)
Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.
1999-01-01
Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...
Spherical images and inextensible curved folding
Seffen, Keith A.
2018-02-01
In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.
Directory of Open Access Journals (Sweden)
Balaji Petety V
2006-04-01
Full Text Available Abstract Background The 3-D structure of none of the eukaryotic sialyltransferases (SiaTs has been determined so far. Sequence alignment algorithms such as BLAST and PSI-BLAST could not detect a homolog of these enzymes from the protein databank. SiaTs, thus, belong to the hard/medium target category in the CASP experiments. The objective of the current work is to model the 3-D structures of human SiaTs which transfer the sialic acid in α2,3-linkage viz., ST3Gal I, II, III, IV, V, and VI, using fold-recognition and comparative modeling methods. The pair-wise sequence similarity among these six enzymes ranges from 41 to 63%. Results Unlike the sequence similarity servers, fold-recognition servers identified CstII, a α2,3/8 dual-activity SiaT from Campylobacter jejuni as the homolog of all the six ST3Gals; the level of sequence similarity between CstII and ST3Gals is only 15–20% and the similarity is restricted to well-characterized motif regions of ST3Gals. Deriving template-target sequence alignments for the entire ST3Gal sequence was not straightforward: the fold-recognition servers could not find a template for the region preceding the L-motif and that between the L- and S-motifs. Multiple structural templates were identified to model these regions and template identification-modeling-evaluation had to be performed iteratively to choose the most appropriate templates. The modeled structures have acceptable stereochemical properties and are also able to provide qualitative rationalizations for some of the site-directed mutagenesis results reported in literature. Apart from the predicted models, an unexpected but valuable finding from this study is the sequential and structural relatedness of family GT42 and family GT29 SiaTs. Conclusion The modeled 3-D structures can be used for docking and other modeling studies and for the rational identification of residues to be mutated to impart desired properties such as altered stability, substrate
International Nuclear Information System (INIS)
Terazawa, H.
1986-01-01
The four-fold way is proposed in a minimal composite model of quarks and leptons. Various new pictures and consequences are presented and discussed. They include 1) generation, 2) quark-lepton mass spectrum, 3) quark mixing, 4) supersymmetry, 5) effective gauge theory. (author)
A review of Higgs mass calculations in supersymmetric models
DEFF Research Database (Denmark)
Draper, P.; Rzehak, H.
2016-01-01
The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...
Horesh, Yair; Wexler, Ydo; Lebenthal, Ilana; Ziv-Ukelson, Michal; Unger, Ron
2009-03-04
Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Here, we describe and implement an O(NLpsi(L)) engine for the consecutive windows folding problem, where psi(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.
International Nuclear Information System (INIS)
Hagino, K.; Takehi, T.; Takigawa, N.
2006-01-01
We propose the no-recoil approximation, which is valid for heavy systems, for a double folding nucleus-nucleus potential. With this approximation, the nonlocal knock-on exchange contribution becomes a local form. We discuss the applicability of this approximation for elastic scattering of the 6 Li + 40 Ca system. We find that, for this and heavier systems , the no-recoil approximation works as good as another widely used local approximation that employs a local plane wave for the relative motion between the colliding nuclei. We also compare the results of the no-recoil calculations with those of the zero-range approximation often used to handle the knock-on exchange effect
A simple model for calculating air pollution within street canyons
Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.
2014-04-01
This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.
Calculation of the fermionic determinant in the Schwinger model
International Nuclear Information System (INIS)
Dias, S.A.; Linhares, C.A.
1991-01-01
We compute explicitly the fermionic determinant and the effective action for the generalized Schwinger model in two dimensions and compare it with respective results for the particular cases of the Schwinger, chiral Schwinger and axial Schwinger models. The parameters that signal the ambiguity in the regularization scheme fo the determinant are introduced through the point-splitting method. The Wess-Zumino functional is also obtained and compared with the known expressions for the above-mentioned particular cases. (author)
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
Kinetic partitioning mechanism of HDV ribozyme folding
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)
2014-01-14
RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.
An hydrodynamic model for the calculation of oil spills trajectories
Energy Technology Data Exchange (ETDEWEB)
Paladino, Emilio Ernesto; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Dinamica dos Fluidos Computacionais]. E-mails: emilio@sinmec.ufsc.br; maliska@sinmec.ufsc.br
2000-07-01
The aim of this paper is to present a mathematical model and its numerical treatment to forecast oil spills trajectories in the sea. The knowledge of the trajectory followed by an oil slick spilled on the sea is of fundamental importance in the estimation of potential risks for pipeline and tankers route selection, and in combating the pollution using floating barriers, detergents, etc. In order to estimate these slicks trajectories a new model, based on the mass and momentum conservation equations is presented. The model considers the spreading in the regimes when the inertial and viscous forces counterbalance gravity and takes into account the effects of winds and water currents. The inertial forces are considered for the spreading and the displacement of the oil slick, i.e., is considered its effects on the movement of the mass center of the slick. The mass loss caused by oil evaporation is also taken into account. The numerical model is developed in generalized coordinates, making the model easily applicable to complex coastal geographies. (author)
Uncertain hybrid model for the response calculation of an alternator
International Nuclear Information System (INIS)
Kuczkowiak, Antoine
2014-01-01
The complex structural dynamic behavior of alternator must be well understood in order to insure their reliable and safe operation. The numerical model is however difficult to construct mainly due to the presence of a high level of uncertainty. The objective of this work is to provide decision support tools in order to assess the vibratory levels in operation before to restart the alternator. Based on info-gap theory, a first decision support tool is proposed: the objective here is to assess the robustness of the dynamical response to the uncertain modal model. Based on real data, the calibration of an info-gap model of uncertainty is also proposed in order to enhance its fidelity to reality. Then, the extended constitutive relation error is used to expand identified mode shapes which are used to assess the vibratory levels. The robust expansion process is proposed in order to obtain robust expanded mode shapes to parametric uncertainties. In presence of lack-of knowledge, the trade-off between fidelity-to-data and robustness-to-uncertainties which expresses that robustness improves as fidelity deteriorates is emphasized on an industrial structure by using both reduced order model and surrogate model techniques. (author)
Model for calculation of concentration and load on behalf of accidents with radioactive materials
International Nuclear Information System (INIS)
Janssen, L.A.M.; Heugten, W.H.H. van
1987-04-01
In the project 'Information- and calculation-system for disaster combatment', by order of the Dutch government, a demonstration model has been developed for a diagnosis system for accidents. In this demonstration a model is used to calculate the concentration- and dose-distributions caused by incidental emissions of limited time. This model is described in this report. 4 refs.; 2 figs.; 3 tabs
A calculation model for the noise from steel railway bridges
Janssens, M.H.A.; Thompson, D.J.
1996-01-01
The sound level of a train crossing a steel railway bridge is usually about 10 dB higher than on plain track. In the Netherlands there are many such bridges which, for practical reasons, cannot be replaced by more intrinsically quiet concrete bridges. A computational model is described for the
Reactor accident calculation models in use in the Nordic countries
International Nuclear Information System (INIS)
Tveten, U.
1984-01-01
The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. In the first part of the report short descriptions of the various models are given. A systematic list by subject is then given. In the main body of the report chapter and subchapter headings are by subject. (Auth.)
A calculation model for a HTR core seismic response
International Nuclear Information System (INIS)
Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.
1975-01-01
The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de
Glass viscosity calculation based on a global statistical modelling approach
Energy Technology Data Exchange (ETDEWEB)
Fluegel, Alex
2007-02-01
A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.
Semiclassical calculation for collision induced dissociation. II. Morse oscillator model
International Nuclear Information System (INIS)
Rusinek, I.; Roberts, R.E.
1978-01-01
A recently developed semiclassical procedure for calculating collision induced dissociation probabilities P/sup diss/ is applied to the collinear collision between a particle and a Morse oscillator diatomic. The particle--diatom interaction is described with a repulsive exponential potential function. P/sup diss/ is reported for a system of three identical particles, as a function of collision energy E/sub t/ and initial vibrational state of the diatomic n 1 . The results are compared with the previously reported values for the collision between a particle and a truncated harmonic oscillator. The two studies show similar features, namely: (a) there is an oscillatory structure in the P/sup diss/ energy profiles, which is directly related to n 1 ; (b) P/sup diss/ becomes noticeable (> or approx. =10 -3 ) for E/sub t/ values appreciably higher than the energetic threshold; (c) vibrational enhancement (inhibition) of collision induced dissociation persists at low (high) energies; and (d) good agreement between the classical and semiclassical results is found above the classical dynamic threshold. Finally, the convergence of P/sup diss/ for increasing box length is shown to be rapid and satisfactory
DEFF Research Database (Denmark)
Jin, Emma Yu; Nebel, M. E.
2016-01-01
that the corresponding conditional probabilities behave according to a polymer-zeta probability model. We show that even if some of the structural parameters exhibit an almost realistic behavior on average, the expected shape of a folding in that model must be assumed to highly differ from those observed in nature. More...... sparsification) may reduce the runtime to n2 on average, assuming that nucleotides of distance d form a hydrogen bond (i.e. are paired) with probability (Formula Presented.) for some constants b > 0, c > 1. The latter is called the polymer-zeta model and plays a crucial role in speeding up the above mentioned...... algorithm. In this paper we discuss the application of the polymer-zeta property for the analysis of sparsification, showing that it must be applied conditionally on first and last positions to pair. Afterwards, we will investigate the combinatorics of RNA secondary structures assuming...
Fold and Fit: Space Conserving Shape Editing
Ibrahim, Mohamed
2017-09-01
We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.
Approximate models for neutral particle transport calculations in ducts
International Nuclear Information System (INIS)
Ono, Shizuca
2000-01-01
The problem of neutral particle transport in evacuated ducts of arbitrary, but axially uniform, cross-sectional geometry and isotropic reflection at the wall is studied. The model makes use of basis functions to represent the transverse and azimuthal dependences of the particle angular flux in the duct. For the approximation in terms of two basis functions, an improvement in the method is implemented by decomposing the problem into uncollided and collided components. A new quadrature set, more suitable to the problem, is developed and generated by one of the techniques of the constructive theory of orthogonal polynomials. The approximation in terms of three basis functions is developed and implemented to improve the precision of the results. For both models of two and three basis functions, the energy dependence of the problem is introduced through the multigroup formalism. The results of sample problems are compared to literature results and to results of the Monte Carlo code, MCNP. (author)
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
Model calculation of the scanned field enhancement factor of CNTs
International Nuclear Information System (INIS)
Ahmad, Amir; Tripathi, V K
2006-01-01
The field enhancement factor of a carbon nanotube (CNT) placed in a cluster of CNTs is smaller than an isolated CNT because the electric field on one tube is screened by neighbouring tubes. This screening depends on the length of the CNTs and the spacing between them. We have derived an expression to compute the field enhancement factor of CNTs under any positional distribution of CNTs using a model of a floating sphere between parallel anode and cathode plates. Using this expression we can compute the field enhancement factor of a CNT in a cluster (non-uniformly distributed CNTs). This expression is used to compute the field enhancement factor of a CNT in an array (uniformly distributed CNTs). Comparison has been shown with experimental results and existing models
Quark model calculation of charmed baryon production by neutrinos
International Nuclear Information System (INIS)
Avilez, C.; Kobayashi, T.; Koerner, J.G.
1976-11-01
We study the neutrino production of 25 low-lying charmed baryon resonances in the four flavour quark model. The mass difference of ordinary and charmed quarks is explicitly taken into account. The quark model is used to determine the spectrum of the charmed baryon resonances and the q 2 = 0 values of the weak current transition matrix elements. These transition matrix elements are then continued to space-like q 2 -values by a generalized meson dominance ansatz for a set of suitably chosen invariant form factors. We find that the production of the L = 0 states C 0 , C 1 and C 1 * is dominant, with the C 0 produced most copiously. For L = 1, 2 the Jsup(P) = 3/2 - 5/2 + charm states are dominant. We give differential cross sections, total cross sections and energy integrated total cross sections using experimental neutrino fluxes. (orig./BJ) [de
Microscopic calculation of parameters of the sdg interacting boson model for 104-110Pd isotopes
International Nuclear Information System (INIS)
Liu Yong
1995-01-01
The parameters of the sdg interacting boson model Hamiltonian are calculated for the 104-110 Pd isotopes. The calculations utilize the microscopic procedure based on the Dyson boson mapping proposed by Yang-Liu-Qi and extended to include the g boson effects. The calculated parameters reproduce those values from the phenomenological fits. The resulting spectra are compared with the experimental spectra
Static model calculation of pion-nucleon scattering
International Nuclear Information System (INIS)
Itoh, Takashi
1975-01-01
The p-wave pion-nucleon scattering phase-shifts are computed by the Chew-Low static model for pion incident energy of 0-300 MeV. The square of the unrenormalized coupling constant is taken to be f 2 =0.2, and the cutoff is made at k sub(max)=6μ. The computed 3,3 phase-shift passes through 90 deg about at the right energy. The other phase-shifts computed are small in rough agreement with experiment. (auth.)
Simplified models for radiational losses calculating a tokamak plasma
International Nuclear Information System (INIS)
Arutiunov, A.B.; Krasheninnikov, S.I.; Prokhorov, D.Yu.
1990-01-01
To determine the magnitudes and profiles of radiational losses in a Tokamak plasma, particularly for high plasma densities, when formation of MARFE or detached-plasma takes place, it is necessary to know impurity distribution over the ionization states. Equations describing time evolution of this distribution are rather cumbersome, besides that, transport coefficients as well as rate constants of the processes involving complex ions are known nowadays with high degree of uncertainty, thus it is believed necessary to develop simplified, half-analytical models describing time evolution of the impurities analysis of physical processes taking place in a Tokamak plasma on the base of the experimental data. (author) 6 refs., 2 figs
NoFold: RNA structure clustering without folding or alignment.
Middleton, Sarah A; Kim, Junhyong
2014-11-01
Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Czech Academy of Sciences Publication Activity Database
Dušek, Karel; Dušková, Miroslava; Ilavský, Michal; Steward, R.; Kopeček, J.
2003-01-01
Roč. 4, č. 6 (2003), s. 1818-1826 ISSN 1525-7797 R&D Projects: GA AV ČR KSK4050111 Keywords : thermodynamic model * swelling transitions * hybrid gels Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.824, year: 2003
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Šidlof, Petr; Uruba, Václav; Veselý, Jan; Radolf, Vojtěch; Bula, Vítězslav
2010-01-01
Roč. 55, č. 4 (2010), s. 327-343 ISSN 0001-7043 R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of voice * voice production modeling * PIV method * coherent structures Subject RIV: BI - Acoustics
The nature of folded states of globular proteins.
Honeycutt, J D; Thirumalai, D
1992-06-01
We suggest, using dynamical simulations of a simple heteropolymer modelling the alpha-carbon sequence in a protein, that generically the folded states of globular proteins correspond to statistically well-defined metastable states. This hypothesis, called the metastability hypothesis, states that there are several free energy minima separated by barriers of various heights such that the folded conformations of a polypeptide chain in each of the minima have similar structural characteristics but have different energies from one another. The calculated structural characteristics, such as bond angle and dihedral angle distribution functions, are assumed to arise from only those configurations belonging to a given minimum. The validity of this hypothesis is illustrated by simulations of a continuum model of a heteropolymer whose low temperature state is a well-defined beta-barrel structure. The simulations were done using a molecular dynamics algorithm (referred to as the "noisy" molecular dynamics method) containing both friction and noise terms. It is shown that for this model there are several distinct metastable minima in which the structural features are similar. Several new methods of analyzing fluctuations in structures belonging to two distinct minima are introduced. The most notable one is a dynamic measure of compactness that can in principle provide the time required for maximal compactness to be achieved. The analysis shows that for a given metastable state in which the protein has a well-defined folded structure the transition to a state of higher compactness occurs very slowly, lending credence to the notion that the system encounters a late barrier in the process of folding to the most compact structure. The examination of the fluctuations in the structures near the unfolding----folding transition temperature indicates that the transition state for the unfolding to folding process occurs closer to the folded state.
Nuclear matter calculations with a pseudoscalar-pseudovector chiral model
Energy Technology Data Exchange (ETDEWEB)
Niembro, R.; Marcos, S.; Bernardos, P. [University of Cantabria, Faculty of Sciences, Department of Modern Physics, 39005 Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 197341 St Petersburg (Russian Federation); Savushkin, L.N. [St Petersburg University for Telecomunications, Department of Physics, 191065 St Petersburg (Russian Federation); Lopez-Quelle, M. [University of Cantabria, Faculty of Sciences, Department of Applied Physics, 39005 Santander, Spain (Spain)
1998-10-01
A mixed pseudoscalar-pseudovector {pi}N coupling relativistic Lagrangian is obtained from a pure pseudoscalar chiral one, by transforming the nucleon field according to a generalized Weinberg transformation, which depends on a mixing parameter. The interaction is generated by the {sigma}, {omega} and {pi} meson exchanges. Within the Hartree-Fock context, pion polarization effects, including the {delta} isobar, are considered in the random phase approximation in nuclear matter. These effects are interpreted, in a non-relativistic framework, as a modification of the range and intensity of a Yukawa-type potential by means of a simple function which takes into account the nucleon-hole and {delta}-hole excitations. Results show stability of relativistic nuclear matter against pion condensation. Compression modulus is diminished by the combined effects of the nucleon and {delta} polarization towards the usually accepted experimental values. The {pi}N interaction strength used in this paper is less than the conventional one to ensure the viability of the model. The fitting parameters of the model are the scalar meson mass m{sub {sigma}} and the {omega}-N coupling constant g{sub {omega}}. (author)
Predictive Modelling Risk Calculators and the Non Dialysis Pathway.
Robins, Jennifer; Katz, Ivor
2013-04-16
This guideline will review the current prediction models and survival/mortality scores available for decision making in patients with advanced kidney disease who are being considered for a non-dialysis treatment pathway. Risk prediction is gaining increasing attention with emerging literature suggesting improved patient outcomes through individualised risk prediction (1). Predictive models help inform the nephrologist and the renal palliative care specialists in their discussions with patients and families about suitability or otherwise of dialysis. Clinical decision making in the care of end stage kidney disease (ESKD) patients on a non-dialysis treatment pathway is currently governed by several observational trials (3). Despite the paucity of evidence based medicine in this field, it is becoming evident that the survival advantages associated with renal replacement therapy in these often elderly patients with multiple co-morbidities and limited functional status may be negated by loss of quality of life (7) (6), further functional decline (5, 8), increased complications and hospitalisations. This article is protected by copyright. All rights reserved.
The curvature calculation mechanism based on simple cell model.
Yu, Haiyang; Fan, Xingyu; Song, Aiqi
2017-07-20
A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.
Influence of FRAPCON-1 evaluation models on fuel behavior calculations for commercial power reactors
International Nuclear Information System (INIS)
Chambers, R.; Laats, E.T.
1981-01-01
A preliminary set of nine evaluation models (EMs) was added to the FRAPCON-1 computer code, which is used to calculate fuel rod behavior in a nuclear reactor during steady-state operation. The intent was to provide an audit code to be used in the United States Nuclear Regulatory Commission (NRC) licensing activities when calculations of conservative fuel rod temperatures are required. The EMs place conservatisms on the calculation of rod temperature by modifying the calculation of rod power history, fuel and cladding behavior models, and materials properties correlations. Three of the nine EMs provide either input or model specifications, or set the reference temperature for stored energy calculations. The remaining six EMs were intended to add thermal conservatism through model changes. To determine the relative influence of these six EMs upon fuel behavior calculations for commercial power reactors, a sensitivity study was conducted. That study is the subject of this paper
User Guide for GoldSim Model to Calculate PA/CA Doses and Limits
International Nuclear Information System (INIS)
Smith, F.
2016-01-01
A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.
User Guide for GoldSim Model to Calculate PA/CA Doses and Limits
Energy Technology Data Exchange (ETDEWEB)
Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2016-10-31
A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.
Directory of Open Access Journals (Sweden)
Niklas Berliner
Full Text Available Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.
A model for calculating expected performance of the Apollo unified S-band (USB) communication system
Schroeder, N. W.
1971-01-01
A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.
Improvements to the nuclear model code GNASH for cross section calculations at higher energies
International Nuclear Information System (INIS)
Young, P.G.; Chadwick, M.B.
1994-01-01
The nuclear model code GNASH, which in the past has been used predominantly for incident particle energies below 20 MeV, has been modified extensively for calculations at higher energies. The model extensions and improvements are described in this paper, and their significance is illustrated by comparing calculations with experimental data for incident energies up to 160 MeV
Cost calculation model concerning small-scale production of chips and split firewood
International Nuclear Information System (INIS)
Ryynaenen, S.; Naett, H.; Valkonen, J.
1995-01-01
The TTS-Institute's Forestry Department has developed a computer-based cost calculation model for the production of wood chips and split firewood. This development work was carried out in conjunction with the nation-wide BIOENERGY -research programme. The said calculation model eases and speeds up the calculation of unit costs and resource needs in harvesting systems for wood chips and split firewood. The model also enables the user to find out how changes in the productivity and costs bases of different harvesting chains influences the unit costs of the system as a whole. The undertaking was composed of the following parts: clarification and modification of productivity bases for application in the model as mathematical models, clarification of machine and device costs bases, designing of the structure and functions of the calculation model, construction and testing of the model's 0-version, model calculations concerning typical chains, review of calculation bases, and charting of development needs focusing on the model. The calculation model was developed to serve research needs, but with further development it could be useful as a tool in forestry and agricultural extension work, related schools and colleges, and in the hands of firewood producers. (author)
From Holonomy of the Ising Model Form Factors to n-Fold Integrals and the Theory of Elliptic Curves
Directory of Open Access Journals (Sweden)
Salah Boukraa
2007-10-01
Full Text Available We recall the form factors $f^(j_{N,N}$ corresponding to the $lambda$-extension $C(N,N; lambda$ of the two-point diagonal correlation function of the Ising model on the square lattice and their associated linear differential equations which exhibit both a "Russian-doll" nesting, and a decomposition of the linear differential operators as a direct sum of operators (equivalent to symmetric powers of the differential operator of the complete elliptic integral $E$. The scaling limit of these differential operators breaks the direct sum structure but not the "Russian doll" structure, the "scaled" linear differential operators being no longer Fuchsian. We then introduce some multiple integrals of the Ising class expected to have the same singularities as the singularities of the $n$-particle contributions $chi^{(n}$ to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equations satisfied by these multiple integrals for $n = 1, 2, 3, 4$ and, only modulo a prime, for $n = 5$ and 6, thus providing a large set of (possible new singularities of the $chi^{(n}$. We get the location of these singularities by solving the Landau conditions. We discuss the mathematical, as well as physical, interpretation of these new singularities. Among the singularities found, we underline the fact that the quadratic polynomial condition $1 + 3w + 4w^2 = 0$, that occurs in the linear differential equation of $chi^{(3}$, actually corresponds to the occurrence of complex multiplication for elliptic curves. The interpretation of complex multiplication for elliptic curves as complex fixed points of generators of the exact renormalization group is sketched. The other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting a geometric interpretation in terms of more general (motivic mathematical structures beyond the theory of elliptic curves. The scaling limit of the (lattice
Quantification of Porcine Vocal Fold Geometry.
Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L
2016-07-01
The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Development of the model for the stress calculation of fuel assembly under accident load
International Nuclear Information System (INIS)
Kim, Il Kon
1993-01-01
The finite element model for the stress calculation in guide thimbles of a fuel assembly (FA) under seismic and loss-of-coolant-accident (LOCA) load is developed. For the stress calculation of FA under accident load, at first the program MAIN is developed to select the worst bending mode shaped FA from core model. And then the model for the stress calculation of FA is developed by means of the finite element code. The calculated results of program MAIN are used as the kinematic constraints of the finite element model of a FA. Compared the calculated results of the stiffness of the finite element model of FA with the test results they have good agreements. (Author)
Ismail, Sascha A; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G; Uma Shaanker, Ramanan; Kettle, Chris J
2017-05-01
Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km 2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Meier, Matthias
2010-01-01
"We all remember pop-up books form our childhood. As fascinated as we were back then, we probably never imagined how much engineering know-how went into these books. Pop-up engineer Anton Radevsky has even managed to fold a 27-kilometre particle accelerator into a book" (4 pages)
Bean, Robert
2007-01-01
In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…
Fold distributions at clover, crystal and segment levels for segmented clover detectors
International Nuclear Information System (INIS)
Kshetri, R; Bhattacharya, P
2014-01-01
Fold distributions at clover, crystal and segment levels have been extracted for an array of segmented clover detectors for various gamma energies. A simple analysis of the results based on a model independant approach has been presented. For the first time, the clover fold distribution of an array and associated array addback factor have been extracted. We have calculated the percentages of the number of crystals and segments that fire for a full energy peak event
Melody discrimination and protein fold classification
Directory of Open Access Journals (Sweden)
Robert P. Bywater
2016-10-01
Full Text Available One of the greatest challenges in theoretical biophysics and bioinformatics is the identification of protein folds from sequence data. This can be regarded as a pattern recognition problem. In this paper we report the use of a melody generation software where the inputs are derived from calculations of evolutionary information, secondary structure, flexibility, hydropathy and solvent accessibility from multiple sequence alignment data. The melodies so generated are derived from the sequence, and by inference, of the fold, in ways that give each fold a sound representation that may facilitate analysis, recognition, or comparison with other sequences.
Directory of Open Access Journals (Sweden)
Darya Sergeevna Simonenkova
2013-09-01
Full Text Available The subject of the research is analysis of various models of the information system constructed with the use of technologies of cloud calculations. Analysis of models is required for constructing a new reference model which will be used for develop a security threats model.
Approaching climate-adaptive facades with foldings
DEFF Research Database (Denmark)
Sack-Nielsen, Torsten
2014-01-01
envelopes based on folding principles such as origami. Three major aspects cover the project’s interest in this topic: Shape, kinetics and the application of new multi-functional materials form the interdisciplinary framework of this research. Shape// Initially small paper sketch models demonstrate folding...
Probabilistic analysis for identifying the driving force of protein folding
Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki
2018-03-01
Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.
Implementation of the neutronics model of HEXTRAN/HEXBU-3D into APROS for WWER calculations
International Nuclear Information System (INIS)
Rintala, J.
2008-01-01
A new three-dimensional nodal model for neutronics calculation is currently under implementation into APROS - Advanced PROcess Simulation environment - to conform the increasing accuracy requirements. The new model is based on an advanced nodal code HEXTRAN and its static version HEXBU-3D by VTT, Technical Research Centre of Finland. Currently the new APROS is under a testing programme. Later a systematic validation will be performed. In the first phase, a goal is to obtain a fully validated model for VVER-440 calculations. Thus, all the current test calculations are performed by using Loviisa NPP's VVER-440 model of APROS. In future, the model is planned to be applied for the calculations of VVER-1000 type reactors as well as in rectangular fuel geometry. The paper outlines first the general aspects of the method, and then the current situation of the implementation. Because of the identical model with the models of HEXTRAN and HEXBU-3D, the results in the test calculations are compared to the results of those. In the paper, results of two static test calculations are shown. Currently the model works well already in static analyses. Only minor problems with the control assemblies of VVER-440 type reactor still exist but the reasons are known and will be corrected in near future. Dynamical characteristics of the model are up to now tested only by some empirical tests. (author)
Calculation of DC Arc Plasma Torch Voltage- Current Characteristics Based on Steebeck Model
International Nuclear Information System (INIS)
Gnedenko, V.G.; Ivanov, A.A.; Pereslavtsev, A.V.; Tresviatsky, S.S.
2006-01-01
The work is devoted to the problem of the determination of plasma torches parameters and power sources parameters (working voltage and current of plasma torch) at the predesigning stage. The sequence of calculation of voltage-current characteristics of DC arc plasma torch is proposed. It is shown that the simple Steenbeck model of arc discharge in cylindrical channel makes it possible to carry out this calculation. The results of the calculation are confirmed by the experiments
International Nuclear Information System (INIS)
Gasco, C.; Anton, M. P.; Ampudia, J.
2003-01-01
The introduction of macros in try calculation sheets allows the automatic application of various dating models using unsupported ''210 Pb data from a data base. The calculation books the contain the models have been modified to permit the implementation of these macros. The Marine and Aquatic Radioecology group of CIEMAT (MARG) will be involved in new European Projects, thus new models have been developed. This report contains a detailed description of: a) the new implement macros b) the design of a dating Menu in the calculation sheet and c) organization and structure of the data base. (Author) 4 refs
Optimization of the neutron calculation model for the RA-6 reactor
International Nuclear Information System (INIS)
Coscia, G.A.
1981-01-01
A model for the neutronic calculation of the RA-6 reactor which includes the codes ANISN and EQUIPOSE is analyzed. Starting with a brief description of the reactor, the core and its parts, the general scheme of calculation applied is presented. The fuel elements used were those which are utilized in the RA-3 reactor; this is of the MTR type with 90% enriched uranium. With the approximations used, an analysis of such model of calculation was made, trying to optimize it by reducing, if possible, the calculation time without loosing accuracy. In order to improve the calculation model, it is recomended a cross section data library specific for the enrichment of the fuel considered 90% and the incorporation of a more advanced code than EQUIPOISE which would be DIXYBAR. (M.E.L.) [es
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2017-08-01
Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Kinematics of large scale asymmetric folds and associated smaller ...
Indian Academy of Sciences (India)
The present work reiterates the importance of analysis of ... these models is the assumption that the folds are passive folds ... applicability of these models is thus limited in the case of ...... with contrasted rheological properties, a theory for the.
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics); Pittel, S. (Delaware Univ., Newark (USA). Bartol Research Foundation); Duval, P.D. (BEERS Associates, Reston, VA (USA))
1985-07-11
The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.
Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.
1985-07-01
The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2016-05-01
We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.
The effect of magnetic field models on cosmic ray cutoff calculations
International Nuclear Information System (INIS)
Pfitzer, K.A.
1979-01-01
The inaccuracies in the 1974 Olson-Pfitzer model appeared to be the probable cause for discrepancies between the observed and calculated cosmic ray cutoff values. An improved version of the Olson-Pfitzer model is now available which includes the effects of the tilt of the earth's dipole axis and which has removed most of the problems encountered in the earlier model. The paper demonstrates that when this new accurate magnetic field model is used, the calculated and observed cutoff values agree with the experimental error without the need for invoking anomalous diffusion mechanisms. This tilt-dependent model also permits a study of cutoffs versus the tilt of the dipole axis
Directory of Open Access Journals (Sweden)
Ziv-Ukelson Michal
2009-03-01
Full Text Available Abstract Background Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L 3 by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2 solution for this problem has been described. Results Here, we describe and implement an O(NLψ(L engine for the consecutive windows folding problem, where ψ(L is shown to converge to O(1 under the assumption of a standard probabilistic polymer folding model, yielding an O(L speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5' folding bias, i.e. that the minimal free energy (MFE of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. Conclusion The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.
Developing a Model of Tuition Fee Calculation for Universities of Medical Sciences
Directory of Open Access Journals (Sweden)
Seyed Amir Mohsen Ziaee
2018-01-01
Full Text Available Background: The aim of our study was to introduce and evaluate a practicable model for tuition fee calculation of each medical field in universities of medical sciences in Iran.Methods: Fifty experts in 11 panels were interviewed to identify variables that affect tuition fee calculation. This led to key points including total budgets, expenses of the universities, different fields’ attractiveness, universities’ attractiveness, and education quality. Tuition fees were calculated for different levels of education, such as post-diploma, Bachelor, Master, and Doctor of Philosophy (Ph.D degrees, Medical specialty, and Fellowship. After tuition fee calculation, the model was tested during 2013-2015. Since then, a questionnaire including 20 questions was prepared. All Universities’ financial and educational managers were asked to respond to the questions regarding the model’s reliability and effectiveness.Results: According to the results, fields’ attractiveness, universities’ attractiveness, zone distinction and education quality were selected as effective variables for tuition fee calculation. In this model, tuition fees per student were calculated for the year 2013, and, therefore, the inflation rate of the same year was used. Testing of the model showed that there is a 92% of satisfaction. This model is used by medical science universities in Iran.Conclusion: Education quality, zone coefficient, fields’ attractiveness, universities’ attractiveness, inflation rate, and portion of each level of education were the most important variables affecting tuition fee calculation.Keywords: TUITION FEES, FIELD’S ATTRACTIVENESS, UNIVERSITIES’ ATTRACTIVENESS, ZONE DISTINCTION, EDUCATION QUALITY
Strip yielding model for calculation of COD in spheres with short cracks
International Nuclear Information System (INIS)
Miller, A.G.
1981-08-01
The crack opening displacement at the centre of a crack in a sphere with internal pressure has been calculated, using a strip yielding model. The results have been displayed for a range of geometrical parameters and loads. (author)
The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model
International Nuclear Information System (INIS)
Zamick, L.
1984-01-01
The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell
Modeling for Dose Rate Calculation of the External Exposure to Gamma Emitters in Soil
International Nuclear Information System (INIS)
Allam, K. A.; El-Mongy, S. A.; El-Tahawy, M. S.; Mohsen, M. A.
2004-01-01
Based on the model proposed and developed in Ph.D thesis of the first author of this work, the dose rate conversion factors (absorbed dose rate in air per specific activity of soil in nGy.hr - 1 per Bq.kg - 1) are calculated 1 m above the ground for photon emitters of natural radionuclides uniformly distributed in the soil. This new and simple dose rate calculation software was used for calculation of the dose rate in air 1 m above the ground. Then the results were compared with those obtained by five different groups. Although the developed model is extremely simple, the obtained results of calculations, based on this model, show excellent agreement with those obtained by the above-mentioned models specially that one adopted by UNSCEAR. (authors)
Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.
1983-12-01
The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)
The transition equation of the state intensities for exciton model and the calculation program
International Nuclear Information System (INIS)
Yu Xian; Zheng Jiwen; Liu Guoxing; Chen Keliang
1995-01-01
An equation set of the exciton model is given and calculation program is developed. The process of approaching to equilibrium state has been investigated with the program for 12 C + 64 Ni reaction at energy 72 MeV
Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation
Energy Technology Data Exchange (ETDEWEB)
Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp
2017-02-01
The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.
NUCORE - A system for nuclear structure calculations with cluster-core models
International Nuclear Information System (INIS)
Heras, C.A.; Abecasis, S.M.
1982-01-01
Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)
Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation
Directory of Open Access Journals (Sweden)
Tang C.
2012-01-01
Full Text Available The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.
On thermal vibration effects in diffusion model calculations of blocking dips
International Nuclear Information System (INIS)
Fuschini, E.; Ugozzoni, A.
1983-01-01
In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions
Heterogeneous neutron-leakage model for PWR pin-by-pin calculation
International Nuclear Information System (INIS)
Li, Yunzhao; Zhang, Bin; Wu, Hongchun; Shen, Wei
2017-01-01
Highlights: •The derivation of the formula of the leakage model is introduced. This paper evaluates homogeneous and heterogeneous leakage models used in PWR pin-by-pin calculation. •The implements of homogeneous and heterogeneous leakage models used in pin-cell homogenization of the lattice calculation are studied. A consistent method of cooperation between the heterogeneous leakage model and the pin-cell homogenization theory is proposed. •Considering the computational cost, a new buckling search scheme is proposed to reach the convergence faster. The computational cost of the newly proposed neutron balance scheme is much less than the power-method scheme and the linear-interpolation scheme. -- Abstract: When assembly calculation is performed with the reflective boundary condition, a leakage model is usually required in the lattice code. The previous studies show that the homogeneous leakage model works effectively for the assembly homogenization. However, it becomes different and unsettled for the pin-cell homogenization. Thus, this paper evaluates homogeneous and heterogeneous leakage models used in pin-by-pin calculation. The implements of homogeneous and heterogeneous leakage models used in pin-cell homogenization of the lattice calculation are studied. A consistent method of cooperation between the heterogeneous leakage model and the pin-cell homogenization theory is proposed. Considering the computational cost, a new buckling search scheme is proposed to reach the convergence faster. For practical reactor-core applications, the diffusion coefficients determined by the transport cross-section or by the leakage model are compared with each other to determine which one is more accurate for the Pressurized Water Reactor pin-by-pin calculation. Numerical results have demonstrated that the heterogeneous leakage model together with the diffusion coefficient determined by the heterogeneous leakage model would have the higher accuracy. The new buckling search
DEFF Research Database (Denmark)
Yuan, Hao; You, Zhenjiang; Shapiro, Alexander
2013-01-01
Colloidal-suspension flow in porous media is modelled simultaneously by the large scale population balance equations and by the microscale network model. The phenomenological parameter of the correlation length in the population balance model is determined from the network modelling. It is found...... out that the correlation length in the population balance model depends on the particle size. This dependency calculated by two-dimensional network has the same tendency as that obtained from the laboratory tests in engineered porous media....
International Nuclear Information System (INIS)
Abbate, P.
1990-01-01
The CONVEC program developed for the thermohydraulic calculation under a natural convection regime for MTR type reactors is presented. The program is based on a stationary, one dimensional model of finite differences that allow to calculate the temperatures of cooler, cladding and fuel as well as the flow for a power level specified by the user. This model has been satisfactorily validated by a water cooling (liquid phase) and air system. (Author) [es
CASIM calculations and angular dependent parameter β in the Moyer model
International Nuclear Information System (INIS)
Yamaguchi, Chiri.
1988-04-01
The dose equivalent on the shield surface has been calculated using both the Moyer model and the Monte Carlo code CASIM. Calculations with various values of the angular distribution parameter β in the Moyer model show that β = 7.0 ± 0.5 would meet the CASIM results at most, especially regarding locations at which the values of the maximum dose equivalent occur. (author)
Energy Technology Data Exchange (ETDEWEB)
Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))
2007-06-15
GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All
International Nuclear Information System (INIS)
Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin
2007-06-01
GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Directory of Open Access Journals (Sweden)
Yunxiang Sun
Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.
Comparison study on models for calculation of NPP’s levelized unit electricity cost
International Nuclear Information System (INIS)
Nuryanti; Mochamad Nasrullah; Suparman
2014-01-01
Economic analysis that is generally done through the calculation of Levelized Unit Electricity Cost (LUEC) is crucial to be done prior to any investment decision on the nuclear power plant (NPP) project. There are several models that can be used to calculate LUEC, which are: R&D PT. PLN (Persero) Model, Mini G4ECONS model and Levelized Cost model. This study aimed to perform a comparison between the three models. Comparison technique was done by tracking the similarity used for each model and then given a case of LUEC calculation for SMR NPP 2 x 100 MW using these models. The result showed that the R&D PT. PLN (Persero) Model have a common principle with Mini G4ECONS model, which use Capital Recovery Factor (CRF) to discount the investment cost which eventually become annuity value along the life of plant. LUEC on both models is calculated by dividing the sum of the annual investment cost and the cost for operating NPP with an annual electricity production.While Levelized Cost model based on the annual cash flow. Total of annual costs and annual electricity production were discounted to the first year of construction in order to obtain the total discounted annual cost and the total discounted energy generation. LUEC was obtained by dividing both of the discounted values. LUEC calculations on the three models produce LUEC value, which are: 14.5942 cents US$/kWh for R&D PT. PLN (Persero) Model, 15.056 cents US$/kWh for Mini G4ECONs model and 14.240 cents US$/kWh for Levelized Cost model. (author)
Nuclear model calculations below 200 MeV and evaluation prospects
International Nuclear Information System (INIS)
Koning, A.J.; Bersillon, O.; Delaroche, J.P.
1994-08-01
A computational method is outlined for the quantum-mechanical prediction of the whole double-differential energy spectrum. Cross sections as calculated with the code system MINGUS are presented for (n,xn) and (p,xn) reactions on 208 Pb and 209 Bi. Our approach involves a dispersive optical model, comprehensive discrete state calculations, renormalized particle-hole state densities, a combined MSD/MSC model for pre-equilibrium reactions and compound nucleus calculations. The relation with the evaluation of nuclear data files is discussed. (orig.)
Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions
International Nuclear Information System (INIS)
Santiago, Daniela Maiolino Norberto
2011-01-01
In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)
An investigation of fission models for high-energy radiation transport calculations
International Nuclear Information System (INIS)
Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.
1983-07-01
An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)
International Nuclear Information System (INIS)
Thykier-Nielsen, S.
1980-07-01
A brief description is given of the model used at Risoe for calculating the consequences of releases of radioactive material to the atmosphere. The model is based on the Gaussian plume model, and it provides possibilities for calculation of: doses to individuals, collective doses, contamination of the ground, probability distribution of doses, and the consequences of doses for give dose-risk relationships. The model is implemented as a computer program PLUCON2, written in ALGOL for the Burroughs B6700 computer at Risoe. A short description of PLUCON2 is given. (author)
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)
2016-05-15
Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
Zhou, Shuangyan; Wang, Qianqian; Wang, Yuwei; Yao, Xiaojun; Han, Wei; Liu, Huanxiang
2017-05-10
The structural transition of prion proteins from a native α-helix (PrP C ) to a misfolded β-sheet-rich conformation (PrP Sc ) is believed to be the main cause of a number of prion diseases in humans and animals. Understanding the molecular basis of misfolding and aggregation of prion proteins will be valuable for unveiling the etiology of prion diseases. However, due to the limitation of conventional experimental techniques and the heterogeneous property of oligomers, little is known about the molecular architecture of misfolded PrP Sc and the mechanism of structural transition from PrP C to PrP Sc . The prion fragment 127-147 (PrP127-147) has been reported to be a critical region for PrP Sc formation in Gerstmann-Straussler-Scheinker (GSS) syndrome and thus has been used as a model for the study of prion aggregation. In the present study, we employ molecular dynamics (MD) simulation techniques to study the conformational change of this fragment that could be relevant to the PrP C -PrP Sc transition. Employing extensive replica exchange molecular dynamics (REMD) and conventional MD simulations, we sample a huge number of conformations of PrP127-147. Using the Markov state model (MSM), we identify the metastable conformational states of this fragment and the kinetic network of transitions between the states. The resulting MSM reveals that disordered random-coiled conformations are the dominant structures. A key metastable folded state with typical extended β-sheet structures is identified with Pro137 being located in a turn region, consistent with a previous experimental report. Conformational analysis reveals that intrapeptide hydrophobic interaction and two key residue interactions, including Arg136-His140 and Pro137-His140, contribute a lot to the formation of ordered extended β-sheet states. However, network pathway analysis from the most populated disordered state indicates that the formation of extended β-sheet states is quite slow (at the millisecond
Comparison of results of experimental research with numerical calculations of a model one-sided seal
Directory of Open Access Journals (Sweden)
Joachimiak Damian
2015-06-01
Full Text Available Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
Formation of decontamination cost calculation model for severe accident consequence assessment
International Nuclear Information System (INIS)
Silva, Kampanart; Promping, Jiraporn; Okamoto, Koji; Ishiwatari, Yuki
2014-01-01
In previous studies, the authors developed an index “cost per severe accident” to perform a severe accident consequence assessment that can cover various kinds of accident consequences, namely health effects, economic, social and environmental impacts. Though decontamination cost was identified as a major component, it was taken into account using simple and conservative assumptions, which make it difficult to have further discussions. The decontamination cost calculation model was therefore reconsidered. 99 parameters were selected to take into account all decontamination-related issues, and the decontamination cost calculation model was formed. The distributions of all parameters were determined. A sensitivity analysis using the Morris method was performed in order to identify important parameters that have large influence on the cost per severe accident and large extent of interactions with other parameters. We identified 25 important parameters, and fixed most negligible parameters to the median of their distributions to form a simplified decontamination cost calculation model. Calculations of cost per severe accident with the full model (all parameters distributed), and with the simplified model were performed and compared. The differences of the cost per severe accident and its components were not significant, which ensure the validity of the simplified model. The simplified model is used to perform a full scope calculation of the cost per severe accident and compared with the previous study. The decontamination cost increased its importance significantly. (author)
Geometric U-folds in four dimensions
Lazaroiu, C. I.; Shahbazi, C. S.
2018-01-01
We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \
Comparison of a semi-empirical method with some model codes for gamma-ray spectrum calculation
Energy Technology Data Exchange (ETDEWEB)
Sheng, Fan; Zhixiang, Zhao [Chinese Nuclear Data Center, Beijing, BJ (China)
1996-06-01
Gamma-ray spectra calculated by a semi-empirical method are compared with those calculated by the model codes such as GNASH, TNG, UNF and NDCP-1. The results of the calculations are discussed. (2 tabs., 3 figs.).
Some physical approaches to protein folding
Bascle, J.; Garel, T.; Orland, H.
1993-02-01
To understand how a protein folds is a problem which has important biological implications. In this article, we would like to present a physics-oriented point of view, which is twofold. First of all, we introduce simple statistical mechanics models which display, in the thermodynamic limit, folding and related transitions. These models can be divided into (i) crude spin glass-like models (with their Mattis analogs), where one may look for possible correlations between the chain self-interactions and the folded structure, (ii) glass-like models, where one emphasizes the geometrical competition between one- or two-dimensional local order (mimicking α helix or β sheet structures), and the requirement of global compactness. Both models are too simple to predict the spatial organization of a realistic protein, but are useful for the physicist and should have some feedback in other glassy systems (glasses, collapsed polymers .... ). These remarks lead us to the second physical approach, namely a new Monte-Carlo method, where one grows the protein atom-by-atom (or residue-by-residue), using a standard form (CHARMM .... ) for the total energy. A detailed comparison with other Monte-Carlo schemes, or Molecular Dynamics calculations, is then possible; we will sketch such a comparison for poly-alanines. Our twofold approach illustrates some of the difficulties one encounters in the protein folding problem, in particular those associated with the existence of a large number of metastable states. Le repliement des protéines est un problème qui a de nombreuses implications biologiques. Dans cet article, nous présentons, de deux façons différentes, un point de vue de physicien. Nous introduisons tout d'abord des modèles simples de mécanique statistique qui exhibent, à la limite thermodynamique, des transitions de repliement. Ces modèles peuvent être divisés en (i) verres de spin (éventuellement à la Mattis), où l'on peut chercher des corrélations entre les
International Nuclear Information System (INIS)
Kljenak, I.; Mavko, B.; Babic, M.
2005-01-01
Full text of publication follows: The modelling and simulation of atmosphere mixing and stratification in nuclear power plant containments is a topic, which is currently being intensely investigated. With the increase of computer power, it has now become possible to model these phenomena with a local instantaneous description, using so-called Computational Fluid Dynamics (CFD) codes. However, calculations with these codes still take relatively long times. An alternative faster approach, which is also being applied, is to model nonhomogeneous atmosphere with lumped-parameter codes by dividing larger control volumes into smaller volumes, in which conditions are modelled as homogeneous. The flow between smaller volumes is modelled using one-dimensional approaches, which includes the prescription of flow loss coefficients. However, some authors have questioned this approach, as it appears that atmosphere stratification may sometimes be well simulated only by adjusting flow loss coefficients to adequate 'artificial' values that are case-dependent. To start the resolution of this issue, a modelling of nonhomogeneous atmosphere with a lumped-parameter code is proposed, where the subdivision of a large volume into smaller volumes is based on results of CFD simulations. The basic idea is to use the results of a CFD simulation to define regions, in which the flow velocities have roughly the same direction. These regions are then modelled as control volumes in a lumped-parameter model. In the proposed work, this procedure was applied to a simulation of an experiment of atmosphere mixing and stratification, which was performed in the TOSQAN facility. The facility is located at the Institut de Radioprotection et de Surete Nucleaire (IRSN) in Saclay (France) and consists of a cylindrical vessel (volume: 7 m3), in which gases are injected. In the experiment, which was also proposed for the OECD/NEA International Standard Problem No.47, air was initially present in the vessel, and
Frustration in Condensed Matter and Protein Folding
Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.
2014-03-01
By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.
A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine
International Nuclear Information System (INIS)
Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum; Jung Moon Ki
2016-01-01
The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.
A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum [Chung-Ang University, Seoul (Korea, Republic of); Jung Moon Ki [AnyBody Technology A/S, Aalborg (Denmark)
2016-06-15
The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.
Directory of Open Access Journals (Sweden)
M. Ridolfi
2014-12-01
Full Text Available We review the main factors driving the calculation of the tangent height of spaceborne limb measurements: the ray-tracing method, the refractive index model and the assumed atmosphere. We find that commonly used ray tracing and refraction models are very accurate, at least in the mid-infrared. The factor with largest effect in the tangent height calculation is the assumed atmosphere. Using a climatological model in place of the real atmosphere may cause tangent height errors up to ± 200 m. Depending on the adopted retrieval scheme, these errors may have a significant impact on the derived profiles.
Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System
Directory of Open Access Journals (Sweden)
Z. Zhou
2005-12-01
Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.
International Nuclear Information System (INIS)
Oliveira, A.C.J.G. de; Andrade Lima, F.R. de
1989-01-01
The present work is an application of the perturbation theory (Matricial formalism) to a simplified two channels model, for sensitivity calculations in PWR cores. Expressions for some sensitivity coefficients of thermohydraulic interest were developed from the proposed model. The code CASNUR.FOR was written in FORTRAN to evaluate these sensitivity coefficients. The comparison between results obtained from the matrical formalism of pertubation theory with those obtained directly from the two channels model, makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations. (author) [pt
Model calculations of excitation functions of neutron-induced reactions on Rh
International Nuclear Information System (INIS)
Strohmaier, Brigitte
1995-01-01
Cross sections of neutron-induced reactions on 103 Rh have been calculated by means of the statistical model and the coupled-channels optical model for incident-neutron energies up to 30 MeV. The incentive for this study was a new measurement of the 103 Rh(n, n') 103m Rh cross section which will - together with the present calculations -enter into a dosimetry-reaction evaluation. The validation of the model parameters relied on nuclear-structure data as far as possible. (author)
A conceptual and calculational model for gas formation from impure calcined plutonium oxides
International Nuclear Information System (INIS)
Lyman, John L.; Eller, P. Gary
2000-01-01
Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date
3D Printing of Molecular Models with Calculated Geometries and p Orbital Isosurfaces
Carroll, Felix A.; Blauch, David N.
2017-01-01
3D printing was used to prepare models of the calculated geometries of unsaturated organic structures. Incorporation of p orbital isosurfaces into the models enables students in introductory organic chemistry courses to have hands-on experience with the concept of orbital alignment in strained and unstrained p systems.
Model calculations on LIS. II1. 2-, 3- and 7-substituted indanones
International Nuclear Information System (INIS)
Hofer, O.
1979-01-01
The space close to the coordination site of 1-indanone is modified systematically by placing alkyl groups of different bulkiness on C-2, C-3 and C-7, resp. The 1 H-LIS for the compounds are interpreted using the one site and two site model for carbonyl. Precautionary measures are discussed for both models to give reliable results in the calculation. (author)
MONNIE 2000: A description of a model to calculate environmental costs
International Nuclear Information System (INIS)
Hanemaaijer, A.H.; Kirkx, M.C.A.P.
2001-02-01
A new model (MONNIE 2000) was developed by the RIVM in the Netherlands in 2000 to calculate environmental costs on a macro level. The model, it's theoretical backgrounds and the technical aspects are described, making it attractive to both the user and the designer of the model. A user manual on how to calculate with the model is included. The basic principle of the model is the use of a harmonised method for calculating environmental costs, which provides the user with an output that can easily be compared with and used in other economic statistics and macro-economic models in the Netherlands. Input for the model are yearly figures on operational costs, investments and savings from environmental measures. With MONNIE 2000 calculated environmental costs per policy target group, economic sector and theme can be shown, With this model the burden of environmental measures on the economic sectors and the environmental expenditures of the government can be presented as well. MONNIE 2000 is developed in Visual Basic and by using Excel as input and output a user-friendly data exchange is realised. 12 refs
Inclusion of temperature dependence of fission barriers in statistical model calculations
International Nuclear Information System (INIS)
Newton, J.O.; Popescu, D.G.; Leigh, J.R.
1990-08-01
The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs
On the applicability of nearly free electron model for resistivity calculations in liquid metals
International Nuclear Information System (INIS)
Gorecki, J.; Popielawski, J.
1982-09-01
The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)
A simple model for calculating the bulk modulus of the mixed ionic ...
Indian Academy of Sciences (India)
thermophysical properties, viz., bulk modulus, molecular force constant, reststrahlen fre- quency and Debye temperature using the three-body potential model. The calculated bulk modulus, from the TBPM model, for the pure end members (NH4Cl and NH4Br) are in agreement with the experimental values, as shown in ...
Validation of a model for calculating environmental doses caused by gamma emitters in the soil
International Nuclear Information System (INIS)
Ortega, X.; Rosell, J.R.; Dies, X.
1991-01-01
A model has been developed to calculate the absorbed dose rates caused by gamma emitters of both natural and artificial origin distributed in the soil. The model divides the soil into five compartments corresponding to layers situated at different depths, and assumes that the concentration of radionuclides is constant in each one of them. The calculations, following the model developed, are undertaken through a program which, based on the concentrations of the radionuclides in the different compartments, gives as a result the dose rate at a height of one metre above the ground caused by each radionuclide and the percentage this represents with respect to the total absorbed dose rate originating from this soil. The validity of the model has been checked in the case of sandy soils by comparing the exposure rates calculated for five sites with the experimental values obtained with an ionisation chamber. (author)
Diameter structure modeling and the calculation of plantation volume of black poplar clones
Directory of Open Access Journals (Sweden)
Andrašev Siniša
2004-01-01
Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.
Recommendations on dose buildup factors used in models for calculating gamma doses for a plume
International Nuclear Information System (INIS)
Hedemann Jensen, P.; Thykier-Nielsen, S.
1980-09-01
Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)
Mapping the universe of RNA tetraloop folds
DEFF Research Database (Denmark)
Bottaro, Sandro; Lindorff-Larsen, Kresten
2017-01-01
We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG fold...
Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy
2017-10-01
The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.
Liu, Long; Liu, Wei
2018-04-01
A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.
Research of coincidence method for calculation model of the specific detector
Energy Technology Data Exchange (ETDEWEB)
Guangchun, Hu; Suping, Liu; Jian, Gong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry
2003-07-01
The physical size of specific detector is known normally, but production business is classified for some sizes that is concerned with the property of detector, such as the well diameter, well depth of detector and dead region. The surface source of even distribution and the sampling method of source particle isotropy sport have been established with the method of Monte Carlo, and gamma ray respond spectral with the {sup 152}Eu surface source been calculated. The experiment have been performed under the same conditions. Calculation and experiment results are compared with relative efficiency coincidence method and spectral similar degree coincidence method. According to comparison as a result, detector model is revised repeatedly to determine the calculation model of detector and to calculate efficiency of detector and spectra. (authors)
Calculations of higher twist distribution functions in the MIT bag model
International Nuclear Information System (INIS)
Signal, A.I.
1997-01-01
We calculate all twist-2, -3 and -4 parton distribution functions involving two quark correlations using the wave function of the MIT bag model. The distributions are evolved up to experimental scales and combined to give the various nucleon structure functions. Comparisons with recent experimental data on higher twist structure functions at moderate values of Q 2 give good agreement with the calculated structure functions. (orig.)
Kanematsu, Yusuke; Tachikawa, Masanori
2015-05-21
Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.
QEDMOD: Fortran program for calculating the model Lamb-shift operator
Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.
2018-02-01
We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.
HgTe-CdTe phase diagrams calculation by RAS model
International Nuclear Information System (INIS)
Hady, A.A.A.
1986-11-01
The model of Regular Associated Solutions (RAS) for binary solution, which extended onto the ternary solution was used for Mercury-Cadnium-Tellurim phase diagrams calculations. The function of dissociation parameters is used here as a function of temperature and it is independent of composition. The ratio of mole fractions has a weak dependence on temperature and is not neglected. The calculated liquidus binary temperature and the experimental one are so fitted to give the best values of parameters used to calculate the HgTe-CdTe phase diagrams. (author)
SITE-94. Adaptation of mechanistic sorption models for performance assessment calculations
International Nuclear Information System (INIS)
Arthur, R.C.
1996-10-01
Sorption is considered in most predictive models of radionuclide transport in geologic systems. Most models simulate the effects of sorption in terms of empirical parameters, which however can be criticized because the data are only strictly valid under the experimental conditions at which they were measured. An alternative is to adopt a more mechanistic modeling framework based on recent advances in understanding the electrical properties of oxide mineral-water interfaces. It has recently been proposed that these 'surface-complexation' models may be directly applicable to natural systems. A possible approach for adapting mechanistic sorption models for use in performance assessments, using this 'surface-film' concept, is described in this report. Surface-acidity parameters in the Generalized Two-Layer surface complexation model are combined with surface-complexation constants for Np(V) sorption ob hydrous ferric oxide to derive an analytical model enabling direct calculation of corresponding intrinsic distribution coefficients as a function of pH, and Ca 2+ , Cl - , and HCO 3 - concentrations. The surface film concept is then used to calculate whole-rock distribution coefficients for Np(V) sorption by altered granitic rocks coexisting with a hypothetical, oxidized Aespoe groundwater. The calculated results suggest that the distribution coefficients for Np adsorption on these rocks could range from 10 to 100 ml/g. Independent estimates of K d for Np sorption in similar systems, based on an extensive review of experimental data, are consistent, though slightly conservative, with respect to the calculated values. 31 refs
A pencil beam dose calculation model for CyberKnife system
Energy Technology Data Exchange (ETDEWEB)
Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)
2016-10-15
Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation
International Nuclear Information System (INIS)
Cliffe, K.A.; Morris, S.T.; Porter, J.D.
1998-05-01
NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised
International Nuclear Information System (INIS)
Webb, G.A.M.; Grimwood, P.D.
1976-12-01
This report describes an oceanographic model which has been developed for the use in calculating the capacity of the oceans to accept radioactive wastes. One component is a relatively short-term diffusion model which is based on that described in an earlier report (Webb et al., NRPB-R14(1973)), but which has been generalised to some extent. Another component is a compartment model which is used to calculate long-term widespread water concentrations. This addition overcomes some of the short comings of the earlier diffusion model. Incorporation of radioactivity into deep ocean sediments is included in this long-term model as a removal mechanism. The combined model is used to provide a conservative (safe) estimate of the maximum concentrations of radioactivity in water as a function of time after the start of a continuous disposal operation. These results can then be used to assess the limiting capacity of an ocean to accept radioactive waste. (author)
International Nuclear Information System (INIS)
Schick, W.C. Jr.; Milani, S.; Duncombe, E.
1980-03-01
A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model
International Nuclear Information System (INIS)
Allam, Kh. A.
2017-01-01
In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)
Development of a model for the primary system CAREM reactor's stationary thermohydraulic calculation
International Nuclear Information System (INIS)
Gaspar, C.; Abbate, P.
1990-01-01
The ESCAREM program oriented to CAREM reactors' stationary thermohydraulic calculation is presented. As CAREM gives variations in relation to models for BWR (Boiling Water Reactors)/PWR (Pressurized Water Reactors) reactors, it was decided to develop a suitable model which allows to calculate: a) if the Steam Generator design is adequate to transfer the power required; b) the circulation flow that occurs in the Primary System; c) the temperature at the entrance (cool branch) and d) the contribution of each component to the pressure drop in the circulation connection. Results were verified against manual calculations and alternative numerical models. An experimental validation at the Thermohydraulic Essays Laboratory is suggested. A parametric analysis series is presented on CAREM 25 reactor, demonstrating operating conditions, at different power levels, as well as the influence of different design aspects. (Author) [es
International Nuclear Information System (INIS)
Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.
2007-01-01
Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied
Numerical calculation models of the elastoplastic response of a structure under seismic action
International Nuclear Information System (INIS)
Edjtemai, Nima.
1982-06-01
Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr
Fission product model for lattice calculation of high conversion boiling water reactor
International Nuclear Information System (INIS)
Iijima, S.; Yoshida, T.; Yamamoto, T.
1988-01-01
A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup
CLEAR: a model for the calculation of evacuation-time estimates in Emergency Planning Zones
International Nuclear Information System (INIS)
McLean, M.A.; Moeller, M.P.; Desrosiers, A.E.
1983-01-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffice flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffice queues. The program also models the distribution of times required by individuals to prepare for an evacuation. CLEAR can calculate realistic evacuation time estimates using site specific data and can identify troublesome areas within an Emergency Planning Zone
Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M
2017-08-01
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.
Energy Technology Data Exchange (ETDEWEB)
Sukegawa, Takenori; Ohshima, Soichiro; Shiraishi, Kunio; Yanagihara, Satoshi [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai Ibaraki (Japan)
1999-02-01
Labor-hours necessary for dismantling activities are generally estimated based on experience, for example, as a form of unit productivity factors such as the relationship between labor-hours and weight of components dismantled which were obtained by actual dismantling activities. The project management data calculation models together with unit productivity factors for basic dismantling work activities were developed by analyzing the data obtained from the Japan Power Demonstration Reactor (JPDR) dismantling project, which will be applicable to estimation of labor-hours in various dismantling conditions. Typical work breakdown structures were also prepared by categorizing repeatable basic dismantling work activities for effective planning of dismantling activities. The labor-hours for dismantling the JPDR components and structures were calculated by using the code system for management of reactor decommissioning (COSMARD), in which the work breakdown structures and the calculation models were contained. It was confirmed that the labor-hours could be easily estimated by COSMARD through the calculations. This report describes the labor-hour calculation models and application of these models to COSMARD. (author)
Azimi, Ehsan; Behrad, Alireza; Ghaznavi-Ghoushchi, Mohammad Bagher; Shanbehzadeh, Jamshid
2016-11-01
The projective model is an important mapping function for the calculation of global transformation between two images. However, its hardware implementation is challenging because of a large number of coefficients with different required precisions for fixed point representation. A VLSI hardware architecture is proposed for the calculation of a global projective model between input and reference images and refining false matches using random sample consensus (RANSAC) algorithm. To make the hardware implementation feasible, it is proved that the calculation of the projective model can be divided into four submodels comprising two translations, an affine model and a simpler projective mapping. This approach makes the hardware implementation feasible and considerably reduces the required number of bits for fixed point representation of model coefficients and intermediate variables. The proposed hardware architecture for the calculation of a global projective model using the RANSAC algorithm was implemented using Verilog hardware description language and the functionality of the design was validated through several experiments. The proposed architecture was synthesized by using an application-specific integrated circuit digital design flow utilizing 180-nm CMOS technology as well as a Virtex-6 field programmable gate array. Experimental results confirm the efficiency of the proposed hardware architecture in comparison with software implementation.
Application of the mathematical modelling and human phantoms for calculation of the organ doses
International Nuclear Information System (INIS)
Kluson, J.; Cechak, T.
2005-01-01
Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)
A model for calculating hourly global solar radiation from satellite data in the tropics
International Nuclear Information System (INIS)
Janjai, S.; Pankaew, P.; Laksanaboonsong, J.
2009-01-01
A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.
A model for calculating hourly global solar radiation from satellite data in the tropics
Energy Technology Data Exchange (ETDEWEB)
Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)
2009-09-15
A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)
Half-life calculation of one-proton emitters with a shell model potential
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, M. M.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro-RJ (Brazil); Teruya, N. [Departamento de Fisica, Universidade Federal da Paraiba - UFPB Campus de Joao Pessoa, 58051-970, Joao Pessoa - PB (Brazil)
2013-03-25
The accumulated amount of data for half-lives of proton emitters still remains a challenge to the ability of nuclear models to reproduce them consistently. These nuclei are far from beta stability line in a region where the validity of current nuclear models is not guaranteed. A nuclear shell model is introduced to the calculation of the nuclear barrier of less deformed proton emitters. The predictions using the proposed model are in good agreement with the data, with the advantage of have used only a single parameter in the model.
A calculation of the ZH → γ H decay in the Littlest Higgs Model
International Nuclear Information System (INIS)
Aranda, J I; Ramirez-Zavaleta, F; Tututi, E S; Cortés-Maldonado, I
2016-01-01
New heavy neutral gauge bosons are predicted in many extensions of the Standard Model, those new bosons are associated with additional gauge symmetries. We present a preliminary calculation of the branching ratio decay for heavy neutral gauge bosons ( Z h ) into γ H in the most popular version of the Little Higgs models. The calculation involves the main contributions at one-loop level induced by fermions, scalars and gauge bosons. Preliminary results show a very suppressed branching ratio of the order of 10 -6 . (paper)
Calculation of the band structure of 2d conducting polymers using the network model
International Nuclear Information System (INIS)
Sabra, M. K.; Suman, H.
2007-01-01
the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)
Numerical calculation of flashing from long pipes using a two-field model
International Nuclear Information System (INIS)
Rivard, W.C.; Torrey, M.D.
1976-05-01
A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used
Numerical calculation of flashing from long pipes using a two-field model
International Nuclear Information System (INIS)
Rivard, W.C.; Torrey, M.D.
1975-11-01
A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used
Recoilless fractions calculated with the nearest-neighbour interaction model by Kagan and Maslow
Kemerink, G. J.; Pleiter, F.
1986-08-01
The recoilless fraction is calculated for a number of Mössbauer atoms that are natural constituents of HfC, TaC, NdSb, FeO, NiO, EuO, EuS, EuSe, EuTe, SnTe, PbTe and CsF. The calculations are based on a model developed by Kagan and Maslow for binary compounds with rocksalt structure. With the exception of SnTe and, to a lesser extent, PbTe, the results are in reasonable agreement with the available experimental data and values derived from other models.
International Nuclear Information System (INIS)
Nielsen, S.P.; Gryning, S.E.; Thykier-Nielsen, S.; Karlberg, O.; Lyck, E.
1984-01-01
The paper presents work from a series of atmospheric dispersion experiments in May 1981 at the Ringhals nuclear power plant in Sweden. The aim of the project was to obtain short-term observations of concentrations and gamma-ray exposures from stack effluents and to compare these results with corresponding values calculated from computer models. Two tracers, sulphurhexafluoride (SF 6 ) and radioactive noble gases, were released from a 110-m stack and detected at ground level downwind at distances of 3-4 km. Calculations were made with two Gaussian plume models: PLUCON developed at Riso National Laboratory and UNIDOSE developed at Studsvik Energiteknik AB. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-05-27
It occasionally happens that there exists a part where reflection near the thrust is not clearly observed in a thrust zone seismic survey cross section. For the effective interpretation of such an occurrence, the use of geological structures as well as the reflected pattern is effective. When the velocity structures for a fold structure having a listric fault caused anticline (unidirectionally inclined with a backlimb, without a forelimb) and for a fault propagation fold are involved, a wrong interpretation may be made since they look alike in reflection wave pattern despite their difference in geological structure. In the concept of balanced cross section, a check is performed, when the stratum after deformation is recovered to the time of deposition, as to whether the geologic stratum area is conserved without excess or shortage. An excess or shortage occurs if there is an error in the model, and this shows that the fault surface or fold structure is not correctly reflected. Positive application of geological knowledge is required in the processing and interpreting of data from a seismic survey. 6 refs., 6 figs.
Comparison of turbulence models for numerical calculation of airflow in an annex 20 room
DEFF Research Database (Denmark)
Voigt, Lars P. K.
2000-01-01
The report deals with 2-D numerical calculation of room airflow in an isothermal annex 20 room. The report documents the ability of the flow solver EllipSys2D to give results in good agreement with measurements for the specified test case. The flow solver is a finite volume code solving the Reyno.......Applying theory for a two-dimensional wall jet, measurements are compared with calculated values of the turbulent kinetic energy....... the Reynolds Averaged Navier Stokes equations.Five two-equation turbulence models were tested. These are the standard k-epsilon model, the low-Reynolds number k-epison model by Launder & Sharma, the k-omega model by Wilcox, the k-omega baseline (BSL) model by Menter and the k-omega Shear Stress Transport (SST...
DEFF Research Database (Denmark)
Mattsson, T.R.; Wahnström, G.; Bengtsson, L.
1997-01-01
First-principles density-functional calculations of hydrogen adsorption on the Ni (001) surface have been performed in order to get a better understanding of adsorption and diffusion of hydrogen on metal surfaces. We find good agreement with experiments for the adsorption energy, binding distance...
International Nuclear Information System (INIS)
Lu Xiaogang; Selleby, Malin; Sundman, Bo
2007-01-01
The thermal expansivities and heat capacities of MX (M = Ti, Zr, Hf, V, Nb, Ta; X = C, N) carbides and nitrides with NaCl structure were calculated using the Debye-Grueneisen model combined with ab initio calculations. Two different approximations for the Grueneisen parameter γ were used in the Debye-Grueneisen model, i.e. the expressions proposed by Slater and by Dugdale and MacDonald. The thermal electronic contribution was evaluated from ab initio calculations of the electronic density of states. The calculated results were compared with CALPHAD assessments and experimental data. It was found that the calculations using the Dugdale-MacDonald γ can account for most of the experimental data. By fitting experimental heat capacity and thermal expansivity data below the Debye temperatures, an estimation of Poisson's ratio was obtained and Young's and shear moduli were evaluated. In order to reach a reasonable agreement with experimental data, it was necessary to use the logarithmic averaged mass of the constituent atoms. The agreements between the calculated and the experimental values for the bulk and Young's moduli are generally better than the agreement for shear modulus
Water-Exit Process Modeling and Added-Mass Calculation of the Submarine-Launched Missile
Directory of Open Access Journals (Sweden)
Yang Jian
2017-11-01
Full Text Available In the process that the submarine-launched missile exits the water, there is the complex fluid solid coupling phenomenon. Therefore, it is difficult to establish the accurate water-exit dynamic model. In the paper, according to the characteristics of the water-exit motion, based on the traditional method of added mass, considering the added mass changing rate, the water-exit dynamic model is established. And with help of the CFX fluid simulation software, a new calculation method of the added mass that is suit for submarine-launched missile is proposed, which can effectively solve the problem of fluid solid coupling in modeling process. Then by the new calculation method, the change law of the added mass in water-exit process of the missile is obtained. In simulated analysis, for the water-exit process of the missile, by comparing the results of the numerical simulation and the calculation of theoretical model, the effectiveness of the new added mass calculation method and the accuracy of the water-exit dynamic model that considers the added mass changing rate are verified.
Unified description of pf-shell nuclei by the Monte Carlo shell model calculations
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio
1998-03-01
The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)
Hydroelastic model of PWR reactor internals SAFRAN 1 - Validation of a vibration calculation method
International Nuclear Information System (INIS)
Epstein, A.; Gibert, R.J.; Jeanpierre, F.; Livolant, M.
1978-01-01
The SAFRAN 1 test loop consists of an hydroelastic similitude of a 1/8 scale model of a 3 loop P.W.R. Vibrations of the main internals (thermal shield and core barrel) and pressure fluctuations in water thin sections between vessel and internals, and in inlet and outlet pipes, have been measured. The calculation method consists of: an evaluation of the main vibration and acoustic sources owing to the flow (unsteady jet impingement on the core barrel, turbulent flow in a water thin section). A calculation of the internal modal parameters taking into account the inertial effects of fluid (the computer codes AQUAMODE and TRISTANA have been used). A calculation of the acoustic response of the circuit (the computer code VIBRAPHONE has been used). The good agreement between the calculation and the experimental results allows using this method with better security for the prediction of the vibration levels of full scale P.W.R. internals
Energy Technology Data Exchange (ETDEWEB)
Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)
2013-05-10
Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.
Analytical model for calculation of the thermo hydraulic parameters in a fuel rod assembly
Energy Technology Data Exchange (ETDEWEB)
Cesna, B., E-mail: benas@mail.lei.l [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos g. 3, LT-44403 Kaunas (Lithuania)
2010-11-15
Research highlights: {yields} Proposed calculation model can be used for rapid calculation of the bundles with rods spaced by wire wrapping or honey type spacer grids. {yields} Model estimate three flow cross mixture mechanisms. {yields} Program DARS is enable to analyses experimental results. - Abstract: The paper presents the procedure of the cellular calculation of thermo hydraulic parameters of a single-phase gas flow in a fuel rod assembly. The procedure is implemented in the DARS program. The program is intended for calculation of the distribution of the gaseous coolant parameters and wall temperatures in case of arbitrary, geometrically specified, arrangement of the rods in fuel assembly and in case of arbitrary, functionally specified in space, heat release in the rods. In mathematical model the flow cross-section of the channel of intricate shape is conventionally divided to elementary cells formed by straight lines, which connect the centers of rods. Within the limits of a single cell the coolant parameters and the temperature of the corresponding part of the rod surface are assumed constant. The entire fuel assembly is viewed as a system of parallel interconnected channels. Program DARS is illustrated by calculation of a temperature mode of 85-rod assembly with spacers of wire wrapping on the rods.
Energy Technology Data Exchange (ETDEWEB)
Sanchidrian, Jose A.; Lopez, Lina M. [Universidad Politecnica de Madrid - E.T.S.I. Minas, Rios Rosas 21, E-28003 Madrid (Spain)
2006-02-15
The energy delivered by explosives is described by means of the useful expansion work along the isentrope of the detonation products. A thermodynamic code (W-DETCOM) is used, in which a partial reaction model has been implemented. In this model, the reacted fraction of the explosive in the detonation state is used as a fitting factor so that the calculated detonation velocity meets the experimental value. Calculations based on such a model have been carried out for a number of commercial explosives of ANFO and emulsion types. The BKW (Becker-Kistiakowsky-Wilson) equation of state is used for the detonation gases with the Sandia parameter set (BKWS). The energy delivered in the expansion (useful work) is calculated, and the values obtained are compared with the Gurney energies from cylinder test data at various expansion ratios. The expansion work values obtained are much more realistic than those from an ideal detonation calculation and, in most cases, the values predicted by the calculation are in good agreement with the experimental ones. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.
1989-01-01
This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Murata, Isao [Osaka Univ., Suita (Japan); Mori, Takamasa; Nakagawa, Masayuki; Itakura, Hirofumi
1996-03-01
The method to calculate neutronics parameters of a core composed of randomly distributed spherical fuels has been developed based on a statistical geometry model with a continuous energy Monte Carlo method. This method was implemented in a general purpose Monte Carlo code MCNP, and a new code MCNP-CFP had been developed. This paper describes the model and method how to use it and the validation results. In the Monte Carlo calculation, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called nearest neighbor distribution (NND). This sampling method was validated through the following two comparisons: (1) Calculations of inventory of coated fuel particles (CFPs) in a fuel compact by both track length estimator and direct evaluation method, and (2) Criticality calculations for ordered packed geometries. This method was also confined by applying to an analysis of the critical assembly experiment at VHTRC. The method established in the present study is quite unique so as to a probabilistic model of the geometry with a great number of spherical fuels distributed randomly. Realizing the speed-up by vector or parallel computations in future, it is expected to be widely used in calculation of a nuclear reactor core, especially HTGR cores. (author).
Program realization of mathematical model of kinetostatical calculation of flat lever mechanisms
Directory of Open Access Journals (Sweden)
M. A. Vasechkin
2016-01-01
Full Text Available Global computerization determined the dominant position of the analytical methods for the study of mechanisms. As a result, kinetostatics analysis of mechanisms using software packages is an important part of scientific and practical activities of engineers and designers. Therefore, software implementation of mathematical models kinetostatical calculating mechanisms is of practical interest. The mathematical model obtained in [1]. In the language of Turbo Pascal developed a computer procedure that calculates the forces in kinematic pairs in groups Assur (GA and a balancing force at the primary level. Before use appropriate computational procedures it is necessary to know all external forces and moments acting on the GA and to determine the inertial forces and moments of inertia forces. The process of calculations and constructions of the provisions of the mechanism can be summarized as follows. Organized cycle in which to calculate the position of an initial link of the mechanism. Calculate the position of the remaining links of the mechanism by referring to relevant procedures module DIADA in GA [2,3]. Using the graphics mode of the computer displaying on the display the position of the mechanism. The computed inertial forces and moments of inertia forces. Turning to the corresponding procedures of the module, calculated all the forces in kinematic pairs and the balancing force at the primary level. In each kinematic pair build forces and their direction with the help of simple graphical procedures. The magnitude of these forces and their direction are displayed in a special window with text mode. This work contains listings of the test programs MyTеst, is an example of using computing capabilities of the developed module. As a check on the calculation procedures of module in the program is reproduced an example of calculating the balancing forces according to the method of Zhukovsky (Zhukovsky lever.
Microscopic calculation of level densities: the shell model Monte Carlo approach
International Nuclear Information System (INIS)
Alhassid, Yoram
2012-01-01
The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Directory of Open Access Journals (Sweden)
Obioma Nwankwo
Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
Energy Technology Data Exchange (ETDEWEB)
Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
2016-08-15
Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data
International Nuclear Information System (INIS)
MacDonald, P.E.; Broughton, J.M.
1975-03-01
Fuel pellets crack extensively upon irradiation due both to thermal stresses induced by power changes and at high burnup, to accumulation of gaseous fission products at grain boundaries. Therefore, the distance between the fuel and cladding will be circumferentially nonuniform; varying between that calculated for intact operating fuel pellets and essentially zero (fuel segments in contact with the cladding wall). A model for calculation of temperatures in cracked pellets is proposed wherein the effective fuel to cladding gap conductance is calculated by taking a zero pressure contact conductance in series with an annular gap conductance. Comparisons of predicted and measured fuel centerline temperatures at beginning of life and at extended burnup are presented in support of the model. 13 references
Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model
International Nuclear Information System (INIS)
Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.
1979-01-01
The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de
International Nuclear Information System (INIS)
Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.
2011-01-01
We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.
Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model
International Nuclear Information System (INIS)
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En
2012-01-01
We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.
Model calculations of the influence of population distribution on the siting of nuclear power plants
International Nuclear Information System (INIS)
Nielsen, F.; Walmod-Larsen, O.
1984-02-01
This report was prepared for a working group established in April 1981 by the Danish Environmental Protection Agency with the task of investigating siting problems of nuclear power stations in Denmark. The purpose of the working group was to study the influence of the population density around a site on nuclear power safety. The importance of emergency planning should be studied as well. In this model study two specific accident sequences were simulated on a 1000 MWe nuclear power plant. The plant was assumed to be placed in the center of two different model population distributions. The concequences for the two population distributions from the two accidents were calculated for the most frequent weather conditions. Doses to individuals were calculated for the bone marrow, lungs, gastrointestinal tract, thyroidea and for the whole body. The collective whole body doses were also calculated for the two populations considered. (author)
Application of the annular dispersed flow model to two-phase critical flow calculation
International Nuclear Information System (INIS)
Ivandaev, A.I.; Nigmatulin, B.I.
1977-01-01
The application of the annular dispersed flow model with an effective monodisperse core to the calculation of vapour-liquid mixture maximum rates through long pipes is discussed. An effect of the main dominant parameters such as evaporation intensity, diameter of drops picked out from the film surface and initial drop diameter at the pipe inlet on the outlet critical condition formation process has been investigated. The corresponding model constants have been determined. The calculated and experimental values of critical rates and pressure profiles along the channel have been found to be in a satisfactory agreement in the studied range of parameters. The observed non-conformity of the calculated and experimental values of critical pressures and vapour contents can be due to inadequate accuracy of the experimental techniques
Calculational model for condensation of water vapor during an underground nuclear detonation
International Nuclear Information System (INIS)
Knox, R.J.
1975-01-01
An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available
International Nuclear Information System (INIS)
Waegeneers, Nadia; Ruttens, Ann; De Temmerman, Ludwig
2011-01-01
A chain model was developed to calculate the flow of cadmium from soil, drinking water and feed towards bovine tissues. The data used for model development were tissue Cd concentrations of 57 bovines and Cd concentrations in soil, feed and drinking water, sampled at the farms were the bovines were reared. Validation of the model occurred with a second set of measured tissue Cd concentrations of 93 bovines of which age and farm location were known. The exposure part of the chain model consists of two parts: (1) a soil-plant transfer model, deriving cadmium concentrations in feed from basic soil characteristics (pH and organic matter content) and soil Cd concentrations, and (2) bovine intake calculations, based on typical feed and water consumption patterns for cattle and Cd concentrations in feed and drinking water. The output of the exposure model is an animal-specific average daily Cd intake, which is then taken forward to a kinetic uptake model in which time-dependent Cd concentrations in bovine tissues are calculated. The chain model was able to account for 65%, 42% and 32% of the variation in observed kidney, liver and meat Cd concentrations in the validation study. - Research highlights: → Cadmium transfer from soil, drinking water and feed to bovine tissues was modeled. → The model was based on 57 bovines and corresponding feed and soil Cd concentrations. → The model was validated with an independent data set of 93 bovines. → The model explained 65% of variation in kidney Cd in the validation study.
Modelling lateral beam quality variations in pencil kernel based photon dose calculations
International Nuclear Information System (INIS)
Nyholm, T; Olofsson, J; Ahnesjoe, A; Karlsson, M
2006-01-01
Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error
Comparison of Steady-State SVC Models in Load Flow Calculations
DEFF Research Database (Denmark)
Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte
2008-01-01
This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...
Use of realistic anthropomorphic models for calculation of radiation dose in nuclear medicine
International Nuclear Information System (INIS)
Stabin, Michael G.; Emmons, Mary A.; Fernald, Michael J.; Brill, A.B.; Segars, W.Paul
2008-01-01
Anthropomorphic phantoms based on simple geometric structures have been used in radiation dose calculations for many years. We have now developed a series of anatomically realistic phantoms representing adults and children using body models based on non-uniform rational B-spline (NURBS), with organ and body masses based on the reference values given in ICRP Publication 89. Age-dependent models were scaled and shaped to represent the reference individuals described in ICRP 89 (male and female adults, newborns, 1-, 5-, 10- and 15-year-olds), using a software tool developed in Visual C++. Voxel-based versions of these models were used with GEANT4 radiation transport codes for calculation of specific absorbed fractions (SAFs) for internal sources of photons and electrons, using standard starting energy values. Organ masses in the models were within a few % of ICRP reference masses, and physicians reviewed the models for anatomical realism. Development of individual phantoms was much faster than manual segmentation of medical images, and resulted in a very uniform standardized phantom series. SAFs were calculated on the Vanderbilt multi node computing network (ACCRE). Photon and electron SAFs were calculated for all organs in all models, and were compared to values from similar phantoms developed by others. Agreement was very good in most cases; some differences were seen, due to differences in organ mass and geometry. This realistic phantom series represents a possible replacement for the Cristy/Eckerman series of the 1980's. Both phantom sets will be included in the next release of the OLINDA/EXM personal computer code, and the new phantoms will be made generally available to the research community for other uses. Calculated radiation doses for diagnostic and therapeutic radiopharmaceuticals will be compared with previous values. (author)
International Nuclear Information System (INIS)
Artemov, V.G.; Gusev, V.I.; Zinatullin, R.E.; Karpov, A.S.
2007-01-01
Using modeled WWER cram rod drop experiments, performed at the Rostov NPP, as an example, the influence of delayed neutron parameters on the modeling results was investigated. The delayed neutron parameter values were taken from both domestic and foreign nuclear databases. Numerical modeling was carried out on the basis of SAPFIR 9 5andWWERrogram package. Parameters of delayed neutrons were acquired from ENDF/B-VI and BNAB-78 validated data files. It was demonstrated that using delay fraction data from different databases in reactivity meters led to significantly different reactivity results. Based on the results of numerically modeled experiments, delayed neutron parameters providing the best agreement between calculated and measured data were selected and recommended for use in reactor calculations (Authors)
Energy Technology Data Exchange (ETDEWEB)
Solvang Jensen, S.; Loefstroem, P.; Berkowich, R.; Roerdam Olsen, H.; Frydendall, J. [DMU, Afd. for Atmosfaerisk Miljoe, Roskilde (DK); Fuglsang, K. [FORCE Technology, Broendby (Denmark); Hummelshoej, P. [MetSupport, Roskilde (Denmark)
2004-12-01
This report describes the air quality along Koege Bugt motorway, one of the most trafficked sections in Denmark. A number of measurements have been carried out along Koege Bugt motorway at Greve for a three-month period in the autumn of 2003. For the first time in Denmark, NO{sub x} were measured with high time dissolution from different distances of the motorway. Furthermore, a number of meteorological parameters were measured in order to map local meteorological conditions. An air quality model describing dispersal and conversion has been made on the basis of the OML model. The OML model is modified in order to take traffic-made turbulence into consideration. The model has been evaluated through comparisons between measurements and simulated calculations. Furthermore, simulated calculations for the year 2003 has been made for comparison with extreme values. (BA)
Calculation model for 16N transit time in the secondary side of steam generators
International Nuclear Information System (INIS)
Liu Songyu; Xu Jijun; Xu Ming
1998-01-01
The 16 N transit time is essential to determine the leak-rate of steam generator tubes leaks with 16 N monitoring system, which is a new technique. A model was developed for calculation 16 N transit time in the secondary side of steam generators. According to the flow characters of secondary side fluid, the transit times divide into four sectors from tube sheet to the sensor on steam line. The model assumes that 16 N is moving as vapor phase in the secondary-side. So the model for vapor velocity distribution in tube bundle is presented in detail. The 16 N transit time calculation results of this model compare with these of EDF on steam generator of Qinshan NPP
Delayed Collapse of Wooden Folding Stairs
Krentowski, Janusz; Chyzy, Tadeusz
2017-10-01
During operation of folding stairs, a fastener joining the ladder hanger with the frame was torn off. A person using the stairs sustained serious injury. In several dozen other locations similar accidents were observed. As a result of inspections, some threaded parts of the screws were found in the gaps between the wooden elements of the stairs’ flaps. In the construction a hatch made of wooden strips is attached to an external frame by means of metal hangers. Laboratory strength tests were conducted on three samples made of wooden elements identical to the ones used in the damaged stairs. Due to complex load distribution mechanism acting on the base of the structure, a three-dimensional FEM model was created. An original software was used for calculations. Five computational model variants were considered. As a result of the numerical analyses, it was unquestionably shown that faulty connections were the cause of the destruction of the stairs. The weakest link in the load transmission chain were found to have been the screws connecting the hatch board with the hangers.
Minkel, Donald Howe
Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.
International Nuclear Information System (INIS)
Pamela, J.
1990-10-01
Negative ion extraction is described by a model which includes electron diffusion across transverse magnetic fields in the sheath. This model allows a 2-Dimensional approximation of the problem. It is used to introduce electron space charge effects in a 2-D particle trajectory code, designed for negative ion optics calculations. Another physical effect, the stripping of negative ions on neutral gas atoms, has also been included in our model; it is found to play an important role in negative ion optics. The comparison with three sets of experimental data from very different negative ion accelerators, show that our model is able of accurate predictions
A new simulation model for calculating the internal exposure of some radionuclides
Directory of Open Access Journals (Sweden)
Mahrous Ayman
2009-01-01
Full Text Available A new model based on a series of mathematical functions for estimating excretion rates following the intake of nine different radionuclides is presented in this work. The radionuclides under investigation are: cobalt, iodine, cesium, strontium, ruthenium, radium, thorium, plutonium, and uranium. The committed effective dose has been calculated by our model so as to obtain the urinary and faecal excretion rates for each radionuclide. The said model is further validated by a comparison with the widely spread Mondal software and a simulation program. The results obtained show a harmony between the Mondal package and the model we have constructed.
Direct Monte Carlo dose calculation using polygon-surface computational human model
International Nuclear Information System (INIS)
Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo
2011-01-01
In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)
One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current
Energy Technology Data Exchange (ETDEWEB)
Jing, Z; Xi, P
1979-10-01
A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.
Ab initio calculation of the sound velocity of dense hydrogen: implications for models of Jupiter
Alavi, A.; Parrinello, M.; Frenkel, D.
1995-01-01
First-principles molecular dynamics simulations were used to calculate the sound velocity of dense hydrogen, and the results were compared with extrapolations of experimental data that currently conflict with either astrophysical models or data obtained from recent global oscillation measurements of
A new timing model for calculating the intrinsic timing resolution of a scintillator detector
International Nuclear Information System (INIS)
Shao Yiping
2007-01-01
The coincidence timing resolution is a critical parameter which to a large extent determines the system performance of positron emission tomography (PET). This is particularly true for time-of-flight (TOF) PET that requires an excellent coincidence timing resolution (<<1 ns) in order to significantly improve the image quality. The intrinsic timing resolution is conventionally calculated with a single-exponential timing model that includes two parameters of a scintillator detector: scintillation decay time and total photoelectron yield from the photon-electron conversion. However, this calculation has led to significant errors when the coincidence timing resolution reaches 1 ns or less. In this paper, a bi-exponential timing model is derived and evaluated. The new timing model includes an additional parameter of a scintillator detector: scintillation rise time. The effect of rise time on the timing resolution has been investigated analytically, and the results reveal that the rise time can significantly change the timing resolution of fast scintillators that have short decay time constants. Compared with measured data, the calculations have shown that the new timing model significantly improves the accuracy in the calculation of timing resolutions