Sample records for folding kinetics requires

  1. RNA folding: structure prediction, folding kinetics and ion electrostatics. (United States)

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua


    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  2. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)


    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  3. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman


    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  4. Ligand-promoted protein folding by biased kinetic partitioning. (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M


    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  5. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens


    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  6. RNA folding kinetics using Monte Carlo and Gillespie algorithms. (United States)

    Clote, Peter; Bayegan, Amir H


    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see .

  7. Mapping the kinetic barriers of a Large RNA molecule's folding landscape.

    Directory of Open Access Journals (Sweden)

    Jörg C Schlatterer

    Full Text Available The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH footprinting kinetics progress curves collected at eight temperature from 21.5 °C to 51 °C to characterize the thermodynamic nature of folding intermediate formation for the Mg(2+-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes.

  8. Periodic and stochastic thermal modulation of protein folding kinetics. (United States)

    Platkov, Max; Gruebele, Martin


    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  9. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen


    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  10. Oxfold: Kinetic Folding of RNA using Stochastic Context-Free Grammars and Evolutionary Information

    DEFF Research Database (Denmark)

    Anderson, James W.J.; Haas, Pierre A.; Mathieson, Leigh-Anne


    Motivation: Many computational methods for RNA secondary structure prediction, and, in particular, for the prediction of a consensus structure of an alignment of RNA sequences, have been developed. Most methods however ignore biophysical factors such as the kinetics of RNA folding; no current...... implementation considers both evolutionary information and folding kinetics, thus losing information which, when considered, might lead to better predictions. Results: We present an iterative algorithm, Oxfold, in the framework of stochastic context-free grammars, that emulates the kinetics of RNA folding...

  11. Computational design of RNA parts, devices, and transcripts with kinetic folding algorithms implemented on multiprocessor clusters. (United States)

    Thimmaiah, Tim; Voje, William E; Carothers, James M


    With progress toward inexpensive, large-scale DNA assembly, the demand for simulation tools that allow the rapid construction of synthetic biological devices with predictable behaviors continues to increase. By combining engineered transcript components, such as ribosome binding sites, transcriptional terminators, ligand-binding aptamers, catalytic ribozymes, and aptamer-controlled ribozymes (aptazymes), gene expression in bacteria can be fine-tuned, with many corollaries and applications in yeast and mammalian cells. The successful design of genetic constructs that implement these kinds of RNA-based control mechanisms requires modeling and analyzing kinetically determined co-transcriptional folding pathways. Transcript design methods using stochastic kinetic folding simulations to search spacer sequence libraries for motifs enabling the assembly of RNA component parts into static ribozyme- and dynamic aptazyme-regulated expression devices with quantitatively predictable functions (rREDs and aREDs, respectively) have been described (Carothers et al., Science 334:1716-1719, 2011). Here, we provide a detailed practical procedure for computational transcript design by illustrating a high throughput, multiprocessor approach for evaluating spacer sequences and generating functional rREDs. This chapter is written as a tutorial, complete with pseudo-code and step-by-step instructions for setting up a computational cluster with an Amazon, Inc. web server and performing the large numbers of kinefold-based stochastic kinetic co-transcriptional folding simulations needed to design functional rREDs and aREDs. The method described here should be broadly applicable for designing and analyzing a variety of synthetic RNA parts, devices and transcripts.

  12. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding. (United States)

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander


    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  13. Early Events, Kinetic Intermediates and the Mechanism of Protein Folding in Cytochrome c

    Directory of Open Access Journals (Sweden)

    David S. Kliger


    Full Text Available Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t £ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-ms conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 ms timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined.

  14. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase. (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima


    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Fabrizio Marinelli


    Full Text Available Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.

  16. Kinetic Dissection of the Pre-existing Conformational Equilibrium in the Trypsin Fold* (United States)

    Vogt, Austin D.; Chakraborty, Pradipta; Di Cera, Enrico


    Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold. PMID:26216877

  17. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. (United States)

    Zhang, Yongli


    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  18. Entanglement in correlated random spin chains, RNA folding and kinetic roughening

    International Nuclear Information System (INIS)

    Rodríguez-Laguna, Javier; Santalla, Silvia N; Ramírez, Giovanni; Sierra, Germán


    Average block entanglement in the 1D XX-model with uncorrelated random couplings is known to grow as the logarithm of the block size, in similarity to conformal systems. In this work we study random spin chains whose couplings present long range correlations, generated as gaussian fields with a power-law spectral function. Ground states are always planar valence bond states, and their statistical ensembles are characterized in terms of their block entropy and their bond-length distribution, which follow power-laws. We conjecture the existence of a critical value for the spectral exponent, below which the system behavior is identical to the case of uncorrelated couplings. Above that critical value, the entanglement entropy violates the area law and grows as a power law of the block size, with an exponent which increases from zero to one. Interestingly, we show that XXZ models with positive anisotropy present the opposite behavior, and strong correlations in the couplings lead to lower entropies. Similar planar bond structures are also found in statistical models of RNA folding and kinetic roughening, and we trace an analogy between them and quantum valence bond states. Using an inverse renormalization procedure we determine the optimal spin-chain couplings which give rise to a given planar bond structure, and study the statistical properties of the couplings whose bond structures mimic those found in RNA folding. (paper)

  19. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements. (United States)

    Zhou, Rui; Maisuradze, Gia G; Suñol, David; Todorovski, Toni; Macias, Maria J; Xiao, Yi; Scheraga, Harold A; Czaplewski, Cezary; Liwo, Adam


    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding.

  20. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding. (United States)

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni


    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  1. The pro region required for folding of carboxypeptidase Y is a partially folded domain with little regular structural core

    DEFF Research Database (Denmark)

    Sørensen, P; Winther, Jakob R.; Kaarsholm, N C


    The pro region of carboxypeptidase Y (CPY) from yeast is necessary for the correct folding of the enzyme [Winther, J. R., & Sørensen P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 9330-9334]. Using fluorescence, circular dichroism, and heteronuclear NMR analyses, it is demonstrated that the isolated...

  2. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. (United States)

    Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M; Cui, Yi; Irudayaraj, Joseph; Choi, Jong Hyun


    DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.

  3. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry (United States)

    Vander Meulen, Kirk A.; Butcher, Samuel E.


    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake. PMID:22058128

  4. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.


    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  5. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding. (United States)

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M


    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  6. Analysis of residuals from enzyme kinetic and protein folding experiments in the presence of correlated experimental noise. (United States)

    Kuzmic, Petr; Lorenz, Thorsten; Reinstein, Jochen


    Experimental data from continuous enzyme assays or protein folding experiments often contain hundreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short, the experimental data points might not be statistically independent. The resulting neighborhood correlation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence, certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoretical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260-273], freely available to all academic researchers from

  7. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori (United States)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny


    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  8. Protein folding: Defining a standard set of experimental conditions and a preliminary kinetic data set of two-state proteins

    DEFF Research Database (Denmark)

    Maxwell, Karen L.; Wildes, D.; Zarrine-Afsar, A.


    Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding ...... efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process....... constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a consensus set of experimental conditions (25°C at pH 7.0, 50 m...... rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized...

  9. How Four Scientists Integrate Thermodynamic and Kinetic Theory, Context, Analogies, and Methods in Protein-Folding and Dynamics Research: Implications for Biochemistry Instruction. (United States)

    Jeffery, Kathleen A; Pelaez, Nancy; Anderson, Trevor R


    To keep biochemistry instruction current and relevant, it is crucial to expose students to cutting-edge scientific research and how experts reason about processes governed by thermodynamics and kinetics such as protein folding and dynamics. This study focuses on how experts explain their research into this topic with the intention of informing instruction. Previous research has modeled how expert biologists incorporate research methods, social or biological context, and analogies when they talk about their research on mechanisms. We used this model as a guiding framework to collect and analyze interview data from four experts. The similarities and differences that emerged from analysis indicate that all experts integrated theoretical knowledge with their research context, methods, and analogies when they explained how phenomena operate, in particular by mapping phenomena to mathematical models; they explored different processes depending on their explanatory aims, but readily transitioned between different perspectives and explanatory models; and they explained thermodynamic and kinetic concepts of relevance to protein folding in different ways that aligned with their particular research methods. We discuss how these findings have important implications for teaching and future educational research. © 2018 K. A. Jeffery et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  10. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    Directory of Open Access Journals (Sweden)

    Anders Friberg


    Full Text Available Epstein-Barr virus (EBV is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2 is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  11. Coarsely resolved topography along protein folding pathways (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen


    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  12. Recognition of secretory proteins in Escherichia coli requires signals in addition to the signal sequence and slow folding

    Directory of Open Access Journals (Sweden)

    Flower Ann M


    Full Text Available Abstract Background The Sec-dependent protein export apparatus of Escherichia coli is very efficient at correctly identifying proteins to be exported from the cytoplasm. Even bacterial strains that carry prl mutations, which allow export of signal sequence-defective precursors, accurately differentiate between cytoplasmic and mutant secretory proteins. It was proposed previously that the basis for this precise discrimination is the slow folding rate of secretory proteins, resulting in binding by the secretory chaperone, SecB, and subsequent targeting to translocase. Based on this proposal, we hypothesized that a cytoplasmic protein containing a mutation that slows its rate of folding would be recognized by SecB and therefore targeted to the Sec pathway. In a Prl suppressor strain the mutant protein would be exported to the periplasm due to loss of ability to reject non-secretory proteins from the pathway. Results In the current work, we tested this hypothesis using a mutant form of λ repressor that folds slowly. No export of the mutant protein was observed, even in a prl strain. We then examined binding of the mutant λ repressor to SecB. We did not observe interaction by either of two assays, indicating that slow folding is not sufficient for SecB binding and targeting to translocase. Conclusions These results strongly suggest that to be targeted to the export pathway, secretory proteins contain signals in addition to the canonical signal sequence and the rate of folding.

  13. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state

    NARCIS (Netherlands)

    Wierenga, P.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh,


    Unfolding of proteins has often been mentioned as an important factor during the adsorption process at air-water interfaces and in the increase of surface pressure at later stages of the adsorption process. This work focuses on the question whether the folding state of the adsorbed protein depends

  14. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. (United States)

    Muñoz, Victor; Cerminara, Michele


    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).

  15. Understanding ensemble protein folding at atomic detail

    International Nuclear Information System (INIS)

    Wallin, Stefan; Shakhnovich, Eugene I


    Although far from routine, simulating the folding of specific short protein chains on the computer, at a detailed atomic level, is starting to become a reality. This remarkable progress, which has been made over the last decade or so, allows a fundamental aspect of the protein folding process to be addressed, namely its statistical nature. In order to make quantitative comparisons with experimental kinetic data a complete ensemble view of folding must be achieved, with key observables averaged over the large number of microscopically different folding trajectories available to a protein chain. Here we review recent advances in atomic-level protein folding simulations and the new insight provided by them into the protein folding process. An important element in understanding ensemble folding kinetics are methods for analyzing many separate folding trajectories, and we discuss techniques developed to condense the large amount of information contained in an ensemble of trajectories into a manageable picture of the folding process. (topical review)

  16. The Complexity of Folding Self-Folding Origami

    Directory of Open Access Journals (Sweden)

    Menachem Stern


    Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  17. The Complexity of Folding Self-Folding Origami (United States)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind


    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  18. Physics of protein folding (United States)

    Finkelstein, A. V.; Galzitskaya, O. V.


    Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.

  19. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease. (United States)

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K


    , once outside the cell, they must refold into their active form. This step often requires the assistance of bacterial folding proteins, such as PPIases. In this work, we investigate the role of PPIases in S. aureus and uncover a cyclophilin-type enzyme that assists in the folding/refolding of staphylococcal nuclease. Copyright © 2016 American Society for Microbiology.

  20. Approaching climate-adaptive facades with foldings

    DEFF Research Database (Denmark)

    Sack-Nielsen, Torsten


    envelopes based on folding principles such as origami. Three major aspects cover the project’s interest in this topic: Shape, kinetics and the application of new multi-functional materials form the interdisciplinary framework of this research. Shape// Initially small paper sketch models demonstrate folding...

  1. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. (United States)

    Bandegan, Arash; Courtney-Martin, Glenda; Rafii, Mahroukh; Pencharz, Paul B; Lemon, Peter Wr


    Background: Despite a number of studies indicating increased dietary protein needs in bodybuilders with the use of the nitrogen balance technique, the Institute of Medicine (2005) has concluded, based in part on methodologic concerns, that "no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise." Objective: The aim of the study was to assess the dietary protein requirement of healthy young male bodybuilders ( with ≥3 y training experience) on a nontraining day by measuring the oxidation of ingested l-[1- 13 C]phenylalanine to 13 CO 2 in response to graded intakes of protein [indicator amino acid oxidation (IAAO) technique]. Methods: Eight men (means ± SDs: age, 22.5 ± 1.7 y; weight, 83.9 ± 11.6 kg; 13.0% ± 6.3% body fat) were studied at rest on a nontraining day, on several occasions (4-8 times) each with protein intakes ranging from 0.1 to 3.5 g · kg -1 · d -1 , for a total of 42 experiments. The diets provided energy at 1.5 times each individual's measured resting energy expenditure and were isoenergetic across all treatments. Protein was fed as an amino acid mixture based on the protein pattern in egg, except for phenylalanine and tyrosine, which were maintained at constant amounts across all protein intakes. For 2 d before the study, all participants consumed 1.5 g protein · kg -1 · d -1 On the study day, the protein requirement was determined by identifying the breakpoint in the F 13 CO 2 with graded amounts of dietary protein [mixed-effects change-point regression analysis of F 13 CO 2 (labeled tracer oxidation in breath)]. Results: The Estimated Average Requirement (EAR) of protein and the upper 95% CI RDA for these young male bodybuilders were 1.7 and 2.2 g · kg -1 · d -1 , respectively. Conclusion: These IAAO data suggest that the protein EAR and recommended intake for male bodybuilders at rest on a nontraining day exceed the current recommendations of the Institute of Medicine by ∼2.6-fold

  2. Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy. (United States)

    Marshall, Mark R; Golper, Thomas A; Shaver, Mary J; Alam, Muhammad G; Chatoth, Dinesh K


    Continuous renal replacement therapies have practical and theoretical advantages compared with conventional intermittent hemodialysis in hemodynamically unstable or severely catabolic patients with acute renal failure (ARF). Sustained low-efficiency dialysis (SLED) is a hybrid modality introduced July 1998 at the University of Arkansas for Medical Sciences that involves the application of a conventional hemodialysis machine with reduced dialysate and blood flow rates for 12-hour nocturnal treatments. Nine critically ill patients with ARF were studied during a single SLED treatment to determine delivered dialysis dose and the most appropriate model for the description of urea kinetics during treatment. Five patients were men, mean Acute Physiology and Chronic Health Evaluation (APACHE) II score was 28.9 and mean weight was 92.5 kg. Kt/V was determined by the reference method of direct dialysate quantification (DDQ) combined with an equilibrated postdialysis plasma water urea nitrogen (PUN) concentration and four other methods that were either blood or dialysate based, single or double pool, or model independent (whole-body kinetic method). Solute removal indices (SRIs) were determined from net urea removal and urea distribution volume supplied from DDQ (reference method) and by mass balance using variables supplied from blood-based formal variable-volume single-pool (VVSP) urea kinetic modeling. Equivalent renal urea clearances (EKRs) were calculated from urea generation rates and time-averaged concentrations for PUN based on weekly mass balance with kinetic variables supplied by either DDQ (reference method) or formal blood-based VVSP modeling. Mean Kt/V determined by the reference method was 1.40 and not significantly different when determined by formal VVSP modeling, DDQ using an immediate postdialysis PUN, or the whole-body kinetic method. Correction of single-pool Kt/V by a Daugirdas rate equation did not yield plausible results. Mean SRI and EKR by the

  3. Vocal Fold Paralysis (United States)

    ... here Home » Health Info » Voice, Speech, and Language Vocal Fold Paralysis On this page: What is vocal fold ... Where can I get additional information? What is vocal fold paralysis? Structures involved in speech and voice production ...

  4. Herpes Simplex Virus Type 1 Glycoprotein B Requires a Cysteine Residue at Position 633 for Folding, Processing, and Incorporation into Mature Infectious Virus Particles (United States)

    Laquerre, Sylvie; Anderson, Dina B.; Argnani, Rafaela; Glorioso, Joseph C.


    intermolecular interactions with the wild-type molecule. Together, these experiments confirmed that a disulfide bridge involving Cys-633 and Cys-596 is not essential for oligomerization but rather is required for proper folding and maintenance of a gB domain essential to complete posttranslational modification, transport, and incorporation into mature virus particles. PMID:9573262

  5. Flips for 3-folds and 4-folds

    CERN Document Server

    Corti, Alessio


    This edited collection of chapters, authored by leading experts, provides a complete and essentially self-contained construction of 3-fold and 4-fold klt flips. A large part of the text is a digest of Shokurov's work in the field and a concise, complete and pedagogical proof of the existence of 3-fold flips is presented. The text includes a ten page glossary and is accessible to students and researchers in algebraic geometry.

  6. An overlapping region between the two terminal folding units of the outer surface protein A (OspA) controls its folding behavior. (United States)

    Makabe, Koki; Nakamura, Takashi; Dhar, Debanjan; Ikura, Teikichi; Koide, Shohei; Kuwajima, Kunihiro


    Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions. Copyright © 2018. Published by Elsevier Ltd.

  7. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer


    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  8. Kinetics, bioavailability, and metabolism of RRR-alpha-tocopherol in humans supports lower requirement for vitamin E (United States)

    Kinetic models enable nutrient needs and kinetic behaviors to be quantified and provide mechanistic insights into metabolism. Therefore, we modeled and quantified the kinetics, bioavailability and metabolism of RRR-alpha-tocopherol in 12 healthy adults. Six men and six women, aged 27 ± 6 y, each i...

  9. Guiding the folding pathway of DNA origami. (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan


    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  10. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III


    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  11. Thermodynamic properties of an extremely rapid protein folding reaction. (United States)

    Schindler, T; Schmid, F X


    The cold-shock protein CspB from Bacillus subtilis is a very small beta-barrel protein, which folds with a time constant of 1 ms (at 25 degrees C) in a U reversible N two-state reaction. To elucidate the energetics of this extremely fast reaction we investigated the folding kinetics of CspB as a function of both temperature and denaturant concentration between 2 and 45 degrees C and between 1 and 8 M urea. Under all these conditions unfolding and refolding were reversible monoexponential reactions. By using transition state theory, data from 327 kinetic curves were jointly analyzed to determine the thermodynamic activation parameters delta H H2O++, delta S H2O++, delta G H2O++, and delta C p H2O++ for unfolding and refolding and their dependences on the urea concentration. 90% of the total change in heat capacity and 96% of the change in the m value (m = d delta G/d[urea]) occur between the unfolded state and the activated state. This suggests that for CspB the activated state of folding is unusually well structured and almost equivalent to the native protein in its interactions with the solvent. As a consequence of this native-like activated state a strong temperature-dependent enthalpy/entropy compensation is observed for the refolding kinetics, and the barrier to refolding shifts from being largely enthalpic at low temperature to largely entropic at high temperature. This shift originates not from the changes in the folding protein chains itself, but from the changes in the protein-solvent interactions. We speculate that the absence of intermediates and the native-like activated state in the folding of CspB are correlated with the small size and the structural type of this protein. The stabilization of a small beta-sheet as in CspB requires extensive non-local interactions, and therefore incomplete sheets are unstable. As a consequence, the critical activated state is reached only very late in folding. The instability of partially folded structure is a means to

  12. Sequence requirements of the HIV-1 protease flap region determined by saturation mutagenesis and kinetic analysis of flap mutants (United States)

    Shao, Wei; Everitt, Lorraine; Manchester, Marianne; Loeb, Daniel D.; Hutchison, Clyde A.; Swanstrom, Ronald


    The retroviral proteases (PRs) have a structural feature called the flap, which consists of a short antiparallel β-sheet with a turn. The flap extends over the substrate binding cleft and must be flexible to allow entry and exit of the polypeptide substrates and products. We analyzed the sequence requirements of the amino acids within the flap region (positions 46–56) of the HIV-1 PR. The phenotypes of 131 substitution mutants were determined using a bacterial expression system. Four of the mutant PRs with mutations in different regions of the flap were selected for kinetic analysis. Our phenotypic analysis, considered in the context of published structures of the HIV-1 PR with a bound substrate analogs, shows that: (i) Met-46 and Phe-53 participate in hydrophobic interactions on the solvent-exposed face of the flap; (ii) Ile-47, Ile-54, and Val-56 participate in hydrophobic interactions on the inner face of the flap; (iii) Ile-50 has hydrophobic interactions at the distance of both the δ and γ carbons; (iv) the three glycine residues in the β-turn of the flap are virtually intolerant of substitutions. Among these mutant PRs, we have identified changes in both kcat and Km. These results establish the nature of the side chain requirements at each position in the flap and document a role for the flap in both substrate binding and catalysis. PMID:9122179

  13. Solvent Effects on Protein Folding/Unfolding (United States)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  14. Transiently disordered tails accelerate folding of globular proteins. (United States)

    Mallik, Saurav; Ray, Tanaya; Kundu, Sudip


    Numerous biological proteins exhibit intrinsic disorder at their termini, which are associated with multifarious functional roles. Here, we show the surprising result that an increased percentage of terminal short transiently disordered regions with enhanced flexibility (TstDREF) is associated with accelerated folding rates of globular proteins. Evolutionary conservation of predicted disorder at TstDREFs and drastic alteration of folding rates upon point-mutations suggest critical regulatory role(s) of TstDREFs in shaping the folding kinetics. TstDREFs are associated with long-range intramolecular interactions and the percentage of native secondary structural elements physically contacted by TstDREFs exhibit another surprising positive correlation with folding kinetics. These results allow us to infer probable molecular mechanisms behind the TstDREF-mediated regulation of folding kinetics that challenge protein biochemists to assess by direct experimental testing. © 2017 Federation of European Biochemical Societies.

  15. Intake condition requirements for biodiesel modulated kinetic combustion concept to achieve a simultaneous NOx and soot removal

    International Nuclear Information System (INIS)

    Kim, Keunsoo; Oh, Seungmook; Lee, Yonggyu; Lee, Sunyoup; Kim, Junghwan


    Highlights: • MK LTC combustion was investigated under various intake conditions. • BD20 MK combustion achieved NO x and soot removal at achievable intake conditions. • The BD20 best point showed lower ISFC and COV IMEP than the diesel best point. • Higher intake pressure showed higher efficiency at all intake oxygen concentrations. • Simultaneous NO x and soot removal required 200 kPa intake pressure at a medium load. - Abstract: The fuel oxygen contained in oxygenated fuels can help reduce harmful engine-out emissions and improve the combustion process in compression-ignition engines. The use of soybean methylene ether biodiesel in the low-temperature combustion (LTC) regime has the potential to suppress soot formation and nitrogen oxides (NO x ) emissions even further, which eventually alleviates the burden of the after-treatment system. In the present study, the effects of the intake pressure and injection timing on the combustion and emissions of the modulated kinetic (MK) combustion concept with ultra-low sulfur diesel and 20% biodiesel blended fuel (BD20) were investigated in a single-cylinder CI engine. The intake pressure was varied from 100 kPa to 250 kPa for the intake oxygen concentration range of 11–17%. The engine test results indicate that simultaneous reductions in both the NO x and soot emissions were realized under the MK LTC combustion regime. At the best operating point, BD20 achieved the simultaneous NO x and soot removal at a lower intake pressure and lower EGR level than diesel, which led to better fuel economy. In addition, BD20 achieved acceptable levels of combustion stability and noise level

  16. An Intramolecular Chaperone Inserted in Bacteriophage P22 Coat Protein Mediates Its Chaperonin-independent Folding* (United States)

    Suhanovsky, Margaret M.; Teschke, Carolyn M.


    The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation. PMID:24126914

  17. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics. (United States)

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza


    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  18. Using enzyme folding to explore the mechanism of therapeutic touch: a feasibility study. (United States)

    Strickland, Mallory L; Boylan, Helen M


    The goal of this research is to design a novel model using protein folding to study Therapeutic Touch, a noncontact form of energy manipulation healing. Presented is a feasibility study suggesting that the denaturation path of ribonuclease A may be a useful model to study the energy exchange underlying therapeutic touch. The folding of ribonuclease A serves as a controlled energy-requiring system in which energy manipulation can be measured by the degree of folding achieved. A kinetic assay and fluorescence spectroscopy are used to assess the enzyme-folding state. The data suggest that the kinetic assay is a useful means of assessing the degree of refolding, and specifically, the enzyme function. However, fluorescence spectroscopy was not shown to be an effective measurement of enzyme structure for the purposes of this work. More research is needed to assess the underlying mechanism of therapeutic touch to complement the existing studies. An enzyme-folding model may provide a useful means of studying the energy exchange in therapeutic touch.

  19. NoFold: RNA structure clustering without folding or alignment. (United States)

    Middleton, Sarah A; Kim, Junhyong


    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States. (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A


    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  1. Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding. (United States)

    Arviv, Oshrit; Levy, Yaakov


    Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering-induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse-grained and atomistic molecular dynamics simulations of two two-domain constructs from the immunoglobulin-like β-sandwich fold. Each of these was experimentally shown to behave as the "sum of its parts," that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two-domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Copyright © 2012 Wiley Periodicals, Inc.

  2. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.


    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...

  3. Folding worlds between pages

    CERN Multimedia

    Meier, Matthias


    "We all remember pop-up books form our childhood. As fascinated as we were back then, we probably never imagined how much engineering know-how went into these books. Pop-up engineer Anton Radevsky has even managed to fold a 27-kilometre particle accelerator into a book" (4 pages)

  4. Folds and Etudes (United States)

    Bean, Robert


    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  5. Geometric U-folds in four dimensions (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.


    We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \

  6. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.


    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  7. Reinke Edema: Watch For Vocal Fold Cysts. (United States)

    Tüzüner, Arzu; Demirci, Sule; Yavanoglu, Ahmet; Kurkcuoglu, Melih; Arslan, Necmi


    Reinke edema is one of the common cause of dysphonia middle-aged population, and severe thickening of vocal folds require surgical treatment. Smoking plays a major role on etiology. Vocal fold cysts are also benign lesions and vocal trauma blamed for acquired cysts. We would like to present 3 cases with vocal fold cyst related with Reinke edema. First case had a subepidermal epidermoid cyst with Reinke edema, which could be easily observed before surgery during laryngostroboscopy. Second case had a mucous retention cyst into the edematous Reinke tissue, which was detected during surgical intervention, and third case had a epidermoid cyst that occurred 2 months after before microlaryngeal operation regarding Reinke edema reduction. These 3 cases revealed that surgical management of Reinke edema needs a careful dissection and close follow-up after surgery for presence of vocal fold cysts.

  8. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations. (United States)

    Paul, Fabian; Noé, Frank; Weikl, Thomas R


    Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109 Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.

  9. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers (United States)

    Pappu, Rohit V.; Nussinov, Ruth


    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  10. Impact of hydrodynamic interactions on protein folding rates depends on temperature (United States)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.


    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  11. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob


    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  12. Self-folding origami at any energy scale (United States)

    Pinson, Matthew B.; Stern, Menachem; Carruthers Ferrero, Alexandra; Witten, Thomas A.; Chen, Elizabeth; Murugan, Arvind


    Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying `typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

  13. The review on tessellation origami inspired folded structure (United States)

    Chu, Chai Chen; Keong, Choong Kok


    Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.

  14. Effects of gravity in folding (United States)

    Minkel, Donald Howe

    Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially. folds

  15. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Stephanie E Westcot

    Full Text Available Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP, an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish. In vivo selection for skin-specific expression of gene-break transposon (GBT mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes--fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a--had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a revealed a novel requirement for a Neuregulin 2a (Nrg2a-ErbB2/3-AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a-ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity

  16. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. (United States)

    Westcot, Stephanie E; Hatzold, Julia; Urban, Mark D; Richetti, Stefânia K; Skuster, Kimberly J; Harm, Rhianna M; Lopez Cervera, Roberto; Umemoto, Noriko; McNulty, Melissa S; Clark, Karl J; Hammerschmidt, Matthias; Ekker, Stephen C


    Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes--fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a--had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a)-ErbB2/3-AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a-ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape

  17. WW domain folding complexity revealed by infrared spectroscopy. (United States)

    Davis, Caitlin M; Dyer, R Brian


    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  18. Vocal fold injection medialization laryngoplasty. (United States)

    Modi, Vikash K


    Unilateral vocal fold paralysis (UVFP) can cause glottic insufficiency that can result in hoarseness, chronic cough, dysphagia, and/or aspiration. In rare circumstances, UVFP can cause airway obstruction necessitating a tracheostomy. The treatment options for UVFP include observation, speech therapy, vocal fold injection medialization laryngoplasty, thyroplasty, and laryngeal reinnervation. In this chapter, the author will discuss the technique of vocal fold injection for medialization of a UVFP. Copyright © 2012 S. Karger AG, Basel.

  19. A partially folded intermediate species of the β-sheet protein apo-pseudoazurin ism trapped during proline-limited folding

    NARCIS (Netherlands)

    Reader, J.S.; van Nuland, N.A.J.; Thompson, G.S.; Ferguson, S.J.; Dobson, C.M.; Radford, S.E.


    The folding of apo-pseudoazurin, a 123-residue, predominantly -sheet protein with a complex Greek key topology, has been investigated using several biophysical techniques. Kinetic analysis of refolding using farand near-ultraviolet circular dichroism (UV CD) shows that the protein folds slowly to

  20. Analysis of high-fold gamma data

    International Nuclear Information System (INIS)

    Radford, D. C.; Cromaz, M.; Beyer, C. J.


    Historically, γ-γ and γ-γ-γ coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even much higher efficiencies, and detect as many as 15 or 20 γ rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and 'list-list-mode' storage

  1. Heterochiral Knottin Protein: Folding and Solution Structure. (United States)

    Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L


    Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.

  2. Thermodynamic and Kinetic Requirements in Anaerobic Methane Oxidizing Consortia Exclude Hydrogen, Acetate, and Methanol as Possible Electron Shuttles. (United States)

    Sørensen, K.B.; Finster, K.; Ramsing, N.B.


    Anaerobic methane oxidation (AMO) has long remained an enigma in microbial ecology. In the process the net reaction appears to be an oxidation of methane with sulfate as electron acceptor. In order to explain experimental data such as effects of inhibitors and isotopic signals in biomarkers it has been suggested that the process is carried out by a consortium of bacteria using an unknown compound to shuttle electrons between the participants. The overall change in free energy during AMO with sulfate is very small (?22 kJ mol-1) at in situ concentrations of methane and sulfate. In order to share the available free energy between the members of the consortium, the concentration of the intermediate electron shuttle compound becomes crucial. Diffusive flux of a substrate (i.e, the electron shuttle) between bacteria requires a stable concentration gradient where the concentration is higher in the producing organism than in the consuming organism. Since changes in concentrations cause changes in reaction free energies, the diffusive flux of a catabolic product/substrate between bacteria is associated with a net loss of available energy. This restricts maximal inter-bacterial distances in consortia composed of stationary bacteria. A simple theoretical model was used to describe the relationship between inter-bacterial distances and the energy lost due to concentration differences in consortia. Key parameters turned out to be the permissible concentration range of the electron shuttle in the consortium (i.e., the concentration range that allows both participants to gain sufficient energy) and the stoichiometry of the partial reactions. The model was applied to two known consortia degrading ethanol and butyrate and to four hypothetical methane-oxidizing consortia (MOC) based on interspecies transfer of hydrogen, methanol, acetate, or formate, respectively. In the first three MOCs the permissible distances between producers and consumers of the transferred compounds were

  3. How old is your fold?

    NARCIS (Netherlands)

    Winstanley, Henry F.; Abeln, Sanne; Deane, Charlotte M.

    Motivation: At present there exists no age estimate for the different protein structures found in nature. It has become clear from occurrence studies that different folds arose at different points in evolutionary time. An estimation of the age of different folds would be a starting point for many

  4. Teaching computers to fold proteins

    DEFF Research Database (Denmark)

    Winther, Ole; Krogh, Anders Stærmose


    A new general algorithm for optimization of potential functions for protein folding is introduced. It is based upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with known structure. The iterative update rule contains two thermodynamic averages...

  5. Periodic folding of viscous sheets (United States)

    Ribe, Neil M.


    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  6. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory. (United States)

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V


    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  7. Protein folding and misfolding shining light by infrared spectroscopy

    CERN Document Server

    Fabian, Heinz


    Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field...

  8. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia


    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  9. Curved Folded Plate Timber Structures


    Buri, Hans Ulrich; Stotz, Ivo; Weinand, Yves


    This work investigates the development of a Curved Origami Prototype made with timber panels. In the last fifteen years the timber industry has developed new, large size, timber panels. Composition and dimensions of these panels and the possibility of milling them with Computer Numerical Controlled machines shows great potential for folded plate structures. To generate the form of these structures we were inspired by Origami, the Japanese art of paper folding. Common paper tessellations are c...

  10. Folding and Fracturing of Rocks: the background (United States)

    Ramsay, John G.


    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of

  11. Glass ionomer application for vocal fold augmentation: Histopathological analysis on rabbit vocal fold. (United States)

    Demirci, Sule; Tuzuner, Arzu; Callıoglu, Elif Ersoy; Yumusak, Nihat; Arslan, Necmi; Baltacı, Bülent


    The aim of this study was to investigate the use of glass ionomer cement (GIC) as an injection material for vocal fold augmentation and to evaluate the biocompatibility of the material. Ten adult New Zealand rabbits were used. Under general anesthesia, 0.1-cc GIC was injected to one vocal fold and the augmentation of vocal fold was observed. No injection was applied to the opposite side, which was accepted as the control group. The animals were sacrificed after 3 months and the laryngeal specimens were histopathologically evaluated. The injected and the noninjected control vocal folds were analyzed. The GIC particles were observed in histological sections on the injected side, and no foreign body giant cells, granulomatous inflammation, necrosis, or marked chronic inflammation were detected around the glass ionomer particles. Mild inflammatory reactions were noticed in only two specimens. The noninjected sides of vocal folds were completely normal. The findings of this study suggest that GIC is biocompatible and may be further investigated as an alternative injection material for augmentation of the vocal fold. Further studies are required to examine the viscoelastic properties of GIC and the long-term effects in experimental studies. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Functional results after external vocal fold medialization thyroplasty with the titanium vocal fold medialization implant. (United States)

    Schneider, Berit; Denk, Doris-Maria; Bigenzahn, Wolfgang


    A persistent insufficiency of glottal closure is mostly a consequence of a unilateral vocal fold movement impairment. It can also be caused by vocal fold atrophy or scarring processes with regular bilateral respiratory vocal fold function. Because of consequential voice, breathing, and swallowing impairments, a functional surgical treatment is required. The goal of the study was to outline the functional results after medialization thyroplasty with the titanium vocal fold medialization implant according to Friedrich. In the period of 1999 to 2001, an external vocal fold medialization using the titanium implant was performed on 28 patients (12 women and 16 men). The patients were in the age range of 19 to 84 years. Twenty-two patients had a paralysis of the left-side vocal fold, and six patients, of the right-side vocal fold. Detailed functional examinations were executed on all patients before and after the surgery: perceptive voice sound analysis according to the "roughness, breathiness, and hoarseness" method, judgment of the s/z ratio and voice dysfunction index, voice range profile measurements, videostroboscopy, and pulmonary function tests. In case of dysphagia/aspiration, videofluoroscopy of swallowing was also performed. The respective data were statistically analyzed (paired t test, Wilcoxon-test). All patients reported on improvement of voice, swallowing, and breathing functions postoperatively. Videostroboscopy revealed an almost complete glottal closure after surgery in all of the patients. All voice-related parameters showed a significant improvement. An increase of the laryngeal resistance by the medialization procedure could be excluded by analysis of the pulmonary function test. The results confirm the external medialization of the vocal folds as an adequate method in the therapy of voice, swallowing, and breathing impairment attributable to an insufficient glottal closure. The titanium implant offers, apart from good tissue tolerability, the

  13. Folding of DsbB in mixed micelles

    DEFF Research Database (Denmark)

    Otzen, Daniel


    state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic...... is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS...

  14. Vocal fold submucosal infusion technique in phonomicrosurgery. (United States)

    Kass, E S; Hillman, R E; Zeitels, S M


    Phonomicrosurgery is optimized by maximally preserving the vocal fold's layered microstructure (laminae propriae). The technique of submucosal infusion of saline and epinephrine into the superficial lamina propria (SLP) was examined to delineate how, when, and why it was helpful toward this surgical goal. A retrospective review revealed that the submucosal infusion technique was used to enhance the surgery in 75 of 152 vocal fold procedures that were performed over the last 2 years. The vocal fold epithelium was noted to be adherent to the vocal ligament in 29 of the 75 cases: 19 from previous surgical scarring, 4 from cancer, 3 from sulcus vocalis, 2 from chronic hemorrhage, and 1 from radiotherapy. The submucosal infusion technique was most helpful when the vocal fold epithelium required resection and/or when extensive dissection in the SLP was necessary. The infusion enhanced the surgery by vasoconstriction of the microvasculature in the SLP, which improved visualization during cold-instrument tangential dissection. Improved visualization facilitated maximal preservation of the SLP, which is necessary for optimal pliability of the overlying epithelium. The infusion also improved the placement of incisions at the perimeter of benign, premalignant, and malignant lesions, and thereby helped preserve epithelium uninvolved by the disorder.

  15. Repairing the vibratory vocal fold. (United States)

    Long, Jennifer L


    A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. Translational research. Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. NA. Laryngoscope, 128:153-159, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Enthalpy-Driven RNA Folding: Single-Molecule Thermodynamics of Tetraloop–Receptor Tertiary Interaction† (United States)

    Fiore, Julie L.; Kraemer, Benedikt; Koberling, Felix; Edmann, Rainer; Nesbitt, David J.


    RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop–receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21–47 °C), from which a van’t Hoff analysis yields the enthalpy (ΔH°) and entropy (ΔS°) of docking. Tetraloop–receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl2 and 100 mM NaCl, with excellent agreement between immobilized (ΔH° = −17.4 ± 1.6 kcal/mol, and ΔS° = −56.2 ± 5.4 cal mol−1 K−1) and freely diffusing (ΔH° = −17.2 ± 1.6 kcal/mol, and ΔS° = −55.9 ± 5.2 cal mol−1 K−1) species. Kinetic heterogeneity in the tetraloop–receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop–receptor interaction can account for ~60% of the ΔH° and ΔS° of P4–P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop–receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions. PMID:19186984

  17. Protein solubility and folding enhancement by interaction with RNA.

    Directory of Open Access Journals (Sweden)

    Seong Il Choi

    Full Text Available While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

  18. The four-fold way

    International Nuclear Information System (INIS)

    Terazawa, H.


    The four-fold way is proposed in a minimal composite model of quarks and leptons. Various new pictures and consequences are presented and discussed. They include 1) generation, 2) quark-lepton mass spectrum, 3) quark mixing, 4) supersymmetry, 5) effective gauge theory. (author)

  19. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.


    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  20. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231) (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.


    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  1. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.


    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  2. RNAiFold: a web server for RNA inverse folding and molecular design. (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter; Dotu, Ivan


    Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.

  3. Thermostability in endoglucanases is fold-specific (United States)


    Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient. PMID:21291533

  4. Thermostability in endoglucanases is fold-specific

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D


    Full Text Available Abstract Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.

  5. Fault-related-folding structure and reflection seismic sections. Construction of earth model using balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 1. Balanced cross section wo mochiita chika model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T; Tamagawa, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Pre-stacking depth migration treatment is studied for the estimation of the fold configuration from seismic survey cross sections. The estimation of a velocity structure is necessary for the execution of such treatment, and the utilization of structural-geological knowledge is required for its interpretation. The concept of balanced cross section in relation to the fault-bend fold constructs a stratum structure model under conditions that the deformation during fold and fault formation is a planar strain, that there is no change in volume due to deformation, and that a fold is a parallel fold. In addition to the above geometric and kinetic approach, there is another fold formation process simulation model using a Newtonian fluid for study from the viewpoint of dynamics. This simulation stands on the presumption that the boundary contains a ramp that had been in presence before fold formation and that an incompressible viscous matter is mounted on the top surface. The viscous matter flows and deforms for the formation of an anticline on the ramp. Such enables the reproduction of a fault-bend fold formation process, and helpful discussion may be furthered on the dynamic aspect of this simulation. 5 refs., 4 figs.

  6. Force generation by titin folding. (United States)

    Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós


    Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.

  7. Intermediates and the folding of proteins L and G

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott; Head-Gordon, Teresa


    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  8. Synovial folds in equine articular process joints

    DEFF Research Database (Denmark)

    Thomsen, Line Nymann; Berg, Lise Charlotte; Markussen, Bo


    Cervical synovial folds have been suggested as a potential cause of neck pain in humans. Little is known about the extent and characteristics of cervical synovial folds in horses.......Cervical synovial folds have been suggested as a potential cause of neck pain in humans. Little is known about the extent and characteristics of cervical synovial folds in horses....

  9. Kinetic Interface

    DEFF Research Database (Denmark)


    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  10. Design and numerical analysis of an SMA mesh-based self-folding sheet

    International Nuclear Information System (INIS)

    Peraza-Hernandez, Edwin A; Hartl, Darren J; Malak Jr, Richard J


    Origami engineering, which is the practice of creating useful three-dimensional structures through folding and fold-like operations applied to initially two-dimensional entities, has the potential to impact several areas of design and manufacturing. In some instances, however, it may be impractical to apply external manipulations to produce the desired folds (e.g., as in remote applications such as space systems). In such cases, self-folding capabilities are valuable. A self-folding material or material system is one that can perform folding operations without manipulations from external forces. This work considers a concept for a self-folding material system. The system extends the ‘programmable matter’ concept and consists of an active, self-morphing sheet composed of two meshes of thermally actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The geometric and power input parameters of the self-folding sheet are optimized to achieve the tightest local fold possible subject to stress and temperature constraints. The sheet folding performance considering folds at different angles relative to the orientation of the wire mesh is also analyzed. The optimization results show that a relatively low elastomer thickness is preferable to generate the tightest fold possible. The results also show that the self-folding sheet does not require large power inputs to achieve an optimal folding performance. It was shown that the self-folding sheet is capable of creating similar quality folds at different orientations. (paper)

  11. Folding very short peptides using molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Bosco K Ho


    Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.

  12. Visualization of protein folding funnels in lattice models.

    Directory of Open Access Journals (Sweden)

    Antonio B Oliveira

    Full Text Available Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

  13. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi


    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  14. Simulation of fluorescence resonance energy transfer experiments: effect of the dyes on protein folding

    International Nuclear Information System (INIS)

    Allen, Lucy R; Paci, Emanuele


    Fluorescence resonance energy transfer is a powerful technique which is often used to probe the properties of proteins and complex macromolecules. The technique relies on relatively large fluorescent dyes which are engineered into the molecule of interest. In the case of small proteins, these dyes may affect the stability of the protein, and modify the folding kinetics and the folding mechanisms which are being probed. Here we use atomistic simulation to investigate the effect that commonly used fluorescent dyes have on the folding of a four-helix bundle protein. We show that, depending on where the dyes are attached, their effect on the kinetic and thermodynamic properties of the protein may be significant. We find that, while the overall folding mechanism is not affected by the dyes, they can destabilize, or even stabilize, intermediate states.

  15. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231) (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.


    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  16. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren


    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  17. Origami-Inspired Folding of Thick, Rigid Panels (United States)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert


    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  18. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.


    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  19. Kinetics from Replica Exchange Molecular Dynamics Simulations. (United States)

    Stelzl, Lukas S; Hummer, Gerhard


    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  20. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy (United States)

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin


    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  1. Designing cooperatively folded abiotic uni- and multimolecular helix bundles (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan


    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  2. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance? (United States)

    Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.


    Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected

  3. A nomenclature paradigm for benign midmembranous vocal fold lesions. (United States)

    Rosen, Clark A; Gartner-Schmidt, Jackie; Hathaway, Bridget; Simpson, C Blake; Postma, Gregory N; Courey, Mark; Sataloff, Robert T


    There is a significant lack of uniform agreement regarding nomenclature for benign vocal fold lesions (BVFLs). This confusion results in difficulty for clinicians communicating with their patients and with each other. In addition, BVFL research and comparison of treatment methods are hampered by the lack of a detailed and uniform BVFL nomenclature. Clinical consensus conferences were held to develop an initial BVFL nomenclature paradigm. Perceptual video analysis was performed to validate the stroboscopy component of the paradigm. The culmination of the consensus conferences and the video-perceptual analysis was used to evaluate the BVFL nomenclature paradigm using a retrospective review of patients with BVFL. An initial BVFL nomenclature paradigm was proposed utilizing detailed definitions relating to vocal fold lesion morphology, stroboscopy, response to voice therapy and intraoperative findings. Video-perceptual analysis of stroboscopy demonstrated that the proposed binary stroboscopy system used in the BVFL nomenclature paradigm was valid and widely applicable. Retrospective review of 45 patients with BVFL followed to the conclusion of treatment demonstrated that slight modifications of the initial BVFL nomenclature paradigm were required. With the modified BVFL nomenclature paradigm, 96% of the patients fit into the predicted pattern and definitions of the BVFL nomenclature system. This study has validated a multidimensional BVFL nomenclature paradigm. This vocal fold nomenclature paradigm includes nine distinct vocal fold lesions: vocal fold nodules, vocal fold polyp, pseudocyst, vocal fold cyst (subepithelial or ligament), nonspecific vocal fold lesion, vocal fold fibrous mass (subepithelial or ligament), and reactive lesion. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. Identification of a key structural element for protein folding within beta-hairpin turns. (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael


    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  5. Dynamics of Folds in the Plane (United States)

    Krylov, Nikolai A.; Rogers, Edwin L.


    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  6. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance?

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Lemming, Gitte; Manoli, Gabriele

    is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion...... is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities...... experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected reactants (donor and bacteria) are assumed to spread in horizontal injection zones of various widths, depending on the development of bioactive...

  7. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Gorodkin, Jan; Backofen, Rolf


    Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single...... the corresponding probability of being single stranded. Furthermore, we found that structurally conserved RNA motifs are mostly supported by folding energies. Other problems (e.g. RNA-folding kinetics) may also benefit from employing the principles of the model we introduce. Our implementation, PETfold, was tested...

  8. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate. (United States)

    Krivov, Sergei V


    Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for

  9. Anatomy and Histology of an Epicanthal Fold. (United States)

    Park, Jae Woo; Hwang, Kun


    The aim of this study is to elucidate the precise anatomical and histological detail of the epicanthal fold.Thirty-two hemifaces of 16 Korean adult cadavers were used in this study (30 hemifaces with an epicanthal fold, 2 without an epicanthal fold). In 2 patients who had an epicanthoplasty, the epicanthal folds were sampled.In a dissection, the periorbital skin and subcutaneous tissues were removed and the epicanthal fold was observed in relation to each part of the orbicularis oculi muscle. Specimens including the epicanthal fold were embeddedin in paraffin, sectioned at 10 um, and stained with Hematoxylin-Eosin. The horizontal section in the level of the paplebral fissure was made and the prepared slides were observed under a light microscope.In the specimens without an epicanthal fold, no connection between the upper preseptal muscle and the lower preseptal muscle was found. In the specimens with an epicanthal fold, a connection of the upper preseptal muscle to the lower preseptal muscle was observed. It was present in all 15 hemifaces (100%). There was no connection between the pretarsal muscles. In a horizontal section, the epicanthal fold was composed of 3 compartments: an outer skin lining, a core structure, and an innerskin lining. The core structure was mainly composed of muscular fibers and fibrotic tissue and they were intermingled.Surgeons should be aware of the anatomical details of an epicanthal fold. In removing or reconstructing an epicanthal fold, the fibromuscular core band should also be removed or reconstructed.

  10. Effects of knot type in the folding of topologically complex lattice proteins (United States)

    Soler, Miguel A.; Nunes, Ana; Faísca, Patrícia F. N.


    The folding properties of a protein whose native structure contains a 52 knot are investigated by means of extensive Monte Carlo simulations of a simple lattice model and compared with those of a 31 knot. A 52 knot embedded in the native structure enhances the kinetic stability of the carrier lattice protein in a way that is clearly more pronounced than in the case of the 31 knot. However, this happens at the expense of a severe loss in folding efficiency, an observation that is consistent with the relative abundance of 31 and 52 knots in the Protein Data Bank. The folding mechanism of the 52 knot shares with that of the 31 knot the occurrence of a threading movement of the chain terminus that lays closer to the knotted core. However, co-concomitant knotting and folding in the 52 knot occurs with negligible probability, in sharp contrast to what is observed for the 31 knot. The study of several single point mutations highlights the importance in the folding of knotted proteins of the so-called structural mutations (i.e., energetic perturbations of native interactions between residues that are critical for knotting but not for folding). On the other hand, the present study predicts that mutations that perturb the folding transition state may significantly enhance the kinetic stability of knotted proteins provided they involve residues located within the knotted core.

  11. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen


    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  12. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase. (United States)

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin


    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Asymmetric hindwing foldings in rove beetles. (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji


    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  14. Vocal Fold Vibratory Changes Following Surgical Intervention. (United States)

    Chen, Wenli; Woo, Peak; Murry, Thomas


    High-speed videoendoscopy (HSV) captures direct cycle-to-cycle visualization of vocal fold movement in real time. This ultrafast recording rate is capable of visualizing the vibratory motion of the vocal folds in severely disordered phonation and provides a direct method for examining vibratory changes after vocal fold surgery. The purpose of this study was to examine the vibratory motion before and after surgical intervention. HSV was captured from two subjects with identifiable midvocal fold benign lesions and six subjects with highly aperiodic vocal fold vibration before and after phonosurgery. Digital kymography (DKG) was used to extract high-speed kymographic vocal fold images sampled at the midmembranous, anterior 1/3, and posterior 1/3 region. Spectral analysis was subsequently applied to the DKG to quantify the cycle-to-cycle movements of the left and the right vocal fold, expressed as a spectrum. Before intervention, the vibratory spectrum consisted of decreased and flat-like spectral peaks with robust power asymmetry. After intervention, increases in spectral power and decreases in power symmetry were noted. Spectral power increases were most remarkable in the midmembranous region of the vocal fold. Surgical modification resulted in improved lateral excursion of the vocal folds, vibratory function, and perceptual measures of Voice Handicap Index-10. These changes in vibratory behavior trended toward normal vocal fold vibration. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Advanced path sampling of the kinetic network of small proteins

    NARCIS (Netherlands)

    Du, W.


    This thesis is focused on developing advanced path sampling simulation methods to study protein folding and unfolding, and to build kinetic equilibrium networks describing these processes. In Chapter 1 the basic knowledge of protein structure and folding theories were introduced and a brief overview

  16. Incorporating beta-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded beta-sheets. (United States)

    Kaul, R; Angeles, A R; Jäger, M; Powers, E T; Kelly, J W


    To probe the conformational requirements of loop 1 in the Pin1 WW domain, the residues at the i + 2 and i + 3 positions of a beta-turn within this loop were replaced by dPro-Gly and Asn-Gly, which are known to prefer the conformations required at the i + 1 and i + 2 positions of type II' and type I' beta-turns. Conformational specificity or lack thereof was further examined by incorporating into the i + 2 and i + 3 positions a non-alpha-amino acid-based beta-turn mimetic (4-(2'-aminoethyl)-6-dibenzofuran propionic acid residue, 1), which was designed to replace the i + 1 and i + 2 positions of beta-turns. All these Pin WW variants are monomeric and folded as discerned by analytical ultracentrifugation, NMR, and CD. They exhibit cooperative two-state transitions and display thermodynamic stability within 0.5 kcal/mol of the wild-type WW domain, demonstrating that the acquisition of native structure and stability does not require a specific sequence and, by extension, conformation within loop 1. However, it could be that these loop 1 mutations alter the kinetics of antiparallel beta-sheet folding, which will be addressed by subsequent kinetic studies.

  17. Adaptive Origami for Efficiently Folded Structures (United States)


    heating. Although a large fold angle at a high temperature is desirable in order to extrapolate the origami geometry toward closure, more emphasis is...AFRL-RQ-WP-TR-2016-0020 ADAPTIVE ORIGAMI FOR EFFICIENTLY FOLDED STRUCTURES James J. Joo and Greg Reich Design and Analysis Branch... ORIGAMI FOR EFFICIENTLY FOLDED STRUCTURES 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) James J

  18. Vocal fold paralysis secondary to phonotrauma. (United States)

    Klein, Travis A L; Gaziano, Joy E; Ridley, Marion B


    A unique case of acute onset vocal fold paralysis secondary to phonotrauma is presented. The cause was forceful vocalization by a drill instructor on a firearm range. Imaging studies revealed extensive intralaryngeal and retropharyngeal hemorrhage. Laryngoscopy showed a complete left vocal fold paralysis. Relative voice rest was recommended, and the patient regained normal vocal fold mobility and function after approximately 12 weeks. Copyright © 2014 The Voice Foundation. All rights reserved.

  19. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.


    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  20. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes. (United States)

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe


    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  1. Spherical images and inextensible curved folding (United States)

    Seffen, Keith A.


    In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.

  2. Quantification of Porcine Vocal Fold Geometry. (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L


    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter


    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  4. Some physical approaches to protein folding (United States)

    Bascle, J.; Garel, T.; Orland, H.


    To understand how a protein folds is a problem which has important biological implications. In this article, we would like to present a physics-oriented point of view, which is twofold. First of all, we introduce simple statistical mechanics models which display, in the thermodynamic limit, folding and related transitions. These models can be divided into (i) crude spin glass-like models (with their Mattis analogs), where one may look for possible correlations between the chain self-interactions and the folded structure, (ii) glass-like models, where one emphasizes the geometrical competition between one- or two-dimensional local order (mimicking α helix or β sheet structures), and the requirement of global compactness. Both models are too simple to predict the spatial organization of a realistic protein, but are useful for the physicist and should have some feedback in other glassy systems (glasses, collapsed polymers .... ). These remarks lead us to the second physical approach, namely a new Monte-Carlo method, where one grows the protein atom-by-atom (or residue-by-residue), using a standard form (CHARMM .... ) for the total energy. A detailed comparison with other Monte-Carlo schemes, or Molecular Dynamics calculations, is then possible; we will sketch such a comparison for poly-alanines. Our twofold approach illustrates some of the difficulties one encounters in the protein folding problem, in particular those associated with the existence of a large number of metastable states. Le repliement des protéines est un problème qui a de nombreuses implications biologiques. Dans cet article, nous présentons, de deux façons différentes, un point de vue de physicien. Nous introduisons tout d'abord des modèles simples de mécanique statistique qui exhibent, à la limite thermodynamique, des transitions de repliement. Ces modèles peuvent être divisés en (i) verres de spin (éventuellement à la Mattis), où l'on peut chercher des corrélations entre les

  5. Tolrestat kinetics

    International Nuclear Information System (INIS)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.


    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate

  6. There and back again: Two views on the protein folding puzzle. (United States)

    Finkelstein, Alexei V; Badretdin, Azat J; Galzitskaya, Oxana V; Ivankov, Dmitry N; Bogatyreva, Natalya S; Garbuzynskiy, Sergiy O


    The ability of protein chains to spontaneously form their spatial structures is a long-standing puzzle in molecular biology. Experimentally measured folding times of single-domain globular proteins range from microseconds to hours: the difference (10-11 orders of magnitude) is the same as that between the life span of a mosquito and the age of the universe. This review describes physical theories of rates of overcoming the free-energy barrier separating the natively folded (N) and unfolded (U) states of protein chains in both directions: "U-to-N" and "N-to-U". In the theory of protein folding rates a special role is played by the point of thermodynamic (and kinetic) equilibrium between the native and unfolded state of the chain; here, the theory obtains the simplest form. Paradoxically, a theoretical estimate of the folding time is easier to get from consideration of protein unfolding (the "N-to-U" transition) rather than folding, because it is easier to outline a good unfolding pathway of any structure than a good folding pathway that leads to the stable fold, which is yet unknown to the folding protein chain. And since the rates of direct and reverse reactions are equal at the equilibrium point (as follows from the physical "detailed balance" principle), the estimated folding time can be derived from the estimated unfolding time. Theoretical analysis of the "N-to-U" transition outlines the range of protein folding rates in a good agreement with experiment. Theoretical analysis of folding (the "U-to-N" transition), performed at the level of formation and assembly of protein secondary structures, outlines the upper limit of protein folding times (i.e., of the time of search for the most stable fold). Both theories come to essentially the same results; this is not a surprise, because they describe overcoming one and the same free-energy barrier, although the way to the top of this barrier from the side of the unfolded state is very different from the way from the

  7. The nature of folded states of globular proteins. (United States)

    Honeycutt, J D; Thirumalai, D


    We suggest, using dynamical simulations of a simple heteropolymer modelling the alpha-carbon sequence in a protein, that generically the folded states of globular proteins correspond to statistically well-defined metastable states. This hypothesis, called the metastability hypothesis, states that there are several free energy minima separated by barriers of various heights such that the folded conformations of a polypeptide chain in each of the minima have similar structural characteristics but have different energies from one another. The calculated structural characteristics, such as bond angle and dihedral angle distribution functions, are assumed to arise from only those configurations belonging to a given minimum. The validity of this hypothesis is illustrated by simulations of a continuum model of a heteropolymer whose low temperature state is a well-defined beta-barrel structure. The simulations were done using a molecular dynamics algorithm (referred to as the "noisy" molecular dynamics method) containing both friction and noise terms. It is shown that for this model there are several distinct metastable minima in which the structural features are similar. Several new methods of analyzing fluctuations in structures belonging to two distinct minima are introduced. The most notable one is a dynamic measure of compactness that can in principle provide the time required for maximal compactness to be achieved. The analysis shows that for a given metastable state in which the protein has a well-defined folded structure the transition to a state of higher compactness occurs very slowly, lending credence to the notion that the system encounters a late barrier in the process of folding to the most compact structure. The examination of the fluctuations in the structures near the unfolding----folding transition temperature indicates that the transition state for the unfolding to folding process occurs closer to the folded state.

  8. Strange temperature dependence of the folding rate of a 16-residue β-hairpin

    International Nuclear Information System (INIS)

    Xu Yao; Wang Ting; Gai Feng


    The folding/unfolding kinetics of a 16-residue β-hairpin that undergoes cold denaturation at ambient temperatures were investigated by time-resolved infrared spectroscopy coupled with the laser-induced temperature jump (T-jump) initiation method. We found that the relaxation kinetics of this β-hairpin following a T-jump, obtained by probing the amide I' band of the peptide backbone, show strange temperature dependence. At temperatures below approximately 35 deg. C where this β-hairpin mainly exhibits cold denaturation, the T-jump induced relaxation rate is ∼5 μs -1 , whereas at temperatures where heat denaturation takes place, the relaxation rate increases to ∼1 μs -1 . These results cannot be readily explained by a two-state folding model that has been used to describe the folding thermodynamics of this β-hairpin. In addition, these results suggest that the folding free energy barrier separating the cold-denatured state from the folded state is different from that separating the heat-denatured state from the folded state, coinciding with the idea that the mechanism leading to cold denaturation is different from that leading to heat denaturation

  9. Monadic Maps and Folds for Arbitrary Datatypes

    NARCIS (Netherlands)

    Fokkinga, M.M.

    Each datatype constructor comes equiped not only with a so-called map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting

  10. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed; Yan, Dong-Ming


    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order

  11. Merging monads and folds for functional programming

    NARCIS (Netherlands)

    Meijer, E.; Jeuring, J.T.


    These notes discuss the simultaneous use of generalised fold operators and monads to structure functional programs. Generalised fold operators structure programs after the decomposition of the value they consume. Monads structure programs after the computation of the value they produce. Our programs

  12. Theoretical study of the folded waveguide

    International Nuclear Information System (INIS)

    Chen, G.L.; Owens, T.L.; Whealton, J.H.


    We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs

  13. Experimental investigation into the mechanism of folding

    NARCIS (Netherlands)

    Kuenen, Ph.H.; Sitter, de L.U.


    The investigation of geological structures due to folding led de Sitter to form an opinion on the mechanical problems involved (Bibl. 7). His principal contention is that in simple cases the relative movements of particles with respect to eachother during deformation leading to a fold, have been

  14. A comparison of RNA folding measures

    Directory of Open Access Journals (Sweden)

    Gardner Paul P


    Full Text Available Abstract Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE than random sequences with the same dinucleotide frequency. Moreover, even when the MFE is significant, many ncRNAs appear to not have a unique fold, but rather several alternative folds, at least when folded in silico. Furthermore, we find that the six investigated measures are correlated to varying degrees. Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score and the other to see if the sequence has a unique fold (the average base-pair distance, D.

  15. Muscular anatomy of the human ventricular folds. (United States)

    Moon, Jerald; Alipour, Fariborz


    Our purpose in this study was to better understand the muscular anatomy of the ventricular folds in order to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and nonphonatory tasks. Four human larynges were decalcified, sectioned coronally from posterior to anterior by a CryoJane tape transfer system, and stained with Masson's trichrome. The total and relative areas of muscles observed in each section were calculated and used for characterizing the muscle distribution within the ventricular folds. The ventricular folds contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers that were in the lower half of the ventricular fold posteriorly, and some ventricularis muscle was evident in the upper and lateral portions of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the ventricular fold was largely devoid of any muscle tissue. All 4 larynges contained muscle bundles that coursed superiorly and medially through the upper half of the fold, toward the lateral margin of the epiglottis. Although variability of expression was evident, a well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens.

  16. Graph-representation of oxidative folding pathways

    Directory of Open Access Journals (Sweden)

    Kaján László


    Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package can be obtained from V.A.

  17. Free energy landscape and multiple folding pathways of an H-type RNA pseudoknot.

    Directory of Open Access Journals (Sweden)

    Yunqiang Bian

    Full Text Available How RNA sequences fold to specific tertiary structures is one of the key problems for understanding their dynamics and functions. Here, we study the folding process of an H-type RNA pseudoknot by performing a large-scale all-atom MD simulation and bias-exchange metadynamics. The folding free energy landscapes are obtained and several folding intermediates are identified. It is suggested that the folding occurs via multiple mechanisms, including a step-wise mechanism starting either from the first helix or the second, and a cooperative mechanism with both helices forming simultaneously. Despite of the multiple mechanism nature, the ensemble folding kinetics estimated from a Markov state model is single-exponential. It is also found that the correlation between folding and binding of metal ions is significant, and the bound ions mediate long-range interactions in the intermediate structures. Non-native interactions are found to be dominant in the unfolded state and also present in some intermediates, possibly hinder the folding process of the RNA.

  18. The Folding of de Novo Designed Protein DS119 via Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Moye Wang


    Full Text Available As they are not subjected to natural selection process, de novo designed proteins usually fold in a manner different from natural proteins. Recently, a de novo designed mini-protein DS119, with a βαβ motif and 36 amino acids, has folded unusually slowly in experiments, and transient dimers have been detected in the folding process. Here, by means of all-atom replica exchange molecular dynamics (REMD simulations, several comparably stable intermediate states were observed on the folding free-energy landscape of DS119. Conventional molecular dynamics (CMD simulations showed that when two unfolded DS119 proteins bound together, most binding sites of dimeric aggregates were located at the N-terminal segment, especially residues 5–10, which were supposed to form β-sheet with its own C-terminal segment. Furthermore, a large percentage of individual proteins in the dimeric aggregates adopted conformations similar to those in the intermediate states observed in REMD simulations. These results indicate that, during the folding process, DS119 can easily become trapped in intermediate states. Then, with diffusion, a transient dimer would be formed and stabilized with the binding interface located at N-terminals. This means that it could not quickly fold to the native structure. The complicated folding manner of DS119 implies the important influence of natural selection on protein-folding kinetics, and more improvement should be achieved in rational protein design.

  19. Recurrence of vocal fold leukoplakia after carbon dioxide laser therapy. (United States)

    Chen, Min; Chen, Jian; Cheng, Lei; Wu, Haitao


    This work aims to analyze the recurrence of vocal fold leukoplakia after carbon dioxide (CO 2 ) laser resection. In this retrospective study, all patients undergoing CO 2 laser resection of vocal fold leukoplakia were followed up for at least 2 years. Recurrence was diagnosed as any presence of leukoplakia in the vocal cord subsequent to previous successful complete resection. A total of 326 patients with complete resection of vocal fold leukoplakia and follow-up subsequent surveillance laryngoscopy were studied. The recurrence rate, the recurrence time, and risk factors were evaluated. Of these, 52 (16.0%) patients experienced recurrence with a mean follow-up time of 50.5 ± 15.4 months. The mean time to recurrence was 16.2 ± 14.1 months. Univariate analysis showed that the size of lesion (P vocal fold leukoplakia, long-term follow-up is required after CO 2 laser resection. In conclusion, the size of lesion combined with the pathological grade are important risk factors that predict vocal fold leukoplakia recurrence.

  20. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed


    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.

  1. [Clinical analysis of vocal fold firbrous mass]. (United States)

    Chen, Hao; Sun, Jing Wu; Wan, Guang Lun; Hu, Yan Ming


    To explore the character of laryngoscopy finding, voice, and therapy of vocal fold fibrous mass. Clinical data, morphology, voice character, surgery and pathology of 15 cases with vocal fold fibrous mass were analyzed. The morbidity of vocal fold fibrous mass might be related to overuse of voice and laryngopharyngeal reflex. Laryngoscopy revealed shuttle line appearance, smoothness and decreased mucosal wave of vocal fold. These patients were invalid for voice training and might be improved by surgery, but recovery is slow. The morbidity of vocal fold fibrous mass might be related to overuse of voice and laryngopharyngeal reflex. Conservative treatment is ineffective for this disease, and surgery might improve. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  2. Sarcoidosis Presenting as Bilateral Vocal Fold Immobility. (United States)

    Hintze, Justin M; Gnagi, Sharon H; Lott, David G


    Bilateral true vocal fold paralysis is rarely attributable to inflammatory diseases. Sarcoidosis is a rare but important etiology of bilateral true vocal fold paralysis by compressive lymphadenopathy, granulomatous infiltration, and neural involvement. We describe the first reported case of sarcoidosis presenting as bilateral vocal fold immobility caused by direct fixation by granulomatous infiltration severe enough to necessitate tracheostomy insertion. In addition, we discuss the presentation, the pathophysiology, and the treatment of this disease with a review of the literature of previously reported cases of sarcoidosis-related vocal fold immobility. Sarcoidosis should therefore be an important consideration for the otolaryngologist's differential diagnosis of true vocal fold immobility. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Microvascular lesions of the true vocal fold. (United States)

    Postma, G N; Courey, M S; Ossoff, R H


    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  4. Arytenoid and posterior vocal fold surgery for bilateral vocal fold immobility. (United States)

    Young, VyVy N; Rosen, Clark A


    Many procedures exist to address the airway restriction often seen with bilateral vocal fold immobility. We review the most recent studies involving arytenoid and/or posterior vocal fold surgery to provide an update on the issues related to these procedures. Specific focus is placed on selection of the surgical approach and operative side, use of adjunctive therapies, and outcome measures including decannulation rate, revision and complication rate, and postoperative results. Ten studies were identified between 2004 and 2011. Modifications to the orginal transverse cordotomy and medial arytenoidectomy techniques continue to be investigated to seek improvement in dyspnea symptoms with minimal decline in voice and/or swallowing function. Decannulation rates for these approaches are high. Postoperative dysphagia appears to be less commonly observed but requires continued study. The use of mitomycin-C in these procedures has been poorly studied to date. Both transverse cordotomy and medial arytenoidectomy procedures result in high success rates. However, many questions related to these procedures remain unanswered, particularly with respect to preoperative and postoperative evaluations of voice quality, swallowing function, and pulmonary status. There is need for rigorous prospective clinical studies to address these many issues further.

  5. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information. (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip


    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  6. Melody discrimination and protein fold classification

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater


    Full Text Available One of the greatest challenges in theoretical biophysics and bioinformatics is the identification of protein folds from sequence data. This can be regarded as a pattern recognition problem. In this paper we report the use of a melody generation software where the inputs are derived from calculations of evolutionary information, secondary structure, flexibility, hydropathy and solvent accessibility from multiple sequence alignment data. The melodies so generated are derived from the sequence, and by inference, of the fold, in ways that give each fold a sound representation that may facilitate analysis, recognition, or comparison with other sequences.

  7. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J


    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  8. Folded Plate Structures as Building Envelopes

    DEFF Research Database (Denmark)

    Falk, Andreas; Buelow, Peter von; Kirkegaard, Poul Henning


    This paper treats applications of cross-laminated timber (CLT) in structural systems for folded façade solutions. Previous work on CLT-based systems for folded roofs has shown a widening range of structural possibilities to develop timber-based shells. Geometric and material properties play...... CLT-based systems, which are studied and analysed by using a combination of digital tools for structural and environmental design and analysis. The results show gainful, rational properties of folded systems and beneficial effects from an integration of architectural and environmental performance...... criteria in the design of CLT-based façades....

  9. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.


    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  10. Prediction of the optimal set of contacts to fold the smallest knotted protein (United States)

    Dabrowski-Tumanski, P.; Jarmolinska, A. I.; Sulkowska, J. I.


    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map.

  11. Prediction of the optimal set of contacts to fold the smallest knotted protein

    International Nuclear Information System (INIS)

    Dabrowski-Tumanski, P; Jarmolinska, A I; Sulkowska, J I


    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map. (paper)

  12. Supersymmetric quantum mechanics method for the Fokker-Planck equation with applications to protein folding dynamics (United States)

    Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de


    This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.

  13. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins. (United States)

    Lowe, Alan R; Perez-Riba, Albert; Itzhaki, Laura S; Main, Ewan R G


    For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data analysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods and analysis for publication and among research teams. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Site requirements and kinetics of immune-dependent elimination of intravascularly administered lung stage schistosomula in mice immunized with highly irradiated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Mangold, B.L.; Dean, D.A.; Coulson, P.S.; Wilson, R.A.


    Experiments were performed to compare the migration and survival of 75Se-labeled schistosomes, introduced by percutaneous cercarial exposure or by intravascular administration of 7-day-old lung stage schistosomula, in control and irradiated cercaria-immunized mice. Schistosomula were intravascularly introduced into the lungs, systemic organs and liver by injection via the femoral vein (FV), left ventricle (LV), and superior mesenteric vein (SMV), respectively. The fate of challenge larvae was examined by autoradiography of host tissues and by recovery of adult worms. It was found that both normal and immune elimination were site-dependent. In control mice 45%-60% of cercarial penetrants and lung schistosomula injected into the FV and LV were recoverable as adult worms, while a significantly greater number (70%-85%) were recoverable when lung schistosomula were injected into the SMV. In immunized mice, parasites introduced as either cercariae or FV-injected schistosomula were both highly sensitive to immune elimination. LV-injected schistosomula were also sensitive but to a slightly lesser degree. In contrast, schistosomula placed directly in the liver by SMV injection were totally insensitive to immune elimination. It was concluded that elimination of schistosomula in irradiated cercaria-immunized mice occurs in the lungs and/or in the systemic organs, but not in the liver. Also, it was concluded that immune elimination is not a rapid process, since more than 7 days were required after intravascular challenge for the development of demonstrable differences between control and immunized mice

  15. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates (United States)

    Dal Molin, J. P.; Caliri, A.


    Here we focus on the conformational search for the native structure when it is ruled by the hydrophobic effect and steric specificities coming from amino acids. Our main tool of investigation is a 3D lattice model provided by a ten-letter alphabet, the stereochemical model. This minimalist model was conceived for Monte Carlo (MC) simulations when one keeps in mind the kinetic behavior of protein-like chains in solution. We have three central goals here. The first one is to characterize the folding time (τ) by two distinct sampling methods, so we present two sets of 103 MC simulations for a fast protein-like sequence. The resulting sets of characteristic folding times, τ and τq were obtained by the application of the standard Metropolis algorithm (MA), as well as by an enhanced algorithm (Mq A). The finding for τq shows two things: (i) the chain-solvent hydrophobic interactions {hk } plus a set of inter-residues steric constraints {ci,j } are able to emulate the conformational search for the native structure. For each one of the 103MC performed simulations, the target is always found within a finite time window; (ii) the ratio τq / τ ≅ 1 / 10 suggests that the effect of local thermal fluctuations, encompassed by the Tsallis weight, provides to the chain an innate efficiency to escape from energetic and steric traps. We performed additional MC simulations with variations of our design rule to attest this first result, both algorithms the MA and the Mq A were applied to a restricted set of targets, a physical insight is provided. Our second finding was obtained by a set of 600 independent MC simulations, only performed with the Mq A applied to an extended set of 200 representative targets, our native structures. The results show how structural patterns should modulate τq, which cover four orders of magnitude; this finding is our second goal. The third, and last result, was obtained with a special kind of simulation performed with the purpose to explore a

  16. Topology Explains Why Automobile Sunshades Fold Oddly (United States)

    Feist, Curtis; Naimi, Ramin


    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  17. Origami: Paper Folding--The Algorithmic Way. (United States)

    Heukerott, Pamela Beth


    Describes origami, the oriental art of paper folding as an activity to teach upper elementary students concepts and skills in geometry involving polygons, angles, measurement, symmetry, and congruence. (PK)

  18. Frustration in Condensed Matter and Protein Folding (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.


    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  19. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J


    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  20. Benign Lesions of The Vocal Fold

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu


    Full Text Available Benign lesions of vocal folds are common disorders. Fifty percent of patients who have sound complaints are found to have these lesions after endoscopic and stroboscopic examinations. Benign vocal fold diseases are primarily caused by vibratory trauma. However they may also occur as a result of viral infections and congenital causes. These lesions are often presented with the complaints of dysphonia. [Archives Medical Review Journal 2013; 22(1.000: 86-95

  1. Folding of non-Euclidean curved shells (United States)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan


    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  2. Vocal fold hemorrhage: factors predicting recurrence. (United States)

    Lennon, Christen J; Murry, Thomas; Sulica, Lucian


    Vocal fold hemorrhage is an acute phonotraumatic injury treated with voice rest; recurrence is a generally accepted indication for surgical intervention. This study aims to identify factors predictive of recurrence based on outcomes of a large clinical series. Retrospective cohort. Retrospective review of cases of vocal fold hemorrhage presenting to a university laryngology service. Demographic information was compiled. Videostroboscopic exams were evaluated for hemorrhage extent, presence of varix, mucosal lesion, and/or vocal fold paresis. Vocal fold hemorrhage recurrence was the main outcome measure. Follow-up telephone survey was used to complement clinical data. Forty-seven instances of vocal fold hemorrhage were evaluated (25M:22F; 32 professional voice users). Twelve of the 47 (26%) patients experienced recurrence. Only the presence of varix demonstrated significant association with recurrence (P = 0.0089) on multivariate logistic regression. Vocal fold hemorrhage recurred in approximately 26% of patients. Varix was a predictor of recurrence, with 48% of those with varix experiencing recurrence. Monitoring, behavioral management and/or surgical intervention may be indicated to treat patients with such characteristics. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Phi-value analysis of apo-azurin folding: comparison between experiment and theory. (United States)

    Zong, Chenghang; Wilson, Corey J; Shen, Tongye; Wolynes, Peter G; Wittung-Stafshede, Pernilla


    Pseudomonas aeruginosa azurin is a 128-residue beta-sandwich metalloprotein; in vitro kinetic experiments have shown that it folds in a two-state reaction. Here, we used a variational free energy functional to calculate the characteristics of the transition state ensemble (TSE) for folding of the apo-form of P. aeruginosa azurin and investigate how it responds to thermal and mutational changes. The variational method directly yields predicted chevron plots for wild-type and mutant apo-forms of azurin. In parallel, we performed in vitro kinetic-folding experiments on the same set of azurin variants using chemical perturbation. Like the wild-type protein, all apo-variants fold in apparent two-state reactions both in calculations and in stopped-flow mixing experiments. Comparisons of phi (phi) values determined from the experimental and theoretical chevron parameters reveal an excellent agreement for most positions, indicating a polarized, highly structured TSE for folding of P. aeruginosa apo-azurin. We also demonstrate that careful analysis of side-chain interactions is necessary for appropriate theoretical description of core mutants.

  4. Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibility (United States)

    Adib, Artur B.


    It is shown that the kinetics of time-reversible chemical reactions having the same equilibrium constant but different initial conditions are closely related to one another by a directly measurable symmetry relation analogous to chemical detailed balance. In contrast to detailed balance, however, this relation does not require knowledge of the elementary steps that underlie the reaction, and remains valid in regimes where the concept of rate constants is ill defined, such as at very short times and in the presence of low activation barriers. Numerical simulations of a model of isomerization in solution are provided to illustrate the symmetry under such conditions, and potential applications in protein folding or unfolding are pointed out.

  5. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong


    Full Text Available Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.

  6. Conserved nucleation sites reinforce the significance of Phi value analysis in protein-folding studies. (United States)

    Gianni, Stefano; Jemth, Per


    The only experimental strategy to address the structure of folding transition states, the so-called Φ value analysis, relies on the synergy between site directed mutagenesis and the measurement of reaction kinetics. Despite its importance, the Φ value analysis has been often criticized and its power to pinpoint structural information has been questioned. In this hypothesis, we demonstrate that comparing the Φ values between proteins not only allows highlighting the robustness of folding pathways but also provides per se a strong validation of the method. © 2014 International Union of Biochemistry and Molecular Biology.

  7. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Vinten, Jørgen


    The effects of insulin and prior muscle contractions, respectively, on 3-O-methylglucose (3-O-MG) transport in skeletal muscle were studied in the perfused rat hindquarter. Initial rates of entry of 3-O-MG in red gastrocnemius, soleus, and white gastrocnemius muscles as a function of perfusate 3-O-MG...... concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  8. Kinetic parameters from thermogravimetric analysis (United States)

    Kiefer, Richard L.


    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  9. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements (United States)



    It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442

  10. Protein folding simulations: from coarse-grained model to all-atom model. (United States)

    Zhang, Jian; Li, Wenfei; Wang, Jun; Qin, Meng; Wu, Lei; Yan, Zhiqiang; Xu, Weixin; Zuo, Guanghong; Wang, Wei


    Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based Gō-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL

  11. Experimental investigation of protein folding and misfolding. (United States)

    Dobson, Christopher M


    Newly synthesised proteins need to fold, often to intricate and close-packed structures, in order to function. The underlying mechanism by which this complex process takes place both in vitro and in vivo is now becoming understood, at least in general terms, as a result of the application of a wide range of biophysical and computational methods used in combination with the techniques of biochemistry and protein engineering. It is increasingly apparent, however, that folding is not only crucial for generating biological activity, but that it is also coupled to a wide range of processes within the cell, ranging from the trafficking of proteins to specific organelles to the regulation of cell growth and differentiation. Not surprisingly, therefore, the failure of proteins to fold appropriately, or to remain correctly folded, is associated with a large number of cellular malfunctions that give rise to disease. Misfolding, and its consequences such as aggregation, can be investigated by extending the types of techniques used to study the normal folding process. Application of these techniques is enabling the development of a unified description of the interconversion and regulation of the different conformational states available to proteins in living systems. Such a description proves a generic basis for understanding the fundamental links between protein misfolding and its associated clinical disorders, such as Alzheimer's disease and Type II diabetes, and for exploring novel therapeutic strategies directed at their prevention and treatment on a rational basis.

  12. Bifurcation of self-folded polygonal bilayers (United States)

    Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy


    Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

  13. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq) (United States)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan


    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  14. The Risk of Vocal Fold Atrophy after Serial Corticosteroid Injections of the Vocal Fold. (United States)

    Shi, Lucy L; Giraldez-Rodriguez, Laureano A; Johns, Michael M


    The aim of this study was to illustrate the risk of vocal fold atrophy in patients who receive serial subepithelial steroid injections for vocal fold scar. This study is a retrospective case report of two patients who underwent a series of weekly subepithelial infusions of 10 mg/mL dexamethasone for benign vocal fold lesion. Shortly after the procedures, both patients developed a weak and breathy voice. The first patient was a 53-year-old man with radiation-induced vocal fold stiffness. Six injections were performed unilaterally, and 1 week later, he developed unilateral vocal fold atrophy with new glottal insufficiency. The second patient was a 67-year-old woman with severe vocal fold inflammation related to laryngitis and calcinosis, Raynaud's phenomenon, esophagean dysmotility, sclerodactyly, and telangiectasia (CREST) syndrome. Five injections were performed bilaterally, and 1 week later, she developed bilateral vocal fold atrophy with a large midline glottal gap during phonation. In both cases, the steroid-induced vocal atrophy resolved spontaneously after 4 months. Serial subepithelial steroid infusions of the vocal folds, although safe in the majority of patients, carry the risk of causing temporary vocal fold atrophy when given at short intervals. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Construction and characterization of a novel vocal fold bioreactor. (United States)

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao


    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  16. Improvement of a Vocal Fold Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Krauter, K. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Medical professionals can better serve their patients through continual update of their imaging tools. A wide range of pathologies and disease may afflict human vocal cords or, as they’re also known, vocal folds. These diseases can affect human speech hampering the ability of the patient to communicate. Vocal folds must be opened for breathing and the closed to produce speech. Currently methodologies to image markers of potential pathologies are difficult to use and often fail to detect early signs of disease. These current methodologies rely on a strobe light and slower frame rate camera in an attempt to obtain images as the vocal folds travel over the full extent of their motion.

  17. Extreme Mechanics: Self-Folding Origami (United States)

    Santangelo, Christian D.


    Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.

  18. In vitro folding of inclusion body proteins. (United States)

    Rudolph, R; Lilie, H


    Insoluble, inactive inclusion bodies are frequently formed upon recombinant protein production in transformed microorganisms. These inclusion bodies, which contain the recombinant protein in an highly enriched form, can be isolated by solid/liquid separation. After solubilization, native proteins can be generated from the inactive material by using in vitro folding techniques. New folding procedures have been developed for efficient in vitro reconstitution of complex hydrophobic, multidomain, oligomeric, or highly disulfide-bonded proteins. These protocols take into account process parameters such as protein concentration, catalysis of disulfide bond formation, temperature, pH, and ionic strength, as well as specific solvent ingredients that reduce unproductive side reactions. Modification of the protein sequence has been exploited to improve in vitro folding.

  19. Exact folded-band chaotic oscillator. (United States)

    Corron, Ned J; Blakely, Jonathan N


    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  20. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang


    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  1. Vascular lesions of the vocal fold. (United States)

    Gökcan, Kürşat Mustafa; Dursun, Gürsel


    The aim of the study was to present symptoms, laryngological findings, clinical course, management modalities, and consequences of vascular lesions of vocal fold. This study examined 162 patients, the majority professional voice users, with vascular lesions regarding their presenting symptoms, laryngological findings, clinical courses and treatment results. The most common complaint was sudden hoarseness with hemorrhagic polyp. Microlaryngoscopic surgery was performed in 108 cases and the main indication of surgery was the presence of vocal fold mass or development of vocal polyp during clinical course. Cold microsurgery was utilized for removal of vocal fold masses and feeding vessels cauterized using low power, pulsed CO(2) laser. Acoustic analysis of patients revealed a significant improvement of jitter, shimmer and harmonics/noise ratio values after treatment. Depending on our clinical findings, we propose treatment algorithm where voice rest and behavioral therapy is the integral part and indications of surgery are individualized for each patient.

  2. Natural triple beta-stranded fibrous folds. (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J


    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  3. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.


    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  4. Laryngeal ultrasound and pediatric vocal fold nodules. (United States)

    Ongkasuwan, Julina; Devore, Danielle; Hollas, Sarah; Jones, Jeremy; Tran, Brandon


    The term vocal fold nodules refers to bilateral thickening of the membranous folds with minimal impairment of the vibratory properties of the mucosa. Nodules are thought to be related to repetitive mechanical stress, associated with voice use patterns. Diagnosis is typically made in the office via either rigid or flexible laryngeal stroboscopy. Depending on the individual child, obtaining an optimal view of the larynx can be difficult if not impossible. Recent advances in high-frequency ultrasonography allows for transcervical examination of laryngeal structures. The goal of this project was to determine if laryngeal ultrasound (LUS) can be used to identify vocal fold nodules in dysphonic children. Prospective case-control study in which the patient acted as his or her own control. Forty-six pediatric patients were recruited for participation in this study; the mean age was 4.8 years. Twenty-three did not have any vocal fold lesions and 23 had a diagnosis of vocal fold nodules on laryngeal stroboscopy. Recorded LUSs were reviewed by two pediatric radiologists who were blinded to the nodule status. There was substantial inter-rater agreement (κ = 0.70, 95% confidence interval [CI]: 0.50-0.89) between the two radiologists regarding the presence of nodules. There was also substantial agreement (κ = 0.87, 95% CI: 0.72-1) between LUS and laryngeal stroboscopy. Sensitivity of LUS was 100% (95% CI: 85%-100%) and specificity was 87% (95% CI: 66%-97%). LUS can be used to identify vocal fold nodules in children with substantial agreement with laryngeal stroboscopy. 3b Laryngoscope, 127:676-678, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Swallowing function in pediatric patients with bilateral vocal fold immobility. (United States)

    Hsu, Jeffrey; Tibbetts, Kathleen M; Wu, Derek; Nassar, Michel; Tan, Melin


    Infants with bilateral vocal fold immobility (BVFI) often have poor swallow function in addition to potential airway compromise. While there are several reports on BVFI and its effect on patients' airway status, little is known about long term swallow function. We aim to characterize the swallowing function over time in pediatric patients with bilateral vocal fold immobility. A retrospective review of medical records of infants diagnosed with BVFI at a tertiary care children's hospital between 2005 and 2014 was conducted. Patient demographics, nature and etiology of immobility, laryngoscopy findings, comorbidities, and swallow outcomes at diagnosis and follow-up were recorded. Swallowing outcomes as measured by presence or absence of a gastrostomy tube were compared by etiology, vocal fold status, and normal or developmentally delay using the Fisher's exact test. 110 patients with a diagnosis of vocal fold immobility were identified. Twenty-nine (26%) had BVFI and twenty-three had complete medical records. Etiologies of vocal fold immobility include cardiac related in 13% (3/23), idiopathic in 30% (7/23) prolonged intubation in 26% (6/23) central neurologic in 22% (5/23), trauma in 4% (1/23), and infection in 4% (1/23). Average follow-up time was 44 months (range 5-94 months). Ten patients (56.5%) required a gastrostomy tube at time of diagnosis. Of this cohort who received gastrostomy tubes, three (30%) ultimately transitioned to complete oral feeds. Return of vocal fold mobility did not correlate with swallow function. In those with non-neurologic etiologies, the need for gastrostomy tube at end of follow up was unlikely. There was a statistically significant difference in the percentage of gastrostomy tube-free children at most recent follow up in patients who were normally developed (86%) versus those who were developmentally delayed (33%) (p = 0.02). We characterized the swallowing function of 23 pediatric patients with BVFI. Comorbidities are significant

  6. Protein folding: Over half a century lasting quest. Comment on "There and back again: Two views on the protein folding puzzle" by Alexei V. Finkelstein et al. (United States)

    Krokhotin, Andrey; Dokholyan, Nikolay V.


    Most proteins fold into unique three-dimensional (3D) structures that determine their biological functions, such as catalytic activity or macromolecular binding. Misfolded proteins can pose a threat through aberrant interactions with other proteins leading to a number of diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis [1,2]. What does determine 3D structure of proteins? The first clue to this question came more than fifty years ago when Anfinsen demonstrated that unfolded proteins can spontaneously fold to their native 3D structures [3,4]. Anfinsen's experiments lead to the conclusion that proteins fold to unique native structure corresponding to the stable and kinetically accessible free energy minimum, and protein native structure is solely determined by its amino acid sequence. The question of how exactly proteins find their free energy minimum proved to be a difficult problem. One of the puzzles, initially pointed out by Levinthal, was an inconsistency between observed protein folding times and theoretical estimates. A self-avoiding polymer model of a globular protein of 100-residues length on a cubic lattice can sample at least 1047 states. Based on the assumption that conformational sampling occurs at the highest vibrational mode of proteins (∼picoseconds), predicted folding time by searching among all the possible conformations leads to ∼1027 years (much larger than the age of the universe) [5]. In contrast, observed protein folding time range from microseconds to minutes. Due to tremendous theoretical progress in protein folding field that has been achieved in past decades, the source of this inconsistency is currently understood that is thoroughly described in the review by Finkelstein et al. [6].


    International Nuclear Information System (INIS)

    Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley, D; Schuler, B; Bakajin, O


    The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein secondary structure formation with Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The mixers are designed to rapidly initiate protein folding reaction through the dilution of denaturant. The devices are fabricated out of fused silica, so that they are transparent in the UV. We present characterization of mixing in the fabricated devices, as well as the initial SRCD data on proteins inside the mixers

  8. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana


    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  9. Assessment of thyroplasty for vocal fold paralysis

    DEFF Research Database (Denmark)

    Grøntved, Ågot Møller; Faber, Christian; Jakobsen, John


    INTRODUCTION: Thyroplasty with silicone rubber implantation is a surgical procedure for treatment of patients with vocal fold paralysis. The aim of the present study was to evaluate the outcome of the operation and to monitor which of the analyses were the more beneficial. MATERIAL AND METHODS...... because it offers a quantitative measure of the voice capacity and intensity, which are the major problems experienced by patients with vocal fold paralysis. Used together, these tools are highly instrumental in guiding the patient's choice of surgery or no surgery. Udgivelsesdato: 2009-Jan-12...

  10. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail:; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)


    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  11. Multiple routes and milestones in the folding of HIV-1 protease monomer.

    Directory of Open Access Journals (Sweden)

    Massimiliano Bonomi

    Full Text Available Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV-1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV-1 protease.

  12. Four residues of propeptide are essential for precursor folding of nattokinase. (United States)

    Jia, Yan; Cao, Xinhua; Deng, Yu; Bao, Wei; Tang, Changyan; Ding, Hanjing; Zheng, Zhongliang; Zou, Guolin


    Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor folding were determined. Deletion analysis showed that the conserved regions in propeptide were important for precursor folding. Single-site and multi-site mutagenesis studies confirmed the role of Tyr10, Gly13, Gly34, and Gly35. During stage (i) and (ii) of precursor folding, Tyr10 and Gly13 would form the part of interface with subtilisin domain. While Gly34 and Gly35 connected with an α-helix that would stabilize the structure of propeptide. The quadruple Ala mutation, Y10A/G13A/G34A/G35A, resulted in a loss of the chaperone function for the propeptide. This work showed the essential residues of propeptide for precursor folding via secondary structure and kinetic parameter analyses. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  13. A comparison of RNA folding measures

    DEFF Research Database (Denmark)

    Freyhult, E.; Gardner, P. P.; Moulton, V.


    the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE) than....... Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score) and the other to see......Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs) fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare...

  14. Mapping the universe of RNA tetraloop folds

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Lindorff-Larsen, Kresten


    We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG fold...

  15. Fold in Origami and Unfold Math (United States)

    Georgeson, Joseph


    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  16. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)


    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  17. Targeted transtracheal stimulation for vocal fold closure. (United States)

    Hadley, Aaron J; Thompson, Paul; Kolb, Ilya; Hahn, Elizabeth C; Tyler, Dustin J


    Paralysis of the structures in the head and neck due to stroke or other neurological disorder often causes dysphagia (difficulty in swallowing). Patients with dysphagia have a significantly higher incidence of aspiration pneumonia and death. The recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles that control the vocal folds, travels superiorly in parallel to the trachea in the tracheoesophageal groove. This study tests the hypothesis that functional electrical stimulation (FES) applied via transtracheal electrodes can produce controlled vocal fold adduction. Bipolar electrodes were placed at 15° intervals around the interior mucosal surface of the canine trachea, and current was applied to the tissue while electromyography (EMG) from the intrinsic laryngeal muscles and vocal fold movement visualization via laryngoscopy were recorded. The lowest EMG thresholds were found at an average location of 100° to the left of the ventral midsagittal line and 128° to the right. A rotatable pair of bipolar electrodes spaced 230° apart were able to stimulate bilaterally both RLNs in every subject. Laryngoscopy showed complete glottal closure with transtracheal stimulation in six of the eight subjects, and this closure was maintained under simultaneous FES-induced laryngeal elevation. Transtracheal stimulation is an effective tool for minimally invasive application of FES to induce vocal fold adduction, providing an alternative mechanism to study airway protection.

  18. Amylose folding under the influence of lipids

    NARCIS (Netherlands)

    Lopez, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.


    The molecular dynamics simulation technique was used to study the folding and complexation process of a short amylose fragment in the presence of lipids. In aqueous solution, the amylose chain remains as an extended left-handed helix. After the addition of lipids in the system, however, we observe


    Directory of Open Access Journals (Sweden)

    Matthias Echternach


    Full Text Available The principal symptoms of unilateral vocal fold paralysis are hoarseness and difficulty in swallowing. Dyspnea is comparatively rare (Laccourreye et al., 2003. The extent to which unilateral vocal fold paralysis may lead to respiratory problems at all - in contrast to bilateral vocal fold paralysis- has not yet well been determined. On the one hand, inspiration is impaired with unilateral vocal fold paralysis; on the other hand, neither the position of the vocal fold paralysis nor the degree of breathiness correlates with respiratory parameters (Cantarella et al., 2003; 2005. The question of what respiratory stress a patient with a vocal fold paresis can endure has not yet been dealt with.A 43 year-old female patient was suffering from recurrent unspecific respiratory complaints for four months after physical activity. During training for a marathon, she experienced no difficulty in breathing. These unspecific respiratory complaints occurred only after athletic activity and persisted for hours. The patient observed neither an increased coughing nor a stridor. Her voice remained unaltered during the attacks, nor were there any signs of a symptomatic gastroesophageal reflux or infectious disease. A cardio-pulmonary and a radiological examination by means of an X-ray of the thorax also revealed no pathological phenomena. As antiallergic and antiobstructive therapy remained unsuccessful, a laryngological examination was performed in order to exclude a vocal cord dysfunction.Surprisingly enough, the laryngostroboscopy showed, as an initial description, a vocal fold paralysis of the left vocal fold in median position (Figure 1. The anamnestic background for the cause was unclear. The only clue was a thoracotomy on the left side due to a pleuritis in childhood. A subsequent laryngoscopic examination had never been performed. Good mucosa waves and amplitudes were shown bilateral with complete glottal closure. Neither in the acoustic analysis, nor in the

  20. Towards a systematic classification of protein folds

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Bohr, Henrik


    structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure...


    Directory of Open Access Journals (Sweden)



    Full Text Available Background: Vocal fold polyp is one of the most common causes for hoarseness. Many different etiological factors contribute to vocal fold polyp formation. The aim of the study was to find out whether the etiological factors for polyp formation have changed in the last 30 years.Methods: Eighty-one patients with unilateral vocal fold polyp were included in the study. A control group was composed of 50 volunteers without voice problems who matched the patients by age and gender. The data about etiological factors and the findings of phoniatric examination were obtained from the patients' medical documentation and from the questionnaires for the control group. The incidence of etiological factors was compared between the two groups. The program SPSS, Version 18 was used for statistical analysis.Results: The most frequent etiological factors were occupational voice load, GER, allergy and smoking. In 79% of patients 2 – 6 contemporary acting risk factors were found. Occupational voice load (p=0,018 and GER (p=0,004 were significantly more frequent in the patients than in the controls. The other factors did not significantly influence the polyp formation.Conclusions: There are several factors involved simultaneously in the formation of vocal fold polyps both nowadays and 30 years ago. Some of the most common factors remain the same (voice load, smoking, others are new (GER, allergy, which is probably due to the different lifestyle and working conditions than 30 years ago. Occupational voice load and GER were significantly more frequently present in the patients with polyp than in the control group. Regarding the given results it is important to instruct workers with professional vocal load about etiological factors for vocal fold polyp formation.

  2. Inverse folding of RNA pseudoknot structures

    Directory of Open Access Journals (Sweden)

    Li Linda YM


    Full Text Available Abstract Background RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. Results In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at Conclusions The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  3. Progress in antenna coupled kinetic inductance detectors

    NARCIS (Netherlands)

    Baryshev, A.; Baselmans, J.J.A.; Freni, A.; Gerini, G.; Hoevers, H.F.C.; Iacono, A.; Neto, A.


    This paper describes the combined Dutch efforts toward the development of large wideband focal plane array receivers based on kinetic inductance detectors (KIDs). Taking into account strict electromagnetic and detector sensitivity requirements for future ground and space based observatories, this

  4. Feedback-controlled electro-kinetic traps for single-molecule ...

    Indian Academy of Sciences (India)


    Jan 11, 2014 ... limited residence time of a given molecule within the detection volume. A common ... information on individual folding pathways, as well as to the internal dynamics between ..... Essentials for building an electro-kinetic trap.

  5. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.


    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  6. Structured pathway across the transition state for peptide folding revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lipi Thukral


    Full Text Available Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue β-hairpin peptide, Peptide 1, is characterized using independent 2.5 μs-long unbiased atomistic molecular dynamics (MD simulations (a total of 15 μs. The trajectories were started from fully unfolded structures. Multiple (spontaneous folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11 and the turn region (P7-G9. Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide.

  7. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.


    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  8. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts. (United States)

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo


    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent

  9. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.


    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  10. Glottal aerodynamics in compliant, life-sized vocal fold models (United States)

    McPhail, Michael; Dowell, Grant; Krane, Michael


    This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.

  11. Lie algebra lattices and strings on T-folds

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuji [Institute of Physics, University of Tsukuba,Ibaraki 305-8571 (Japan); Sugawara, Yuji [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)


    We study the world-sheet conformal field theories for T-folds systematically based on the Lie algebra lattices representing the momenta of strings. The fixed point condition required for the T-duality twist restricts the possible Lie algebras. When the T-duality acts as a simple chiral reflection, one is left with the four cases, A{sub 1},D{sub 2r},E{sub 7},E{sub 8}, among the simple simply-laced algebras. From the corresponding Englert-Neveu lattices, we construct the modular invariant partition functions for the T-fold CFTs in bosonic string theory. Similar construction is possible also by using Euclidean even self-dual lattices. We then apply our formulation to the T-folds in the E{sub 8}×E{sub 8} heterotic string theory. Incorporating non-trivial phases for the T-duality twist, we obtain, as simple examples, a class of modular invariant partition functions parametrized by three integers. Our construction includes the cases which are not reduced to the free fermion construction.

  12. Drug-Target Kinetics in Drug Discovery. (United States)

    Tonge, Peter J


    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  13. Ca-Dependent Folding of Human Calumenin (United States)

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas


    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  14. Self-folding micropatterned polymeric containers. (United States)

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H


    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  15. Dynamics in thin folded polymer films (United States)

    Croll, Andrew; Rozairo, Damith

    Origami and Kirigami inspired structures depend on a complex interplay between geometry and material properties. While clearly important to the overall function, very little attention has focused on how extreme curvatures and singularities in real materials influence the overall dynamic behaviour of folded structures. In this work we use a set of three polymer thin films in order to closely examine the interaction of material and geometry. Specifically, we use polydimethylsiloxane (PDMS), polystyrene (PS) and polycarbonate (PC) thin films which we subject to loading in several model geometries of varying complexity. Depending on the material, vastly different responses are noted in our experiments; D-cones can annihilate, cut or lead to a crumpling cascade when pushed through a film. Remarkably, order can be generated with additional perturbation. Finally, the role of adhesion in complex folded structures can be addressed. AFOSR under the Young Investigator Program (FA9550-15-1-0168).

  16. Folding pathways explored with artificial potential functions

    International Nuclear Information System (INIS)

    Ulutaş, B; Bozma, I; Haliloglu, T


    This paper considers the generation of trajectories to a given protein conformation and presents a novel approach based on artificial potential functions—originally proposed for multi-robot navigation. The artificial potential function corresponds to a simplified energy model, but with the novelty that—motivated by work on robotic navigation—a nonlinear compositional scheme of constructing the energy model is adapted instead of an additive formulation. The artificial potential naturally gives rise to a dynamic system for the protein structure that ensures collision-free motion to an equilibrium point. In cases where the equilibrium point is the native conformation, the motion trajectory corresponds to the folding pathway. This framework is used to investigate folding in a variety of protein structures, and the results are compared with those of other approaches including experimental studies

  17. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  18. Image Analysis for Nail-fold Capillaroscopy


    Vucic, Vladimir


    Detection of diseases in an early stage is very important since it can make the treatment of patients easier, safer and more ecient. For the detection of rheumatic diseases, and even prediction of tendencies towards such diseases, capillaroscopy is becoming an increasingly recognized method. Nail-fold capillaroscopy is a non-invasive imaging technique that is used for analysis of microcirculation abnormalities that may lead todisease like systematic sclerosis, Reynauds phenomenon and others. ...

  19. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob


    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  20. Evolution of a protein folding nucleus. (United States)

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael


    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  1. Folding Membrane Proteins by Deep Transfer Learning

    KAUST Repository

    Wang, Sheng


    Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345–1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.

  2. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin


    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  3. Hierarchical Diagnosis of Vocal Fold Disorders (United States)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  4. Wrinkles, folds, and plasticity in granular rafts (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie


    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  5. Araguaia fold belt, new geochronological data

    International Nuclear Information System (INIS)

    Lafon, J.M.; Macambira, J.B.; Macambira, M.J.B.; Moura, C.A.V.; Souza, A.C.C.


    The northern part of the Araguaia Fold Belt (AFB) outcrops in a N-S direction for about 400 km in the state of Tocantins. Dome-like structures occur in this fold belt also in a N-S direction. Both deformation and metamorphism increase from the West to the East. The basement of the AFB consist of Colmeia complex and Cantao gneiss, which crop out mainly in the core of the dome-like structures. The supracrustals rocks of the fold belt belongs to the Baixo Araguaia supergroup which is divided into the lower Estrondo group and the upper Tocantins group. Preliminary Sm-Nd data from the Colmeia complex (Grota Rica dome) gave Archean model ages of 2.8 Ga (TNd sub(DM)) while Rb-Sr data in the same rocks give an age of 2530 ± 200 Ma. In the others dome-like structures, the Rb-Sr systematics gave ages for the Colmeia a complex of 2239 ± 47 Ma (Colmeia structure) and 1972 ± 46 Ma (Lontra structure). These younger ages are believed to represent partial to total isotopic resetting of the Rb-Sr system during the Transamazonian Event. The Rb-Sr studies of the Cantao gneiss gave an age of 1774 ± 31 Ma. (author)

  6. Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding (United States)

    Xu, Gang; Knutsen, Andrew K.; Dikranian, Krikor; Kroenke, Christopher D.; Bayly, Philip V.; Taber, Larry A.


    During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerbral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are (1) folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding. PMID:20590291

  7. Adapted to roar: functional morphology of tiger and lion vocal folds.

    Directory of Open Access Journals (Sweden)

    Sarah A Klemuk

    Full Text Available Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice.

  8. pH-jump induced α-helix folding of poly-L-glutamic acid

    International Nuclear Information System (INIS)

    Donten, Mateusz L.; Hamm, Peter


    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism

  9. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps. (United States)

    Saha, Mitul; Morais, Marc C


    Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.

  10. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects (United States)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  11. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer. (United States)

    Glugla, David J; Alim, Marvin D; Byars, Keaton D; Nair, Devatha P; Bowman, Christopher N; Maute, Kurt K; McLeod, Robert R


    We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.

  12. A Rat Excised Larynx Model of Vocal Fold Scar (United States)

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.


    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  13. Kinetics of vein graft hyperplasia

    International Nuclear Information System (INIS)

    Zwolak, R.M.; Adams, M.C.; Clowes, A.W.


    Human aortocoronary vein grafts fail due to accelerated occlusive disease. The possibility that this is related to cellular hyperplasia was investigated in a rabbit model where kinetics of vein graft thickening, endothelial (EC) repair, and smooth muscle cell (SMC) proliferation were measured from 2 days to 24 weeks after implanting jugular vein segments in the carotid artery. Immediately after graft placement focal EC denudation was observed. These defects were repaired within 1 week and did not recur. By 4 weeks intimal area had increased 30 fold from 0.028 +/- 0.004 to 0.705 +/- 0.021 mm 2 , and a 24 weeks was 0.93 +/- 0.21 mm 2 . This response did not produce a reduction in graft lumen area. EC and SMC thymidine-labeling index were measured by en face and cross-section autoradiography after injection of 3 H-thymidine and perfusion fixation. Despite rapid EC surface repair EC labeling index remained elevated and only returned to normal levels at 12 weeks; SMC labeling was 10 fold greater than baseline even at 24 weeks (0.22% vs 0.02%). SMC mass demonstrated morphometrically increased between 2 and 12 weeks. Intimal thickening in vein grafts is due to SMC proliferation and develops after the EC layer has been restored. In contrast, intimal SMC proliferate in damaged arteries when the EC layer is absent and cease when the EC layer is regenerated

  14. Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments

    Directory of Open Access Journals (Sweden)

    Jacques Ninio


    Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.

  15. Folding of polymer chains with short-range binormal interactions

    International Nuclear Information System (INIS)

    Craig, A; Terentjev, E M


    We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils

  16. Nanoscale Dewetting Transition in Protein Complex Folding (United States)

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.


    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  17. Incremental fold tests of remagnetized carbonate rocks (United States)

    Van Der Voo, R.; van der Pluijm, B.


    Many unmetamorphosed carbonates all over the world are demonstrably remagnetized, with the age of the secondary magnetizations typically close to that of the nearest orogeny in space and time. This observation did not become compelling until the mid-1980's, when the incremental fold test revealed the Appalachian carbonates to carry a syn-deformational remanence of likely Permian age (Scotese et al., 1982, Phys. Earth Planet. Int., v. 30, p. 385-395; Cederquist et al., 2006, Tectonophysics v. 422, p. 41-54). Since that time scores of Appalachian and Rocky Mountain carbonate rocks have added results to the growing database of paleopoles representing remagnetizations. Late Paleozoic remagnetizations form a cloud of results surrounding the reference poles of the Laurentian APWP. Remagnetizations in other locales and with inferred ages coeval with regional orogenies (e.g., Taconic, Sevier/Laramide, Variscan, Indosinian) are also ubiquitous. To be able to transform this cornucopia into valuable anchor-points on the APWP would be highly desirable. This may indeed become feasible, as will be explained next. Recent studies of faulted and folded carbonate-shale sequences have shown that this deformation enhances the illitization of smectite (Haines & van der Pluijm, 2008, Jour. Struct. Geol., v. 30, p. 525-538; Fitz-Diaz et al., 2014, International Geol. Review, v. 56, p. 734-755). 39Ar-40Ar dating of the authigenic illite (neutralizing any detrital illite contribution by taking the intercept of a mixing line) yields, therefore, the age of the deformation. We know that this date is also the age of the syndeformational remanence; thus we have the age of the corresponding paleopole. Results so far are obtained for the Canadian and U.S. Rocky Mountains and for the Spanish Cantabrian carbonates (Tohver et al., 2008, Earth Planet. Sci. Lett., v. 274, p. 524-530) and make good sense in accord with geological knowledge. Incremental fold tests are the tools used for this

  18. Synovial folds in the knee joint

    International Nuclear Information System (INIS)

    Schaefer, H.


    Stimulated by arthroscopic insight into central abnormalities of the knee joint and by the large number of unexplained case of 'anterior knee pain', we have studied the synovia in more than 2000 contrast examinations of the joint. Surprisingly, and contrary to the views expressed in the literature, the clinically significant plica parapatellaris medialis was seen as frequently during pneumo-arthrography as during more complex procedures. Abnormalities in the synovial fold emerged as a discreet disease identified as the 'medial shelf syndrome' and should be included in the differential diagnosis of causes of pain round the lower end of the femur and patella. (orig.) [de

  19. Monitoring treatment of vocal fold paralysis by biomechanical analysis of voice


    Gómez Vilda, Pedro; Martínez de Arellano, Ana; Nieto Lluis, Victor; Rodellar Biarge, M. Victoria; Álvarez Marquina, Agustin; Mazaira Fernández, Luis Miguel


    A case study of vocal fold paralysis treatment is described with the help of the voice quality analysis application BioMet®Phon. The case corresponds to a description of a 40 - year old female patient who was diagnosed of vocal fold paralysis following a cardio - pulmonar intervention which required intubation for 8 days and posterior tracheotomy for 15 days. The patient presented breathy and asthenic phon ation, and dysphagia. Six main examinations were conducted during a full year period th...

  20. Why and how does native topology dictate the folding speed of a protein? (United States)

    Rustad, Mark; Ghosh, Kingshuk


    , we find our new topology based metric (combining ACO, COC1, and COC2) scales as N0.54, N being the number of amino acids in a protein. This is in remarkable agreement with a previous argument based on random systems that predict protein folding speed depends on exp (- N0.5). The first principle calculation presented here provides deeper insights to the role of topology in protein folding and unifies many parallel arguments, seemingly disconnected, demonstrating the existence of universal mechanism in protein folding kinetics that can be understood from simple polymer physics based principles.

  1. Folding model analysis of alpha radioactivity

    International Nuclear Information System (INIS)

    Basu, D N


    Radioactive decay of nuclei via emission of α-particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the α-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the α nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic α-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields calculations for the half-lives of α decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations provide reasonable estimates for the lifetimes of α-radioactivity of nuclei

  2. Fast kinetics of calcium dissociation from calsequestrin

    Directory of Open Access Journals (Sweden)



    Full Text Available We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25ºC calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1 than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1 than the slower component (k = 6.9 s-1, which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.

  3. Practical steady-state enzyme kinetics. (United States)

    Lorsch, Jon R


    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  4. Principles of chemical kinetics

    CERN Document Server

    House, James E


    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  5. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel


    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  6. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. (United States)

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina


    Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach

  7. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Qian Zhao


    Full Text Available Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead

  8. Dysphonia and vocal fold telangiectasia in hereditary hemorrhagic telangiectasia. (United States)

    Chang, Joseph; Yung, Katherine C


    This case report is the first documentation of dysphonia and vocal fold telangiectasia as a complication of hereditary hemorrhagic telangiectasia (HHT). Case report of a 40-year-old man with HHT presenting with 2 years of worsening hoarseness. Hoarseness corresponded with a period of anticoagulation. Endoscopy revealed vocal fold scarring, vocal fold telangiectasias, and plica ventricular is suggestive of previous submucosal vocal fold hemorrhage and subsequent counterproductive compensation with ventricular phonation. Hereditary hemorrhagic telangiectasia may present as dysphonia with vocal fold telangiectasias and place patients at risk of vocal fold hemorrhage. © The Author(s) 2014.

  9. Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange: THERMODYNAMIC STABILITY CORRELATES WITH RATES OF UNFOLDING RATHER THAN FOLDING. (United States)

    Shah, Riddhi; Ohashi, Tomoo; Erickson, Harold P; Oas, Terrence G


    Globular proteins are not permanently folded but spontaneously unfold and refold on time scales that can span orders of magnitude for different proteins. A longstanding debate in the protein-folding field is whether unfolding rates or folding rates correlate to the stability of a protein. In the present study, we have determined the unfolding and folding kinetics of 10 FNIII domains. FNIII domains are one of the most common protein folds and are present in 2% of animal proteins. FNIII domains are ideal for this study because they have an identical seven-strand β-sandwich structure, but they vary widely in sequence and thermodynamic stability. We assayed thermodynamic stability of each domain by equilibrium denaturation in urea. We then assayed the kinetics of domain opening and closing by a technique known as thiol exchange. For this we introduced a buried Cys at the identical location in each FNIII domain and measured the kinetics of labeling with DTNB over a range of urea concentrations. A global fit of the kinetics data gave the kinetics of spontaneous unfolding and refolding in zero urea. We found that the folding rates were relatively similar, ∼0.1-1 s -1 , for the different domains. The unfolding rates varied widely and correlated with thermodynamic stability. Our study is the first to address this question using a set of domains that are structurally homologous but evolved with widely varying sequence identity and thermodynamic stability. These data add new evidence that thermodynamic stability correlates primarily with unfolding rate rather than folding rate. The study also has implications for the question of whether opening of FNIII domains contributes to the stretching of fibronectin matrix fibrils. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Improving decoy databases for protein folding algorithms

    KAUST Repository

    Lindsey, Aaron


    Copyright © 2014 ACM. Predicting protein structures and simulating protein folding are two of the most important problems in computational biology today. Simulation methods rely on a scoring function to distinguish the native structure (the most energetically stable) from non-native structures. Decoy databases are collections of non-native structures used to test and verify these functions. We present a method to evaluate and improve the quality of decoy databases by adding novel structures and removing redundant structures. We test our approach on 17 different decoy databases of varying size and type and show significant improvement across a variety of metrics. We also test our improved databases on a popular modern scoring function and show that they contain a greater number of native-like structures than the original databases, thereby producing a more rigorous database for testing scoring functions.

  11. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.


    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  12. Electrotransfection of Polyamine Folded DNA Origami Structures. (United States)

    Chopra, Aradhana; Krishnan, Swati; Simmel, Friedrich C


    DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.

  13. Structural analysis of sheath folds in the Sylacauga Marble Group, Talladega slate belt, southern Appalachians (United States)

    Mies, J.W.


    Remnant blocks of marble from the Moretti-Harrah dimension-stone quarry provide excellent exposure of meter-scale sheath folds. Tubular structures with elliptical cross-sections (4 ???Ryz ??? 5) are the most common expression of the folds. The tubes are elongate subparallel to stretching lineation and are defined by centimeter-scale layers of schist. Eccentrically nested elliptical patterns and opposing asymmetry of folds ('S' and 'Z') are consistent with the sheath-fold interpretation. Sheath folds are locally numerous in the Moretti-Harrah quarry but are not widely distributed in the Sylacauga Marble Group; reconnaissance in neighboring quarries provided no additional observations. The presence of sheath folds in part of the Talladega slate belt indicates a local history of plastic, non-coaxial deformation. Such a history of deformation is substantiated by petrographic study of an extracted hinge from the Moretti-Harrah quarry. The sheath folds are modeled as due to passive amplification of initial structures during simple shear, using both analytic geometry and graphic simulation. As indicated by these models, relatively large shear strains (y ??? 9) and longitudinal initial structures are required. The shear strain presumably relates to NW-directed displacement of overlying crystalline rocks during late Paleozoic orogeny. ?? 1993.

  14. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision. (United States)

    Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas; Visseq, Vincent; Erleben, Kenny


    Analysis of voice pathologies may require vocal fold models that include relevant features such as vocal fold asymmetric collision. The present study numerically addresses the problem of frictionless asymmetric collision in a self-sustained three-dimensional continuum model of the vocal folds. Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold dynamics is examined by different variational methods for inequality constrained minimization problems, namely, the Lagrange multiplier method and the penalty method. In contrast to the penalty solution, which is related to classical spring-like contact forces, numerical examples show that the parameter-independent Lagrange multiplier solution is more robust and accurate in the estimation of dynamical and mechanical features at vocal fold contact. Furthermore, special attention is paid to the temporal integration schemes in relation to the contact problem, the results suggesting an advantage of highly diffusive schemes. Finally, vocal fold contact enforcement is shown to affect asymmetric oscillations. The present model may be adapted to existing vocal fold models, which may contribute to a better understanding of the effect of the nonlinear contact phenomenon on phonation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study (United States)

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.


    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  16. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.


    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  17. Improving Protein Fold Recognition by Deep Learning Networks (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin


    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at

  18. Improving Protein Fold Recognition by Deep Learning Networks. (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin


    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at


    Directory of Open Access Journals (Sweden)

    C. M. Gold


    Full Text Available Modern harbour management for a busy port needs to resolve a variety of simultaneous problems. Harbour traffic may be busy and the waterways congested, both by the major shipping and by the attendant harbour tugs. The harbour channel may be narrow and tortuous, and rapidly changing tides may require frequent course adjustments. Navigation aids must be clearly specified and immediately identifiable, in order to permit safe passage for the vessels. This requires a GIS with attributes not easily available with traditional products. The GeoVS system is a kinetic GIS with full three-dimensional visualisation, so that ships, bathymetry and landscape may be viewed in a form that is immediately understandable to both harbour pilots and the harbour authority. The system is kinetic because the data structures used to preserve the topological relationships between ships, seafloor and coastline are able to be maintained on a real-time basis, taking account of ship movement recorded on the compulsory AIS (Automatic Information System beacons. Maintenance of this real-time topology allows for easy detection of potential collisions, as well as real-time bathymetric estimations, necessary to prevent ship grounding in highly tidal environments. The system, based on previous research into kinetic Voronoi diagrams, as well as development of a completely new graphical engine, is now in commercial production, where its advantages over simpler twodimensional models without automatic collision and grounding detection are becoming evident. Other applications are readily envisaged, and will be addressed in the near future.

  20. Glycoprotein folding and quality-control mechanisms in protein-folding diseases

    Directory of Open Access Journals (Sweden)

    Sean P. Ferris


    Full Text Available Biosynthesis of proteins – from translation to folding to export – encompasses a complex set of events that are exquisitely regulated and scrutinized to ensure the functional quality of the end products. Cells have evolved to capitalize on multiple post-translational modifications in addition to primary structure to indicate the folding status of nascent polypeptides to the chaperones and other proteins that assist in their folding and export. These modifications can also, in the case of irreversibly misfolded candidates, signal the need for dislocation and degradation. The current Review focuses on the glycoprotein quality-control (GQC system that utilizes protein N-glycosylation and N-glycan trimming to direct nascent glycopolypeptides through the folding, export and dislocation pathways in the endoplasmic reticulum (ER. A diverse set of pathological conditions rooted in defective as well as over-vigilant ER quality-control systems have been identified, underlining its importance in human health and disease. We describe the GQC pathways and highlight disease and animal models that have been instrumental in clarifying our current understanding of these processes.

  1. Effect of Vocal Fold Medialization on Dysphagia in Patients with Unilateral Vocal Fold Immobility. (United States)

    Cates, Daniel J; Venkatesan, Naren N; Strong, Brandon; Kuhn, Maggie A; Belafsky, Peter C


    The effect of vocal fold medialization (VFM) on vocal improvement in persons with unilateral vocal fold immobility (UVFI) is well established. The effect of VFM on the symptom of dysphagia is uncertain. The purpose of this study is to evaluate dysphagia symptoms in patients with UVFI pre- and post-VFM. Case series with chart review. Academic tertiary care medical center. The charts of 44 persons with UVFI who underwent VFM between June 1, 2013, and December 31, 2014, were abstracted from a prospectively maintained database at the University of California, Davis, Voice and Swallowing Center. Patient demographics, indications, and type of surgical procedure were recorded. Self-reported swallowing impairment was assessed with the validated 10-item Eating Assessment Tool (EAT-10) before and after surgery. A paired samples t test was used to compare pre- and postmedialization EAT-10 scores. Forty-four patients met criteria and underwent either vocal fold injection (73%) or thyroplasty (27%). Etiologies of vocal fold paralysis were iatrogenic (55%), idiopathic (29%), benign or malignant neoplastic (9%), traumatic (5%), or related to the late effects of radiation (2%). EAT-10 (mean ± SD) scores improved from 12.2 ± 11.1 to 7.7 ± 7.2 after medialization (P dysphagia and report significant improvement in swallowing symptoms following VFM. The symptomatic improvement appears to be durable over time. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  2. Mechanics of the scrolling and folding of graphene (United States)

    Li, Hao; Li, Ming; Kang, Zhan


    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  3. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. (United States)

    Sun, Jian; Zhang, Qing; Schlick, Tamar


    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt.

  4. Mechanics of the scrolling and folding of graphene. (United States)

    Li, Hao; Li, Ming; Kang, Zhan


    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  5. Multiple molecule effects on the cooperativity of protein folding transitions in simulations (United States)

    Lewis, Jacob I.; Moss, Devin J.; Knotts, Thomas A.


    Though molecular simulation of proteins has made notable contributions to the study of protein folding and kinetics, disagreement between simulation and experiment still exists. One of the criticisms levied against simulation is its failure to reproduce cooperative protein folding transitions. This weakness has been attributed to many factors such as a lack of polarizability and adequate capturing of solvent effects. This work, however, investigates how increasing the number of proteins simulated simultaneously can affect the cooperativity of folding transitions — a topic that has received little attention previously. Two proteins are studied in this work: phage T4 lysozyme (Protein Data Bank (PDB) ID: 7LZM) and phage 434 repressor (PDB ID: 1R69). The results show that increasing the number of proteins molecules simulated simultaneously leads to an increase in the macroscopic cooperativity for transitions that are inherently cooperative on the molecular level but has little effect on the cooperativity of other transitions. Taken as a whole, the results identify one area of consideration to improving simulations of protein folding.

  6. Two states or not two states: Single-molecule folding studies of protein L (United States)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad


    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  7. Communication: Role of explicit water models in the helix folding/unfolding processes (United States)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele


    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  8. Art Engineering and Kinetic Art

    Directory of Open Access Journals (Sweden)

    Barış Yılmaz


    Full Text Available Performing an art, either by painting or by sculpturing, requires to be interdisciplinary. When an artist creates his/her work of art, the process he/she realizes is supported by different engineering disciplines. Therefore, especially modern artists need to understand engineering science and this results in transforming artists into engineers. Opportunities provided by technology and science enable artists to expand his/her vision and to improve his/her works. Especially kinetic art has become an approach that combines art with engineering. Kinetic art, which is nourished with varied disciplines, is an excellent example to prove that art is interdisciplinary and to show the relationship between artist/art and engineering.

  9. Kinematics of large scale asymmetric folds and associated smaller ...

    Indian Academy of Sciences (India)

    The present work reiterates the importance of analysis of ... these models is the assumption that the folds are passive folds ... applicability of these models is thus limited in the case of ...... with contrasted rheological properties, a theory for the.

  10. Phonosurgery of vocal fold polyps, cysts and nodules is beneficial

    DEFF Research Database (Denmark)

    Jensen, Jane Bjerg; Rasmussen, Niels


    This study reports our experience with microscopic phonosurgery (PS) of benign lesions of the vocal folds.......This study reports our experience with microscopic phonosurgery (PS) of benign lesions of the vocal folds....

  11. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.


    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  12. Diagnostic and therapeutic pitfalls in benign vocal fold diseases (United States)

    Bohlender, Jörg


    More than half of patients presenting with hoarseness show benign vocal fold changes. The clinician should be familiar with the anatomy, physiology and functional aspects of voice disorders and also the modern diagnostic and therapeutic possibilities in order to ensure an optimal and patient specific management. This review article focuses on the diagnostic and therapeutic limitations and difficulties of treatment of benign vocal fold tumors, the management and prevention of scarred vocal folds and the issue of unilateral vocal fold paresis. PMID:24403969

  13. Kinetics in radiation chemistry

    International Nuclear Information System (INIS)

    Hummel, A.


    In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants

  14. Epithelial Folding Driven by Apical or Basal-Lateral Modulation: Geometric Features, Mechanical Inference, and Boundary Effects. (United States)

    Wen, Fu-Lai; Wang, Yu-Chiun; Shibata, Tatsuo


    During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems. Copyright © 2017. Published by Elsevier Inc.

  15. Non-kinetic capabilities: complementing the kinetic prevalence to targeting


    Ducheine, P.


    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  16. Folds in multilayered rocks of Proterozoic age, Rajasthan, India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Johnson and Johnson 2002 etc) shows that the fold shape modification may be brought about by buckling and flattening operating simultaneously throughout the development of fold. In the present paper a series of F1 folds devel- oped in slates with interlayered alternations with quartzite of Proterozoic age and unaffected ...

  17. Nomenclature proposal to describe vocal fold motion impairment

    NARCIS (Netherlands)

    Rosen, Clark A.; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E.; Young, VyVy N.; Hantzakos, Anastasios; Yung, Katherine C.; Dikkers, Frederik G.


    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold

  18. Nomenclature proposal to describe vocal fold motion impairment

    NARCIS (Netherlands)

    Rosen, Clark A.; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E.; Young, VyVy N.; Hantzakos, Anastasios; Yung, Katherine C.; Dikkers, Frederik G.

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold

  19. Factors that affect coseismic folds in an overburden layer (United States)

    Zeng, Shaogang; Cai, Yongen


    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  20. Technique to achieve the symmetry of the new inframammary fold (United States)

    Pozzi, Marcello; Zoccali, Giovanni; Buccheri, Ernesto Maria; de Vita, Roy


    Summary The literature outlines several surgical techniques to restore inframmammary fold definition, but symmetry of the fold is often left to irreproducible procedures. We report our personal technique to restore the symmetry of the inframmammary fold during multistep breast reconstruction. PMID:25078934

  1. Three-Fold Symmetry Restrictions on Two-Dimensional Micropolar Materials

    DEFF Research Database (Denmark)

    Warren, W. E.; Byskov, Esben

    that three-fold symmetry requires both the stress and couple stress tensors to be isotropic in the plane. We obtain the constitutive relations for an equilateral triangle structure and for the hexagonal or honeycomb structure, both of which exhibit three-fold symmetry in the plane. These results are compared......Analysis of the mechanical properties of engineering materials with micro-structure generally requires modification of the concept of a simple material. One approach is the theory of micropolar materials which introduces an independent rotation of a material element and the resulting stress...

  2. Delayed Collapse of Wooden Folding Stairs (United States)

    Krentowski, Janusz; Chyzy, Tadeusz


    During operation of folding stairs, a fastener joining the ladder hanger with the frame was torn off. A person using the stairs sustained serious injury. In several dozen other locations similar accidents were observed. As a result of inspections, some threaded parts of the screws were found in the gaps between the wooden elements of the stairs’ flaps. In the construction a hatch made of wooden strips is attached to an external frame by means of metal hangers. Laboratory strength tests were conducted on three samples made of wooden elements identical to the ones used in the damaged stairs. Due to complex load distribution mechanism acting on the base of the structure, a three-dimensional FEM model was created. An original software was used for calculations. Five computational model variants were considered. As a result of the numerical analyses, it was unquestionably shown that faulty connections were the cause of the destruction of the stairs. The weakest link in the load transmission chain were found to have been the screws connecting the hatch board with the hangers.

  3. Folding and unfolding phylogenetic trees and networks. (United States)

    Huber, Katharina T; Moulton, Vincent; Steel, Mike; Wu, Taoyang


    Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be "unfolded" to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be "folded" to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.

  4. Cache and energy efficient algorithms for Nussinov's RNA Folding. (United States)

    Zhao, Chunchun; Sahni, Sartaj


    An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.

  5. The pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmsted, W.W.; Ros, P.R.; Moser, R.P.; Shekita, K.M.; Lichtenstein, J.E.


    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is at the limit of resolution of current roentgenographic technique. When the villi are enlarged, they appear radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor,inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  6. Pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmstead, W.W.; Ros, P.R.; Moser, R.P.; Shekitka, K.M.; Lichtenstein, J.E.; Buck, J.L.


    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is just at the resolution of current roentgenographic technique. When the villi are enlarged, they can be seen radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor, inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  7. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.


    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  8. Design and simulation of origami structures with smooth folds. (United States)

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C


    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  9. Single-Chain Folding of Synthetic Polymers: A Critical Update. (United States)

    Altintas, Ozcan; Barner-Kowollik, Christopher


    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G


    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  11. Transferable coarse-grained potential for de novo protein folding and design.

    Directory of Open Access Journals (Sweden)

    Ivan Coluzza

    Full Text Available Protein folding and design are major biophysical problems, the solution of which would lead to important applications especially in medicine. Here we provide evidence of how a novel parametrization of the Caterpillar model may be used for both quantitative protein design and folding. With computer simulations it is shown that, for a large set of real protein structures, the model produces designed sequences with similar physical properties to the corresponding natural occurring sequences. The designed sequences require further experimental testing. For an independent set of proteins, previously used as benchmark, the correct folded structure of both the designed and the natural sequences is also demonstrated. The equilibrium folding properties are characterized by free energy calculations. The resulting free energy profiles not only are consistent among natural and designed proteins, but also show a remarkable precision when the folded structures are compared to the experimentally determined ones. Ultimately, the updated Caterpillar model is unique in the combination of its fundamental three features: its simplicity, its ability to produce natural foldable designed sequences, and its structure prediction precision. It is also remarkable that low frustration sequences can be obtained with such a simple and universal design procedure, and that the folding of natural proteins shows funnelled free energy landscapes without the need of any potentials based on the native structure.

  12. The role of atomic level steric effects and attractive forces in protein folding. (United States)

    Lammert, Heiko; Wolynes, Peter G; Onuchic, José N


    Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.

  13. Roles of beta-turns in protein folding: from peptide models to protein engineering. (United States)

    Marcelino, Anna Marie C; Gierasch, Lila M


    Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.

  14. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.


    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  15. Metal cofactor modulated folding and target recognition of HIV-1 NCp7. (United States)

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian


    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  16. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Directory of Open Access Journals (Sweden)

    Weitong Ren

    Full Text Available The HIV-1 nucleocapsid 7 (NCp7 plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3 recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  17. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.


    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress


    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  19. Accurately controlled sequential self-folding structures by polystyrene film (United States)

    Deng, Dongping; Yang, Yang; Chen, Yong; Lan, Xing; Tice, Jesse


    Four-dimensional (4D) printing overcomes the traditional fabrication limitations by designing heterogeneous materials to enable the printed structures evolve over time (the fourth dimension) under external stimuli. Here, we present a simple 4D printing of self-folding structures that can be sequentially and accurately folded. When heated above their glass transition temperature pre-strained polystyrene films shrink along the XY plane. In our process silver ink traces printed on the film are used to provide heat stimuli by conducting current to trigger the self-folding behavior. The parameters affecting the folding process are studied and discussed. Sequential folding and accurately controlled folding angles are achieved by using printed ink traces and angle lock design. Theoretical analyses are done to guide the design of the folding processes. Programmable structures such as a lock and a three-dimensional antenna are achieved to test the feasibility and potential applications of this method. These self-folding structures change their shapes after fabrication under controlled stimuli (electric current) and have potential applications in the fields of electronics, consumer devices, and robotics. Our design and fabrication method provides an easy way by using silver ink printed on polystyrene films to 4D print self-folding structures for electrically induced sequential folding with angular control.

  20. Vocal fold paresis - a debilitating and underdiagnosed condition. (United States)

    Harris, G; O'Meara, C; Pemberton, C; Rough, J; Darveniza, P; Tisch, S; Cole, I


    To review the clinical signs of vocal fold paresis on laryngeal videostroboscopy, to quantify its impact on patients' quality of life and to confirm the benefit of laryngeal electromyography in its diagnosis. Twenty-nine vocal fold paresis patients were referred for laryngeal electromyography. Voice Handicap Index 10 results were compared to 43 patients diagnosed with vocal fold paralysis. Laryngeal videostroboscopy analysis was conducted to determine side of paresis. Blinded laryngeal electromyography confirmed vocal fold paresis in 92.6 per cent of cases, with vocal fold lag being the most common diagnostic sign. The laryngology team accurately predicted side of paresis in 76 per cent of cases. Total Voice Handicap Index 10 responses were not significantly different between vocal fold paralysis and vocal fold paresis groups (26.08 ± 0.21 and 22.93 ± 0.17, respectively). Vocal fold paresis has a significant impact on quality of life. This study shows that laryngeal electromyography is an important diagnostic tool. Patients with persisting dysphonia and apparently normal vocal fold movement, who fail to respond to appropriate speech therapy, should be investigated for a diagnosis of vocal fold paresis.

  1. Quantitative electromyographic characteristics of idiopathic unilateral vocal fold paralysis. (United States)

    Chang, Wei-Han; Fang, Tuan-Jen; Li, Hsueh-Yu; Jaw, Fu-Shan; Wong, Alice M K; Pei, Yu-Cheng


    Unilateral vocal fold paralysis with no preceding causes is diagnosed as idiopathic unilateral vocal fold paralysis. However, comprehensive guidelines for evaluating the defining characteristics of idiopathic unilateral vocal fold paralysis are still lacking. In the present study, we hypothesized that idiopathic unilateral vocal fold paralysis may have different clinical and neurologic characteristics from unilateral vocal fold paralysis caused by surgical trauma. Retrospective, case series study. Patients with unilateral vocal fold paralysis were evaluated using quantitative laryngeal electromyography, videolaryngostroboscopy, voice acoustic analysis, the Voice Outcome Survey, and the Short Form-36 Health Survey quality-of-life questionnaire. Patients with idiopathic and iatrogenic vocal fold paralysis were compared. A total of 124 patients were recruited. Of those, 17 with no definite identified causes after evaluation and follow-up were assigned to the idiopathic group. The remaining 107 patients with surgery-induced vocal fold paralysis were assigned to the iatrogenic group. Patients in the idiopathic group had higher recruitment of the thyroarytenoid-lateral cricoarytenoid muscle complex and better quality of life compared with the iatrogenic group. Idiopathic unilateral vocal fold paralysis has a distinct clinical presentation, with relatively minor denervation changes in the involved laryngeal muscles, and less impact on quality of life compared with iatrogenic vocal fold paralysis. 4. Laryngoscope, 126:E362-E368, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  2. ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models. (United States)

    Maghrabi, Ali H A; McGuffin, Liam J


    Methods that reliably estimate the likely similarity between the predicted and native structures of proteins have become essential for driving the acceptance and adoption of three-dimensional protein models by life scientists. ModFOLD6 is the latest version of our leading resource for Estimates of Model Accuracy (EMA), which uses a pioneering hybrid quasi-single model approach. The ModFOLD6 server integrates scores from three pure-single model methods and three quasi-single model methods using a neural network to estimate local quality scores. Additionally, the server provides three options for producing global score estimates, depending on the requirements of the user: (i) ModFOLD6_rank, which is optimized for ranking/selection, (ii) ModFOLD6_cor, which is optimized for correlations of predicted and observed scores and (iii) ModFOLD6 global for balanced performance. The ModFOLD6 methods rank among the top few for EMA, according to independent blind testing by the CASP12 assessors. The ModFOLD6 server is also continuously automatically evaluated as part of the CAMEO project, where significant performance gains have been observed compared to our previous server and other publicly available servers. The ModFOLD6 server is freely available at: © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Folding in and out: passive morphing in flapping wings. (United States)

    Stowers, Amanda K; Lentink, David


    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  4. Deformation and kinematics of the central Kirthar Fold Belt, Pakistan (United States)

    Hinsch, Ralph; Hagedorn, Peter; Asmar, Chloé; Nasim, Muhammad; Aamir Rasheed, Muhammad; Kiely, James M.


    The Kirthar Fold Belt is part of the lateral mountain belts in Pakistan linking the Himalaya orogeny with the Makran accretionary wedge. This region is deforming very oblique/nearly parallel to the regional plate motion vector. The study area is situated between the prominent Chaman strike-slip fault in the West and the un-deformed foreland (Kirthar Foredeep/Middle Indus Basin) in the East. The Kirthar Fold Belt is subdivided into several crustal blocks/units based on structural orientation and deformation style (e.g. Kallat, Khuzdar, frontal Kirthar). This study uses newly acquired and depth-migrated 2D seismic lines, surface geology observations and Google Earth assessments to construct three balanced cross sections for the frontal part of the fold belt. Further work was done in order to insure the coherency of the built cross-sections by taking a closer look at the regional context inferred from published data, simple analogue modelling, and constructed regional sketch sections. The Khuzdar area and the frontal Kirthar Fold Belt are dominated by folding. Large thrusts with major stratigraphic repetitions are not observed. Furthermore, strike-slip faults in the Khuzdar area are scarce and not observed in the frontal Kirthar Fold Belt. The regional structural elevation rises from the foreland across the Kirthar Fold Belt towards the hinterland (Khuzdar area). These observations indicate that basement-involved deformation is present at depth. The domination of folding indicates a weak decollement below the folds (soft-linked deformation). The fold pattern in the Khuzdar area is complex, whereas the large folds of the central Kirthar Fold Belt trend SSW-NNE to N-S and are best described as large detachment folds that have been slightly uplifted by basement involved transpressive deformation underneath. Towards the foreland, the deformation is apparently more hard-linked and involves fault-propagation folding and a small triangle zone in Cretaceous sediments

  5. Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis. (United States)

    Athas, Jasmin C; Nguyen, Catherine P; Kummar, Shailaa; Raghavan, Srinivasa R


    The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy

  6. The Ventricular-Fold Dynamics in Human Phonation


    Bailly , Lucie; Henrich Bernardoni , Nathalie; Müller , Frank; Rohlfs , Anna-Katharina; Hess , Markus


    International audience; Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricularfold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample database of vocal gestures accompanying different acoustical events comprised highspeed cinematographic, audio, and electroglottogr...

  7. Comparing the Folding and Misfolding Energy Landscapes of Phosphoglycerate Kinase


    Agocs, Gergely; Szabo, Bence T.; Koehler, Gottfried; Osvath, Szabolcs


    Partitioning of polypeptides between protein folding and amyloid formation is of outstanding pathophysiological importance. Using yeast phosphoglycerate kinase as model, here we identify the features of the energy landscape that decide the fate of the protein: folding or amyloidogenesis. Structure formation was initiated from the acid-unfolded state, and monitored by fluorescence from 10 ms to 20 days. Solvent conditions were gradually shifted between folding and amyloidogenesis, and the prop...

  8. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay


    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  9. Current Understanding and Future Directions for Vocal Fold Mechanobiology (United States)

    Li, Nicole Y.K.; Heris, Hossein K.; Mongeau, Luc


    The vocal folds, which are located in the larynx, are the main organ of voice production for human communication. The vocal folds are under continuous biomechanical stress similar to other mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a few millimeters. The biomechanical stress associated with accumulated phonation is believed to alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can damage tissue structure and induce a cell-mediated inflammatory response, resulting in a pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically for patients with mild vocal fold injuries. Although biomechanical forces affect vocal fold physiology and pathology, there is little understanding of how mechanical forces regulate these processes at the cellular and molecular level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal fold bioreactors are being developed in several laboratories to provide a biomimic environment that allows the systematic manipulation of physical and biological factors on the cells of interest in vitro. Computer models have been used to simulate the integrated response of cells and proteins as a function of phonation stress. The purpose of this paper is to review current research on the mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to propose specific research directions that will advance our understanding of this subject. PMID:24812638

  10. Chemical Denaturants Smoothen Ruggedness on the Free Energy Landscape of Protein Folding. (United States)

    Malhotra, Pooja; Jethva, Prashant N; Udgaonkar, Jayant B


    To characterize experimentally the ruggedness of the free energy landscape of protein folding is challenging, because the distributed small free energy barriers are usually dominated by one, or a few, large activation free energy barriers. This study delineates changes in the roughness of the free energy landscape by making use of the observation that a decrease in ruggedness is accompanied invariably by an increase in folding cooperativity. Hydrogen exchange (HX) coupled to mass spectrometry was used to detect transient sampling of local energy minima and the global unfolded state on the free energy landscape of the small protein single-chain monellin. Under native conditions, local noncooperative openings result in interconversions between Boltzmann-distributed intermediate states, populated on an extremely rugged "uphill" energy landscape. The cooperativity of these interconversions was increased by selectively destabilizing the native state via mutations, and further by the addition of a chemical denaturant. The perturbation of stability alone resulted in seven backbone amide sites exchanging cooperatively. The size of the cooperatively exchanging and/or unfolding unit did not depend on the extent of protein destabilization. Only upon the addition of a denaturant to a destabilized mutant variant did seven additional backbone amide sites exchange cooperatively. Segmentwise analysis of the HX kinetics of the mutant variants further confirmed that the observed increase in cooperativity was due to the smoothing of the ruggedness of the free energy landscape of folding of the protein by the chemical denaturant.

  11. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality. (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C


    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Competition between folding and glycosylation in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Bruun, A W; Kielland-Brandt, Morten


    Using carboxypeptidase Y in Saccharomyces cerevisiae as a model system, the in vivo relationship between protein folding and N-glycosylation was studied. Seven new sites for N-glycosylation were introduced at positions buried in the folded protein structure. The level of glycosylation of such new...... acceptor sites. In some cases, all the newly synthesized mutant protein was modified at the novel site while in others no modification took place. In the most interesting category of mutants, the level of glycosylation was dependent on the conditions for folding. This shows that folding and glycosylation...

  13. Folding System for the Clothes by a Robot and Tools


    大澤, 文明; 関, 啓明; 神谷, 好承


    The works of a home robot has the laundering. The purpose of this study is to find a means of folding of the clothes and store the clothes in a drawer by a home robot. Because the shape of cloth tends to change in various ways depending on the situation, it is difficult for robot hands to fold the clothes. In this paper, we propose a realistic folding system for the clothes by a robot and tools. The function of a tool is folding the clothes in half by inserting the clothes using two plates. T...

  14. Thermodynamics of protein folding: a random matrix formulation. (United States)

    Shukla, Pragya


    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters, e.g. the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows, however, that the evolution of the statistical measures, e.g. Gibbs free energy, heat capacity, and entropy, is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies. © 2010 IOP Publishing Ltd

  15. Specific features of vocal fold paralysis in functional computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Mackiewicz-Nartowicz, H.; Serafin, Z.; Nawrocka, E.


    Vocal fold paralysis is usually recognized in laryngological examination, and detailed vocal fold function may be established based on laryngovideostroboscopy. Additional imaging should exclude any morphological causes of the paresis, which should be treated pharmacologically or surgically. The aim of this paper was to analyze the computed tomography (CT) images of the larynx in patients with unilateral vocal fold paralysis. CT examinations of the larynx were performed in 10 patients with clinically defined unilateral vocal fold paralysis. The examinations consisted of unenhanced acquisition and enhanced 3-phased acquisition: during free breathing, Valsalva maneuver, and phonation. The analysis included the following morphologic features of the paresis.the deepened epiglottic vallecula, the deepened piriform recess, the thickened and medially positioned aryepiglottic fold, the widened laryngeal pouch, the anteriorly positioned arytenoid cartilage, the thickened vocal fold, and the filled infraglottic space in frontal CT reconstruction. CT images were compared to laryngovideostroboscopy. The most common symptoms of vocal cord paralysis in CT were the deepened epiglottic vallecula and piriform recess, the widened laryngeal pouch with the filled infraglottic space, and the thickened aryepiglottic fold. Regarding the efficiency of the paralysis determination, the three functional techniques of CT larynx imaging used did not differ significantly, and laryngovideostroboscopy demonstrated its advantage over CT. CT of the larynx is a supplementary examination in the diagnosis of vocal fold paralysis, which may enable topographic analysis of the fold dysfunction. The knowledge of morphological CT features of the paralysis may help to prevent false-positive diagnosis of laryngeal cancer. (author)

  16. Endo-extralaryngeal Laterofixation of the Vocal Folds in Patients with Bilateral Vocal Fold Immobility. (United States)

    Wiegand, Susanne; Teymoortash, Afshin; Hanschmann, Holger


    Bilateral vocal fold paralysis can result in shortness of breath and severe dyspnea which can be life-threatening. Thirty-five patients with bilateral vocal fold paralysis who underwent endo-extralaryngeal laterofixation according to Lichtenberger were retrospectively analyzed regarding etiology, symptoms, treatment and complications. In 27 patients, laterofixation of the vocal cord alone was performed. Eight patients underwent laterofixation and additional posterior chordectomy of the opposite vocal cord according to Dennis and Kashima. The time of intervention ranged from 1 day to 38 years after the onset of bilateral vocal cord immobility. The intraoperative course was uneventful in all patients. None of the patients had postoperative aspiration. Postoperative voice function was acceptable in all patients. Complications of suture laterofixation were laryngeal edema, formation of fibrin, and malposition of the suture. Laterofixation of the vocal cords according to Lichtenberger is a safe and easy method that can be used as a first-stage treatment of vocal cord paralysis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. First passage analysis of the folding of a β-sheet miniprotein: is it more realistic than the standard equilibrium approach? (United States)

    Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin


    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.

  18. First Passage Analysis of the Folding of a β-Sheet Miniprotein: Is it More Realistic Than the Standard Equilibrium Approach? (United States)


    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed ”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations. PMID:24669953

  19. NESTLE: A nodal kinetics code

    International Nuclear Information System (INIS)

    Al-Chalabi, R.M.; Turinsky, P.J.; Faure, F.-X.; Sarsour, H.N.; Engrand, P.R.


    The NESTLE nodal kinetics code has been developed for utilization as a stand-alone code for steady-state and transient reactor neutronic analysis and for incorporation into system transient codes, such as TRAC and RELAP. The latter is desirable to increase the simulation fidelity over that obtained from currently employed zero- and one-dimensional neutronic models and now feasible due to advances in computer performance and efficiency of nodal methods. As a stand-alone code, requirements are that it operate on a range of computing platforms from memory-limited personal computers (PCs) to supercomputers with vector processors. This paper summarizes the features of NESTLE that reflect the utilization and requirements just noted

  20. Microsecond time-scale kinetics of transient biochemical reactions

    NARCIS (Netherlands)

    Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.


    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs

  1. Incidence of vocal fold immobility in patients with dysphagia. (United States)

    Leder, Steven B; Ross, Douglas A


    This study prospectively investigated the incidence of vocal fold immobility, unilateral and bilateral, and its influence on aspiration status in a referred population of 1452 patients for a dysphagia evaluation from a large, urban, tertiary-care, teaching hospital. Main outcome measures included overall incidence of vocal fold immobility and aspiration status, with specific emphasis on age, etiology, and side of vocal fold immobility, i.e., right, left, or bilateral. Overall incidence of vocal fold immobility was 5.6% (81 of 1452 patients), including 47 males (mean age 55.7 yr) and 34 females (mean age 59.7 yr). In the subgroup of patients with vocal fold immobility, 31% (25 of 81) exhibited unilateral right, 60% (49 of 81) unilateral left, and 9% (7 of 81) bilateral impairment. Overall incidence of aspiration was found to be 29% (426 of 1452) of all patients referred for a swallow evaluation. Aspiration was observed in 44% (36 of 81) of patients presenting with vocal fold immobility, i.e., 44% (11 of 25) unilateral right, 43% (21 of 49) unilateral left, and 57% (4 of 7) bilateral vocal fold immobility. Left vocal fold immobility occurred most frequently due to surgical trauma. A liquid bolus was aspirated more often than a puree bolus. Side of vocal fold immobility and age were not factors that increased incidence of aspiration. In conclusion, vocal fold immobility, with an incidence of 5.6%, is not an uncommon finding in patients referred for a dysphagia evaluation in the acute-care setting, and vocal fold immobility, when present, was associated with a 15% increased incidence of aspiration when compared with a population already being evaluated for dysphagia.

  2. In vivo measurement of vocal fold surface resistance. (United States)

    Mizuta, Masanobu; Kurita, Takashi; Dillon, Neal P; Kimball, Emily E; Garrett, C Gaelyn; Sivasankar, M Preeti; Webster, Robert J; Rousseau, Bernard


    A custom-designed probe was developed to measure vocal fold surface resistance in vivo. The purpose of this study was to demonstrate proof of concept of using vocal fold surface resistance as a proxy of functional tissue integrity after acute phonotrauma using an animal model. Prospective animal study. New Zealand White breeder rabbits received 120 minutes of airflow without vocal fold approximation (control) or 120 minutes of raised intensity phonation (experimental). The probe was inserted via laryngoscope and placed on the left vocal fold under endoscopic visualization. Vocal fold surface resistance of the middle one-third of the vocal fold was measured after 0 (baseline), 60, and 120 minutes of phonation. After the phonation procedure, the larynx was harvested and prepared for transmission electron microscopy. In the control group, vocal fold surface resistance values remained stable across time points. In the experimental group, surface resistance (X% ± Y% relative to baseline) was significantly decreased after 120 minutes of raised intensity phonation. This was associated with structural changes using transmission electron microscopy, which revealed damage to the vocal fold epithelium after phonotrauma, including disruption of the epithelium and basement membrane, dilated paracellular spaces, and alterations to epithelial microprojections. In contrast, control vocal fold specimens showed well-preserved stratified squamous epithelia. These data demonstrate the feasibility of measuring vocal fold surface resistance in vivo as a means of evaluating functional vocal fold epithelial barrier integrity. Device prototypes are in development for additional testing, validation, and for clinical applications in laryngology. NA Laryngoscope, 127:E364-E370, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail


    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  4. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail


    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  5. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew


    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  6. Quantification of fold growth of frontal antiforms in the Zagros fold and thrust belt (Kurdistan, NE Iraq) (United States)

    Bretis, Bernhard; Bartl, Nikolaus; Graseman, Bernhard; Lockhart, Duncan


    The Zagros fold and thrust belt is a seismically active orogen, where actual kinematic models based on GPS networks suggest a north-south shortening between Arabian and Eurasian in the order of 1.5-2.5 cm/yr. Most of this deformation is partitioned in south-southwest oriented folding and thrusting with northwest-southeast to north-south trending dextral strike slip faults. The Zagros fold and thrust belt is of great economic interest because it has been estimated that this area contains about 15% of the global recoverable hydrocarbons. Whereas the SE parts of the Zagros have been investigated by detailed geological studies, the NW extent being part of the Republic of Iraq have experienced considerably less attention. In this study we combine field work and remote sensing techniques in order to investigate the interaction of erosion and fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular we focus on the interaction of the transient development of drainage patterns along growing antiforms, which directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi-, Permam- and Safeen fold trains show that these anticlines have not developed from subcylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification. This fold segments with length between 5 and 25 km have been detected by mapping ancient and modern river courses that initially cut the nose of growing folds and eventually got defeated leaving behind a wind gap. Fold segments, propagating in different directions force rivers to join resulting in steep gorges, which dissect the merging fold noses. Along rapidly lateral growing folds (e.g. at the SE end of the Bana Bawi Anticline) we observed "curved wind gaps", a new type of abandoned river course, where form of the wind gap mimics a formed nose of a growing antiform. The inherited curved segments of uplifted curved river courses strongly

  7. Swallowing dysfunction in patients with unilateral vocal fold paralysis: aetiology and outcomes. (United States)

    Ollivere, B; Duce, K; Rowlands, G; Harrison, P; O'Reilly, B J


    Although unilateral vocal fold palsy (UVFP) is a common problem, data relating to swallowing dysfunction are sparse. We reviewed the clinical findings (method of presentation, underlying diagnosis and position of the vocal folds) of 30 patients and conducted a follow-up telephone survey. Outcome measures used were direct visualization of fold function, position and compensation. In addition, standardized speech and language assessments for swallowing dysfunction and dysphonia were noted and compared to presentation. Our study indicates that 56 per cent of patients with UVFP have associated dysphagia. Outcome with speech therapy is significant, with 73 per cent showing improvement. These data indicate a significant link between UVFP and swallowing dysfunction. There is a marked therapeutic benefit from voice therapy. Further work is required to evaluate the long-term outcomes and establish the mechanism of swallowing dysfunction in these patients.

  8. Relativistic Kinetic Theory (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.


    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  9. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael


    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  10. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan


    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  11. Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule. (United States)

    Rosen, Laura E; Connell, Katelyn B; Marqusee, Susan


    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.

  12. From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein. (United States)

    Ignatova, Zoya; Krishnan, Beena; Bombardier, Jeffrey P; Marcelino, Anna Marie C; Hong, Jiang; Gierasch, Lila M


    A crucial challenge in present biomedical research is the elucidation of how fundamental processes like protein folding and aggregation occur in the complex environment of the cell. Many new physico-chemical factors like crowding and confinement must be considered, and immense technical hurdles must be overcome in order to explore these processes in vivo. Understanding protein misfolding and aggregation diseases and developing therapeutic strategies to these diseases demand that we gain mechanistic insight into behaviors and misbehaviors of proteins as they fold in vivo. We have developed a fluorescence approach using FlAsH labeling to study the thermodynamics of folding of a model beta-rich protein, cellular retinoic acid binding protein (CRABP) in Escherichia coli cells. The labeling approach has also enabled us to follow aggregation of a modified version of CRABP and chimeras between CRABP and huntingtin exon 1 with its glutamine repeat tract. In this article, we review our recent results using FlAsH labeling to study in-vivo folding and present new observations that hint at fundamental differences between the thermodynamics and kinetics of protein folding in vivo and in vitro.

  13. Status report on the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    Folded tandem ion accelerator; charged particle beams; voltage stability; Rutherford backscattering; ion optics; beam lines. Abstract. The folded tandem ion accelerator (FOTIA) facility set up at BARC has become operational. At present, it is used for elemental analysis studies using the Rutherford backscattering technique.

  14. The effect of surface electrical stimulation on vocal fold position. (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L


    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  15. Cotranslational protein folding reveals the selective use of ...

    Indian Academy of Sciences (India)

    to fold properly by decelerating the translation rate at these sites. Thus the cotranslational protein folding is believed to be true for many proteins and is an important selection factor for the selective codon usage to optimize proper gene expres- sion and function (Komar 2009). A web server CS and S has been created by ...

  16. Vocal Fold Mucus Aggregation in Persons with Voice Disorders (United States)

    Bonilha, Heather Shaw; White, Lisa; Kuckhahn, Kelsey; Gerlach, Terri Treman; Deliyski, Dimitar D.


    Mucus aggregation on the vocal folds is a common finding from laryngeal endoscopy. Patients with voice disorders report the presence of mucus aggregation. Patients also report that mucus aggregation causes them to clear their throat, a behavior believed to be harmful to vocal fold mucosa. Even though clinicians and patients report and discuss…

  17. Surfing the free energy landscape of flavodoxin folding

    NARCIS (Netherlands)

    Bollen, Y.J.M.


    The research described in this thesis has been carried out to obtain a better understanding of the fundamental rules describing protein folding. Protein folding is the process in which a linear chain of amino acids contracts to a compact state in which it is active. Flavodoxin from Azotobacter

  18. New variants of known folds: do they bring new biology?

    International Nuclear Information System (INIS)

    Koonin, Eugene V.


    New distinct versions of known protein folds provide a powerful means of protein-function prediction that complements sequence and genomic context analysis. New distinct versions of known protein folds provide a powerful means of protein-function prediction that complements sequence and genomic context analysis. These structures do not supplant direct biochemical experiments, but are indispensable for the complete characterization of proteins

  19. Acute vocal fold hemorrhage caught on video during office exam. (United States)

    Carroll, Thomas L; Smith, Libby J


    This article presents a unique video of a laryngeal exam during which a vocal fold hemorrhage occurs. This patient had likely been suffering from intermittent vocal fold hemorrhages for the last decade due to a persistent vascular lesion and an underlying chronic cough.

  20. Small Intestinal Submucosa Implantation for the Possible Treatment of Vocal Fold Scar, Sulcus, and Superficial Lamina Propria Atrophy. (United States)

    Pitman, Michael J; Cabin, Jonathan A; Iacob, Codrin E


    Evaluate the histologic effects of grafting porcine-derived small intestinal submucosa (SIS) into the vocal fold superficial lamina propria (SLP) layer for the potential treatment of vocal fold scar, sulcus and superficial lamina propria atrophy. Small intestinal submucosa was implanted into the right vocal fold SLP of 6 mongrel dogs. The left vocal fold served as a sham surgical control. At 2, 4, and 6 weeks postoperative, bilateral vocal fold specimens were evaluated histologically. At 2 and 4 weeks, respectively, SIS-implanted vocal folds demonstrated moderate and mild inflammation and acute and chronic inflammation. At 6 weeks, inflammation was minimal and chronic. The 6-week specimens showed copious amounts of newly generated hyaluronic acid (HA) within the graft. There was no reactive fibrosis at 6 weeks. In the canine model, SIS appears safe for SLP grafting. Inflammation is similar to that of sham surgery. Small intestinal submucosa results in newly generated HA without concomitant fibrosis. Small intestinal submucosa has potential to be used in treatment of disorders with SLP, including vocal fold scar, sulcus, and atrophy. Studies evaluating the effect of SIS implantation on vocal fold function, as well as the ultimate fate of the graft, are required. © The Author(s) 2015.

  1. Method of generating ploynucleotides encoding enhanced folding variants

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.


    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  2. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.


    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  3. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle

    Directory of Open Access Journals (Sweden)

    Giorgio Kaniadakis


    Full Text Available Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker–Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker–Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker–Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker–Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker–Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A 296, 405 (2001, univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker–Planck equation in its most general form.

  4. Vocal fold contact patterns based on normal modes of vibration. (United States)

    Smith, Simeon L; Titze, Ingo R


    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Partially folded intermediates during trypsinogen denaturation

    Directory of Open Access Journals (Sweden)

    Martins N.F.


    Full Text Available The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

  6. Discrete kinetic models from funneled energy landscape simulations.

    Directory of Open Access Journals (Sweden)

    Nicholas P Schafer

    Full Text Available A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK. In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an "inside-out", nucleation-propagation like character.

  7. TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav


    significance threshold are shown to be more accurate for TurboFold than for alternative methods that estimate base pairing probabilities. TurboFold-MEA, which uses base pairing probabilities from TurboFold in a maximum expected accuracy algorithm for secondary structure prediction, has accuracy comparable to the best performing secondary structure prediction methods. The computational and memory requirements for TurboFold are modest and, in terms of sequence length and number of sequences, scale much more favorably than joint alignment and folding algorithms. Conclusions TurboFold is an iterative probabilistic method for predicting secondary structures for multiple RNA sequences that efficiently and accurately combines the information from the comparative analysis between sequences with the thermodynamic folding model. Unlike most other multi-sequence structure prediction methods, TurboFold does not enforce strict commonality of structures and is therefore useful for predicting structures for homologous sequences that have diverged significantly. TurboFold can be downloaded as part of the RNAstructure package at

  8. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.


    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  9. Kinetic chain abnormalities in the athletic shoulder. (United States)

    Sciascia, Aaron; Thigpen, Charles; Namdari, Surena; Baldwin, Keith


    Overhead activities require the shoulder to be exposed to and sustain repetitive loads. The segmental activation of the body's links, known as the kinetic chain, allows this to occur effectively. Proper muscle activation is achieved through generation of energy from the central segment or core, which then transfers the energy to the terminal links of the shoulder, elbow, and hand. The kinetic chain is best characterized by 3 components: optimized anatomy, reproducible efficient motor patterns, and the sequential generation of forces. However, tissue injury and anatomic deficits such as weakness and/or tightness in the leg, pelvic core, or scapular musculature can lead to overuse shoulder injuries. These injuries can be prevented and maladaptations can be detected with a thorough understanding of biomechanics of the kinetic chain as it relates to overhead activity.

  10. Oxidative desulfurization: kinetic modelling. (United States)

    Dhir, S; Uppaluri, R; Purkait, M K


    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  11. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.


    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  12. Modeling chemical kinetics graphically

    NARCIS (Netherlands)

    Heck, A.


    In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could


    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  14. Kinetic energy budget details

    Indian Academy of Sciences (India)

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  15. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.


    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  16. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast

    Directory of Open Access Journals (Sweden)

    Anja Brickwedde


    Full Text Available The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation” of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  17. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. (United States)

    Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A; Magalhães, Frederico; Kuijpers, Niels G A; Gibson, Brian; Pronk, Jack T; Daran, Jean-Marc G


    The lager brewing yeast Saccharomyces pastorianus , an interspecies hybrid of S. eubayanus and S. cerevisiae , ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14 C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  18. Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics. (United States)

    Scandurra, Francesca M; Gnaiger, Erich


    When oxygen supply to tissues is limiting, mitochondrial respiration and ATP production are compromised. To assess the bioenergetic consequences under normoxia and hypoxia, quantitative evaluation of mitochondrial oxygen kinetics is required. Using high-resolution respirometry, the "apparent K (m)" for oxygen or p (50) of respiration in 32D cells was determined at 0.05 +/- 0.01 kPa (0.4 mmHg, 0.5 microM, 0.25% air saturation). Close agreement with p (50) of isolated mitochondria indicates that intracellular gradients are small in small cells at routine activity. At intracellular p (O2) respiration is limited by >2% with a p (50) of 0.05 kPa. Over-estimation of p (50) at 0.4 kPa (3 mmHg) would imply significant (>17%) oxygen limitation of respiration under intracellular normoxia. Based on a critical review, we conclude that p (50) ranges from 0.01 to 0.10 kPa in mitochondria and small cells in the absence of inhibitors of cytochrome c oxidase, whereas experimental artefacts explain the controversial >200-fold range of p (50) in the literature on mitochondrial oxygen kinetics.

  19. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities. (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R


    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  20. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria. (United States)

    Moreadith, R W; Lehninger, A L


    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.

  1. The role of the mesenchyme in cranial neural fold elevation

    International Nuclear Information System (INIS)

    Morris-Wiman, J.A.


    It has been previously postulated that the expansion of an hyaluronate-rich extracellular matrix in the fold mesenchyme is responsible for neural fold elevation. In this study we provide evidence that such expansions may play an important role in cranial neural fold elevation by pushing the folds towards the dorsal midline to assist in their elevation. For mesenchymal expansion to result in fold elevation, hyaluronate (HA) and mesenchymal cells must be non-randomly distributed within the mesenchyme. Patterns of mesenchymal cell distribution and cell proliferation were analyzed using the computer-assisted method of smoothed spatial averaging. The distribution of Alcian blue-stained and 3 H-glucosamine-labelled HA was also analyzed during cranial neural fold elevation using established image processing techniques. Analysis of the distribution of 3 H-thymidine-labelled mesenchymal cells indicated that differential mitotic activity was not responsible for decreased mesenchymal cell density. Likewise, analysis of distribution patterns of 3 H-glucosamine-labelled HA indicated that decreased HA concentration was not produced by regional differences in HA synthesis. These results suggest that decreases in mesenchymal cell density and HA concentration that occur during neural fold elevation are produced by mesenchymal expansion

  2. Unraveling metamaterial properties in zigzag-base folded sheets. (United States)

    Eidini, Maryam; Paulino, Glaucio H


    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  3. Fluorescence of Alexa fluor dye tracks protein folding.

    Directory of Open Access Journals (Sweden)

    Simon Lindhoud

    Full Text Available Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488, which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  4. The impact of intraglottal vortices on vocal fold dynamics (United States)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean


    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  5. Idiopathic unilateral vocal-fold paralysis in the adult. (United States)

    Rubin, F; Villeneuve, A; Alciato, L; Slaïm, L; Bonfils, P; Laccourreye, O


    To analyze the characteristics of adult idiopathic unilateral vocal-fold paralysis. Retrospective study of diagnostic problems, clinical data and recovery in an inception cohort of 100 adult patients with idiopathic unilateral vocal-fold paralysis (Group A) and comparison with a cohort of 211 patients with isolated non-idiopathic non-traumatic unilateral vocal-fold paralysis (Group B). Diagnostic problems were noted in 24% of cases in Group A: eight patients with concomitant common upper aerodigestive tract infection, five patients with a concomitant condition liable to induce immunodepression and 11 patients in whom a malignant tumor occurred along the path of the ipsilateral vagus and inferior laryngeal nerves or in the ipsilateral paralyzed larynx. There was no recovery of vocal-fold motion beyond 51 months after onset of paralysis. The 5-year actuarial estimate for recovery differed significantly (Pvocal-fold paralysis. In non-traumatic vocal-fold paralysis in adult patients, without recovery of vocal-fold motion, a minimum three years' regular follow-up is recommended. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Botulinum toxin injections for new onset bilateral vocal fold motion impairment in adults. (United States)

    Ekbom, Dale C; Garrett, C Gaelyn; Yung, Katherine C; Johnson, Felicia L; Billante, Cheryl R; Zealear, David L; Courey, Mark S


    Review of clinical experience and results using botulinum toxin type A (BTX) for the management of adult patients with respiratory compromise due to new onset bilateral vocal fold motion impairment (BVFMI). Retrospective case series. The records of 11 patients from two institutions with respiratory compromise due to bilateral vocal fold motion impairment were reviewed. Age, sex, etiology of motion impairment, subjective response to BTX injections, changes in pulmonary function studies pre- and postinjection when available, the dosage of botulinum toxin required to achieve response, the number of injections per patient, and complications were reported. All patients were over 18 years old. There were three male and eight female subjects. The etiology of BVFMI was due to previous anterior cervical surgery in nine patients and prolonged intubation in two. Ten patients reported symptomatic improvement and returned for an average of nine injections over the 10-year period of study. The most common interval between injections was 3 months. In all patients the dose required to achieve symptomatic improvement was at least 2.5 mouse units injected into each vocal fold. One patient without relief of symptoms had bilateral cricoarytenoid joint fixation. Complications were limited to moderate dysphagia in one patient and breathy dysphonia in all patients. BTX injection into the vocal folds provides temporary relief of symptoms in airway obstruction in adult patients with BVFMI. Patients require an average of 2.5 units of botulinum injection into each vocal fold and have an average length of response of 3 months. BTX injection may be used as a form of temporary relief of airway obstruction in patients wishing to avoid ablative surgery or tracheotomy.


    Directory of Open Access Journals (Sweden)

    M. M. Buslov


    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  8. Endoscopic Anatomy of the Tensor Fold and Anterior Attic. (United States)

    Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela


    Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.

  9. Radiation Fibrosis of the Vocal Fold: From Man to Mouse (United States)

    Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.


    Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839

  10. Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow (United States)

    Alexandrov, D. V.; Galenko, P. K.


    The effect of n-fold crystal symmetry is investigated for a two-dimensional stable dendritic growth in the presence of a forced convective flow. We consider dendritic growth in a one-component undercooled liquid. The theory is developed for the parabolic solid-liquid surface of dendrite growing at arbitrary growth Péclet numbers keeping in mind small anisotropies of surface energy and growth kinetics. The selection criterion determining the stable growth velocity of the dendritic tip and its stable tip diameter is found on the basis of solvability analysis. The obtained criterion includes previously developed theories of thermally and kinetically controlled dendritic growth with convection for the case of four-fold crystal symmetry. The obtained nonlinear system of equations (representing the selection criterion and undercooling balance) for the determination of dendrite tip velocity and dendrite tip diameter is analytically solved in a parametric form. These exact solutions clearly demonstrate a transition between thermally and kinetically controlled growth regimes. In addition, we show that the dendrites with larger crystal symmetry grow faster than those with smaller symmetry.

  11. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids. (United States)

    Li, S; Fang, H; Wang, K W


    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  12. Water dynamics clue to key residues in protein folding

    International Nuclear Information System (INIS)

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; She, Zhen-Su


    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  13. Protein folding and the organization of the protein topology universe

    DEFF Research Database (Denmark)

    Lindorff-Larsen,, Kresten; Røgen, Peter; Paci, Emanuele


    residues and, in addition, that the topology of the transition state is closer to that of the native state than to that of any other fold in the protein universe. Here, we review the evidence for these conclusions and suggest a molecular mechanism that rationalizes these findings by presenting a view...... of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose...

  14. Adjustable thermal resistor by reversibly folding a graphene sheet. (United States)

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo


    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  15. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits. (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem


    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav


    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  17. Endoscopic vocal fold injection using a 25-gauge butterfly needle. (United States)

    Buchanan, M A; Riffat, F; Palme, C E


    To describe a useful technique for infiltrating a bulking agent using a butterfly needle, as part of a transoral endoscopic vocal fold medialisation procedure. This paper describes the procedure of grasping the needle with phonosurgery forceps and administering the injectate to the vocal fold through careful application of the syringe plunger via a length of rubber tubing from outside the mouth. This procedure is performed routinely in our institution without complication. The advantages of this technique are discussed. This is a safe and easy method of injecting into a vocal fold.

  18. LLNL Chemical Kinetics Modeling Group

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J


    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  19. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice. (United States)

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming


    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  20. Combinatorial pattern discovery approach for the folding trajectory analysis of a beta-hairpin.

    Directory of Open Access Journals (Sweden)

    Laxmi Parida


    Full Text Available The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters-each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity c in RO((N + nm log n, where N is the size of the output patterns and (n x m is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a beta-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1 The method recovers states previously obtained by visually analyzing free energy surfaces. (2 It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the beta-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3 The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the

  1. Combinatorial Pattern Discovery Approach for the Folding Trajectory Analysis of a beta-Hairpin.

    Directory of Open Access Journals (Sweden)


    Full Text Available The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters-each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity cinRO((N + nm log n, where N is the size of the output patterns and (n x m is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a beta-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1 The method recovers states previously obtained by visually analyzing free energy surfaces. (2 It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the beta-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3 The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the

  2. Lateral Nail Fold Incision Technique for Venous Anastomosis in Fingertip Replantation. (United States)

    Jeon, Byung-Joon; Yang, Jae-Won; Roh, Si Young; Ki, Sae Hwi; Lee, Dong Chul; Kim, Jin Soo


    Successful venous anastomosis is one of the most important factors in fingertip replantation. Volar veins in the fingertip course proximally in a random pattern, which makes it difficult to find out the exact locations. Although dorsal veins in the lateral nail fold have constant location and adequate diameter for anastomosis, they have been known as hard to dissect from the immobile subcutaneous tissue. The authors present a new lateral nail fold incision technique for venous anastomosis in the fingertip amputations. From February 2010 to October 2010, 9 replantations using the new incision and venous anastomosis technique were performed in 9 patients. The levels of amputations were from the nail base to half of the nail bed. After repairing the proper digital arteries, a skin incision was made along the junction between the lateral nail fold and nail bed. Careful dissection was performed to isolate the veins in the lateral nail fold. After evaluation of the suitability of the vessel, venous anastomosis was performed. Seven male and 2 female patients were enrolled in this study. Appropriate dorsal veins for anastomosis could be found in 8 of 9 patients. All the replanted stumps survived without venous congestion and following additional procedures. A sizable volar or dorsal vein could not be found in 1 patient. The salvage technique was required in this patient. Dorsal veins in the lateral nail fold can be found easily because of the constant anatomical location. The new incision on the lateral nail fold provides not only sufficient operative field for anastomosis but also additional opportunity of successful venous anastomosis in the selected cases. The authors, therefore, propose this technique as an effective method for an alternative venous anastomosis in the zone I replantation.

  3. CASP10-BCL::Fold efficiently samples topologies of large proteins. (United States)

    Heinze, Sten; Putnam, Daniel K; Fischer, Axel W; Kohlmann, Tim; Weiner, Brian E; Meiler, Jens


    During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some β-strand proteins model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein. © 2015 Wiley Periodicals, Inc.

  4. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  5. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage mini protein (United States)

    Day, Ryan; Paschek, Dietmar; Garcia, Angel E.


    We study the unbiased folding/unfolding thermodynamics of the Trp-cage miniprotein using detailed molecular dynamics simulations of an all-atom model of the protein in explicit solvent, using the Amberff99SB force field. Replica-exchange molecular dynamics (REMD) simulations are used to sample the protein ensembles over a broad range of temperatures covering the folded and unfolded states, and at two densities. The obtained ensembles are shown to reach equilibrium in the 1 μs per replica timescale. The total simulation time employed in the calculations exceeds 100 μs. Ensemble averages of the fraction folded, pressure, and energy differences between the folded and unfolded states as a function of temperature are used to model the free energy of the folding transition, ΔG(P,T), over the whole region of temperature and pressures sampled in the simulations. The ΔG(P,T) diagram describes an ellipse over the range of temperatures and pressures sampled, predicting that the system can undergo pressure induced unfolding and cold denaturation at low temperatures and high pressures, and unfolding at low pressures and high temperatures. The calculated free energy function exhibits remarkably good agreement with the experimental folding transition temperature (Tf = 321 K), free energy and specific heat changes. However, changes in enthalpy and entropy are significantly different than the experimental values. We speculate that these differences may be due to the simplicity of the semi-empirical force field used in the simulations and that more elaborate force fields may be required to describe appropriately the thermodynamics of proteins. PMID:20408169

  6. Kinetics of matching. (United States)

    Mark, T A; Gallistel, C R


    Rats responded on concurrent variable interval schedules of brain stimulation reward in 2-trial sessions. Between trials, there was a 16-fold reversal in the relative rate of reward. In successive, narrow time windows, the authors compared the ratio of the times spent on the 2 levers to the ratio of the rewards received. Time-allocation ratios tracked wide, random fluctuations in the reward ratio. The adjustment to the midsession reversal in relative rate of reward was largely completed within 1 interreward interval on the leaner schedule. Both results were unaffected by a 16-fold change in the combined rates of reward. The large, rapid, scale-invariant shifts in time-allocation ratios that underlie matching behavior imply that the subjective relative rate of reward can be determined by a very few of the most recent interreward intervals and that this estimate can directly determine the ratio of the expected stay durations.

  7. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Yongping Yue


    Full Text Available Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.

  8. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Directory of Open Access Journals (Sweden)

    Angelou Valerie


    Full Text Available Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group. We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.

  9. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar (United States)

    Vassiliki, Kalodimou; Irini, Messini; Nikolaos, Psychalakis; Karampela, Eleftheria; Apostolos, Papalois


    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments. PMID:26933440

  10. RNAslider: a faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry. (United States)

    Horesh, Yair; Wexler, Ydo; Lebenthal, Ilana; Ziv-Ukelson, Michal; Unger, Ron


    Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Here, we describe and implement an O(NLpsi(L)) engine for the consecutive windows folding problem, where psi(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.

  11. Botulinum toxin in the treatment of vocal fold nodules. (United States)

    Allen, Jacqui E; Belafsky, Peter C


    Promising new techniques in the management of vocal fold nodules have been developed in the past 2 years. Simultaneously, the therapeutic use of botulinum toxin has rapidly expanded. This review explores the use of botulinum toxin in treatment of vocal nodules and summarizes current therapeutic concepts. New microsurgical instruments and techniques, refinements in laser technology, radiosurgical excision and steroid intralesional injections are all promising new techniques in the management of vocal nodules. Botulinum toxin-induced 'voice rest' is a new technique we have employed in patients with recalcitrant nodules. Successful resolution of nodules is possible with this technique, without the risk of vocal fold scarring inherent in dissection/excision techniques. Botulinum toxin usage is exponentially increasing, and large-scale, long-term studies demonstrate its safety profile. Targeted vocal fold temporary paralysis induced by botulinum toxin injection is a new, well tolerated and efficacious treatment in patients with persistent vocal fold nodules.

  12. New Analysis and Theory of Deployable Folded Structures, Phase II (United States)

    National Aeronautics and Space Administration — A recently developed mathematical folding theory has great value for deployable space structures and in situ manufacture of large beams, panels and cylinders. The...

  13. RNA inverse folding using Monte Carlo tree search. (United States)

    Yang, Xiufeng; Yoshizoe, Kazuki; Taneda, Akito; Tsuda, Koji


    Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. MCTS-RNA is available at .

  14. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)


    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  15. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika


    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  16. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  17. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail:; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)


    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  18. Trends in Utilization of Vocal Fold Injection Procedures. (United States)

    Rosow, David E


    Office-based vocal fold injections have become increasingly popular over the past 15 years. Examination of trends in procedure coding for vocal fold injections in the United States from 2000 to 2012 was undertaken to see if they reflect this shift. The US Part B Medicare claims database was queried from 2000 through 2012 for multiple Current Procedural Terminology codes. Over the period studied, the number of nonoperative laryngoscopic injections (31513, 31570) and operative medialization laryngoplasties (31588) remained constant. Operative vocal fold injection (31571) demonstrated marked linear growth over the 12-year study period, from 744 procedures in 2000 to 4788 in 2012-an increase >640%. The dramatic increased incidence in the use of code 31571 reflects an increasing share of vocal fold injections being performed in the operating room and not in an office setting, running counter to the prevailing trend toward awake, office-based injection procedures. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  19. Traumatic chorioretinal folds treated with intra-vitreal triamcinolone injection

    Directory of Open Access Journals (Sweden)

    Kook Young Kim


    Full Text Available A 34-year-old male visited the hospital due to decreased visual acuity in the left eye following an injury from a car accident. In the left eye, best-corrected visual acuity (BCVA was hand motion and intraocular pressure (IOP was 8 mmHg. Choroidal vasodilation and chorioretinal folds were observed by spectral domain-optical coherence tomography (SD-OCT. Topical and systemic steroid treatments did not improve the chorioretinal folds. Twelve months after the injury, intra-vitreal triamcinolone (4 mg/0.1 ml was injected. Six months after intra-vitreal triamcinolone injection, BCVA in the left eye had improved to 20/100. Fundus examination showed improvement in retinal vascular tortuosity and SD-OCT revealed improvements in choroidal vasodilation and chorioretinal folds. Intra-vitreal triamcinolone injection (IVTI was effective against traumatic chorioretinal folds with no recurrence based on objective observation by fundus photography and SD-OCT.

  20. Phonosurgery of the vocal folds : a classification proposal

    NARCIS (Netherlands)

    Remacle, M; Friedrich, G; Dikkers, FG; de Jong, F

    The Phonosurgery Committee of the European Laryngological Society (ELS) has examined the definition and technical description of phonosurgical procedures. Based on this review, the committee has proposed a working classification. The current presentation is restricted to vocal fold surgery (VFS)

  1. Thermal analysis for folded solar array of spacecraft in orbit

    International Nuclear Information System (INIS)

    Yang, W.H.; Cheng, H.E.; Cai, A.


    The combined radiation-conduction heat transfer in folded solar array was considered as a three-dimensional anisotropic conduction without inner heat source. The three-dimensional equivalent conductivity in cell plate were obtained. The especially discrete equation coefficients of the nodes on the surfaces of adjacent cell plates were deduced by utilizing the simplified radiation network among the two adjacent cell plate surfaces and the deep cold space. All the thermal influence factors on the temperature response of the folded solar array were considered carefully. SIP method was used to solve the discrete equation. By comparing the calculation results under three cases, the temperature response and the maximum average difference of the folded solar array was obtained during the period of throw-radome of the launch vehicle and spread of the folded solar array. The obtained result is a valuable reference for the selection of the launch time of the spacecraft

  2. Methionine kinetics and balance at the 1985 FAO/WHO/UNU intake requirement in adult men studied with L-[2H3-methyl-1-13C]methionine as a tracer

    International Nuclear Information System (INIS)

    Young, V.R.; Wagner, D.A.; Burini, R.; Storch, K.J.


    The upper range of the requirement for methionine plus cystine in healthy adults was proposed in 1985 by FAO/WHO/UNU to be 13 body wt-1.d-1. To explore the validity of this estimate, five healthy, young adult men were given for 7 d a diet based on an L-amino acid mixture supplying 13 mg (87 without cystine. Constant intravenous infusions of L-[2H3-methyl-1-13C]methionine were given on days 5 and 7 while subjects were in the fed and postabsorptive states, respectively. Estimates were made of methionine oxidation, and daily methionine balance was derived from the intake-oxidation data. For the five subjects, methionine balances were -0.9, +0.7, +3.5, -3.1, and -3.8 mg kg-1.d-1, or -6, +5, +23, -21, and -26 These findings lead to the conclusion that the upper range of the requirement for methionine plus cystine probably exceeds 13 in healthy young adults. The implications of this conclusion for establishing an appropriate amount of sulfur amino acids in an amino acid requirement pattern for adults is discussed

  3. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.


    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  4. Morphometric Study of Vocal Folds in Indian Cadavers

    Directory of Open Access Journals (Sweden)

    Rawal J.D.


    Full Text Available Introduction: -The larynx is an air passage and a sphincteric device used in respiration and phonation. The larynx, from inside outwards has a framework of mucosa surrounded by fibro-elastic membrane which in turn is surrounded by cartilages and then a layer of muscles. Vocal folds are intrinsic ligament of larynx covered by mucosal folds. Larynx generates sound through rhythmic opening and closing of the vocal folds. The perceived pitch of human voice mainly depends upon fundamental frequency of sound generated by larynx. Aim: - The aim of present study is to measure various dimensions of vocal folds in Indian cadavers. Material & Methods: - 50 larynx were obtained from embalmed cadavers, of which 10 larynx were of females. Vocal cords were dissected from the larynx and morphometric analysis was done. Results and Conclusions: - The average total length of the vocal folds was found to be 16.11 mm. ± 2.62 mm. in male and 14.10 mm. ± 1.54 mm. in female cadavers. The average width of the vocal folds was found to be 4.38 mm. ± 0.74 mm. in male and 3.60 mm. ± 0.64 mm. in female cadavers. The average total length of the membranous part of the vocal folds was found to be 11.90 mm. ± 1.86 mm. in male and 10.45 mm. ± 1.81 mm. in female cadavers. The average ratio of the length of the membranous and the cartilaginous parts of the vocal folds was calculated to be 3.10 ± 0.96in male and 2.85 ± 0.73in female cadavers.

  5. WW Domain Folding Complexity Revealed by Infrared Spectroscopy


    Davis, Caitlin M.; Dyer, R. Brian


    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescen...

  6. Cervical osteophytes presenting as unilateral vocal fold paralysis and dysphagia. (United States)

    Yoskovitch, A; Kantor, S


    Any process involving either the vagus nerve, its recurrent laryngeal branch or the external branch of the superior laryngeal nerve may cause paralysis of the vocal fold. The most common cause is neoplasm. Clinically, the patients often present with a hoarse, breathy voice as well as symptoms of aspiration. The following represents a unique case of unilateral vocal fold paralysis and dysphagia caused by a degenerative disease of the cervical spine, resluting in extrinsic compression of the recurrent laryngeal nerve.

  7. Double folded Yukawa interaction potential between two heavy ions

    International Nuclear Information System (INIS)

    Bulgac, A.; Carstoiu, F.; Dumitrescu, O.


    A simple semi-analytical formula for the heavy ion interaction potential within the double-folding model approximation is obtained. The folded interaction is assumed to be expressed in Yukawa terms or the derivatives of them. The densities used can be both experimental or theoretical (of simple ''step-wise'', ''Fermi-Saxon-Woods'' or complicated ''shell model'' structure) densities. A way of inserting the exchange terms is discussed. Numerical calculations for some colliding partners are reported. (author)

  8. The Arterial Folding Point During Flexion of the Hip Joint

    International Nuclear Information System (INIS)

    Park, Sung Il; Won, Je Hwan; Kim, Byung Moon; Kim, Jae Keun; Lee, Do Yun


    Purpose: Endovascular stents placed in periarticular vessels may be at a greater risk of neointimal hyperplasia and eventual occlusion than those placed in non-periarticular vessels. The purpose of this study was to investigate the location of maximal conformational change along the iliac and femoral artery, the folding point, during flexion of the hip joint and its location relative to the hip joint and the inguinal ligament. Methods: Seventy patients undergoing femoral artery catheterization were evaluated. The patients were 47 men and 23 women and ranged in age from 26 to 75 years (mean 54 years). The arteries (right:left = 34:36) were measured using a marked catheter for sizing vessels. Fluoroscopic images were obtained in anteroposterior and lateral projections in neutral position, and in the lateral projection in flexed position of the hip joint. The folding point was determined by comparing the lateral projection images in the neutral and flexed positions. The distance from the acetabular roof to the folding point and the distance from the inguinal ligament to the folding point was evaluated. Results: : The folding point was located 42.8 ± 28.6 mm cranial to the acetabular roof and 35.1 ± 30.1 mm cranial to the inguinal ligament. As the patient’s age increased, the folding point was located more cranially (p < 0.001). Conclusions: The folding point during flexion of the hip joint was located 42.8 ± 28.6 mm cranial to the acetabular roof and 35.1 ± 30.1 mm cranial to the inguinal ligament. As the patient's age increased, the folding point was located more cranially. When a stent is inserted over this region, more attention may be needed during follow-up to monitor possible occlusion and stent failure.

  9. Oral and vocal fold diadochokinesis in dysphonic women


    Louzada,Talita; Beraldinelle,Roberta; Berretin-Felix,Giédre; Brasolotto,Alcione Ghedini


    The evaluation of oral and vocal fold diadochokinesis (DDK) in individuals with voice disorders may contribute to the understanding of factors that affect the balanced vocal production. Scientific studies that make use of this assessment tool support the knowledge advance of this area, reflecting the development of more appropriate therapeutic planning. Objective: To compare the results of oral and vocal fold DDK in dysphonic women and in women without vocal disorders. Material and methods: F...

  10. Vocal fold ion transport and mucin expression following acrolein exposure. (United States)

    Levendoski, Elizabeth Erickson; Sivasankar, M Preeti


    The vocal fold epithelium is exposed to inhaled particulates including pollutants during breathing in everyday environments. Yet, our understanding of the effects of pollutants on vocal fold epithelial function is extremely limited. The objective of this study was to investigate the effect of the pollutant acrolein on two vocal fold epithelial mechanisms: ion transport and mucin (MUC) synthesis. These mechanisms were chosen as each plays a critical role in vocal defense and in maintaining surface hydration which is necessary for optimal voice production. Healthy, native porcine vocal folds (N = 85) were excised and exposed to an acrolein or sham challenge. A 60-min acrolein, but not sham challenge significantly reduced ion transport and inhibited cyclic adenosine monophosphate-dependent, increases in ion transport. Decreases in ion transport were associated with reduced sodium absorption. Within the same timeline, no significant acrolein-induced changes in MUC gene or protein expression were observed. These results improve our understanding of the effects of acrolein on key vocal fold epithelial functions and inform the development of future investigations that seek to elucidate the impact of a wide range of pollutant exposures on vocal fold health.

  11. Self-Folding Textiles through Manipulation of Knit Stitch Architecture

    Directory of Open Access Journals (Sweden)

    Chelsea E. Knittel


    Full Text Available This research presents a preliminary study on finding predictable methods of controlling the self-folding behaviors of weft knit textiles for use in the development of smart textiles and garment devices, such as those with shape memory, auxetic behavior or transformation abilities. In this work, Shima Seiki SDS-One Apex computer-aided knitting technology, Shima Seiki industrial knitting machines, and the study of paper origami tessellation patterns were used as tools to understand and predict the self-folding abilities of weft knit textiles. A wide range of self-folding weft knit structures was produced, and relationships between the angles and ratios of the knit and purl stitch types were determined. Mechanical testing was used as a means to characterize differences produced by stitch patterns, and to further understand the relationships between angles and folding abilities. By defining a formulaic method for predicting the nature of the folds that occur due to stitch architecture patterns, we can better design self-folding fabrics for smart textile applications.

  12. Multi-crease Self-folding by Global Heating. (United States)

    Miyashita, Shuhei; Onal, Cagdas D; Rus, Daniela


    This study demonstrates a new approach to autonomous folding for the body of a 3D robot from a 2D sheet, using heat. We approach this challenge by folding a 0.27-mm sheetlike material into a structure. We utilize the thermal deformation of a contractive sheet sandwiched by rigid structural layers. During this baking process, the heat applied on the entire sheet induces contraction of the contracting layer and thus forms an instructed bend in the sheet. To attain the targeted folding angles, the V-fold spans method is used. The targeted angle θout can be kinematically encoded into crease geometry. The realization of this angle in the folded structure can be approximately controlled by a contraction angle θin. The process is non-reversible, is reliable, and is relatively fast. Our method can be applied simultaneously to all the folds in multi-crease origami structures. We demonstrate the use of this method to create a lightweight mobile robot.

  13. Synthetic oligorotaxanes exert high forces when folding under mechanical load (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie


    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  14. Expression of tenascin-C in a rat vocal fold injury model and its regulation of fibroblasts. (United States)

    Li, Juan; Liu, Yiqiong; Wang, Yiming; Xu, Wen


    Tenascin-C (Tnc) is an extracellular matrix (ECM) glycoprotein that plays a vital role in wound healing and fibrotic disease. Tnc is highly upregulated soon after vocal fold injury, but its function in the vocal fold has not yet been defined. In this study, we investigated Tnc expression in a rat vocal fold injury model in vivo and its roles in fibroblasts in vitro. In vivo and in vitro. Tnc mRNA and protein expression levels were quantified on days 3, 7, 14, 28, and 56 after vocal fold injury in Sprague-Dawley rats. In vitro, immunocytochemistry, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed in primary rat vocal fold fibroblasts following Tnc or transforming growth factor (TGF)-β1 stimulation to investigate the phenotypic effects. Tnc mRNA and protein expression was upregulated dramatically on days 3 and 7 after injury, and significant differences were observed by qRT-PCR (P vocal fold fibroblasts. Following incubation with Tnc for 72 hours, α-smooth muscle actin, collagen I, and fibronectin expression was significantly upregulated (P vocal fold fibroblast migration, transdifferentiation, and ECM protein synthesis in vitro. Tnc was induced by TGF-β1 in a SMAD3-dependent manner. Transient expression of Tnc is likely to promote regeneration, but its potential role in fibrosis requires further study. NA Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Kinetics of mercury reduction by Serratia marcescens mercuric reductase expressed by pseudomonas putida strains

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Deckwer, W.D. [GBF-Gesellschaft fuer Biotechnologische Forschung mbH, Abteilung TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig (Germany)


    Mercury (Hg) resistance is widespread among microorganisms and is based on the intracellular transformation of Hg(II) to less toxic elemental Hg(0). The use of microbial consortia to demercurize polluted wastewater streams and environments has been demonstrated. To develop efficient and versatile microbial cleanup strategies requires detailed knowledge of transport and reaction rates. This study focuses on the kinetics of the key enzyme of the microbial transformation, e.g., the mercuric reductase (MerA) under conditions closely resembling the cell interior. To this end, previously constructed and characterized Pseudomonas putida strains expressing MerA from Serratia marcescens were applied. Of the P. putida strains considered in this study P. putida KT2442::mer73 constitutively expressing broad spectrum mercury resistance (merTPAB) yielded the highest mercuric reductase (MerA) activity directly after cell disruption. MerA in the raw extract was further purified (about 100 fold). Reduction rates were measured for various substrates (HgCl{sub 2}, Hg{sub 2}SO{sub 4}, Hg(NO{sub 3}){sub 2} and phenyl mercury acetate) up to high concentrations dependent on the purification grade. In all cases, a pronounced substrate inhibition was found. The kinetic constants determined for the cell raw extract are in agreement with those measured for intact cells. However, the rate data exhibit reduced affinity and inhibition with rising purification grade (specific activity). Therefore, the findings seemingly point to reactions preceding the catalytic reduction. Based on simplified assumptions, a kinetic model is suggested which reasonably describes the experimental findings and can advantageously be applied to the bioreactor design. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  16. Calcite Dissolution Kinetics (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.


    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  17. Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme.

    Directory of Open Access Journals (Sweden)

    Jin Wang


    Full Text Available Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change - protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the active site cleft of the yeast aspartic proteinase saccharopepsin (YPrA by folding its own N-terminal residues into an amphipathic alpha helix. We developed a multi-scaled approach that explores the underlying mechanism by combining structure-based molecular dynamics simulations at the residue level with a stochastic path method at the atomic level. Both the free energy profile and the associated kinetic paths reveal a common scheme whereby IA3 binds to its target enzyme prior to folding itself into a helix. This theoretical result is consistent with recent time-resolved experiments. Furthermore, exploration of the detailed trajectories reveals the important roles of non-native interactions in the initial binding that occurs prior to IA3 folding. In contrast to the common view that non-native interactions contribute only to the roughness of landscapes and impede binding, the non-native interactions here facilitate binding by reducing significantly the entropic search space in the landscape. The information gained from multi-scaled simulations of the folding of this intrinsically disordered protein in the presence of its binding target may prove useful in the design of novel inhibitors of aspartic proteinases.

  18. Pediatric paradoxical vocal-fold motion: presentation and natural history. (United States)

    Maturo, Stephen; Hill, Courtney; Bunting, Glenn; Baliff, Cathy; Ramakrishna, Jyoti; Scirica, Christina; Fracchia, Shannon; Donovan, Abigail; Hartnick, Christopher


    To describe (1) a cohort of children with paradoxical vocal-fold motion (PVFM) who were referred to a multidisciplinary airway center and (2) the outcomes of various treatment modalities including speech therapy, gastroesophageal reflux disease treatment, and psychiatric treatment. This was a case series with chart review of children younger than 18 years with PVFM evaluated at a tertiary care pediatric airway center over a 36-month period. Fifty-nine children with PVFM were evaluated. The cohort had a mean age of 13.64 years (range: 8-18 years) and a female-to-male ratio of 3:1. Speech therapy as an initial treatment resulted in a 63% (24 of 38) success rate after an average of 3.7 treatment sessions. Speech therapy was a more successful treatment than antireflux therapy (P = .001). Ten percent (6 of 59) of the children presented with a known psychiatric diagnosis, and 30% (18 of 59) of children in the cohort were ultimately diagnosed with a psychiatric condition. Children with inspiratory stridor at rest had a lower initial success rate with speech therapy (56%), a higher rate of underlying psychiatric disorders (75%), and a high rate of success after psychiatric treatment (100%) that required, on average, 3 sessions over a 2-month period. To our knowledge, this is the largest study to date on pediatric PVFM. The majority of children with PVFM improve with speech therapy. Children with PVFM at rest may be better treated with psychiatric therapy than speech therapy. Furthermore, children who present with symptoms at rest may have a higher likelihood of underlying psychiatric disease.

  19. Many Activities, One Structure: Functional Plasticity of Ribozyme Folds

    Directory of Open Access Journals (Sweden)

    Matthew W.L. Lau


    Full Text Available Catalytic RNAs, or ribozymes, are involved in a number of essential biological processes, such as replication of RNA genomes and mobile genetic elements, RNA splicing, translation, and RNA degradation. The function of ribozymes requires the formation of active sites decorated with RNA functional groups within defined three-dimensional (3D structures. The genotype (sequence of RNAs ultimately determines what 3D structures they adopt (as a function of their environmental conditions. These 3D structures, in turn, give rise to biochemical activity, which can further elaborate them by catalytic rearrangements or association with other molecules. The fitness landscape of a non-periodic linear polymer, such as RNA, relates its primary structure to a phenotype. Two major challenges in the analysis of ribozymes is to map all possible genotypes to their corresponding catalytic activity (that is, to determine their fitness landscape experimentally, and to understand whether their genotypes and three-dimensional structures can support multiple different catalytic functions. Recently, the combined results of experiments that employ in vitro evolution methods, high-throughput sequencing and crystallographic structure determination have hinted at answers to these two questions: while the fitness landscape of ribozymes is rugged, meaning that their catalytic activity cannot be optimized by a smooth trajectory in sequence space, once an RNA achieves a stable three-dimensional fold, it can be endowed with distinctly different biochemical activities through small changes in genotype. This functional plasticity of highly structured RNAs may be particularly advantageous for the adaptation of organisms to drastic changes in selective pressure, or for the development of new biotechnological tools.

  20. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm. (United States)

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun


    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  1. Classification of nasolabial folds in Asians and the corresponding surgical approaches: By Shanghai 9th People's Hospital. (United States)

    Zhang, Lu; Tang, Meng-Yao; Jin, Rong; Zhang, Ying; Shi, Yao-Ming; Sun, Bao-Shan; Zhang, Yu-Guang


    One of the earliest signs of aging appears in the nasolabial fold, which is a special anatomical region that requires many factors for comprehensive assessment. Hence, it is inadequate to rely on a single index to facilitate the classification of nasolabial folds. Through clinical observation, we have observed that traditional filling treatments provide little improvement for some patients, which prompted us to seek a more specific and scientific classification standard and assessment system. A total of 900 patients who sought facial rejuvenation treatment in Shanghai 9th People's Hospital were invited in this study. We observed the different nasolabial fold traits for different age groups and in different states, and the results were compared with the Wrinkle Severity Rating Scale (WSRS). We summarized the data, presented a classification scheme, and proposed a selection of treatment options. Consideration of the anatomical and histological features of nasolabial folds allowed us to divide nasolabial folds into five types, namely the skin type, fat pad type, muscular type, bone retrusion type, and hybrid type. Because different types of nasolabial folds require different treatments, it is crucial to accurately assess and correctly classify the conditions. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte


    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  3. A hydrogel actuator with flexible folding deformation and shape programming via using sodium carboxymethyl cellulose and acrylic acid. (United States)

    Wu, Shuiping; Yu, Feng; Dong, Hua; Cao, Xiaodong


    Hydrogel actuator is an intelligent material, which can work as artificial muscle. However, most present hydrogel actuators, due to the inferior mechanical property and uncontrolled folding property, have always resulted in slipping off or the failure of grasping an object with specific shape and required weight. In order to solve this problem, here a tough hydrogel actuator with programmable folding deformation has been prepared by combining the "selective implanting method" and "ionic coordination". The shape and folding angle (from 0 to 180 o ) of hydrogel actuator can be precisely controlled by altering the location and size of the implanting parts that seems like the joints of finger. The ionic coordination is not only the force to trigger the folding of hydrogel, but also utilized to reinforce the mechanical property. We believed the superior mechanical and shape-programmable property can endow the hydrogel actuator with great application prospect in soft machine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Solitons and protein folding: An In Silico experiment

    International Nuclear Information System (INIS)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.


    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics

  5. Solitons and protein folding: An In Silico experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, N., E-mail: [Institute of Information and Communication Technologies, Bulgarian Aacademy of Sciences, Sofia (Bulgaria); Dai, J., E-mail: [School of Physics, Beijing Institute of Technology, Beijing (China); Sieradzan, A., E-mail: [Faculty of Chemistry, University of Gdańsk, Gdańsk (Poland); Niemi, A., E-mail: [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); LMPT–CNRS, Université de Tours, Tours (France)


    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  6. Sampling the equilibrium kinetic network of Trp-cage in explicit solvent

    NARCIS (Netherlands)

    Du, W.; Bolhuis, P.G.


    We employed the single replica multiple state transition interface sampling (MSTIS) approach to sample the kinetic (un) folding network of Trp-cage mini-protein in explicit water. Cluster analysis yielded 14 important metastable states in the network. The MSTIS simulation thus resulted in a full 14

  7. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose (United States)

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton


    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose–response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways. PMID:27702900

  8. Kinetics of tetrataenite disordering

    International Nuclear Information System (INIS)

    Dos Santos, E.; Gattacceca, J.; Rochette, P.; Fillion, G.; Scorzelli, R.B.


    Tetrataenite is a chemically ordered L1 0 -type Fe 50 Ni 50 alloy detected for the first time in 1977 by 57 Fe Mössbauer spectroscopy studies in iron meteorites. The thermal history of meteorites, in particular short thermal events like those associated to hypervelocity impacts, can be constrained by tracing the presence of tetrataenite or its disordering into taenite. The knowledge of the disordering kinetics of tetrataenite, that is associated with changes in its magnetic properties, is still very fragmentary so that the time–temperature history of these meteorites cannot be constrained in details. Furthermore, knowledge of disordering kinetics is important due to potential technological application of tetrataenite as a rare-earth free strong magnet. Thus, this work provides the first time–temperature data for disordering reaction of tetrataenite. We have shown that disordering is not an instantaneous process but is a kinetic limited reaction. It was shown that disordering may take place at any temperature above the order–disorder transition for L 10 superstructure phase (∼320 °C) when the appropriate time-scale is considered. This result means that the apparent Curie point for tetrataenite is not an absolute property in the sense that any estimate of this parameter should be referred to a given time-scale. - Highlights: • The first time–temperature data for tetrataenite disordering reaction is provided. • Previous works does not give a complete picture of tetrataenite disordering. • Apparent Curie temperature of tetrataenite should be referred to a time-scale. • Tetrataenite can be used as a probe to detect thermal/shock events recorded in meteorites

  9. Vocal Fold Injection: Review of Indications, Techniques, and Materials for Augmentation


    Mallur, Pavan S.; Rosen, Clark A.


    Vocal fold injection is a procedure that has over a 100 year history but was rarely done as short as 20 years ago. A renaissance has occurred with respect to vocal fold injection due to new technologies (visualization and materials) and new injection approaches. Awake, un-sedated vocal fold injection offers many distinct advantages for the treatment of glottal insufficiency (vocal fold paralysis, vocal fold paresis, vocal fold atrophy and vocal fold scar). A review of materials available and ...

  10. Fold maps and positive topological quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Wrazidlo, Dominik Johannes


    The notion of positive TFT as coined by Banagl is specified by an axiomatic system based on Atiyah's original axioms for TFTs. By virtue of a general framework that is based on the concept of Eilenberg completeness of semirings from computer science, a positive TFT can be produced rigorously via quantization of systems of fields and action functionals - a process inspired by Feynman's path integral from classical quantum field theory. The purpose of the present dissertation thesis is to investigate a new differential topological invariant for smooth manifolds that arises as the state sum of the fold map TFT, which has been constructed by Banagl as a example of a positive TFT. By eliminating an internal technical assumption on the fields of the fold map TFT, we are able to express the informational content of the state sum in terms of an extension problem for fold maps from cobordisms into the plane. Next, we use the general theory of generic smooth maps into the plane to improve known results about the structure of the state sum in arbitrary dimensions, and to determine it completely in dimension two. The aggregate invariant of a homotopy sphere, which is derived from the state sum, naturally leads us to define a filtration of the group of homotopy spheres in order to understand the role of indefinite fold lines beyond a theorem of Saeki. As an application, we show how Kervaire spheres can be characterized by indefinite fold lines in certain dimensions.


    Directory of Open Access Journals (Sweden)

    Chang Patricia


    Full Text Available Background: The proximal fold is an important part of the nail apparatus it contributes to the formation of the nail plate and through the cuticle acts as an impermeable barrier protecting it from any cause.Objective: To know the proximal nail fold hematoma caused by the use of pulse oximeter.Material and Methods: A descriptive study was conducted in 41 patients with proximal nail hematoma secondary to the use of oximetry in patients hospitalized in the Intermediate and Intensive Care Unit at the Hospital General de Enfermedades from December 1, 2007 to December 31, 2010.Results: We studied 41 patients with proximal nail fold hematoma secondary to the use of oximeter, 30 (73.1% were males and 11 (26.8% females. The numbers of fingers affected by pulse oximeter were in one digit. 30 (73.1% cases, in two digits 6 (14.6%, in three digits 3 (7.3%, in 4 digits 1 (2.4% and in 5 digits 1 (2.4% case. The most affected proximal nail fold was right index: 24 (58.5%, right middle 11 (26.8%, right ring 6 (14.6%, left index 12 (29.2%, and left middle 6 (14.6% cases.Conclusions: Hematomas of the proximal nail fold may be caused by different traumatisms. The use of pulse oximeter is one of them.

  12. Possible association between Helicobacter pylori infection and vocal fold leukoplakia. (United States)

    Chen, Min; Chen, Jian; Yang, Yue; Cheng, Lei; Wu, Hai-Tao


    Several studies have indicated the larynx as possible Helicobacter pylori (H. pylori) reservoirs. This study explored the association between H. pylori and vocal fold leukoplakia. The case-control study involved 51 patients with vocal fold leukoplakia and 35 control patients with vocal polyps. Helicobacter pylori was detected in tissues by the rapid urease test, nested polymerase chain reaction (PCR), and single-step PCR. The H. pylori-specific immunoglobulin antibodies were detected in plasma by enzyme-linked immunosorbent assay (ELISA). Helicobacter pylori-positive rate of vocal fold leukoplakia and vocal polyps was 23.5% versus 11.4% (P = .157), 37.2% versus 14.3% (P = .020), 27.5% versus 8.6% (P = .031), and 70.6% versus 68.6% (P = .841) detected by rapid urease test, nested PCR, single-step PCR, and ELISA, respectively. Regression analysis indicated that H. pylori infection (P = .044) was the independent risk factor for vocal fold leukoplakia. Helicobacter pylori infection exists in the larynx and may be associated with vocal fold leukoplakia. © 2018 Wiley Periodicals, Inc.

  13. Sulfated glycosaminoglycans in human vocal fold lamina propria

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    Full Text Available Abstract Introduction: The distribution, concentration and function of glycosaminoglycans in the various vocal fold tissues are still unclear. Objective: To evaluate the distribution and concentration of sulfated glycosaminoglycans in different layers of the human vocal fold according to gender and age. Methods: We used 11 vocal folds obtained from cadavers (7 men and 4 women with no laryngeal lesion, less than 12 h after death, and aged between 35 and 98 years. The folds underwent glycosaminoglycans extraction from the cover and ligament, and post-electrophoresis analysis. Data were compared according to the layer, age and gender. Results: The concentration of dermatan sulfate was significantly higher in all layers. No differences were observed in the total concentrations of glycosaminoglycans in layers studied according to gender. It is significantly lower in the cover of individuals aged below 60 years. Conclusion: Dermatan sulfate, chondroitin sulfate, and heparan sulfate were observed in the human vocal folds cover and ligament of both genders, with the concentration of dermatan sulfate being significantly higher in all layers. Glycosaminoglycans concentration on the cover is significantly lower in individuals below 60 years compared with elderly.

  14. Modeling Vocal Fold Intravascular Flow using Synthetic Replicas (United States)

    Terry, Aaron D.; Ricks, Matthew T.; Thomson, Scott L.


    Vocal fold vibration that is induced by air flowing from the lungs is believed to decrease blood flow through the vocal folds. This is important due to the critical role of blood flow in maintaining tissue health. However, the precise mechanical relationships between vocal fold vibration and blood perfusion remain understudied. A platform for studying liquid perfusion in a synthetic, life-size, self-oscillating vocal fold replica has recently been developed. The replicas are fabricated using molded silicone with material properties comparable to those of human vocal fold tissues and that include embedded microchannels through which liquid is perfused. The replicas are mounted on an air flow supply tube to initiate flow-induced vibration. A liquid reservoir is attached to the microchannel to cause liquid to perfuse through replica in the anterior-posterior direction. As replica vibration is initiated and amplitude increases, perfusion flow rate decreases. In this presentation, the replica design will be presented, along with data quantifying the relationships between parameters such as replica vibration amplitude, stiffness, microchannel diameter, and perfusion flow rate. This work was supported by Grant NIDCD R01DC005788 from the National Institutes of Health.

  15. Recovery of Vocal Fold Epithelium after Acute Phonotrauma. (United States)

    Rousseau, Bernard; Kojima, Tsuyoshi; Novaleski, Carolyn K; Kimball, Emily E; Valenzuela, Carla V; Mizuta, Masanobu; Daniero, James J; Garrett, C Gaelyn; Sivasankar, M Preeti


    We investigated the timeline of tissue repair of vocal fold epithelium after acute vibration exposure using an in vivo rabbit model. Sixty-five New Zealand white breeder rabbits were randomized to 120 min of modal- or raised-intensity phonation. After the larynges were harvested at 0, 4, 8, and 24 h, and at 3 and 7 days, the vocal fold tissue was evaluated using electron microscopy and quantitative real-time polymerase chain reaction. There was an immediate decrease in the microprojection depth and height following raised-intensity phonation, paired with upregulation of cyclooxygenase-2. This initial 24-h period was also characterized by the significant downregulation of junction proteins. Interleukin 1β and transforming growth factor β1 were upregulated for 3 and 7 days, respectively, followed by an increase in epithelial cell surface depth at 3 and 7 days. These data appear to demonstrate a shift from inflammatory response to the initiation of a restorative process in the vocal fold epithelium between 24 h and 3 days. Despite the initial damage from raised-intensity phonation, the vocal fold epithelium demonstrates a remarkable capacity for the expeditious recovery of structural changes from transient episodes of acute phonotrauma. While structurally intact, the return of functional barrier integrity may be delayed by repeated episodes of phonotrauma and may also play an important role in the pathophysiology of vocal fold lesions. © 2017 S. Karger AG, Basel.

  16. Bilateral Vocal Fold Medialization: A Treatment for Abductor Spasmodic Dysphonia. (United States)

    Dewan, Karuna; Berke, Gerald S


    Abductor spasmodic dysphonia, a difficult-to-treat laryngologic condition, is characterized by spasms causing the vocal folds to remain abducted despite efforts to adduct them during phonation. Traditional treatment for abductor spasmodic dysphonia-botulinum toxin injection into the posterior cricoarytenoid muscle-can be both technically challenging and uncomfortable. Due to the difficulty of needle placement, it is often unsuccessful. The purpose of this investigation is to present a previously undescribed treatment for abductor spasmodic dysphonia-bilateral vocal fold medialization. A retrospective case review of all cases of abductor spasmodic dysphonia treated in a tertiary care laryngology practice with bilateral vocal fold medialization over a 10-year period was performed. The Voice Handicap Index and the Voice-Related Quality of Life surveys were utilized to assess patient satisfaction with voice outcome. Six patients with abductor spasmodic dysphonia treated with bilateral vocal fold medialization were identified. Disease severity ranged from mild to severe. All six patients reported statistically significant improvement in nearly all Voice Handicap Index and Voice-Related Quality of Life parameters. They reported fewer voice breaks and greater ease of communication. Results were noted immediately and symptoms continue to be well controlled for many years following medialization. Bilateral vocal fold medialization is a safe and effective treatment for abductor spasmodic dysphonia. It is performed under local anesthesia and provides phonation improvement in the short and long term. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Probabilistic analysis for identifying the driving force of protein folding (United States)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki


    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  18. Quantum kinetic Ising models

    International Nuclear Information System (INIS)

    Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F


    In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.

  19. Trapped particle stability for the kinetic stabilizer (United States)

    Berk, H. L.; Pratt, J.


    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  20. Unstirred Water Layers and the Kinetics of Organic Cation Transport (United States)

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.


    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  1. RNAslider: a faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry

    Directory of Open Access Journals (Sweden)

    Ziv-Ukelson Michal


    Full Text Available Abstract Background Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L 3 by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2 solution for this problem has been described. Results Here, we describe and implement an O(NLψ(L engine for the consecutive windows folding problem, where ψ(L is shown to converge to O(1 under the assumption of a standard probabilistic polymer folding model, yielding an O(L speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5' folding bias, i.e. that the minimal free energy (MFE of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. Conclusion The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.

  2. Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments (United States)

    Inguva, Venkatesh; Perot, Blair


    Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.

  3. Sampling-based exploration of folded state of a protein under kinematic and geometric constraints

    KAUST Repository

    Yao, Peggy


    Flexibility is critical for a folded protein to bind to other molecules (ligands) and achieve its functions. The conformational selection theory suggests that a folded protein deforms continuously and its ligand selects the most favorable conformations to bind to. Therefore, one of the best options to study protein-ligand binding is to sample conformations broadly distributed over the protein-folded state. This article presents a new sampler, called kino-geometric sampler (KGS). This sampler encodes dominant energy terms implicitly by simple kinematic and geometric constraints. Two key technical contributions of KGS are (1) a robotics-inspired Jacobian-based method to simultaneously deform a large number of interdependent kinematic cycles without any significant break-up of the closure constraints, and (2) a diffusive strategy to generate conformation distributions that diffuse quickly throughout the protein folded state. Experiments on four very different test proteins demonstrate that KGS can efficiently compute distributions containing conformations close to target (e.g., functional) conformations. These targets are not given to KGS, hence are not used to bias the sampling process. In particular, for a lysine-binding protein, KGS was able to sample conformations in both the intermediate and functional states without the ligand, while previous work using molecular dynamics simulation had required the ligand to be taken into account in the potential function. Overall, KGS demonstrates that kino-geometric constraints characterize the folded subset of a protein conformation space and that this subset is small enough to be approximated by a relatively small distribution of conformations. © 2011 Wiley Periodicals, Inc.

  4. High-resolution structure of a retroviral protease folded as a monomer

    International Nuclear Information System (INIS)

    Gilski, Miroslaw; Kazmierczyk, Maciej; Krzywda, Szymon; Zábranská, Helena; Cooper, Seth; Popović, Zoran; Khatib, Firas; DiMaio, Frank; Thompson, James; Baker, David; Pichová, Iva; Jaskolski, Mariusz


    The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. Mason–Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C α deviations are large and the active-site ‘DTG’ loop (here NTG) deviates up to 2.7 Å from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 Å) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections

  5. The use of folding structures in fusion reactors

    International Nuclear Information System (INIS)

    Haines, T.


    Folding structures can be used with advantage in fusion machines. They have been used in Space for decades to extend antennas, sensors and solar panels; terrestrial versions have been used as retractable antennas and antennas masts. They have also been used in the Joint European Torus (JET) and other nuclear applications. In this paper, three types are described, together with concepts for use in fusion machines. The Storable Tubular Extendible Member (STEM) was conceived by the National Research Council of Canada and developed by Spar Aerospace Limited. The Astromast is a folding truss developed by Astro Aerospace Corporation, a US subsidiary of Spar. The X-Beam is an ultra-stiff folding truss

  6. Self-organized critical model for protein folding (United States)

    Moret, M. A.


    The major factor that drives a protein toward collapse and folding is the hydrophobic effect. At the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the protein. We study the fractal behavior of 5526 protein structures present in the Brookhaven Protein Data Bank. Power laws of protein mass, volume and solvent-accessible surface area are measured independently. The present findings indicate that self-organized criticality is an alternative explanation for the protein folding. Also we note that the protein packing is an independent and constant value because the self-similar behavior of the volumes and protein masses have the same fractal dimension. This power law guarantees that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem to fit well this class of systems.

  7. A biomorphic origami actuator fabricated by folding a conducting paper

    Energy Technology Data Exchange (ETDEWEB)

    Okuzaki, H; Saido, T; Suzuki, H; Hara, Y; Yan, H [Laboratory of Organic Robotics, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, 400-8511 (Japan)], E-mail:


    Cooperation between the electrical conductivity and hygroscopic nature of conducting polymers can provide an insight into the development of a new class of electro-active polymer (EAP) actuators or soft robots working in ambient air. In this paper, we describe an 'origami' actuator fabricated by folding a sheet of conducting 'paper'. The principle lies in the electrically induced changes in the elastic modulus of a humidosensitive conducting polymer film through reversible sorption and desorption of water vapor molecules, which is responsible for amplifying a contraction of the film ({approx} 1%) to more than a 100-fold expansion (> 100%) of the origami actuator. Utilizing the origami technique, we have fabricated a biomorphic origami robot by folding an electrochemically synthesized polypyrrole film into the figure of an accordion shape, which can move with a caterpillar-like motion by repeated expansion and contraction at a velocity of 2 cm min{sup -1}.

  8. A biomorphic origami actuator fabricated by folding a conducting paper

    International Nuclear Information System (INIS)

    Okuzaki, H; Saido, T; Suzuki, H; Hara, Y; Yan, H


    Cooperation between the electrical conductivity and hygroscopic nature of conducting polymers can provide an insight into the development of a new class of electro-active polymer (EAP) actuators or soft robots working in ambient air. In this paper, we describe an 'origami' actuator fabricated by folding a sheet of conducting 'paper'. The principle lies in the electrically induced changes in the elastic modulus of a humidosensitive conducting polymer film through reversible sorption and desorption of water vapor molecules, which is responsible for amplifying a contraction of the film (∼ 1%) to more than a 100-fold expansion (> 100%) of the origami actuator. Utilizing the origami technique, we have fabricated a biomorphic origami robot by folding an electrochemically synthesized polypyrrole film into the figure of an accordion shape, which can move with a caterpillar-like motion by repeated expansion and contraction at a velocity of 2 cm min -1 .

  9. IMPAIRED MOBILITY OF VOCAL FOLDS - etiology and symptoms

    Directory of Open Access Journals (Sweden)

    Karlo Pintarić


    Full Text Available Paresis or paralysis of one or both vocal cords affects some significant aspects of a human life: breathing, swallowing and speech. The major causes for reduced mobility or even immobility are innervation damage, less often fixation of vocal cord or impaired mobility of crycoarytenoid joint. An injury of the superior or/and inferior laryngeal nerve can be a consequence of different medical procedures, tumor growth, trauma, infection, neurological disorders, radiation exposure, toxic damage, impaired circulation of the area or it is idiopathic. The symptoms are different in the case of unilateral and bilateral paresis of the vocal folds. They also depend on the cause for the impaired mobility. In the patients with unilateral vocal fold paresis, hoarseness and aspiration during swallowing are the leading symptoms. In the bilateral vocal fold paralysis, dyspnea prevails. 

  10. Peptide folding in the presence of interacting protein crowders

    Energy Technology Data Exchange (ETDEWEB)

    Bille, Anna, E-mail:; Irbäck, Anders, E-mail: [Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund (Sweden); Mohanty, Sandipan, E-mail: [Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich (Germany)


    Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.

  11. Dermofat graft in deep nasolabial fold and facial rhytidectomy. (United States)

    Hwang, Kun; Han, Jin Yi; Kim, Dae Joong


    Fat and dermis or the combined tissues are used commonly in augmentation of the nasolabial fold. Guyuron obtained the dermofat graft from either the suprapubic or the groin region. The thickness of the preauricular skin was measured in seven Korean cadavers, five male and two female. We used the dermofat graft out of the preauricular skin remnant after facial rhytidectomy to augment the deep nasolabial fold in a patient. The average thickness of the epidermis was 56 +/- 12 microm, the dermis was 1820 +/- 265 microm thick, and the subcutaneous tissue was 4783 +/- 137 microm. More dense connective tissues, such as SMAS, are seen in the preauricular skin. The dermofat graft was easily obtained and prepared from the leftover preauricular skin after dissection of the lax skin in face lifting. This technique could be employed effectively and successfully to alleviate a deep nasolabial fold and concomitant facial rhytidectomy in an Asian with a thick preauricular skin.

  12. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))


    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  13. Diffusion Influenced Adsorption Kinetics. (United States)

    Miura, Toshiaki; Seki, Kazuhiko


    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  14. Modulating Phonation Through Alteration of Vocal Fold Medial Surface Contour (United States)

    Mau, Ted; Muhlestein, Joseph; Callahan, Sean; Chan, Roger W.


    Objectives 1. To test whether alteration of the vocal fold medial surface contour can improve phonation. 2. To demonstrate that implant material properties affect vibration even when implant is deep to the vocal fold lamina propria. Study Design Induced phonation of excised human larynges. Methods Thirteen larynges were harvested within 24 hours post-mortem. Phonation threshold pressure (PTP) and flow (PTF) were measured before and after vocal fold injections using either calcium hydroxylapatite (CaHA) or hyaluronic acid (HA). Small-volume injections (median 0.0625 mL) were targeted to the infero-medial aspect of the thyroarytenoid (TA) muscle. Implant locations were assessed histologically. Results The effect of implantation on PTP was material-dependent. CaHA tended to increase PTP, whereas HA tended to decrease PTP (Wilcoxon test P = 0.00013 for onset). In contrast, the effect of implantation on PTF was similar, with both materials tending to decrease PTF (P = 0.16 for onset). Histology confirmed implant presence in the inferior half of the vocal fold vertical thickness. Conclusions Taken together, these data suggested the implants may have altered the vocal fold medial surface contour, potentially resulting in a less convergent or more rectangular glottal geometry as a means to improve phonation. An implant with a closer viscoelastic match to vocal fold cover is desirable for this purpose, as material properties can affect vibration even when the implant is not placed within the lamina propria. This result is consistent with theoretical predictions and implies greater need for surgical precision in implant placement and care in material selection. PMID:22865592

  15. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.


    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  16. Chemical kinetics and reaction mechanism

    International Nuclear Information System (INIS)

    Jung, Ou Sik; Park, Youn Yeol


    This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.

  17. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N


    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  18. Fabrication of ten-fold photonic quasicrystalline structures

    Directory of Open Access Journals (Sweden)

    XiaoHong Sun


    Full Text Available Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  19. Vocal fold composition and early glottic carcinoma infiltration

    Directory of Open Access Journals (Sweden)

    Fang Qin


    Full Text Available Abstract Background Current imaging techniques provide only limited information pertaining to the extent of infiltration of laryngeal carcinomas into vocal fold tissue layers. Therefore, it is needed to seek the contribute to the body of knowledge surrounding examination and characterization in laryngeal carcinoma infiltration. Methods Excised larynges were collected from 30 male laryngectomy patients with an average age of 43.5 years (ranging 36 to 55 years and history of smoking (≥10 years exhibiting T1, T2, or subglottal (normal vocal fold carcinomas. Vocal folds were preserved via freezing or immersion in paraffin. The depth of the mucosa, submucosa, and muscular layers in both normal vocal folds and tumor tissues of afflicted vocal folds was measured. Results The average depths of the mucosa, submucosa, and muscular layers in normal vocal folds were 0.15 ± 0.06 mm, 2.30 ± 0.59 mm, and 2.87 ± 0.88 mm, respectively. Infiltration measurements of T1 tumors showed a depth of 1.62 ± 0.51 mm and 1.32 ± 0.49 mm in frozen sections and paraffin-embedded samples, respectively. Similarly, T2 tumors showed a depth of 2.87 ± 0.68 mm and 2.58 ± 0.67 mm in frozen sections and paraffin-embedded samples, respectively. T1 and T2 tumors occupied 24.8 ± 10 and 48.5 ± 15 percent of the normal vocal fold depth, respectively. Conclusion This data provides a baseline for estimating infiltration of laryngeal carcinomas in vocal fold tissue layers, of particular interest to surgeons. This information may be used to assess typical depths of infiltration, thus allowing for more appropriate selection of surgical procedures based on individual patient assessment.

  20. A folding algorithm for extended RNA secondary structures. (United States)

    Höner zu Siederdissen, Christian; Bernhart, Stephan H; Stadler, Peter F; Hofacker, Ivo L


    RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at

  1. Acromegaly Presenting With Bilateral Vocal Fold Immobility: Case Report and Review of the Literature. (United States)

    Cooper, Timothy; Dziegielewski, Peter T; Singh, Praby; Seemann, Robert


    To present a case of bilateral vocal fold immobility (BVCI) in a patient with acromegaly and review the current literature describing this presentation. Case report and literature review. Academic tertiary care center. English language literature search of online journal databases. A 56-year-old man presented with 3 months of progressive stridor and shortness of breath. Transnasal flexible endoscopy revealed BVCI. A tracheostomy was performed to secure his airway. Further history was suggestive of acromegaly and imaging demonstrated a pituitary macroadenoma. The diagnosis of acromegaly was made. The patient was treated with octreotide followed by an endoscopic trans sphenoidal resection of the pituitary adenoma. Sixteen months after his initial presentation, a right laser arytenoidectomy was performed and the patient was subsequently decannulated. In the literature to date, 11 cases of BVCI in acromegaly have been reported. These patients often present with stridor and require a tracheostomy. With treatment of their acromegaly, these patients may regain vocal fold mobility and may be decannulated. Acromegaly with BVCI is a rare presentation. Acute management of the airway of patients with acromegaly presenting with BVCI typically requires a tracheostomy. A period of 15 months should be allowed for restoration of vocal fold mobility before airway opening procedures are considered. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D


    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  3. Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds (United States)

    Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre


    We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.

  4. Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. (United States)

    Teilum, Kaare; Thormann, Thorsten; Caterer, Nigel R; Poulsen, Heidi I; Jensen, Peter H; Knudsen, Jens; Kragelund, Birthe B; Poulsen, Flemming M


    Comparison of the folding processes for homologue proteins can provide valuable information about details in the interactions leading to the formation of the folding transition state. Here the folding kinetics of 18 variants of yACBP and 3 variants of bACBP have been studied by Phi-value analysis. In combination with Phi-values from previous work, detailed insight into the transition states for folding of both yACBP and bACBP has been obtained. Of the 16 sequence positions that have been studied in both yACBP and bACBP, 5 (V12, I/L27, Y73, V77, and L80) have high Phi-values and appear to be important for the transition state formation in both homologues. Y31, A34, and A69 have high Phi-values only in yACBP, while F5, A9, and I74 have high Phi-values only in bACBP. Thus, additional interactions between helices A2 and A4 appear to be important for the transition state of yACBP, whereas additional interactions between helices A1 and A4 appear to be important for the transition state of bACBP. To examine whether these differences could be assigned to different packing of the residues in the native state, a solution structure of yACBP was determined by NMR. Small changes in the packing of the hydrophobic side-chains, which strengthen the interactions between helices A2 and A4, are observed in yACBP relative to bACBP. It is suggested that different structure elements serve as scaffolds for the folding of the 2 ACBP homologues. (c) 2005 Wiley-Liss, Inc.

  5. Single injection of basic fibroblast growth factor to treat severe vocal fold lesions and vocal fold paralysis. (United States)

    Kanazawa, Takeharu; Komazawa, Daigo; Indo, Kanako; Akagi, Yusuke; Lee, Yogaku; Nakamura, Kazuhiro; Matsushima, Koji; Kunieda, Chikako; Misawa, Kiyoshi; Nishino, Hiroshi; Watanabe, Yusuke


    Severe vocal fold lesions such as vocal fold sulcus, scars, and atrophy induce a communication disorder due to severe hoarseness, but a treatment has not been established. Basic fibroblast growth factor (bFGF) therapies by either four-time repeated local injections or regenerative surgery for vocal fold scar and sulcus have previously been reported, and favorable outcomes have been observed. In this study, we modified bFGF therapy using a single of bFGF injection, which may potentially be used in office procedures. Retrospective chart review. Five cases of vocal fold sulcus, six cases of scars, seven cases of paralysis, and 17 cases of atrophy were treated by a local injection of bFGF. The injection regimen involved injecting 50 µg of bFGF dissolved in 0.5 mL saline only once into the superficial lamina propria using a 23-gauge injection needle. Two months to 3 months after the injection, phonological outcomes were evaluated. The maximum phonation time (MPT), mean airflow rate, pitch range, speech fundamental frequency, jitter, and voice handicap index improved significantly after the bFGF injection. Furthermore, improvement in the MPT was significantly greater in patients with (in increasing order) vocal fold atrophy, scar, and paralysis. The improvement in the MPT among all patients was significantly correlated with age; the MPT improved more greatly in younger patients. Regenerative treatments by bFGF injection—even a single injection—effectively improve vocal function in vocal fold lesions. 4 © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Landforms along transverse faults parallel to axial zone of folded ...

    Indian Academy of Sciences (India)

    Himalaya, along the Kali River valley, is defined by folded hanging wall ... role of transverse fault tectonics in the formation of the curvature cannot be ruled out. 1. .... Piedmont surface is made up of gravelliferous and ... made to compute the wedge failure analysis (Hoek .... (∼T2) is at the elevation of ∼272 m asl measured.

  7. A history of folding in mathematics mathematizing the margins

    CERN Document Server

    Friedman, Michael


    While it is well known that the Delian problems are impossible to solve with a straightedge and compass – for example, it is impossible to construct a segment whose length is ∛2 with these instruments – the Italian mathematician Margherita Beloch Piazzolla's discovery in 1934 that one can in fact construct a segment of length ∛2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few question immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study...

  8. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H


    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  9. 77 FR 74513 - Folding Gift Boxes From China (United States)


    ... From China Determination On the basis of the record \\1\\ developed in the subject five-year review, the... boxes from China would be likely to lead to continuation or recurrence of material injury to an industry... Publication 4365 (November 2012), entitled Folding Gift Boxes from China: Investigation No. 731-TA-921 (Second...

  10. The Boundary-Hopf-Fold Bifurcation in Filippov Systems

    NARCIS (Netherlands)

    Efstathiou, Konstantinos; Liu, Xia; Broer, Henk W.


    This paper studies the codimension-3 boundary-Hopf-fold (BHF) bifurcation of planar Filippov systems. Filippov systems consist of at least one discontinuity boundary locally separating the phase space to disjoint components with different dynamics. Such systems find applications in several fields,

  11. Examining a Thermodynamic Order Parameter of Protein Folding. (United States)

    Chong, Song-Ho; Ham, Sihyun


    Dimensionality reduction with a suitable choice of order parameters or reaction coordinates is commonly used for analyzing high-dimensional time-series data generated by atomistic biomolecular simulations. So far, geometric order parameters, such as the root mean square deviation, fraction of native amino acid contacts, and collective coordinates that best characterize rare or large conformational transitions, have been prevailing in protein folding studies. Here, we show that the solvent-averaged effective energy, which is a thermodynamic quantity but unambiguously defined for individual protein conformations, serves as a good order parameter of protein folding. This is illustrated through the application to the folding-unfolding simulation trajectory of villin headpiece subdomain. We rationalize the suitability of the effective energy as an order parameter by the funneledness of the underlying protein free energy landscape. We also demonstrate that an improved conformational space discretization is achieved by incorporating the effective energy. The most distinctive feature of this thermodynamic order parameter is that it works in pointing to near-native folded structures even when the knowledge of the native structure is lacking, and the use of the effective energy will also find applications in combination with methods of protein structure prediction.

  12. Nonintegrability of the unfolding of the fold-Hopf bifurcation (United States)

    Yagasaki, Kazuyuki


    We consider the unfolding of the codimension-two fold-Hopf bifurcation and prove its meromorphic nonintegrability in the meaning of Bogoyavlenskij for almost all parameter values. Our proof is based on a generalized version of the Morales-Ramis-Simó theory for non-Hamiltonian systems and related variational equations up to second order are used.

  13. Measurement of flow separation in a human vocal folds model

    Czech Academy of Sciences Publication Activity Database

    Šidlof, Petr; Doaré, O.; Cadot, O.; Chaigne, A.


    Roč. 51, č. 1 (2011), s. 123-136 ISSN 0723-4864 R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal folds * flow separation * physical model Subject RIV: BI - Acoustics Impact factor: 1.735, year: 2011

  14. Energy Landscapes: From Protein Folding to Molecular Assembly (United States)

    Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute assembly is very common in biology and in nanotechnology. Simple examples of self-assembly are the folding efflux pump machinery, ATP synthase, the ribosome, and many others. In nanotechnology, self-assembly has

  15. Conceptual Transformation and Cognitive Processes in Origami Paper Folding (United States)

    Tenbrink, Thora; Taylor, Holly A.


    Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…

  16. 76 FR 74704 - Folded Self-Mailers and Unenveloped Mailpieces (United States)


    ... self-mailers (FSM) and unenveloped mailpieces that are mailed at automation or machinable prices. To... and construction of folded self-mailers and unenveloped mailpieces that are mailed at automation or machinable prices. The proposed standards were issued after two years of collaborative work with mailers to...

  17. Biosimulation of inflammation and healing in surgically injured vocal folds. (United States)

    Li, Nicole Y K; Vodovotz, Yoram; Hebda, Patricia A; Abbott, Katherine Verdolini


    The pathogenesis of vocal fold scarring is complex and remains to be deciphered. The current study is part of research endeavors aimed at applying systems biology approaches to address the complex biological processes involved in the pathogenesis of vocal fold scarring and other lesions affecting the larynx. We developed a computational agent-based model (ABM) to quantitatively characterize multiple cellular and molecular interactions involved in inflammation and healing in vocal fold mucosa after surgical trauma. The ABM was calibrated with empirical data on inflammatory mediators (eg, tumor necrosis factor) and extracellular matrix components (eg, hyaluronan) from published studies on surgical vocal fold injury in the rat population. The simulation results reproduced and predicted trajectories seen in the empirical data from the animals. Moreover, the ABM studies suggested that hyaluronan fragments might be the clinical surrogate of tissue damage, a key variable that in these simulations both is enhanced by and further induces inflammation. A relatively simple ABM such as the one reported in this study can provide new understanding of laryngeal wound healing and generate working hypotheses for further wet-lab studies.

  18. 76 FR 50438 - Folded Self-Mailers and Unenveloped Mailpieces (United States)


    ... orientation. Thickness of attachments or enclosures within a mailpiece. Flap size, style, and orientation... style, and includes closure methods and optional elements that may be incorporated into a basic folded... 111 is proposed to be amended as follows: PART 111--[AMENDED] 1. The authority citation for 39 CFR...

  19. A folded plate clamped along one side only (United States)

    Nazarov, Serguei A.; Slutskij, Andrey S.


    An asymptotic model of a folded thin elastic plate is posed on two plane domains and contains transmission conditions at the common line segment of their boundaries. These conditions become non-local and inhomogeneous if only one side of the plate is fixed. Solvability and smoothness results and error estimates for the model are derived. xml:lang="fr"

  20. Laryngeal Electromyography for Prognosis of Vocal Fold Paralysis. (United States)

    Pardo-Maza, Adriana; García-Lopez, Isabel; Santiago-Pérez, Susana; Gavilán, Javier


    This study aimed to determine the value of laryngeal electromyography in the prognosis of vocal fold paralysis. This is a retrospective descriptive study. This study included 80 patients diagnosed with unilateral or bilateral vocal fold paralysis on flexible laryngoscopy between 2002 and 2014 in a tertiary medical center. Laryngeal electromyography using a standardized protocol was performed; the outcome measures were classified and analyzed into two groups according to the degree of injury. Group 1 included patients with mild to moderate injury, and group 2 included patients with severe to complete injury. Prognosis was correlated with vocal fold motion recovery status with a minimum of 6 months of follow-up since the symptoms onset using positive and negative predictive values. Sixty patients showed acute or chronic recurrent laryngeal neuropathy in laryngeal electromyography. Twelve of 41 patients included in group 1 recovered motion, and 30 of 35 patients included in group 2 did not recover, resulting in 88.2% of positive predictive value and 35.7% of negative predictive value. Our data confirm that laryngeal electromyography is a useful clinical tool in predicting poor recovery in patients with vocal fold paralysis. It allows identification of candidates for early intervention. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.