WorldWideScience

Sample records for focusung grating couplers

  1. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  2. An elastomeric grating coupler

    NARCIS (Netherlands)

    Kocabas, A.; Ay, F.; Dana, A.; Aydinli, A.

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to

  3. Apodized grating coupler using fully-etched nanostructures

    International Nuclear Information System (INIS)

    Wu Hua; Li Chong; Guo Xia; Li Zhi-Yong

    2016-01-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. (paper)

  4. Grating-assisted surface acoustic wave directional couplers

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1991-07-01

    Physical properties of novel grating-assisted Y directional couplers are examined using the coupled-mode theory. A general formalism for the analysis of the lateral perturbed directional coupler properties is presented. Explicit expressions for waveguide key parameters such as coupling length, grating period, and other structural characterizations, are obtained. The influence of other physical properties such as time and frequency response or cutoff conditions are also analyzed. A plane grating-assisted directional coupler is presented and examined as a basic component in the integrated acoustic technology.

  5. Ultra-compact silicon nitride grating coupler for microscopy systems

    OpenAIRE

    Zhu, Yunpeng; Wang, Jie; Xie, Weiqiang; Tian, Bin; Li, Yanlu; Brainis, Edouard; Jiao, Yuqing; Van Thourhout, Dries

    2017-01-01

    Grating couplers have been widely used for coupling light between photonic chips and optical fibers. For various quantum-optics and bio-optics experiments, on the other hand, there is a need to achieve good light coupling between photonic chips and microscopy systems. Here, we propose an ultra-compact silicon nitride (SiN) grating coupler optimized for coupling light from a waveguide to a microscopy system. The grating coupler is about 4 by 2 mu m(2) in size and a 116 nm 1 dB bandwidth can be...

  6. Apodized grating coupler using fully-etched nanostructures

    Science.gov (United States)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  7. Multiplexing of adjacent vortex modes with the forked grating coupler

    Science.gov (United States)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.

    2017-08-01

    For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.

  8. High efficiency grating couplers based on shared process with CMOS MOSFETs

    International Nuclear Information System (INIS)

    Qiu Chao; Sheng Zhen; Wu Ai-Min; Wang Xi; Zou Shi-Chang; Gan Fu-Wan; Li Le; Albert Pang

    2013-01-01

    Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers. In this work, a high-efficiency and complementary metal—oxide—semiconductor (CMOS) process compatible grating coupler is proposed. The poly-Si layer used as a gate in the CMOS metal—oxide—semiconductor field effect transistor (MOSFET) is combined with a normal fully etched grating coupler, which greatly enhances its coupling efficiency. With optimal structure parameters, a coupling efficiency can reach as high as ∼ 70% at a wavelength of 1550 nm as indicated by simulation. From the angle of fabrication, all masks and etching steps are shared between MOSFETs and grating couplers, thereby making the high performance grating couplers easily integrated with CMOS circuits. Fabrication errors such as alignment shift are also simulated, showing that the device is quite tolerant in fabrication. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Large-Area Binary Blazed Grating Coupler between Nanophotonic Waveguide and LED

    Directory of Open Access Journals (Sweden)

    Hongqiang Li

    2014-01-01

    Full Text Available A large-area binary blazed grating coupler for the arrayed waveguide grating (AWG demodulation integrated microsystem on silicon-on-insulator (SOI was designed for the first time. Through the coupler, light can be coupled into the SOI waveguide from the InP-based C-band LED for the AWG demodulation integrated microsystem to function. Both the length and width of the grating coupler are 360 μm, as large as the InP-based C-band LED light emitting area in the system. The coupler was designed and optimized based on the finite difference time domain method. When the incident angle of the light source is 0°, the coupling efficiency of the binary blazed grating is 40.92%, and the 3 dB bandwidth is 72 nm at a wavelength of 1550 nm.

  10. Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm.......A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm....

  11. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2013-01-01

    We present an efficient method to design apodized grating couplers with Gaussian output profiles for efficient coupling between standard single mode fibers and silicon chips. An apodized grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform is designed......, and fabricated in a single step of lithography and etching. An ultralow coupling loss of x2212;1.74x2009;x2009;dB (67% coupling efficiency) with a 3xA0;dB bandwidth of 60xA0;nm is experimentally measured....

  12. Ultra-High-Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2013-01-01

    We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated.......We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated....

  13. High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Tapas Kumar; Zhou Weidong [University of Texas at Arlington, Department of Electrical Engineering, NanoFAB Center, Arlington, TX 76019-0072 (United States)

    2009-04-21

    We report here the design of a new type of high efficiency grating coupler, based on single crystalline Si nanomembrane overlay and stacking. Such high efficiency diffractive grating couplers are designed for the purpose of coupling light between single mode fibres and nanophotonic waveguides, and for the coupling between multiple photonic interconnect layers for compact three-dimensional vertical integration. Two-dimensional model simulation based on eigenmode expansion shows a diffractive power-up efficiency of 81% and a fibre coupling efficiency of 64%. With nanomembrane stacking, it is feasible to integrate the side-distributed Bragg reflector and bottom reflector, which can lead to the diffractive power-up efficiency and the fibre coupling efficiency of 97% and 73.5%, respectively. For a negatively detuned coupler, the bottom reflector is not needed, and the diffractive power-up efficiency can reach 98% over a large spectral range. The device is extremely tolerant to fabrication errors.

  14. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  15. Analysis and design of arrayed waveguide gratings with MMI couplers.

    Science.gov (United States)

    Munoz, P; Pastor, D; Capmany, J

    2001-09-24

    We present an extension of the AWG model and design procedure described in [1] to incorporate multimode interference, MMI, couplers. For the first time to our knowledge, a closed formula for the passing bands bandwidth and crosstalk estimation plots are derived.

  16. Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides

    Science.gov (United States)

    Favreau, Julien; Durantin, Cédric; Fédéli, Jean-Marc; Boutami, Salim; Duan, Guang-Hua

    2016-03-01

    Silicon photonics has taken great importance owing to the applications in optical communications, ranging from short reach to long haul. Originally dedicated to telecom wavelengths, silicon photonics is heading toward circuits handling with a broader spectrum, especially in the short and mid-infrared (MIR) range. This trend is due to potential applications in chemical sensing, spectroscopy and defense in the 2-10 μm range. We previously reported the development of a MIR photonic platform based on buried SiGe/Si waveguide with propagation losses between 1 and 2 dB/cm. However the low index contrast of the platform makes the design of efficient grating couplers very challenging. In order to achieve a high fiber-to-chip efficiency, we propose a novel grating coupler structure, in which the grating is locally suspended in air. The grating has been designed with a FDTD software. To achieve high efficiency, suspended structure thicknesses have been jointly optimized with the grating parameters, namely the fill factor, the period and the grating etch depth. Using the Efficient Global Optimization (EGO) method we obtained a configuration where the fiber-to-waveguide efficiency is above 57 %. Moreover the optical transition between the suspended and the buried SiGe waveguide has been carefully designed by using an Eigenmode Expansion software. Transition efficiency as high as 86 % is achieved.

  17. Fully etched apodized grating coupler on the SOI platform with −058 dB coupling efficiency

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon- on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity andcoupling angle dependence are experimentally investiga......We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon- on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity andcoupling angle dependence are experimentally...

  18. Ellipsoidal diffraction grating as output coupler for quasi-optical gyrotrons

    International Nuclear Information System (INIS)

    Hogge, J.P.; Cao, H.; Tran, T.M.; Tran, M.Q.; Paris, P.J.; Kasparek, W.

    1991-01-01

    The use of a diffraction grating arranged in the -1 Littrow mount as an output coupler for a quasi-optical Fabry-Perot resonator at microwave frequencies (100 GHz) was suggested in 1990. A planar grating with curvilinear grooves (in order to match the Littrow condition everywhere on the surface for a given Gaussian beam) gives a power coupling efficiency of 85% which is limited by the depolarization but gave approximately the same global efficiency because of distortion. We report low power tests on an improvement of the second scheme, based on curved grooves on an ellipsoidal surface, which gives a global efficiency of 94%. (author) 3 figs., 3 refs

  19. Distributed grating-assisted coupler for optical all-dielectric electron accelerator

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    2005-07-01

    Full Text Available A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction becomes an excellent option to form electron accelerating structure powered by high power laser sources. It provides confinement of a synchronous speed-of-light mode with extremely low loss. However, laser field cannot be coupled into the structure collinearly with the electron beam. There are three requirements in designing input coupler for a Bragg electron accelerator: side coupling, selective mode excitation, and high coupling efficiency. We present a side-coupling scheme using a distributed grating-assisted coupler to inject the laser power into the waveguide. Side coupling is achieved by a grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. The coupling efficiency is limited by profile matching between the outgoing beam and the incoming beam, which has normally a Gaussian profile. We demonstrate a nonuniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.

  20. TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform

    Science.gov (United States)

    Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.

    2017-12-01

    We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.

  1. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

    International Nuclear Information System (INIS)

    Yu, Zhu; Xue-Jun, Xu; Zhi-Yong, Li; Liang, Zhou; Yu-De, Yu; Jin-Zhong, Yu; Wei-Hua, Han; Zhong-Chao, Fan

    2010-01-01

    A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss. (classical areas of phenomenology)

  2. A novel highly efficient grating coupler with large filling factor used for optoelectronic integration

    International Nuclear Information System (INIS)

    Zhou Liang; Li Zhi-Yong; Zhu Yu; Li Yun-Tao; Yu Yu-De; Yu Jin-Zhong; Fan Zhong-Cao; Han Wei-Hua

    2010-01-01

    A novel highly efficient grating coupler with large filling factor and deep etching is proposed in silicon-on-insulator for near vertical coupling between the rib waveguide and optical fibre. The deep slots acting as high efficient scattering centres are analysed and optimized. As high as 60% coupling efficiency at telecom wavelength of 1550-nm and 3-dB bandwidth of 61 nm are predicted by simulation. A peak coupling efficiency of 42.1% at wavelength 1546-nm and 3-dB bandwidth of 37.6 nm are obtained experimentally. (classical areas of phenomenology)

  3. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    Science.gov (United States)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  4. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent

    2017-09-01

    Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20  dB). A measured coupling efficiency of -2.7  dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

  5. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Lapointe, Jean; Janz, Siegfried; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, J Gonzalo; Molina-Fernández, Iñigo; Fédéli, Jean-Marc; Vivien, Laurent; Dado, Milan

    2015-09-15

    We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3  dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.

  6. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits

    Science.gov (United States)

    Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.

    2016-03-01

    We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.

  7. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers.

    Science.gov (United States)

    Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M

    2012-05-08

    One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.

  8. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  9. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ye, Feihong; Peucheret, Christophe

    2015-01-01

    We report the design and fabrication of a compact multi-core fiber fan-in/fan-out using a grating coupler array on the SOI platform. The grating couplers are fully-etched, enabling the whole circuit to be fabricated in a single lithography and etching step. Thanks to the apodized design...... for the grating couplers and the introduction of an aluminum reflective mirror, a highest coupling efficiency of -3.8 dB with 3 dB coupling bandwidth of 48 nm and 1.5 dB bandwidth covering the whole C band, together with crosstalk lower than -32 dB are demonstrated. (C)2015 Optical Society of America...

  10. On-chip grating coupler array on the SOI platform for fan-in/fan-out of multi-core fibers with low insertion loss and crosstalk

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ye, Feihong; Peucheret, Christophe

    2014-01-01

    We design and fabricate a compact multi-core fiber fan-in/fan-out using a fully-etched grating coupler array on the SOI platform. Lowest coupling loss of 6.8 dB with 3 dB bandwidth of 48 nm and crosstalk lower than ×32 dB are demonstrated.......We design and fabricate a compact multi-core fiber fan-in/fan-out using a fully-etched grating coupler array on the SOI platform. Lowest coupling loss of 6.8 dB with 3 dB bandwidth of 48 nm and crosstalk lower than ×32 dB are demonstrated....

  11. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  12. Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with -0.78 dB coupling efficiency using photonic crystals and bonded Al mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2014-01-01

    We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated.......We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated....

  13. Frequency Tuning of IR First-Overtone CO Laser Radiation by Diffraction Grating and Frequency Selective Output Couplers

    National Research Council Canada - National Science Library

    Ionin, Andre

    1999-01-01

    ...: The contractor will investigate, both experimentally and theoretically, the feasibility of frequency tuning the first overtone carbon monoxide laser radiation by the use of diffraction gratings...

  14. Optical loss analysis and parameter optimization for fan-shaped single-polarization grating coupler at wavelength of 1.3 µm band

    Science.gov (United States)

    Ushida, Jun; Tokushima, Masatoshi; Sobu, Yohei; Shimura, Daisuke; Yashiki, Kenichiro; Takahashi, Shigeki; Kurata, Kazuhiko

    2018-05-01

    Fan-shaped grating couplers (F-GCs) can be smaller than straight ones but are less efficient in general in coupling to single-mode fibers. To find a small F-GC with sufficiently high fiber-coupling characteristics, we numerically compared the dependencies of coupling efficiencies on wavelengths, the starting width of gratings, and misalignment distances among 25, 45, and 60° tapered angles of fan shape by using the three-dimensional finite-difference time domain method. A F-GC with a tapered angle of 25° exhibited the highest performances for all dependencies. The optical loss origins of F-GCs were discussed in terms of the electric field structures in them and scattering at the joint between the fan-shaped slab and channel waveguide. We fabricated an optimized 25° F-GC by using ArF photolithography, which almost exactly reproduced the optical coupling efficiency and radiation angle characteristics that were numerically expected.

  15. Free-standing GaN grating couplers and rib waveguide for planar photonics at telecommunication wavelength

    Science.gov (United States)

    Liu, Qifa; Wang, Wei

    2018-01-01

    Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.

  16. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    Science.gov (United States)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  17. Coupler developments at CERN

    International Nuclear Information System (INIS)

    Cavallari, G.; Chiaveri, E.; Haebel, E.; Legendre, P.; Weingarten, W.

    1988-01-01

    This paper discusses the coupler developments that have taken place at CERN since the last RF superconductivity workshop. At that time beam tube coupling was just starting to be examined. It was found that in restricting the number of cells to four with the correct amount of intercell coupling, and endcells compensated simultaneously for several modes, trapped modes can be avoided at least up to three and a half times the fundamental mode frequency. This result is regarded as a sufficiently safe basis to switch over to beam tube coupling with two higher order mode (hom) couplers, one on each side and with 65 degrees in between them, and in addition one beam tube power coupler. The characteristics of the cavity and the machine determine the basic coupler specifications. Four designs are discussed for hom couplers. 22 reference, 15 figures, 2 tables

  18. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  19. Dynamic optical coupled system employing Dammann gratings

    Science.gov (United States)

    Di, Caihui; Zhou, Changhe; Ru, Huayi

    2004-10-01

    With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.

  20. Quantitative analysis of coupler tuning

    International Nuclear Information System (INIS)

    Zheng Shuxin; Cui Yupeng; Chen Huaibi; Xiao Liling

    2001-01-01

    The author deduces the equation of coupler frequency deviation Δf and coupling coefficient β instead of only giving the adjusting direction in the process of matching coupler, on the basis of coupling-cavity chain equivalent circuits model. According to this equation, automatic measurement and quantitative display are realized on a measuring system. It contributes to industrialization of traveling-wave accelerators for large container inspection systems

  1. Wireless power transfer magnetic couplers

    Science.gov (United States)

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  2. An analysis of multislot directional coupler

    International Nuclear Information System (INIS)

    Arai, Hiroyuki; Goto, Naohisa; Yamamoto, Takumi.

    1986-03-01

    This paper presents an analysis of multislot directional coupler for monitoring the gyrotron output. We solved the boundary value problem of the directional coupler to investigate the detailed effect of finite thickness slot and mutual coupling between slots. Numerical data of coupler design is presented for non-resonant a pair slot, and mode sensitivity in overmoded waveguide is also evaluated. (author)

  3. Coupler for nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Kerz, K.

    1984-01-01

    A coupler is described for absorber rods being suspended during operation of nuclear reactors which includes plurality of actuating elements being movable for individually and jointly releasing the coupler, the movement of each of the actuating elements for releasing the coupler being independently controllable

  4. A modified lower hybrid coupler for TPX

    International Nuclear Information System (INIS)

    Bernabei, S.; Greenough, N.

    1995-01-01

    Efforts have concentrated on redesigning the configuration of the Lower Hybrid coupler for TPX tokamak. Several concerns motivated this redesign: reduce the effect of thermal incompatibility between coupler and rf-window material, reduce weight, reduce the risk of wind failure and address the problem of replaceability, increase the reliability by reducing the number connections and finally, reduce the total cost. The result is a highly compact, light and easily serviceable coupler which incorporates some of the simplicity of the multifunction coupler but preserves the spectral flexibility of a conventional coupler

  5. A linear atomic quantum coupler

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and computer Science, Faculty of Science, Suez Canal University 41522, Ismailia (Egypt); Wahiddin, M R B, E-mail: el_orany@hotmail.co, E-mail: faisal.orany@mimos.m, E-mail: mridza@mimos.m [Cyberspace Security Laboratory, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia)

    2010-04-28

    In this paper we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of which includes a localized atom. These waveguides are placed close enough to allow exchange of energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way as the Jaynes-Cummings model (JCM) and with the atom-mode system in the second waveguide via the evanescent wave. We present the Hamiltonian for this system and deduce its wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional coupler the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit a long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions the system can yield the results of the two-mode JCM.

  6. Silica-on-silicon optical couplers and coupler based optical filters

    DEFF Research Database (Denmark)

    Leick, Lasse

    2002-01-01

    is not an adequate description of the waveguides. A simple application for an optical couplers is as a 980/1550 nm mulitmplexer for erbium doped wavguide amplifiers. A numerical analysis shows that a directional coupler has acceptable specifications, whereas a mulit mode interference coupler does not. The wavelength......This work concerns modeling and chracterization of non ampligying silica-on-silicon optical components for wavelength division mulitplexed networks. Emphasis is placed on optical couplers and how they can be used as building blocks for devices with a larger complexity. It has been investigated how...... to construct wavelength flattened and process tolerant couplers. A thorough comparison between directional couplers, multi mode interference couplers and interferometer-based couplers has been performed. Numerically all these architectures have the ability to obtain similar wavelength-flatness, but the multi...

  7. Miniature mechanical transfer optical coupler

    Science.gov (United States)

    Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  8. rf coupler technology for fusion applications

    International Nuclear Information System (INIS)

    Hoffman, D.J.

    1983-01-01

    Radio frequency (rf) oscillations at critical frequencies have successfully provided a means to convey power to fusion plasmas due to the electrical-magnetic properties of the plasma. While large rf systems to couple power to the plasma have been designed, built, and tested, the main link to the plasma, the coupler, is still in an evolutionary stage of development. Design and fabrication of optimal antennas for fusion applications are complicated by incomplete characterizations of the harsh plasma environment and of coupling mechanisms. A brief description of rf coupler technology required for plasma conditions is presented along with an assessment of the status and goals of coupler development

  9. A Tandem Coupler for Terahertz Integrated Circuits

    Science.gov (United States)

    Reck, Theodore J.; Deal, William; Chattopadhyay, Goutam

    2013-01-01

    A coplanar waveguide 3 dB quadrature coupler operating from 500 to 700 GHz is designed, fabricated and measured. On-wafer measurements demonstrate an amplitude balance of +/-2 dB and phase balance of +/-20 deg.

  10. Fabrication of LD-3 Polymer Directional Couplers

    National Research Council Canada - National Science Library

    Chen, Ray T

    1998-01-01

    .... LD-3 polymer directional couplers arc designed and fabricated to operate at 1.3 microns. Waveguide propagation losses, device characterization, demonstration of cross coupling and packaged device pictures are presented in this final report.

  11. UV written compact broadband optical couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques.......In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques....

  12. Monolithically integrated fiber-to-the-home diplexers and triplexers using a bilevel etched 2 x 2 optical coupler.

    Science.gov (United States)

    Zhang, Li; Wang, Lei; He, Jian-Jun

    2009-09-01

    A novel design of monolithically integrated diplexers and triplexers for fiber-to-the-home applications is presented. A bilevel etched asymmetrical 2 x 2 optical coupler is analyzed for efficient couplings of both upstream and downstream signals. The design of the diplexer is extended to a triplexer by adding an etched diffraction grating as an additional downstream demultiplexing element. The total size of the integrated diplexer and triplexer is smaller than 500 microm x 500 microm.

  13. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  14. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  15. Coupler induced monopole component and its minimization in deflecting cavities

    Directory of Open Access Journals (Sweden)

    P. K. Ambattu

    2013-06-01

    Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.

  16. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  17. Time-Domain Simulation of RF Couplers

    International Nuclear Information System (INIS)

    Smithe, David; Carlsson, Johan; Austin, Travis

    2009-01-01

    We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.

  18. Polarization converted coupler for plasma current drive experiments

    International Nuclear Information System (INIS)

    Arai, H.; Shimizu, S.; Goto, N.

    1986-01-01

    In this paper, the authors propose the polarization converted coupler which has narrow width shape and radiates electric field perpendicular to the main toroidal magnetic field. The advantages of the polarization converted coupler are as follows: (l) The rectangular waveguide as the transmission line has the high power capability. (2) The all metal design is not damaged by the fusion neutron. (3) The characteristic of this coupler is not changed widely, since the coupler has the matching section. For example, the VSWR of its input impedance is less than 2.0 for both water and air load. The authors present characteristics of the polarization converted coupler measured by the model experiments

  19. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  20. Transverse emittance dilution due to coupler kicks in linear accelerators

    Directory of Open Access Journals (Sweden)

    Brandon Buckley

    2007-11-01

    Full Text Available One of the main concerns in the design of low emittance linear accelerators (linacs is the preservation of beam emittance. Here we discuss one possible source of emittance dilution, the coupler kick, due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. In addition to emittance growth, the coupler kick also produces orbit distortions. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by using two couplers per cavity mounted opposite each other or by having the couplers of successive cavities alternate from above to below the beam pipe so as to cancel each individual kick. While this is correct, including two couplers per cavity or alternating the coupler location requires large technical changes and increased cost for superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We therefore analyze consequences of alternate coupler placements. We show here that alternating the coupler location from above to below compensates the emittance growth as well as the orbit distortions. For sufficiently large Q values, alternating the coupler location from before to after the cavity leads to a cancellation of the orbit distortion but not of the emittance growth, whereas alternating the coupler location from before and above to behind and below the cavity cancels the emittance growth but not the orbit distortion. We show that cancellations hold for sufficiently large Q values. These compensations hold even when each cavity is individually detuned, e.g., by microphonics. Another effective method for reducing coupler kicks that is studied is the optimization of the phase of the coupler kick so as to minimize the effects on emittance from each coupler. This technique is independent of the coupler geometry but relies on operating on crest. A final technique studied is symmetrization of the cavity geometry in the

  1. Structural Analysis of Taper-Threaded Rebar Couplers

    International Nuclear Information System (INIS)

    Chu, Seok Jae; Kwon, Hyuk Mo; Seo, Sang Hwan

    2014-01-01

    A number of rebar couplers were developed by the leading companies. The information about the products is available from the company website. However, the theory on the taper-threaded coupler is not available. In this paper, the mechanics of the taper-thread was developed to understand the effect of the tightening torque. Structural analysis of our own newly developed rebar coupler was done to improve the strength of the coupler. The taper-threaded rebar coupler was analyzed. The tightening of the rebar into the coupler developed a circumferential stress in the coupler. The circumferential stress depends on the coefficient of friction as well as the tightening torque. The circumferential stress is less than the allowable stress 20 kgf/mm 2 of the material for the coefficient of friction greater than 0.1. The tightening of the rebar into the coupler and the subsequent tensioning was simulated using CATIA. Linear elastic analysis considering contact was done. The tightening of the taper-threaded rebar developed a uniform stress distribution in both standard coupler and position coupler. On the other hand, the tightening of the nut in the axial direction developed a non-uniform stress distribution. Similarly the tensioning also developed a non-uniform stress distribution

  2. All-optical LAN architectures based on arrayed waveguide grating multiplexers

    Science.gov (United States)

    Woesner, Hagen

    1998-10-01

    The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.

  3. Fundamental Power Couplers for Superconducting Cavities

    International Nuclear Information System (INIS)

    Isidoro E. Campisi

    2001-01-01

    Fundamental power couplers (FPC's) for superconducting cavities must meet very strict requirements to perform at high power levels (hundreds of kilowatts) and in a variety of conditions (CS, pulsed, travelling wave, standing wave) without adversely affecting the performance of the cavities they are powering. Producing good coupler designs and achieving operational performances in accelerator environments are challenging tasks that have traditionally involved large resources from many laboratories. The designs involve state-of-the-art activities in RF, cryogenic and mechanical engineering, materials science, vacuum technology, and electromagnetic field modeling. Handling, assembly and conditioning procedures have been developed to achieve ever-increasing power levels and more reliable operation. In this paper, the technical issues associated with the design, construction, assembly, processing, and operation of FPC's will be reviewed, together with the progress in FPC activities in several laboratories during the past few years

  4. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  5. Free electron laser variable bridge coupler

    International Nuclear Information System (INIS)

    Spalek, G.; Billen, J.H.; Garcia, J.A.; McMurry, D.E.; Harnsborough, L.D.; Giles, P.M.; Stevens, S.B.

    1985-01-01

    The Los Alamos free-electron laser (FEL) is being modified to test a scheme for recovering most of the power in the residual 20-MeV electron beam by decelerating the microbunches in a linear standing-wave accelerator and using the recovered energy to accelerate new beam. A variable-coupler low-power model that resonantly couples the accelerator and decelerator structures has been built and tested. By mixing the TE 101 and TE 102 modes, this device permits continuous variation of the decelerator fields relative to the accelerator fields through a range of 1:1 to 1:2.5. Phase differences between the two structures are kept below 1 0 and are independent of power-flow direction. The rf power is also fed to the two structures through this coupling device. Measurements were also made on a three-post-loaded variable coupler that is a promising candidate for the same task

  6. All silicon waveguide spherical microcavity coupler device.

    Science.gov (United States)

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  7. A Third Generation Lower Hybrid Coupler

    International Nuclear Information System (INIS)

    Bernabei, S.; Hosea, J.; Kung, C.; Loesser, D.; Rushinski, J.; Wilson, J.R.; Parker, R.

    2001-01-01

    The Princeton Plasma Physics Laboratory (PPPL) and the Massachusetts Institute of Technology (MIT) are preparing an experiment of current profile control using lower-hybrid waves in order to produce and sustain advanced tokamak regimes in steady-state conditions in Alcator C-Mod. Unlike JET's, ToreSupra's and JT60's couplers, the C-Mod lower-hybrid coupler does not employ the now conventional multijunction design, but will have similar characteristics, compactness, and internal power division while retaining full control of the antenna element phasing. This is achieved by using 3 dB vertical power splitters and a stack of laminated plates with the waveguides milled in them. Construction is simplified and allows easy control and maintenance of all parts. Many precautions are taken to avoid arcing. Special care is also taken to avoid the recycling of reflected power which could affect the coupling and the launched n(subscript ||) spectrum. The results from C-Mod should allow further simplification in the designs of the coupler planned for KSTAR (Korea Superconducting Tokamak Advanced Research) and ITER (International Thermonuclear Experimental Reactor)

  8. CAMAC/PDP 11-45 coupler

    International Nuclear Information System (INIS)

    Pascual, Joseph; Raoul, J.-C.

    1978-04-01

    The complex experimental devices used in high energy physics require the use of minicomputers. The latter are coupled to the detectors using the CAMAC standard which has been adopted by the majority of high energy physics laboratories, much to the ease of international collaboration. The performance of industrially available interfaces having shown to be inadequate, the DPhPE has undertaken the development of a multibranche CAMAC/PDP 11-45 coupler. This system can control up to 49 crates shared out between 7 branches. It consists of a programmed channel and up to three high speed (556 Kwords/second) automatic channels. The four channels can work simultaneously through time sharing. The coupler includes a LAM handling system. The correspondent software has been developed simultaneously: the monitor is an extended version of the RT 11 system supplied by the manufacturer. This interface has been used so far in five experiments on the CERN PS and SPS. Besides this publication, intended to give a description of the coupler, a user's utilisation manuel exists in English [fr

  9. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    Science.gov (United States)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  10. RF Processing of the Couplers for the SNS Superconducting Cavities

    International Nuclear Information System (INIS)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-01-01

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities

  11. Steering and filtering white light with resonant waveguide gratings

    Science.gov (United States)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin

    2017-08-01

    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  12. Development of higher order mode couplers at Cornell

    International Nuclear Information System (INIS)

    Amato, J.C.

    1988-01-01

    Higher order mode (HOM) couplers are integral parts of a superconducting accelerator cavity. The damping which the couplers must provide is dictated by the frequency and shunt impedance of the cavity modes as well as by the stability requirements of the accelerator incorporating the cavities. Cornell's 5-cell 1500 MHz elliptical cavity was designed for use in a 50 x 50 GeV electron-positron storage ring with a total beam current of 3.5 mA (CESR-II). HOM couplers for the Cornell cavity were designed and evaluated with this machine in mind. The development of these couplers is described in this paper. 8 references, 8 figures

  13. Zeno effect and switching of solitons in nonlinear couplers

    DEFF Research Database (Denmark)

    Abdullaev, F Kh; Konotop, V V; Ögren, Magnus

    2011-01-01

    The Zeno effect is investigated for soliton type pulses in a nonlinear directional coupler with dissipation. The effect consists in increase of the coupler transparency with increase of the dissipative losses in one of the arms. It is shown that localized dissipation can lead to switching...

  14. Broad-band anti-reflection coupler for a : Si thin-film solar cell

    International Nuclear Information System (INIS)

    Lo, S.-S.; Chen, C.-C.; Garwe, Frank; Pertch, Thomas

    2007-01-01

    This work numerically demonstrates a new anti-reflection coupler (ARC) with high coupling efficiency in a Si substrate solar cell. The ARC in which the grating is integrated on a glass encapsulation and a three-layer impedance match layer is proposed. A coupling efficiency of 90% is obtained at wavelengths between 350 and 1200 nm in the TE and TM modes when the incident angle is less than 30 0 . In comparison with a 1μm absorber layer, the integrated absorption of an a-Si thin-film solar cell without a new ARC is doubled, at long wavelengths (750 nm ≤ λ ≤ 1200 nm), as calculated by FDTD method

  15. Ultrashort hybrid metal-insulator plasmonic directional coupler.

    Science.gov (United States)

    Noghani, Mahmoud Talafi; Samiei, Mohammad Hashem Vadjed

    2013-11-01

    An ultrashort plasmonic directional coupler based on the hybrid metal-insulator slab waveguide is proposed and analyzed at the telecommunication wavelength of 1550 nm. It is first analyzed using the supermode theory based on mode analysis via the transfer matrix method in the interaction region. Then the 2D model of the coupler, including transition arms, is analyzed using a commercial finite-element method simulator. The hybrid slab waveguide is composed of a metallic layer of silver and two dielectric layers of silica (SiO2) and silicon (Si). The coupler is optimized to have a minimum coupling length and to transfer maximum power considering the layer thicknesses as optimization variables. The resulting coupling length in the submicrometer region along with a noticeable power transfer efficiency are advantages of the proposed coupler compared to previously reported plasmonic couplers.

  16. A novel bridge coupler for SSC coupled cavity linac

    International Nuclear Information System (INIS)

    Yao, C.G.; Chang, C.R.; Funk, W.

    1992-01-01

    A novel magnetically coupled multi-cavity bridge coupler is proposed for SSC Coupled-Cavity-Linac (CCL). The bridge coupler is a five cell disc-loaded waveguide with a small central aperture used for measurement and two large curved coupling slots near the edge on each disc. The two coupling slots on the adjacent disc are rotated 90 degrees in orientation to reduce the direct coupling. This type of structure is capable of producing very large coupling (>10% in our longest bridge coupler). Also because of the small opening on the discs, the high-order-modes are very far (> 300 MHz) above the operating mode. Thus for long bridge couplers, the magnetic coupled structure should provide maximum coupling with minimum mode mixing problems. In this paper both physics and engineering issues of this new bridge coupler are presented. (Author) 5 refs., 2 tabs., 6 figs

  17. Fiber-optic couplers as displacement sensors

    Science.gov (United States)

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  18. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    Science.gov (United States)

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

  19. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  20. Sub-wavelength surface gratings for light redirection in transparent substrates

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Christiansen, Mads Brøkner

    2012-01-01

    We demonstrate sub-wavelength grating couplers patterned on glass surfaces which are designed to convert incident free-space radiation into guided modes along the glass material. The devices are fabricated by nanoimprint lithography and the measured optical performance is compared to a simple mod...... panes and display applications with minimal influence on vision quality. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738777]...

  1. Structural effects on electromagnetic flow coupler performance

    International Nuclear Information System (INIS)

    Aoyama, Goro; Yokota, Norikatsu; Mine, Masao; Watanabe, Takashi; Takuma, Tadasu; Takenaka, Kiyoshi.

    1992-01-01

    A prototype electromagnetic flow coupler was tested using 300degC liquid sodium to estimate the effect on performance of generator flow velocity, magnetic flux density, magnetic core length and bus bar length. Its performance was not affected by changes in fluid velocity and magnetic flux density up to 8.3 m/s and 0.51 T, respectively. Besides the experiments, a two-dimensional numerical analysis program based on Ohm's law and the current continuity equation was prepared to estimate the effects of magnetic core length and bus bar construction. The current transferred from the generator to the pump, the current transfer ratio, increased by lengthening the magnetic core being a maximum of 0.706 for a 100 mm core and 0.764 for a 300 mm core. The numerical results showed that the presence of the bus bar in the outer region of the magnetic core gave inferior performance to that in its absence. (author)

  2. Surface acoustic waves voltage controlled directional coupler

    Science.gov (United States)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  3. Efficient waveguide coupler based on metal materials

    Science.gov (United States)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  4. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    Science.gov (United States)

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  5. Optimized Ultrawideband and Uniplanar Minkowski Fractal Branch Line Coupler

    Directory of Open Access Journals (Sweden)

    Mohammad Jahanbakht

    2012-01-01

    Full Text Available The non-Euclidean Minkowski fractal geometry is used in design, optimization, and fabrication of an ultrawideband (UWB branch line coupler. Self-similarities of the fractal geometries make them act like an infinite length in a finite area. This property creates a smaller design with broader bandwidth. The designed 3 dB microstrip coupler has a single layer and uniplanar platform with quite easy fabrication process. This optimized 180° coupler also shows a perfect isolation and insertion loss over the UWB frequency range of 3.1–10.6 GHz.

  6. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  7. Thermal behaviour analysis of SRF cavities and superconducting HOM couplers

    International Nuclear Information System (INIS)

    Fouaidy, M.; Junquera, T.

    1993-01-01

    Two individual papers appear in this report, titled Thermal model calculations in superconducting RF cavities, and Thermal study of HOM couplers for superconducting RF cavities. Both were indexed separately for the INIS database. (R.P.)

  8. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  9. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  10. rf coaxial couplers for high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  11. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  12. HOM/LOM Coupler Study for the ILC Crab Cavity

    International Nuclear Information System (INIS)

    Xiao, L.; Li, Z.; Ko, K.

    2007-01-01

    The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM experiment was chosen as the baseline design for the ILC BDS crab cavity. The full 9-cell CKM cavity including the coupler end-groups was simulated using the parallel eigensolver Omega3P and scattering parameter solver S3P. It was found that both the notch filters for the HOM/LOM couplers are very sensitive to the notch gap, which is about 1.6MHz/micron and is more than 10 times more sensitive than the TTF cavity. It was also found in the simulation that the unwanted vertical π-mode (SOM) is strongly coupled to the horizontal 7π/9 mode which causes x-y coupling and reduces the effectiveness of the SOM damping. To meet the ILC requirements, the HOM/LOM couplers are redesigned to address these issues. With the new designs, the damping of the HOM/LOM modes is improved. The sensitivity of the notch filter for the HOM coupler is reduced by one order of magnitude. The notch filter for the LOM coupler is eliminated in the new design which significantly simplifies the geometry. In this paper, we will present the simulation results of the original CKM cavity and the progresses on the HOM/LOM coupler re-design and optimization

  13. Development of the SCRF Power Coupler for the APT Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schmierer, E.N.; Lujan, R.E.; Rusnak, B.; Smith, B.; Haynes, W.B.; Gautier, C.; Waynert, J.A.; Krawczyk, F.; Gioia, J.

    1999-03-01

    The team responsible for the design of the Accelerator Production of Tritium (APT) superconducting (SC) radio frequency (RF) power coupler has developed two 700-MHz, helium gas-cooled power couplers. One has a fixed inner conductor and the other has an adjustable inner conductor (gamma prototype and alpha prototype). The power couplers will be performance tested in the near future. This paper discusses the mechanical design and fabrication techniques employed in the development of each power coupler. This includes material selection, copper coating, assembly sequences, and metal joining procedures, as well as the engineering analyses performed to determine the dynamic response of the inner conductors due to environmental excitations. A bellows is used in both prototype inner conductors in the area near the ceramic RF window, to compensate for thermal expansion and mechanical tolerance build-up. In addition, a bellows is used near the tip of the inner conductor of the alpha prototype for running the power coupler after it is installed on the accelerator. Extensive analytical work has been performed to determine the static loads transmitted by the bellows due to thermally induced expansion on the inner conductor and on the RF window. This paper also discusses this analysis, as well as the mechanical analysis performed to determine the final geometric shape of the bellows. Finally, a discussion of the electromagnetic analysis used to optimize the performance of the power couplers is included.

  14. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  15. MAFIA simulation and cold model test of three types of bridge coupler

    International Nuclear Information System (INIS)

    Chang, C.R.; Yao, C.G.; Swenson, D.A.; Funk, L.W.; Raparia, D.

    1992-01-01

    In the new design of the SSC CCL, the total number of bridge couplers has increased from 50 to 63, and their maximum length increased from 37.2 to 46.1 cm. Choosing a bridge coupler that gives maximum coupling, minimum power flow, phase shift and fabrication cost becomes important. The conventional TM010 single cavity bridge coupler used in LAMPF and Fermilab will have severe mode mixing problem when the bridge length is over 30 cm, and the coupling is very weak. Three types of bridge coupler have been proposed: (1) TM012 single cavity bridge coupler; (2) electrically coupled multi-cavity bridge coupler and (3) magnetically coupled multi-cavity bridge coupler. This paper presents both MAFIA simulations and cold model tests results. Each bridge coupler has its unique characteristics with advantages and disadvantages, but all three are superior to the conventional coupler. (Author) 6 figs., tab., 2 refs

  16. Preliminary Investigation of an SOI-based Arrayed Waveguide Grating Demodulation Integration Microsystem

    Science.gov (United States)

    Li, Hongqiang; Zhou, Wenqian; Liu, Yu; Dong, Xiaye; Zhang, Cheng; Miao, Changyun; Zhang, Meiling; Li, Enbang; Tang, Chunxiao

    2014-05-01

    An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made from silicon-on-insulator wafers using electron beam exposure and response-coupled plasma technology. Experimental results show that the excess loss in the MMI coupler with a footprint of 6 × 100 μm2 is 0.5423 dB. The 1 × 8 AWG with a footprint of 267 × 381 μm2 and a waveguide width of 0.4 μm exhibits a central channel loss of -3.18 dB, insertion loss non-uniformity of -1.34 dB, and crosstalk level of -23.1 dB. The entire system is preliminarily tested. Wavelength measurement precision is observed to reach 0.001 nm. The wavelength sensitivity of each FBG is between 0.04 and 0.06 nm/dB.

  17. HOM Coupler Optimisation for the Superconducting RF Cavities in ESS

    CERN Document Server

    Ainsworth, R; Calaga, R

    2012-01-01

    The European Spallation Source (ESS) will be the world’s most powerful next generation neutron source. It consists of a linear accelerator, target, and instruments for neutron experiments. The linac is designed to accelerate protons to a final energy of 2.5 GeV, with an average design beam power of 5 MW, for collision with a target used to produce a high neutron flux. A section of the linac will contain Superconducting RF (SCRF) cavities designed at 704 MHz. Beam induced HOMs in these cavities may drive the beam unstable and increase the cryogenic load, therefore HOM couplers are installed to provide sufficient damping. Previous studies have shown that these couplers are susceptible to multipacting, a resonant process which can absorb RF power and lead to heating effects. This paper will show how a coupler suffering from multipacting has been redesigned to limit this effect. Optimisation of the RF damping is also discussed.

  18. Design of the new couplers for C-ADS RFQ

    Science.gov (United States)

    Shi, Ai-Min; Sun, Lie-Peng; Zhang, Zhou-Li; Xu, Xian-Bo; Shi, Long-Bo; Li, Chen-Xing; Wang, Wen-Bin

    2015-04-01

    A new special coupler with a kind of bowl-shaped ceramic window for a proton linear accelerator named the Chinese Accelerator Driven System (C-ADS) at the Institute of Modern Physics (IMP) has been simulated and constructed and a continuous wave (CW) beam commissioning through a four-meter long radio frequency quadruple (RFQ) was completed by the end of July 2014. In the experiments of conditioning and beam, some problems were promoted gradually such as sparking and thermal issues. Finally, two new couplers were passed with almost 110 kW CW power and 120 kW pulsed mode, respectively. The 10 mA intensity beam experiments have now been completed, and the couplers during the operation had no thermal or electro-magnetic problems. The detailed design and results are presented in the paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03020500)

  19. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan

    2003-01-01

    Research Center (MIC) at the Technical University of Denmark. The Bragg gratings were fabricated at COM using UV irradiation of the planar waveguides using the phase mask method. The induction of a frozen-in DC electric field into the samples was performed by thermal poling of the Bragg gratings...... layers, it becam possible to investigate the symmetry properties of the third-order nonlinearities. Contrary to the expectations for an amorphous material, the measurements indicated an almost polarization independent third-order nonlinearity - the most probable explanation being electrostriction......The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology...

  20. Broadband polymer microstructured THz fiber coupler with downdoped cores

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Bang, Ole

    2010-01-01

    We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz.......We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz....

  1. Grateful Med: getting started.

    Science.gov (United States)

    Shearer, B; McCann, L; Crump, W J

    1990-01-01

    When a local medical library is not available, it is often necessary for physicians to discover alternate ways to receive medical information. Rural physicians, particularly, can make use of a computer program called Grateful Med that provides access to the same literature available to physicians in large cities. This program permits the user to perform database searches on the National Library of Medicine database (MEDLINE), corresponding to the primary index to medical literature, Index Medicus. In this article, we give the procedure for procuring a National Library of Medicine password and for making efficient use of the Grateful Med program.

  2. Studying quick coupler efficiency in working attachment system of single-bucket power shovel

    Science.gov (United States)

    Duganova, E. V.; Zagorodniy, N. A.; Solodovnikov, D. N.; Korneyev, A. S.

    2018-03-01

    A prototype of a quick-disconnect connector (quick coupler) with an unloaded retention mechanism was developed from the analysis of typical quick couplers used as intermediate elements for power shovels of different manufacturers. A method is presented, allowing building a simulation model of the quick coupler prototype as an alternative to physical modeling for further studies.

  3. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    Science.gov (United States)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  4. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  5. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    Science.gov (United States)

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  6. Bragg grating rogue wave

    Energy Technology Data Exchange (ETDEWEB)

    Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)

    2015-06-12

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.

  7. Silicon graphene Bragg gratings.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  8. Nonclassical properties of a contradirectional nonlinear optical coupler

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Kishore [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Sen, Biswajit [Department of Physics, Vidyasagar Teachers' Training College, Midnapore 721101 (India); Perřina, Jan [RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Department of Optics, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic)

    2014-10-24

    We investigate the nonclassical properties of output fields propagated through a contradirectional asymmetric nonlinear optical coupler consisting of a linear waveguide and a nonlinear (quadratic) waveguide operated by second harmonic generation. In contrast to the earlier results, all the initial fields are considered weak and a completely quantum-mechanical model is used here to describe the system. Perturbative solutions of Heisenberg's equations of motion for various field modes are obtained using Sen–Mandal technique. Obtained solutions are subsequently used to show the existence of single-mode and intermodal squeezing, single-mode and intermodal antibunching, two-mode and multi-mode entanglement in the output of contradirectional asymmetric nonlinear optical coupler. Further, existence of higher order nonclassicality is also established by showing the existence of higher order antibunching, higher order squeezing and higher order entanglement. Variation of observed nonclassical characters with different coupling constants and phase mismatch is discussed. - Highlights: • Nonclassicalities in fields propagating through a directional coupler is studied. • Completely quantum-mechanical description of the coupler is provided. • Analytic solutions of Heisenberg equations of motion for various modes are obtained. • Existence of lower order and higher order entanglement is shown. • Variation of nonclassicalities with phase-mismatch and coupling constants is studied.

  9. Coupler tuning for constant gradient travelling wave accelerating structures

    International Nuclear Information System (INIS)

    Guo Xingkun; Ma Yanyun; Wang Xiulong

    2013-01-01

    The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)

  10. Coaxial TW window for power couplers and multipactor considerations

    International Nuclear Information System (INIS)

    Hanus, X.; Mosnier, A.

    1996-01-01

    A Traveling Wave coaxial window has been studied for power couplers purposes. The main features, a reduced electrical field in the ceramic and its multipacting free shape are presented. Multipacting simulations results for other window geometries, using a conical or a cylindrical ceramic are also showed. (author)

  11. Cancellation of RF Coupler-Induced Emittance Due to Astigmatism

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC

    2016-12-11

    It is well-known that the electron beam quality required for applications such as FEL’s and ultra-fast electron diffraction can be degraded by the asymmetric fields introduced by the RF couplers of superconducting linacs. This effect is especially troublesome in the injector where the low energy beam from the gun is captured into the first high gradient accelerator section. Unfortunately modifying the established cavity design is expensive and time consuming, especially considering that only one or two sections are needed for an injector. Instead, it is important to analyze the coupler fields to understand their characteristics and help find less costly solutions for their cancellation and mitigation. This paper finds the RF coupler-induced emittance for short bunches is mostly due to the transverse spatial sloping or tilt of the field, rather than the field’s time-dependence. It is shown that the distorting effects of the coupler can be canceled with a static (DC) quadrupole lens rotated about the z-axis.

  12. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    14-nm-thick stripes and a wavelength of 1550 urn, LR-SPP propagation loss is determined for the stripe widths varying from 2 to 12 mu m and is found to be similar to 7 and 5 dB/cm for 10- and 4-mu m-wide stripes, respectively. For the directional couplers based on 14-nm-thick and 8-mu m-wide gold...... stripes and a wavelength of 1570 nm, the coupling lengths of 4.1, 1.9, and 0.8 mm are found for the respective waveguide separations of 8, 4, and 0 mu m. We model the LR-SPP-based directional couplers using the effective-refractive-index method and obtain a good agreement with the experimental results....... The transmission spectra of LR-SPP-based directional couplers are presented demonstrating an efficient (similar to 30 dB) separation of different telecom wavelength bands. Various possibilities for dynamic control of wavelength division/multiplexing with LRSPP-based directional couplers that utilize the thermo...

  13. Comparison of sound transmission in human ears and coupler loaded by audiometric earphones

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2005-01-01

    in the coupler, but since the "ear canal entrance" is not well-defined for the coupler, the mentioned measurements were done at different depths in the coupler. The sound transmission and coupling were described in terms of the pressure division at the entrance of the ear canal and the transmissions in human......, the differences among earphones as well as between human ears and the coupler affect the results of audiometric measurements inducing uncertainty. The influence of these differences is examined by investigating the sound transmission in both human ears and standardized coupler loaded by different audiometric......The thresholds of hearing are usually determined using audiometric earphones. They are calibrated by means of a standardized acoustical coupler. In order to have determined thresholds independent of the earphone type, the coupler should approximate the average human ear closely. Nevertheless...

  14. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays.

    Science.gov (United States)

    Passaro, Vittorio M N; Diana, Roberto; Armenise, Mario N

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  15. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  16. Low-crosstalk orbital angular momentum fiber coupler design.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Li, Muqiao; Li, Jiong; Xu, Shanhui; Yang, Zhongmin

    2017-05-15

    A fiber coupler for low-crosstalk orbital angular momentum mode beam splitter is proposed with the structure of two separate and parallel microfibers. By properly setting the center-to-center distance between microfibers, the crosstalk is less than -20 dB, which means that the purity of the needed OAM mode in output port is higher than 99%. For a fixed overlapping length, high coupling efficiency (>97%) is achieved in 1545-1560 nm. The operating wavelength is tuned to the whole C-band by using the thermosensitive liquid. So the designed coupler can achieve the tunable coupling ratio over the whole C-band, which is a prospective component for the further OAM fiber system.

  17. Very short intracavity directional coupler for high-speed communication

    Science.gov (United States)

    Griffel, Giora

    1993-07-01

    We propose a novel intracavity modulator/switch that consists of a directional-coupler located inside a Fabry-Perot cavity. The back mirror of the cavity has a unit reflectivity so that both input and output signals are at the same side. In this way we obtain a two-port, single side element, with coupling length of 83.5 μm, which is the shortest modulation coupler proposed so far. The upper frequency limit due to photon lifetime is 275 GHz, which is well over the bandwidth constraints of microwave lumped structures. A unified approach for the analysis of this device and other similar structures is presented and discussed.

  18. Quantum superchemistry in an output coupler of coherent matter waves

    International Nuclear Information System (INIS)

    Jing, H.; Cheng, J.

    2006-01-01

    We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam

  19. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    International Nuclear Information System (INIS)

    Deng Yang; Liu Yuan; Gao Dingshan

    2011-01-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  20. Low Loss 1×2 Optical Coupler Based on Cosine S-bend with Segmented Waveguides

    Science.gov (United States)

    Yulianti, Ian; Sahmah, Abu; Supa'at, M.; Idrus, Sevia M.; Ridwanto, Muhammad; Al-hetar, Abdulaziz M.

    2011-05-01

    This paper presents an optimization of 1×2 polymer Y-junction optical coupler. The optimized optical coupler comprises straight polymer waveguide as the input waveguide, tapered waveguide, modified cosine S-bend and linear waveguide. At the branching point, N short waveguides with small width are introduced to reduce evanescent field. At operating wavelength of 1550 nm the excess loss of the coupler is ˜0.18 dB. In term of polarization dependence loss (PDL), the proposed coupler also shows a good performance with PDL value of less than 0.015 dB for wavelength range of 1470 nm-1550 nm. The proposed coupler could reduce excess loss more than 25% compared to conventional Y junction optical coupler.

  1. Substrate integrated waveguide (SIW 3 dB coupler for K-Band applications

    Directory of Open Access Journals (Sweden)

    Khalid Nurehansafwanah

    2017-01-01

    Full Text Available This paper presented a designed coupler by using Rogers RO4003C with thickness (h 0.508 mm and relative permittivity (εr 3.55. The four port network coupler operates in K-band (18-27 GHz and design by using substrate integrated waveguide (SIW method. The reflection coefficient and isolation coefficient of propose Substrate Integrated Waveguide (SIW coupler is below than -10 dB. Meanwhile the coupler requirements are phase shift 90° between coupled port and output. SIW are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable for use in microwave and communication electronics, as well as increase bandwidth systems. The designs of coupler are investigated using CST Microwave Studio simulation tool. This proposed couplers are varied from parameters that cover the frequency range (21 -24 GHz and better performance of scattering (S-parameter.

  2. Inexpensive 3dB coupler for POF communication by injection-molding production

    Science.gov (United States)

    Haupt, M.; Fischer, U. H. P.

    2011-01-01

    POFs (polymer optical fibers) gradually replace traditional communication media such as copper and glass within short distance communication systems. Primarily, this is due to their cost-effectiveness and easy handling. POFs are used in various fields of optical communication, e.g. the automotive sector or in-house communication. So far, however, only a few key components for a POF communication network are available. Even basic components, such as splices and couplers, are fabricated manually. Therefore, these circumstances result in high costs and fluctuations in components' performance. Available couplers have high insertion losses due to their manufacturing method. This can only be compensated by higher power budgets. In order to produce couplers with higher performances new fabrication methods are indispensable. A cheap and effective way to produce couplers for POF communication systems is injection molding. The paper gives an overview of couplers available on market, compares their performances, and shows a way to produce couplers by means of injection molding.

  3. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    Science.gov (United States)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  4. A calculation method for RF couplers design based on numerical simulation by microwave studio

    International Nuclear Information System (INIS)

    Wang Rong; Pei Yuanji; Jin Kai

    2006-01-01

    A numerical simulation method for coupler design is proposed. It is based on the matching procedure for the 2π/3 structure given by Dr. R.L. Kyhl. Microwave Studio EigenMode Solver is used for such numerical simulation. the simulation for a coupler has been finished with this method and the simulation data are compared with experimental measurements. The results show that this numerical simulation method is feasible for coupler design. (authors)

  5. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler.......A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  6. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio

    Science.gov (United States)

    Jaroszewicz, Leszek R.; Stasiewicz, Karol A.; Marć, Paweł; Szymański, Michał

    2010-09-01

    In the paper a new broadband photonic crystal fiber coupler is presented. The proper application of the biconical taper technology has been used for manufacturing the coupler without air holes collapse in LMA10 fiber (NKT Photonics Crystal). This coupler, operates in the weakly coupling condition, protects coupling operation in range from 900 nm to 1700 nm. The coupling ratio between output arms is depending on wavelength and can be tuning by selection the proper input state of polarization. It gives opportunity to use the broadband crystal fiber coupler in many applications in which it is necessary to tune a coupling between output arms during the measurement.

  7. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  8. USING THE SCRAP TIRES TO PRODUCE A FLEXIBLE COUPLER

    Directory of Open Access Journals (Sweden)

    Tahsean A. Hussain

    2018-01-01

    Full Text Available The scrap tires considered a problematic source of waste, the old rubber tires causes a big environmental problem that is need much money and effort to disposes it safely. In Iraq there are more than two million used tires disposed to the environment annually. one of the tire’s recycling methods is the use of tire layers to produce a new rubber parts used in the engineering and industrial purposes as the bridges and machines dampers, this trend of recycling doesn’t take a sufficient care comparing with the other uses. There are a lot of studies conducted in these field, these studies suggests many methods to manage the huge number of scrap tires, the current paper aims to use the old rubber tires in engineering purposes (especially as a coupler joins the motor or engines with the other equipment as electric dynamo or pumps, the study focusing on the mechanical properties of a strip from a used tires and comparing with one prepared in the lab., and suggesting a new method to use as an engineering parts (for example the coupler lays between the IC engine and the dynamo of an electric generator. One of the results obtained from the experiments, there is no significant difference between the mechanical properties of the old and the new strip, (in the tensile test, the breaking force of the -Lab. tensile specimen- is 137 N whereas the specimen of old tire have a breaking force 113.27 N, but they are same in the elongation. A computational example is suggested to estimate the dimensions of a flexible coupler use an old tire pieces.

  9. Acoustic Coupler for the Acquisition of Coronary Artery Murmurs

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Schmidt, Samuel; Hansen, John

    to record heart sound in the diastolic period with a sound pressure level approximately 30 dB above the noise floor of the microphone and recording system in the frequency range from 200-700 Hz. The capability of the sensor to record diastolic heart sound in the relevant frequency range indicates...... and the microphone used was evaluated through a large study, where the coupler was used for recording the murmur sound from 464 heart patients. The power spectrum of the diastolic heart sounds was analyzed to determine the characteristics of the frequency spectrum. The preliminary results show, that it was possible...

  10. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  11. Design and characterization of dielectric-loaded plasmonic directional couplers

    DEFF Research Database (Denmark)

    Stær, Tobias Holmgaard; Chen, Zhuo; Bozhevolnyi, Sergey

    2009-01-01

    Ultracompact directional couplers (DCs) based on dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are analyzed using the effective index method (EIM), with the coupling, both in the parallel interaction region and in- and out-coupling regions, being taken into account. Near-field...... characterization of fabricated DCs performed with a scanning near-field optical microscope verifies the applicability of the EIM in the analysis and design of DLSPPW-based wavelength-selective DCs. The design approach applicable to a large variety of integrated optical waveguides is developed, enabling...

  12. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths....... By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample....

  13. Study and development of an input coupler for the future TESLA collider

    International Nuclear Information System (INIS)

    Dupery, C.

    1996-01-01

    The TESLA (TeV Superconducting Linear Accelerator) is operating with a high frequency cavity resonator input coupler. Some technical restraints (such as thermal, mechanical, electrical, vacuum, multipactor discharge phenomena) constrain the development of this coupler. In order to solve these problems, studies have been performed at the French Atomic Energy Commission (CEA) and are presented in this paper

  14. Low insertion loss SOI microring resonator integrated with nano-taper couplers

    DEFF Research Database (Denmark)

    Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan

    2009-01-01

    We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....

  15. Enhancement of entanglement in the nonlinear optical coupler by homodyne-mediated feedback

    Energy Technology Data Exchange (ETDEWEB)

    Ke Shasha [Department of Physics, Huazhong Normal University, Wuhan 430079 (China); Cheng Guiping [Department of Physics, Huazhong Normal University, Wuhan 430079 (China); Zhang Lihui [Department of Physics, Jianghan University, Wuhan 430056 (China); Li, Gao-xiang [Department of Physics, Huazhong Normal University, Wuhan 430079 (China)

    2007-07-28

    The enhancement of the intracavity entanglement of a nonlinear coupler via homodyne-mediated quantum feedback is investigated. It is found that the feedback can effectively enhance the squeezing, entanglement and purity of a two-mode field in the nonlinear coupler by appropriately choosing the quadrature angle at which the quantum feedback is introduced.

  16. All-optical switching in lithium niobate directional couplers with cascaded nonlinearity

    NARCIS (Netherlands)

    Schiek, R.; Baek, Y.; Krijnen, Gijsbertus J.M.; Stegeman, G.I.; Baumann, I.; Sohler, W.

    1996-01-01

    We report on intensity-dependent switching in lithium niobate directional couplers. Large nonlinear phase shifts that are due to cascading detune the coupling between the coupler branches, which makes all-optical switching possible. Depending on the input intensity, the output could be switched

  17. Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity

    Science.gov (United States)

    Hellert, Thorsten; Dohlus, Martin

    2018-04-01

    Superconducting TESLA-type cavities are widely used to accelerate electrons in long bunch trains, such as in high repetition rate free electron lasers. The TESLA cavity is equipped with two higher order mode couplers and a fundamental power coupler (FPC), which break the axial symmetry of the cavity. The passing electrons therefore experience axially asymmetrical coupler kicks, which depend on the transverse beam position at the couplers and the rf phase. The resulting emittance dilution has been studied in detail in the literature. However, the kick induced by the FPC depends explicitly on the ratio of the forward to the backward traveling waves at the coupler, which has received little attention. The intention of this paper is to present the concept of discrete coupler kicks with a novel approach of separating the field disturbances related to the standing wave and a reflection dependent part. Particular attention is directed to the role of the penetration depth of the FPC antenna, which determines the loaded quality factor of the cavity. The developed beam transport model is compared to dedicated experiments at FLASH and European XFEL. Both the observed transverse coupling and detuning related coupler kick variations are in good agreement with the model. Finally, the expected trajectory variations due to coupler kick variations at European XFEL are investigated and results of numerical studies are presented.

  18. Model coupler for coupling of atmospheric, oceanic, and terrestrial models

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok

    2007-02-01

    A numerical simulation system SPEEDI-MP, which is applicable for various environmental studies, consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical databases for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. It is applicable for any models with three-dimensional structured grid system, which is used by most environmental and hydrodynamic models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  19. Bragg gratings: Optical microchip sensors

    Science.gov (United States)

    Watts, Sam

    2010-07-01

    A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.

  20. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  1. Preventing distortion of quick couplers of hoses of central pipe lines--a cheap and simple method.

    Directory of Open Access Journals (Sweden)

    Kamath S

    1995-01-01

    Full Text Available A cheap and practical approach of steel chains attached to the station outlet quick couplers helps in maintaining the shape of the quick couplers and ensures their effective functioning over a long period of time and avoids mishap of connection due to damage of these couplers.

  2. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  3. Measuring the performance of the coaxial HOM coupler on a 2-cell TESLA-shape copper cavity

    International Nuclear Information System (INIS)

    Wang Fang; Wang Erdong; Zhang Baocheng; Zhao Kui

    2009-01-01

    Coaxial High Order Mode (HOM) couplers have been fabricated at Peking University and their RF performance has been measured on a test device consisting of a coaxial transmission line and a 2-cell TESLA-shape copper cavity. The test results on the 2-cell TESLA-shape copper cavity with HOM couplers indicate that the coupler can cut off the fundamental mode TM 010 and absorb HOMs effectively after a careful adjustment. The optimal angle of the HOM coupler with the beam tube is found. The initial test results of HOM couplers are presented in this paper. (authors)

  4. Thermal and Structural Analysis of FIMS Grating

    Directory of Open Access Journals (Sweden)

    K.-I. Seon

    2001-06-01

    Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.

  5. Acoustic coupler for acquisition of coronary artery murmurs

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Schmidt, Samuel; Hansen, John

    2011-01-01

    in a clinical trial including 463 patients referred for elective coronary angiography. The preliminary results show, that it was possible to record heart sound in the diastolic period with a sound pressure level approximately 30 dB above the noise floor of the microphone and recording system in the frequency...... of the coupler, while the low frequency behavior was determined by the properties of the microphone, electronic circuits and inadvertent leakages in the acoustical coupling. The requirement for the microphone and pr-amplifier was a low inherent noise level. The setup was used for collection of heart sounds...... range from 200-700 Hz. The capability of the sensor to record diastolic heart sound in the relevant frequency range indicates that the sensor is suitable for recording of coronary murmurs....

  6. Baking Arithmetic and Error Analyses for PEFP Fundamental Power Couplers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liping; An, Sun; Tang, Yazhe; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Proton Engineering Frontier Project (PEFP) is considering developing and using SRF technology to accelerate a proton beam at 700 MHz in its present project and its extended project (PEP). The first section of the PEFP SRF linac (SCL) is composed of low-beta cryomodules. Each cryomodule has three 5-cell cavities and each cavity has one fundamental power coupler (FPC). Before the high power RF processing, each FPC needs to be baked out for 24 hours at 200 degrees Celsius ( .deg. C). The whole control system is described in reference, in this system, the temperature in the baking-box need to be changed according to three straight lines with different slope. This paper described how we can make the temperature of the baking-box changed according to the required values.

  7. Baking Arithmetic and Error Analyses for PEFP Fundamental Power Couplers

    International Nuclear Information System (INIS)

    Zhang, Liping; An, Sun; Tang, Yazhe; Cho, Yong Sub

    2009-01-01

    The Proton Engineering Frontier Project (PEFP) is considering developing and using SRF technology to accelerate a proton beam at 700 MHz in its present project and its extended project (PEP). The first section of the PEFP SRF linac (SCL) is composed of low-beta cryomodules. Each cryomodule has three 5-cell cavities and each cavity has one fundamental power coupler (FPC). Before the high power RF processing, each FPC needs to be baked out for 24 hours at 200 degrees Celsius ( .deg. C). The whole control system is described in reference, in this system, the temperature in the baking-box need to be changed according to three straight lines with different slope. This paper described how we can make the temperature of the baking-box changed according to the required values

  8. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.

    Science.gov (United States)

    Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír

    2016-03-07

    Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

  9. Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm

    International Nuclear Information System (INIS)

    Yoon, Min-Seok; Kwon, Oh-Jang; Kim, Hyun-Joo; Chu, Su-Ho; Kim, Gil-Hwan; Lee, Sang-Bae; Han, Young-Geun

    2010-01-01

    We developed a broadband optical coupler based on a photonic crystal fiber (PCF), which is very useful for applications to optical coherence tomography (OCT). The PCF-based coupler is fabricated by using a fused biconical tapering (FBT) method. The PCF has six hexagonally-stacked layers of air holes. The PCF-based coupler has a nearly-flat 50/50 coupling ratio in a broad bandwidth range of 800 nm, which is much wider than that previously reported for a PCF-based coupler and a singlemode-fiber-based coupler. The bandwidth and the bandedge wavelength of the broadband coupler are controlled by changing the elongation length. The fabricated broadband optical coupler has great potential for realizing a broadband interferogram with a high resolution in an OCT system.

  10. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber......Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...

  11. ANSYS modeling of thermal contraction of SPL HOM couplers during cool-down

    CERN Document Server

    Papke, K

    2016-01-01

    During the cool-down the HOM coupler as well as the cavity inside the cryo module experience a thermal contraction. For most materials between room temperature and liquid helium temperatures, the changes in dimension are in the order of a few tenths of a percent change in volume. This paper presents the effect of thermal contraction on the RF transmission behavior of HOM couplers, and in particular the influence on its notch filter. Furthermore the simulation process with APDL is explained in detail. Conclusions about the necessary tuning range of the notch filter are made which is especially a concern for couplers with only notch filter.

  12. HF power couplers for pulsed superconducting cavity resonators; Coupleurs de puissance HF pour cavites supraconductrices en mode pulse

    Energy Technology Data Exchange (ETDEWEB)

    Jenhani, Hassen [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex (France)

    2006-11-15

    Recent years have seen an impressive improvement in the accelerating gradients obtained in superconducting cavities. Consequently, such cavities have become attractive candidates for large superconducting linear accelerator projects such as the European XFEL and the International Linear Collider (ILC). As a result, there is a strong interest in reducing RF conditioning time and improving the performance of the input power couplers for these cavities. The so-called TTF-III input power coupler, adopted for the XFEL superconducting RF cavities are complex components. In order to better understand the behavior of this component we have performed a series of experiments on a number of such couplers. Initially, we developed a fully automated RF high power test stand for coupler conditioning procedure. Following this, we performed a series of coupler conditioning tests. This has allowed the study of the coupler behavior during processing. A number of experiments were carried out to evaluate the in-situ baking effect on the conditioning time. Some of the conditioned couplers were sent to DESY in order to be tested on 9-cells TESLA cavities under cryogenic conditions. These tests have shown that the couplers in no way limit the cavity performance, even up to gradients of 35 MV/m. The main objective of our coupler studies was the reduction of their conditioning time, which represents one of the most important criteria in the choice of coupler for high energy linacs. Excellent progress in reducing the conditioning time has been demonstrated by making appropriate modifications to the conditioning procedure. Furthermore, special attention was paid to electron generation processes in the couplers, via multipacting. Simulations of this process were made on both the TTF-III coupler and on a new coupler prototype, TTF-V. Experiments aimed at suppressing multipacting were also successfully achieved by using a DC bias on the inner conductor of the co-axial coupler. (author)

  13. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  14. Exploiting a Transmission Grating Spectrometer

    International Nuclear Information System (INIS)

    Bell, Ronald E.

    2004-01-01

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics

  15. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  16. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  17. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  18. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  19. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  20. Development of fundamental power coupler for C-ADS superconducting elliptical cavities

    Science.gov (United States)

    Gu, Kui-Xiang; Bing, Feng; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo

    2017-06-01

    5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven sub-critical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper. Supported by China ADS Project (XDA03020000) and National Natural Science Foundation of China (11475203)

  1. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.

    Science.gov (United States)

    Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai

    2013-07-01

    In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.

  2. Embedded high-contrast distributed grating structures

    Science.gov (United States)

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  3. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well ...

  4. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  5. Venous coupler use for free-flap breast reconstructions: specific analyses of TMG and DIEP flaps.

    Science.gov (United States)

    Bodin, Frédéric; Brunetti, Stefania; Dissaux, Caroline; Erik, A Sauleau; Facca, Sybille; Bruant-Rodier, Catherine; Liverneaux, Philippe

    2015-05-01

    The purpose of this report was to present the results of comparisons of anastomotic data and flap complications in the use of venous coupler in breast reconstruction with the transverse musculocutaneous gracilis (TMG) flap and the deep inferior epigastric perforator (DIEP) flap. Over a three-year period, 95 patients suffering from breast cancer were treated with mastectomy and breast reconstruction using free flaps. We performed 121 mechanical venous anastomoses for 105 flap procedures (80 DIEP and 25 TMG). The coupler size, anastomotic duration, number of anastomoses and postoperative complications were assessed for the entire series. The coupling device was perfectly suitable for all end-to-end anastomoses between the vein(s) of the flap and the internal mammary vein(s). No venous thrombosis occurred. The mean anastomotic time did not significantly differ between the DIEP (330 seconds) and TMG flap procedures (352 seconds) (P = 0.069). Additionally, there were no differences in coupling time observed following a comparison of seven coupler sizes (P = 0.066). The mean coupler size used during the TMG flap procedure was smaller than that used with the DIEP (2.4 mm versus 2.8 mm) (P TMG flap (28%) than with the DIEP flap (11%). The coupler size used was smaller for the TMG procedure and when double venous anastomosis was performed. Additionally, anastomotic time was not affected by the flap type or coupler size used or by anastomosis number. © 2014 Wiley Periodicals, Inc.

  6. Analysis of the rectangular resonator with butterfly MMI coupler using SOI

    Science.gov (United States)

    Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan

    2018-02-01

    We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.

  7. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    International Nuclear Information System (INIS)

    Bane, K

    2008-01-01

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm

  8. The grating as an accelerating structure

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1991-02-01

    This report considers the use of a diffraction grating as an accelerating structure for charged particle beams. We examine the functional dependence of the electromagnetic fields above the surface of a grating. Calculations are made of the strength of the accelerating modes for structures with π and 2π phase advance per period and for incident waves polarized with either the E or H vector along the grooves of the grating. We consider examples of using gratings in a laser linac and in a grating lens. We also briefly examine previous results published about this subject. 36 refs

  9. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  10. Polymer waveguide couplers based on metal nanoparticle–polymer nanocomposites

    International Nuclear Information System (INIS)

    Signoretto, M; Suárez, I; Chirvony, V S; Martínez-Pastor, J; Abargues, R; Rodríguez-Cantó, P J

    2015-01-01

    In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP–Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404–780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%. (paper)

  11. Low-loss multimode interference couplers for terahertz waves

    Science.gov (United States)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  12. Point-by-point written fiber-Bragg gratings and their application in complex grating designs.

    Science.gov (United States)

    Marshall, Graham D; Williams, Robert J; Jovanovic, Nemanja; Steel, M J; Withford, Michael J

    2010-09-13

    The point-by-point technique of fabricating fibre-Bragg gratings using an ultrafast laser enables complete control of the position of each index modification that comprises the grating. By tailoring the local phase, amplitude and spacing of the grating's refractive index modulations it is possible to create gratings with complex transmission and reflection spectra. We report a series of grating structures that were realized by exploiting these flexibilities. Such structures include gratings with controlled bandwidth, and amplitude- and phase-modulated sampled (or superstructured) gratings. A model based on coupled-mode theory provides important insights into the manufacture of such gratings. Our approach offers a quick and easy method of producing complex, non-uniform grating structures in both fibres and other mono-mode waveguiding structures.

  13. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...

  14. A coupler for parasitic mode diagnosis in an X-band triaxial klystron amplifier

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-10-01

    Full Text Available The traditional methods of parasitic mode excitation diagnosis in an X-band triaxial klystron amplifier (TKA meet two difficulties: limited installation space and vacuum sealing. In order to solve these issues, a simple and compact coupler with good sealing performance, which can prevent air flow between the main and the auxiliary waveguides, is proposed and investigated experimentally. The coupler is designed with the aperture diffraction theory and the finite-different time-domain (FDTD method. The designed coupler consists of a main coaxial waveguide (for microwave transmission and a rectangular auxiliary waveguide (for parasitic mode diagnosis. The entire coupler structure has been fabricated by macromolecule polymer which is transparent to microwave signal in frequency range of X-band. The metal coating of about 200 microns has been performed through electroplating technique to ensure that the device operates well at high power. A small aperture is made in the metal coating. Hence, microwave can couple through the hole and the wave-transparent medium, whereas air flow is blocked by the wave-transparent medium. The coupling coefficient is analyzed and simulated with CST software. The coupler model is also included in particle-in-cell (PIC simulation with CHIPIC software and the associated parasitic mode excitation is studied. A frequency component of 11.46 GHz is observed in the FFT of the electric field of the drift tube and its corresponding competition mode appears as TE61 mode according to the electric field distribution. Besides, a frequency component of 10.8 GHz is also observed in the FFT of the electric field. After optimization of TE61 mode suppression, an experiment of the TKA with the designed coupler is carried out and the parasitic mode excitation at 10.8 GHz is observed through the designed coupler.

  15. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  16. A study of polaritonic transparency in couplers made from excitonic materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Racknor, Chris [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  17. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Pu, Shengli, E-mail: shlpu@usst.edu.cn [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [The Key Lab of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Laboratory L.P.S., Department of Physics, Faculty of Sciences, Badji-Mokhtar Annaba University, Annaba 23000 (Algeria)

    2016-09-07

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previously similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.

  18. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  19. RF Coupler Design for the TRIUMF ISAC-II Superconducting Quarter Wave Resonator

    CERN Document Server

    Poirier, R L; Harmer, P; Laxdal, R E; Mitra, A K; Sekatchev, I; Waraich, B; Zvyagintsev, V

    2004-01-01

    An RF Coupler for the ISAC-II medium beta (β=0.058 and 0.071) superconducting quarter wave resonators was designed and tested at TRIUMF. The main goal of this development was to achieve stable operation of superconducting cavities at high acceleration gradients and low thermal load to the helium refrigeration system. The cavities will operate at 6 MV/m acceleration gradient in overcoupled mode at a forward power 200 W at 106 MHz. The overcoupling provides ±20 Hz cavity bandwidth, which improves the stability of the RF control system for fast helium pressure fluctuations, microphonics and environmental noise. Choice of materials, cooling with liquid nitrogen, aluminum nitride RF window and thermal shields insure a small thermal load on the helium refrigeration system by the Coupler. An RF finger contact which causedμdust in the coupler housing was eliminated without any degradation of the coupler performance. RF and thermal calculations, design and test results on the coupler are p...

  20. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement.

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  1. Varied line-space gratings and applications

    International Nuclear Information System (INIS)

    McKinney, W.R.

    1991-01-01

    This paper presents a straightforward analytical and numerical method for the design of a specific type of varied line-space grating system. The mathematical development will assume plane or nearly-plane spherical gratings which are illuminated by convergent light, which covers many interesting cases for synchrotron radiation. The gratings discussed will have straight grooves whose spacing varies across the principal plane of the grating. Focal relationships and formulae for the optical grating-pole-to-exist-slit distance and grating radius previously presented by other authors will be derived with a symbolic algebra system. It is intended to provide the optical designer with the tools necessary to design such a system properly. Finally, some possible advantages and disadvantages for application to synchrotron to synchrotron radiation beamlines will be discussed

  2. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  3. EUV properties of two diffraction gratings

    International Nuclear Information System (INIS)

    Cotton, D.; Chakrabarti, S.; Edelstein, J.; Pranke, J.; Christensen, A.B.

    1988-01-01

    The efficiency and scattering characteristics of a mechanically ruled grating (MRG) and a holographically ruled grating (HRG) are presented. One of these gratings will be employed in the Extreme Ultraviolet Spectrometer, an instrument of the Remote Atmospheric and Ionospheric Detector System to be flown aboard a TIROS satellite in 1991. The HRG showed much less Lyman alpha scattering, while the MRG had the better efficiency over most of the spectral range covered. 8 refs

  4. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  5. Fibre gratings for high temperature sensor applications

    Science.gov (United States)

    Canning, J.; Sommer, K.; Englund, M.

    2001-07-01

    Phosphosilicate fibre gratings can be stabilized at temperatures in excess of 500 °C for sensor applications by optimizing thermal and UV presensitization recipes. Furthermore, the use of 193 nm presensitization prevents the formation of OH absorption bands, extending the use of fibre gratings across the entire wavelength spectrum. Gratings for operation at 700 °C retaining up to 70% reflectivity after 30 min are demonstrated.

  6. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    CERN Document Server

    AUTHOR|(CDS)2085329; Gerigk, Frank; Van Rienen, Ursula

    2017-01-01

    Higher order modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  7. Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands

    Directory of Open Access Journals (Sweden)

    I. Prudyus

    2014-12-01

    Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.

  8. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  9. Contribution to the study of accelerating structure for electrons and respective radiofrequency couplers

    International Nuclear Information System (INIS)

    Franco, M.A.R.

    1991-01-01

    In this work, the experimental results pertaining to the construction and evaluation of a constant gradient accelerating structure and of the radiofrequency couplers are presented. The theoretical methods to determine the initial dimensions of the iris-loaded accelerating structure are presented. The final dimensions have been experimentally determined utilizing four three-cavity sections representing the 4 sup(th), 12 sup(th), 20 sup(th) and 27 sup(th) cavities of the final structure. The diameters of the cavities were corrected for variations of temperature, pressure and humidity. A v sub(p) = c, constant gradient, twelve-cavity prototype of the accelerating structure have been constructed and its principal parameters were experimentally determined according to methods also described in this work. Two prototypes of door-knob type radiofrequency couplers have been constructed and experimental procedures to match and tune the couplers and the accelerating structure were implemented. (author)

  10. All-optical switching using a new photonic crystal directional coupler

    Directory of Open Access Journals (Sweden)

    B. Vakili

    2015-07-01

    Full Text Available In this paper all-optical switching in a new photonic crystal directional coupler is performed.  The structure of the switch consists of a directional coupler and a separate path for a control signal called “control waveguide”. In contrast to the former reported structures in which the directional couplers are made by removing a row of rods entirely, the directional coupler in our optical switch is constructed by two reduced-radius line-defect waveguides separated by the control waveguide. Furthermore, in our case the background material has the nonlinear Kerr property. Therefore, in the structure of this work, no frequency overlap occurs between the control waveguide mode and the directional coupler modes. It is shown that such a condition provides a very good isolation between the control and the probe signals at the output ports. In the control waveguide, nonlinear Kerr effect causes the required refractive index change by the presence of a high power control (pump signal. Even and odd modes of the coupler are investigated by applying the distribution of the refractive index change in the nonlinear region of a super-cell so that a switching length of about 94 µm is obtained at the wavelength of 1.55 µm. Finally, all-optical switching of the 1.55 µm probe signal using a control signal at the wavelength of 1.3 µm, is simulated through the finite-difference time-domain method, where both signals are desirable in optical communication systems. A very high extinction ratio of 67 dB is achieved and the temporal characteristics of the switch are demonstrated.

  11. Proton damage in linear and digital opto-couplers; Effets des protons sur des optocoupleurs lineaires et numeriques

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, A.; Rax, B.G. [California Institute of Technology, Jet Propulsion Laboratory, Pasadena (United States)

    1999-07-01

    This paper discusses proton degradation of linear and digital opto-couplers. One obvious way to harden opto-coupler technologies is to select LEDs (light emitting diodes) that are more resistant to displacement damage. A direct comparison is made of degradation of a commercial linear opto-coupler from one manufactured with a modified version of the same device with a different LED technology. Other factors, including degradation of optical photoresponse and transistor gain are also discussed, along with basic comparisons of digital and analog opto-couplers. The experimental work has been made with 50 MeV protons. 3 underlying factors contribute to opto-coupler degradation. The most important factor is LED degradation, it is possible to select opto-coupler with double-heterojunction LEDs that are inherently more resistant to displacement damage. The second factor is gain degradation that is particularly important for opto-couplers with sensitive LEDs because the light output decreases so much at low radiation levels. The third factor, optical photoresponse is the largest contribution to CTR (current transfer ratio) degradation for opto-couplers with improved LED hardness. Photoresponse degradation depends on wavelength because the absorption coefficient is wavelength dependent. (A.C.)

  12. Biosensing with optical fiber gratings

    Science.gov (United States)

    Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra

    2017-06-01

    Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  13. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  14. Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections.

    Science.gov (United States)

    Chen, George F R; Ong, Jun Rong; Ang, Thomas Y L; Lim, Soon Thor; Png, Ching Eng; Tan, Dawn T H

    2017-08-03

    Broadband Silicon-On-Insulator (SOI) directional couplers are designed based on a combination of curved and straight coupled waveguide sections. A design methodology based on the transfer matrix method (TMM) is used to determine the required coupler section lengths, radii, and waveguide cross-sections. A 50/50 power splitter with a measured bandwidth of 88 nm is designed and fabricated, with a device footprint of 20 μm × 3 μm. In addition, a balanced Mach-Zehnder interferometer is fabricated showing an extinction ratio of >16 dB over 100 nm of bandwidth.

  15. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  16. Structural and dynamic analysis of an ultra short intracavity directional coupler

    Science.gov (United States)

    Gravé, Ilan; Griffel, Giora; Daou, Youssef; Golan, Gadi

    1997-01-01

    A recently proposed intracavity directional coupler is analysed. Exact analytic expressions for important parameters such as the transmission ratio, the coupling length, and the photon lifetime are given. We show that by controlling the mirror reflectivities of the cavity, it is theoretically possible to reduce the coupling length to a zero limit. The photon lifetime, which governs the dynamic properties of the structure, sets an upper frequency limit of a few hundreds of GHz, which is well over the bandwidth limitation of microwave lumped or travelling wave electrodes. This novel family of intracavity couplers has important applications in the realization of integrated optics circuits for high-speed computing, data processing, and communication.

  17. Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8

    OpenAIRE

    Yang, Ren; Soper, Steven A.; Wang, Wanjun

    2006-01-01

    This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined by the lithography mask design. This out-of-plane pol...

  18. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    M. Stirbet; I.E. Campisi; E.F. Daly; G.K. Davis; M. Drury; P. Kneisel; G. Myneni; T. Powers; W.J. Schneider; K.M. Wilson; Y. Kang; K.A. Cummings; T. Hardek

    2001-01-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement

  19. Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler

    International Nuclear Information System (INIS)

    Han Cheng, Bo; Lan, Yung-Chiang

    2013-01-01

    This work develops the plasmonic microdisk filter/coupler, whose effectiveness is evaluated by finite-difference time-domain simulation and theoretical analyses. Multi-layer dielectric cladding is used to prevent the scattering of surface plasmons (SPs) from a silver microdisk. This method allows devices that efficiently perform filter/coupler functions to be developed. The resonant conditions and the effective refractive index of bounded SP modes on the microdisk are determined herein. The waveguide-to-microdisk distance barely influences the resonant wavelength but it is inversely related to the bandwidth. These findings are consistent with predictions made using the typical ring resonator model.

  20. Running gratings in photoconductive materials

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.

    2005-01-01

    Starting from the three-dimensional version of a standard photorefractive model (STPM), we obtain a reduced compact Set of equations for an electric field based on the assumption of a quasi-steady-state fast recombination. The equations are suitable for evaluation of a current induced by running...... gratings at small-contrast approximation and also are applicable for the description of space-charge wave domains. We discuss spatial domain and subharmonic beam formation in bismuth silicon oxide (BSO) crystals in the framework of the small-contrast approximation of STPM. The experimental results...

  1. High-power tests of a single-cell copper accelerating cavity driven by two input couplers

    International Nuclear Information System (INIS)

    Horan, D.; Bromberek, D.; Meyer, D.; Waldschmidt, G.

    2008-01-01

    High-power tests were conducted on a 350-MHz, single-cell copper accelerating cavity driven simultaneously by two H-loop input couplers for the purpose of determining the reliability, performance, and power-handling capability of the cavity and related components, which have routinely operated at 100-kW power levels. The test was carried out utilizing the APS 350-MHz RF Test Stand, which was modified to split the input rf power into two frac12-power feeds, each supplying power to a separate H-loop coupler on the cavity. Electromagnetic simulations of the two-coupler feed system were used to determine coupler match, peak cavity fields, and the effect of phasing errors between the coupler feed lines. The test was conducted up to a maximum total rf input power of 164-kW CW. Test apparatus details and performance data will be presented.

  2. 21 CFR 133.146 - Grated cheeses.

    Science.gov (United States)

    2010-04-01

    ... Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared by..., and skim milk cheese for manufacturing may not be used. All cheese ingredients used are either made... ___ cheese”, the name of the cheese filling the blank. (ii) If only parmesan and romano cheeses are used and...

  3. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  4. Femtosecond laser pulse written Volume Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Richter Daniel

    2013-11-01

    Full Text Available Femtosecond laser pulses can be applied for structuring a wide range of ransparent materials. Here we want to show how to use this ability to realize Volume-Bragg-Gratings in various- mainly non-photosensitive - glasses. We will further present the characteristics of the realized gratings and a few elected applications that have been realized.

  5. A MANUALLY OPERATED CASSAVA GRATING MACHINE

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... substantial losses arising from the inability of the person to hold small pieces of cassava roots for grating. Happily, there now exist various. Versions of mechanical graters which are driven by electric motors or small internal combustion engines. In fact, it may be said that cassava grating has been effectively.

  6. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports on a new property of grating, namely spectral combination, and on bi-grating diffraction imaging that is based on spectral combination. The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam. The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image. We gave the conditions necessary for obtaining the spectral combination. We also presented the equations that relate the two gratings’ spatial frequencies, diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  7. InGaN directional coupler made with a one-step etching technique

    Science.gov (United States)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Zhang, Shuai; Shi, Zheng; Li, Xin; Wang, Yongjin

    2017-06-01

    We propose, fabricate and characterize an on-chip integration of light source, InGaN waveguide, directional coupler and photodiode, in which AlGaN layers are used as top and bottom optical claddings to form an InGaN waveguide for guiding the in-plane emitted light from the InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED). The difference in etch rate caused by different exposure windows leads to an etching depth discrepancy using the one-step etching technique, which forms the InGaN directional coupler with the overlapped underlying slab. Light propagation results directly confirm effective light coupling in the InGaN directional coupler, which is achieved through high-order guided modes. The InGaN waveguide couples the modulated light from the InGaN/GaN MQW-LED and transfers part of light to the coupled waveguide via the InGaN directional coupler. The in-plane InGaN/GaN MQW-photodiode absorbs the guided light by the coupled InGaN waveguide and induces the photocurrent. The on-chip InGaN photonic integration experimentally demonstrates an in-plane light communication with a data transmission of 50 Mbps.

  8. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  9. Design and optimization of mechanically down-doped terahertz fiber directional couplers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    2014-01-01

    We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down-doped with a triangular array of air holes. A figure of merit taking both the 3-dB bandwidth and loss of the coupler...... into account, is used for optimization of the structure parameters, given by the diameter and pitch of the cladding (d and Λ) and of the core (dc and Λc) air-hole structure. The coupler with Λ = 498.7 μm, dc= 324.2 μm, Λc = 74.8 μm, and dc = 32.5 μm is found to have the best performance at a center frequency...... of 1THz, with a bandwidth of 0.25 THz and a total device loss of 9.2 dB. The robustness of the optimum coupler to structural changes is investigated. © 2014 Optical Society of America....

  10. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Li, Y. M.; Liu, Kexin; Geng, Rongli

    2014-01-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6A-1.6 MV/m, 21A-34 MV/m, 32A-35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6A-13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MPA's predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model

  11. Very high coupling of TM polarised light in photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Thorhauge, Morten; Frandsen, Lars Hagedorn

    2003-01-01

    The experimental and simulated spectra for TE and TM polarised light for the transmission through photonic crystal directional couplers are presented. The 3D FDTD simulations successfully explain all the major features of the experimental spectra as well as the actual transmission level. Especially...

  12. Comparative simulation studies of multipacting in higher-order-mode couplers of superconducting rf cavities

    Directory of Open Access Journals (Sweden)

    Y. M. Li

    2014-02-01

    Full Text Available Multipacting (MP in higher-order-mode (HOM couplers of the International Linear Collider (ILC baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6–1.6  MV/m, 21–34   MV/m, 32–35  MV/m and >40  MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6–13  MV/m. Potential implications of these MP barriers are discussed in the context of future high-energy pulsed as well as medium-energy continuous wave accelerators based on superconducting radio frequency cavities. Frequency scaling of MP’s predicted in HOM couplers of the ILC, CEBAF upgrade, Spallation Neutron Source (SNS, and Free-Electron Laser in Hamburg (FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  13. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. M. [Peking University, Beijing (China); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Liu, Kexin [Peking University, Beijing (China); Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6-1.6 MV/m, 21-34 MV/m, 32-35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6-13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MP's predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  14. Optical fiber couplers for spectrophotometry. Perspectives for in-situ on-line and remote measurements

    International Nuclear Information System (INIS)

    Boisde, G.; Linger, C.; Chevalier, G.; Perez, J.J.

    1983-01-01

    Optical fiber couplers have been developed specially for nuclear chemical spectrophotometric applications. Coupling devices are described for TELEPHOT industrial photometers and some commercial spectrophotometer, together with the probes and measurement cells employed. The value of optical multiplexing is mentioned. Non nuclear applications in medical analysis are also mentioned, together with the possibilities offered by these devices for uses other than spectrophotometry [fr

  15. Multipacting Simulations of Tuner-adjustable waveguide coupler (TaCo) with CST

    CERN Document Server

    Shafqat, Nuaman; Wegner, Rolf

    2015-01-01

    Tuner-adjustable waveguide couplers (TaCo) are used to feed microwave power to different RF structures of LINAC4. This paper studies the multipacting phenomenon for TaCo using PIC solver of CST PS. Simulations are performed for complete field sweeps and results are analysed.

  16. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator

    International Nuclear Information System (INIS)

    Souli, M.

    2007-07-01

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q c in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  17. Neutron diffraction from holographic gratings in PMMA

    International Nuclear Information System (INIS)

    Havermeyer, F.; Kraetzig, E.; Rupp, R.A.; Schubert, D.W.

    1999-01-01

    Complete text of publication follows. By definition photorefractive materials change the refractive index for light under the action of light. Using the spatially modulated light intensity pattern from the interference of two plane waves, volume phase gratings with accurately defined spacings can be produced. Depending on the material there are many physical origins for these gratings, but in most cases they are linked to a density modulation and, consequently, to a refractive index grating for neutrons. By diffraction of light or neutrons from such gratings even small refractive index changes down to Δn ∼ 10 -7 - 10 -9 can be measured. In our photopolymer system PMMA/MMA (poly(methyl methacrylate) with a content of 10-20% of the residual monomer methyl methacrylate) inhomogeneous illumination leads to local post-polymerisation processes of the residual monomer. The resulting light-optical refractive index grating is caused by the modulation of the monomer/polymer ratio as well as by the modulation of the total density. Only by the unique combination of methods for light and neutron diffraction, available at HOLONS (Holography and Neutron Scattering, instrument at the GKSS research centre), both contributions can be separated. We discuss the angular dependence of the neutron diffraction efficiency for weakly and strongly (efficiencies up to 60% have been achieved) modulated gratings and propose a simple model for the evaluation of the gratings. (author)

  18. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    Science.gov (United States)

    Xu, Chen; Tantawi, Sami

    2016-02-01

    This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S(1 ,1 ) varying from 0 to -30 db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  19. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-02-01

    Full Text Available This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S_{(1,1} varying from 0 to −30  db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  20. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  1. Optical Fiber Grating Hydrogen Sensors: A Review.

    Science.gov (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  2. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  3. Nanoscale freestanding gratings for ultraviolet blocking filters

    Energy Technology Data Exchange (ETDEWEB)

    van Beek, J.T.; Fleming, R.C.; Hindle, P.S.; Prentiss, J.D.; Schattenburg, M.L. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ritzau, S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-11-01

    Ultraviolet (UV) blocking filters are needed for atomic flux imaging in environments where high levels of ultraviolet radiation are present. Freestanding gratings are a promising candidate for UV filtering. They have a high aspect ratio ({approximately}13), narrow ({approximately}40 nm) slots, and effectively block UV radiation. The grating fabrication process makes use of several etching, electroplating, and lithographic steps and includes an optional step to plug pinholes induced by particles during processing. Gratings were successfully manufactured and tested. Measured UV transmissions of {approximately}10{sup {minus}5} and particle transmissions of {approximately}10{percent} are in agreement with theoretical predictions. {copyright} {ital 1998 American Vacuum Society.}

  4. Sensitive visual test for concave diffraction gratings.

    Science.gov (United States)

    Bruner, E. C., Jr.

    1972-01-01

    A simple visual test for the evaluation of concave diffraction gratings is described. It is twice as sensitive as the Foucault knife edge test, from which it is derived, and has the advantage that the images are straight and free of astigmatism. It is particularly useful for grating with high ruling frequency where the above image faults limit the utility of the Foucault test. The test can be interpreted quantitatively and can detect zonal grating space errors of as little as 0.1 A.

  5. Thermal annealing of tilted fiber Bragg gratings

    Science.gov (United States)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  6. Geometrical optics modeling of the grating-slit test.

    Science.gov (United States)

    Liang, Chao-Wen; Sasian, Jose

    2007-02-19

    A novel optical testing method termed the grating-slit test is discussed. This test uses a grating and a slit, as in the Ronchi test, but the grating-slit test is different in that the grating is used as the incoherent illuminating object instead of the spatial filter. The slit is located at the plane of the image of a sinusoidal intensity grating. An insightful geometrical-optics model for the grating-slit test is presented and the fringe contrast ratio with respect to the slit width and object-grating period is obtained. The concept of spatial bucket integration is used to obtain the fringe contrast ratio.

  7. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  8. Access Platforms for Offshore Wind Turbines Using Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.

    2008-01-01

    The paper deals with forces generated by a stationary jet on different types of gratings and a solid plate. The force reduction factors for the different gratings compared to the solid plate mainly depend on the porosity of the gratings, but the geometry of the grating is also of some importance........ The derived reduction factors are expected to be applicable to design of offshore wind turbine access platforms with gratings where slamming also is an important factor....

  9. Adaptable Diffraction Gratings With Wavefront Transformation

    Science.gov (United States)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  10. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.; Melezhik, Petr N.; Sirenko, Kostyantyn; Granet, Gerard

    2012-01-01

    is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state

  11. Fibre Bragg grating for flood embankment monitoring

    Science.gov (United States)

    Markowski, Konrad; Nevar, Stanislau; Dworzanski, Adam; Hackiewicz, Krzysztof; Jedrzejewski, Kazimierz

    2014-11-01

    In this article we present the preliminary studies for the flood embankment monitoring system based on the fibre Bragg gratings. The idea of the system is presented. The Bragg resonance shift is transformed to the change of the power detected by the standard InGaAs photodiode. The discrimination of the received power was executed by another fibre Bragg grating with different parameters. The project of the fully functional system is presented as well.

  12. Grism and immersion grating for space telescope

    Science.gov (United States)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  13. Corrugated grating on organic multilayer Bragg reflector

    Science.gov (United States)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  14. Eddy current loss calculation and thermal analysis of axial-flux permanent magnet couplers

    Directory of Open Access Journals (Sweden)

    Di Zheng

    2017-02-01

    Full Text Available A three-dimensional magnetic field analytical model of axial-flux permanent magnet couplers is presented to calculate the eddy current loss, and the prediction of the copper plate temperature under various loads is analyzed. The magnetic field distribution is calculated, and then the eddy current loss is obtained, with the magnetic field analytical model established in cylindrical coordinate. The influence of various loads on eddy current loss is analyzed. Furthermore, a thermal model of axial-flux permanent magnet couplers is established by taking the eddy current loss as the heat source, using the electromagnetic-thermal coupled method. With the help of the thermal model, the influence of various loads on copper plate temperature rise is also analyzed. The calculated results are compared with the results of finite element method and measurement. The comparison results confirm the validity of the magnetic field analytical model and thermal model.

  15. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  16. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Sheshukova, S. E.; Romanenko, D. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-16

    We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices such as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.

  17. High power coupler issues in normal conducting and superconducting accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The ceramic material (Al{sub 2}O{sub 3}) commonly used for the klystron output coupler in normal conducting, and for an input coupler to superconducting cavities is one of the most troublesome parts in accelerator applications. But the performance can be improved very much by starting with high purity (>99.9%) alumina powder of controlled grain-size (0.1-0.5-{mu}m), and reducing the magnesium (Mg) sintering-binder to lower the dielectric loss to the order of 10{sup -4} at S-band frequencies. It has been confirmed that the new ceramic can stand a peak S-band frequency rf power of up to 300 MW and 2.5 {mu}sec pulse width. (author)

  18. Design and fabrication of three-dimensional polymer mode multiplexer based on asymmetric waveguide couplers

    Science.gov (United States)

    He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda

    2018-05-01

    A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.

  19. An RF input coupler system for the CEBAF energy upgrade cryomodule

    International Nuclear Information System (INIS)

    J.R. Delayen; L.R. Doolittle; T. Hiatt; J. Hogan; J. Mammosser; L. Phillips; J. Preble; W.J. Schneider; G. Wu

    1999-01-01

    Long term plans for CEBAF at Jefferson Lab call for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. Thus an upgraded cryomodule to more than double the present voltage is under development. A new waveguide coupler system has been designed and prototypes are currently being developed. This coupler, unlike the original, has a nominal Q ext of 2.1 x 10 7 , reduced sensitivity of Q ext to mechanical deformation, reduced field asymmetry within the beam envelope, freedom from window arcing with a single window at 300 K, and is capable of transmitting 6kW CW both traveling wave and in full reflection

  20. Compression, splitting and switching of bright and dark solitons in nonlinear directional coupler

    International Nuclear Information System (INIS)

    Mandal, Basanti; Chowdhury, A. Roy

    2006-01-01

    A detailed numerical simulation of the switching, compression and splitting characteristics of various solitary pulses (bright, grey and dark) are carried out by a direct solution of the associated coupled NLS equation. Important physical parameters of the out going pulse such as, intensity distribution, root mean square spatial and temporal width and chirp are calculated. Both the cases of symmetric and asymmetric couplers are considered. The important phenomenon of periodic power transfer from one channel to the other unfolds. The compression varies with the type of pulse launched in the initial channel. It is observed that the chirping of the initial pulse has an optimum value and it vary quite noticeably with the character of the pulse and couplers, symmetric and asymmetric

  1. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  2. Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends.

    Science.gov (United States)

    Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F

    2017-01-15

    We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.

  3. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler

    International Nuclear Information System (INIS)

    Ren Gang; Zheng Wanhua; Wang Ke; Du Xiaoyu; Xing Mingxin; Chen Lianghui

    2008-01-01

    In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5μm. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB. (classical areas of phenomenology)

  4. New design of a triplexer using ring resonator integrated with directional coupler based on photonic crystals

    Science.gov (United States)

    Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang

    2009-11-01

    In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.

  5. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    Science.gov (United States)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  6. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  7. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    Science.gov (United States)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  8. Design and Analysis of an Optical Coupler for Concentrated Solar Light Using Optical Fibers in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Afshin Aslian

    2016-01-01

    Full Text Available Concentrated sunlight that is transmitted by fiber optics has been used for generating electricity, heat, and daylight. On the other hand, multijunction photovoltaic cells provide high efficiency for generating electricity from highly concentrated sunlight. This study deals with designing and simulating a high-efficiency coupler, employing a mathematical model to connect sunlight with fiber optics for multiple applications. The coupler concentrates and distributes irradiated light from a primary concentrator. In this study, a parabolic dish was used as the primary concentrator, a coupler that contains nine components called a compound truncated pyramid and a cone (CTPC, all of which were mounted on a plate. The material of both the CTPC and the plate was BK7 optical glass. Fiber optics cables and multijunction photovoltaic cells were connected to the cylindrical part of the CTPC. The fibers would transmit the light to the building to provide heat and daylight, whereas multijunction photovoltaic cells generate electricity. Theoretical and simulation results showed high performance of the designed coupler. The efficiency of the coupler was as high as 92%, whereas the rim angle of the dish increased to an optimum angle. Distributed sunlight in the coupler increased the flexibility and simplicity of the design, resulting in a system that provided concentrated electricity, heat, and lighting for residential buildings.

  9. WAVEGUIDE COUPLER KICK TO BEAM BUNCH AND CURRENT DEPENDENCY ON SRF CAVITIES

    International Nuclear Information System (INIS)

    Genfa Wu; Haipeng Wang; Charles Reece; Robert Rimmer

    2008-01-01

    JLAB SRF cavities employ waveguide type fundamental power couplers (FPC). The FPC design for the 7-cell upgrade cavities was optimized to minimize the dipole field kick. For continuous wave (CW) operation, the forwarding RF power will be at different magnitude to drive the different beam current and cavity gradient. This introduces some deviation from optimized FPC field for varying beam loading. This article analyzes the beam behavior both in centroid kick and head-tail kick under different beam loading conditions

  10. High-power RF window and coupler development for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported

  11. Measurement of S Parameters ofan Accelerating Structure with Double-Feed Couplers

    CERN Document Server

    Fandos, R; Wuensch, W

    2006-01-01

    A method for measuring the transmission and reflection coefficients of an accelerating structure with double-feed input and output couplers using a 2 port network analyzer is presented. This method avoids the use of magic Ts and hybrids, whose symmetry is not obvious. The procedure is extended to devices with n symmetrical input and m symmetrical output ports. The method to make bead pull measurements for such devices is described.

  12. Switching management in couplers with biharmonic longitudinal modulation of refractive index

    OpenAIRE

    Kartashov, Yaroslav V.; Vysloukh, Victor A.

    2009-01-01

    We address light propagation in couplers with longitudinal biharmonic modulation of refractive index in neighboring channels. While simplest single-frequency out-of-phase modulation allows suppression of coupling for strictly defined set of resonant frequencies, the addition of modulation on multiple frequency dramatically modifies the structure of resonances. Thus, additional modulation on double frequency may suppress primary resonance, while modulation on triple frequency causes fusion of ...

  13. Study on the coaxial couplers for disk and washer loaded accelerating structures

    International Nuclear Information System (INIS)

    Dajkovskij, A.G.; Paramonov, V.V.; Portugalov, Yu.I.; Ryabov, A.D.; Ryabova, T.D.

    1983-01-01

    The paper describes the dispersion and energy properties of the coaxial coupler (CC), which is a promising component for an accelerating system, with the disk and washer (DAW) structure. Resonators, consisting of the DAW structure sections and CC are shown to persist the main advantage of DAW structure, i.e. high stability of the accelerating field distribution. Therewith RF power losses are small. The presence of nonsymetriric modes in the neighbourbood of the operating mode is noted

  14. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.

    Science.gov (United States)

    Rokhsari, H; Vahala, K J

    2004-06-25

    We demonstrate a low-loss, optical four port resonant coupler (add-drop geometry), using ultrahigh Q (>10(8)) toroidal microcavities. Different regimes of operation are investigated by variation of coupling between resonator and fiber taper waveguides. As a result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and nonresonant insertion loss of 0.02% (photonic networks.

  15. Magnetic Shielding Design for Coupler of Wireless Electric Vehicle Charging Using Finite Element Analysis

    Science.gov (United States)

    Zhao, W. N.; Yang, X. J.; Yao, C.; Ma, D. G.; Tang, H. J.

    2017-10-01

    Inductive power transfer (IPT) is a practical and preferable method for wireless electric vehicle (EV) charging which proved to be safe, convenient and reliable. Due to the air gap between the magnetic coupler, the magnetic field coupling decreases and the magnetic leakage increases significantly compared to traditional transformer, and this may lead to the magnetic flux density around the coupler more than the safety limit for human. So magnetic shielding should be adding to the winding made from litz wire to enhance the magnetic field coupling effect in the working area and reduce magnetic field strength in non-working area. Magnetic shielding can be achieved by adding high-permeability material or high-conductivity material. For high-permeability material its magnetic reluctance is much lower than the surrounding air medium so most of the magnetic line goes through the high-permeability material rather than surrounding air. For high-conductivity material the eddy current in the material can produce reverse magnetic field to achieve magnetic shielding. This paper studies the effect of the two types of shielding material on coupler for wireless EV charging and designs combination shielding made from high-permeability material and high-conductivity material. The investigation of the paper is done with the help of finite element analysis.

  16. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-06-01

    Full Text Available Higher order modes (HOMs may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  17. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    CERN Document Server

    Khalvati, Mohammad Reza

    2016-01-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TS 0 n is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN ’ s Linac4 DTL Tank 2 and Tank 3 have been stabilized succ...

  18. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  19. Multipacting in a coaxial coupler with bias voltage for SRF operation with a large beam current

    Science.gov (United States)

    Liu, Z.-K.; Wang, Ch.; Chang, F.-Y.; Chang, L.-H.; Chang, M.-H.; Chen, L.-J.; Chung, F.-T.; Lin, M.-C.; Lo, C.-H.; Tsai, C.-L.; Tsai, M.-H.; Yeh, M.-S.; Yu, T.-C.

    2016-09-01

    A superconducting radio-frequency (SRF) module is commonly used for a high-energy accelerator; its purpose is to provide energy to the particle beam. Because of the low power dissipation and smaller impedance of a higher-order mode for this module, it can provide more power to the particle beam with better stability through decreasing the couple bunch instability. A RF coupler is necessary to transfer the high power from a RF generator to the cavity. A coupler of coaxial type is a common choice. With high-power operation, it might suffer from multipacting, which is a resonance phenomenon due to re-emission of secondary electrons. Applying a bias voltage between inner and outer conductors of the coaxial coupler might increase or decrease the strength of the multipacting effect. We studied the effect of a bias voltage on multipacting using numerical simulation to track the motion of the electrons. The simulation results and an application for SRF operation with a large beam current are presented in this paper.

  20. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khalvati

    2016-04-01

    Full Text Available The axial electric field of Alvarez drift tube linacs (DTLs is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TS_{n}^{′} is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN’s Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100%/MHz down to ±3%/MHz for Tank 2 and down to ±1%/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  1. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Science.gov (United States)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  2. Coupler Development and Gap Field Analysis for the 352 MHz Superconducting CH-Cavity

    CERN Document Server

    Liebermann, H; Ratzinger, U; Sauer, A C

    2004-01-01

    The cross-bar H-type (CH) cavity is a multi-gap drift tube structure based on the H-210 mode currently under development at IAP Frankfurt and in collaboration with GSI. Numerical simulations and rf model measurements showed that the CH-type cavity is an excellent candidate to realize s.c. multi-cell structures ranging from the RFQ exit energy up to the injection energy into elliptical multi-cell cavities. The reasonable frequency range is from about 150 MHz up to 800 MHz. A 19-cell, β=0.1, 352 MHz, bulk niobium prototype cavity is under development at the ACCEL-Company, Bergisch-Gladbach. This paper will present detailed MicroWave Studio simulations and measurements for the coupler development of the 352 MHz superconducting CH cavity. It will describe possibilities for coupling into the superconducting CH-Cavity. The development of the coupler is supported by measurement on a room temperature CH-copper model. We will present the first results of the measurements of different couplers, e.g. capacitiv...

  3. Simple design of slanted grating with simplified modal method.

    Science.gov (United States)

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  4. Perturbative approach to continuum generation in a fiber Bragg grating.

    Science.gov (United States)

    Westbrook, P S; Nicholson, J W

    2006-08-21

    We derive a perturbative solution to the nonlinear Schrödinger equation to include the effect of a fiber Bragg grating whose bandgap is much smaller than the pulse bandwidth. The grating generates a slow dispersive wave which may be computed from an integral over the unperturbed solution if nonlinear interaction between the grating and unperturbed waves is negligible. Our approach allows rapid estimation of large grating continuum enhancement peaks from a single nonlinear simulation of the waveguide without grating. We apply our method to uniform and sampled gratings, finding good agreement with full nonlinear simulations, and qualitatively reproducing experimental results.

  5. Iridescence in Meat Caused by Surface Gratings

    Directory of Open Access Journals (Sweden)

    Ali Kemal Yetisen

    2013-11-01

    Full Text Available The photonic structure of cut muscle tissues reveals that the well-ordered gratings diffract light, producing iridescent colours. Cut fibrils protruding from the muscle surface create a two-dimensional periodic array, which diffract light at specific wavelengths upon illumination. However, this photonic effect misleads consumers in a negative way to relate the optical phenomenon with the quality of the product. Here we discuss the fundamentals of this optical phenomenon and demonstrate a methodology for quantitatively measuring iridescence caused by diffraction gratings of muscle tissue surface of pork (Sus scrofa domesticus using reflection spectrophotometry. Iridescence was discussed theoretically as a light phenomenon and spectral measurements were taken from the gratings and monitored in real time during controlled drying. The findings show that the intensity of diffraction diminishes as the surface grating was dried with an air flow at 50 °C for 2 min while the diffracted light wavelength was at 585 ± 9 nm. Our findings indicate that the diffraction may be caused by a blazed surface grating. The implications of the study include providing guidelines to minimise the iridescence by altering the surface microstructure, and in consequence, removing the optical effect.

  6. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    Science.gov (United States)

    Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  7. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  8. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  9. An ultra-high-vacuum multiple grating chamber and scan drive with improved grating change

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Holly, D.J.; Middleton, F.H.; Wallace, D.J.; Wisconsin Univ., Stoughton, WI; Wisconsin Univ., Stoughton, WI

    1989-01-01

    We describe a new grating chamber and scan drive which has been designed, built, and tested by Physical Sciences Laboratory of the University of Wisconsin for the new high flux, high-resolution spectroscopy branch line of the TOK hybrid wiggler/undulator on the NSLS VUV ring. The chamber will contain spherical gratings to be used in the Spherical Grating Monochromator (SGM) configuration introduced by Chen and Sette. The grating chamber houses five 180 mm x 35 mm x 30 mm gratings capable of scanning a range of 12 degree (-14 degree to +8 degree with respect to the incoming beam direction) for VUV and soft X-ray diffraction. The gratings can be switched and precisely indexed while under ultra-high vacuum (UHV) at any scan angle and are mechanically isolated from the vacuum chamber to prevent inaccuracies due to chamber distortions. The gratings can separately be adjusted for height, yaw, pitch, and roll, with the latter three performed while in vacuo. The scan drive provides a resolution of 0.03 arc sec with linearity over the 12 degree range of ∼1.5 arc sec and absolute reproducibility of 1 arc sec. 5 refs., 5 figs

  10. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  11. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.

    2012-08-01

    Modern scatterometry problems arising in the lithography production of periodic gratings are in the focus of the work. The performance capabilities of a novel theoretical and numerical modeling oriented to these problems are considered. The approach is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state and transient processes of the resonant scattering of electromagnetic waves by the infinite and compact periodic structures. © 2012 IEEE.

  12. Spectroscopic ellipsometry on metallic gratings and the energy density in absorbing media

    International Nuclear Information System (INIS)

    Bergmair, M.

    2011-01-01

    Many researchers have stated that the 20th century was the century of electrons but the present one will be the century of the photon. Optics has a long history but in the context of nanooptics and nanophotonics this statement is already proven in the first decade. Improved fabrication facilities and technologies have allowed researches and industry to model light by micro and nano structures like photonic crystals, gratings, wave couplers and in past years also negative index materials. As the feature sizes of the artificial structures, which are all summarized as metamaterials, determine the operation frequencies a miniaturization is necessary for the run towards smaller wavelengths, e.g. negative index materials working in the visible range. This thesis deals with spectroscopic ellipsometry (SE) applied for the investigation of metallic gratings. SE is fast, non-invasive and non-destructive and the spectra of stratified layers are easily compared with theoretical simulations. For diffracting systems, rigorous coupled wave analysis (RCWA) which is rigorous in the sense that for a large enough number of Fourier coefficients all diffraction orders are derived exactly, is used as numerical solver for the Maxwell equations. Metallic gratings are simple structures with only a few geometrical parameters and the comparison between theoretical and experimental spectra provide a useful basis for more complicated metamaterials like e.g. negative index materials. Further, the metallic grating supports the excitation of surface plasmons. Due to the periodic structure an additional momentum transfer is provided which is necessary to excite surface plamsons with incident light. These excitation frequencies are clearly visible in the ellipsometric spectra due to a phase shift between s- and p- polarization. Therefore in the first part silicon, gold and silver gratings are analyzed with respect to their geometrical and material parameters and measured and simulated spectra are

  13. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  14. Multicore optical fiber grating array fabrication for medical sensing applications

    Science.gov (United States)

    Westbrook, Paul S.; Feder, K. S.; Kremp, T.; Taunay, T. F.; Monberg, E.; Puc, G.; Ortiz, R.

    2015-03-01

    In this work we report on a fiber grating fabrication platform suitable for parallel fabrication of Bragg grating arrays over arbitrary lengths of multicore optical fiber. Our system exploits UV transparent coatings and has precision fiber translation that allows for quasi-continuous grating fabrication. Our system is capable of both uniform and chirped fiber grating array spectra that can meet the demands of medical sensors including high speed, accuracy, robustness and small form factor.

  15. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  16. Study of thermal interaction between a 150 kW CW power coupler and a superconducting 704 MHz elliptical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Souli, M. [Institut de Physique Nucleaire d' Orsay, CNRS/IN2P3, Orsay (France)]. E-mail: souli@ipno.in2p3.fr; Fouaidy, M. [Institut de Physique Nucleaire d' Orsay, CNRS/IN2P3, Orsay (France); Saugnac, H. [Institut de Physique Nucleaire d' Orsay, CNRS/IN2P3, Orsay (France); Szott, P. [Institut de Physique Nucleaire d' Orsay, CNRS/IN2P3, Orsay (France); Gandolfo, N. [Institut de Physique Nucleaire d' Orsay, CNRS/IN2P3, Orsay (France); Bousson, S. [Institut de Physique Nucleaire d' Orsay, CNRS/IN2P3, Orsay (France); Braud, D. [CEA Saclay, DSM/DAPNIA/SACM, 91191 Gif sur Yvette (France); Charrier, J.P. [CEA Saclay, DSM/DAPNIA/SACM, 91191 Gif sur Yvette (France); Roudier, D. [CEA Saclay, DSM/DAPNIA/SACM, 91191 Gif sur Yvette (France); Sahuquet, P. [CEA Saclay, DSM/DAPNIA/SACM, 91191 Gif sur Yvette (France); Visentin, B. [CEA Saclay, DSM/DAPNIA/SACM, 91191 Gif sur Yvette (France)

    2006-07-15

    The power coupler needed for {beta} = 0.65 SRF elliptical cavities dedicated to the driver of XADS (eXperimental Accelerator Driven System) should transmit a CW RF power of 150 kW to a 10 mA proton beam. The estimated average values of the RF losses in the coupler are 130 W (respectively 46 W) for the inner (respectively outer) conductor in SW mode. Due to such high values of the RF losses, it is necessary to very carefully design and optimize the cooling circuits of the coupler in order to efficiently remove the generated heat and to reduce the thermal load to the cavity operating at T = 2 K. An experiment simulating the thermal interaction between the power coupler and a 704 MHz SRF five cells cavity was performed in the CRYHOLAB test facility in order to determine the critical heat load that can be sustained by the cavity without degradation of its RF performance. Experimental data are compared to numerical simulation results obtained with the Finite Element Method code COSMOS/M. These data allow us also to perform in situ measurements of the thermal parameters needed in the thermal model of the coupler (thermal conductivity, thermal contact resistance). These data are used to validate numerical simulations.

  17. The Prototype Fundamental Power Coupler For The Spallation Neutron Source Superconducting Cavities: Design And Initial Test Results

    International Nuclear Information System (INIS)

    K. M. Wilson; I. E. Campisi; E. F. Daly; G. K. Davis; M. Drury; J. E. Henry; P. Kneisel; G. Myneni; T. Powers; W. J. Schneider; M. Stirbet; Y. Kang; K. Cummings; T. Hardek

    2001-01-01

    Each of the 805 MHz superconducting cavities of the Spallation Neutron Source (SNS) is powered via a coaxial Fundamental Power Coupler (FPC) with a 50 Omega impedance and a warm planar alumina window. The design is derived from the experience of other laboratories; in particular, a number of details are based on the coupler developed for the KEK B-Factory superconducting cavities. However, other design features have been modified to account for the fact that the SNS FPC will transfer a considerably lower average power than the KEK-B coupler. Four prototypes have been manufactured so far, and preliminary tests performed on two of them at Los Alamos National Laboratory (LANL). During these tests, peak powers of over 500 kW were transferred through the couplers in the test stand designed and built for this purpose. This paper gives details of the coupler design and of the results obtained from the RF tests on the test stand during the last few months. A more comprehensive set of tests is planned for the near future

  18. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  19. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  20. Speed and the coherence of superimposed chromatic gratings.

    Science.gov (United States)

    Bosten, J M; Smith, L; Mollon, J D

    2016-05-01

    On the basis of measurements of the perceived coherence of superimposed drifting gratings, Krauskopf and Farell (1990) proposed that motion is analysed independently in different chromatic channels. They found that two gratings appeared to slip if each modulated one of the two 'cardinal' color mechanisms S/(L+M) and L/(L+M). If the gratings were defined along intermediate color directions, observers reported a plaid, moving coherently. We hypothesised that slippage might occur in chromatic gratings if the motion signal from the S/(L+M) channel is weak and equivalent to a lower speed. We asked observers to judge coherence in two conditions. In one, S/(L+M) and L/(L+M) gratings were physically the same speed. In the other, the two gratings had perceptually matched speeds. We found that the relative incoherence of cardinal gratings is the same whether gratings are physically or perceptually matched in speed. Thus our hypothesis was firmly contradicted. In a control condition, observers were asked to judge the coherence of stationary gratings. Interestingly, the difference in judged coherence between cardinal and intermediate gratings remained as strong as it was when the gratings moved. Our results suggest a possible alternative interpretation of Krauskopf and Farell's result: the processes of object segregation may precede the analysis of the motion of chromatic gratings, and the same grouping signals may prompt object segregation in the stationary and moving cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Deep-etched sinusoidal polarizing beam splitter grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  2. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  3. Study of a superconducting spoke-type cavity and of its associated power coupler

    International Nuclear Information System (INIS)

    Mielot, Ch.

    2004-12-01

    This work deals with the study of a spoke-type cavity and its associated power coupler. The results of this study are used in the framework of the high power proton linear accelerator of the experimental accelerator-driven system project (XADS). The cavity (F=352 MHz, β=0.35) was tested at 4 K and 2 K. The results at 4 K gave good margins toward XADS requirements that increase the reliability of a spoke based driver. At 2 K the accelerating field reached is the highest in the world for spoke cavities: 16 MV/M. The position and diameter of the coupling have been optimized in order to decrease the HF losses and avoid multi-factor risk. In order to decrease HF losses (taking into account the 20 kW power fed into the cavity) the electric coupling mode has been chosen. Different types of ceramic windows have been studied in order to make this critical point of the coupler reliable: coaxial disk with or without chokes or empty coaxial cylinder. The optimization process focused on the reflected power, the losses in the ceramic and the surface electric field. The risk with chokes has been modeled and studied with the propagation lines theory. A systematic study of the different windows has been done regarding the geometrical parameters. The disk without chokes seems to be a good solution for our application. The power source will be a solid state amplifier (for reliability and modularity reasons). An all over coaxial coupler can be designed and will be fabricated and tested soon. (author)

  4. Multicenter Clinical Trial of Vibroplasty Couplers to Treat Mixed/Conductive Hearing Loss: First Results.

    Science.gov (United States)

    Zahnert, Thomas; Löwenheim, Hubert; Beutner, Dirk; Hagen, Rudolf; Ernst, Arneborg; Pau, Hans-Wilhelm; Zehlicke, Thorsten; Kühne, Hilke; Friese, Natascha; Tropitzsch, Anke; Lüers, Jan-Christoffer; Mlynski, Robert; Todt, Ingo; Hüttenbrink, Karl-Bernd

    2016-01-01

    To evaluate the safety and effectiveness of round window (RW), oval window (OW), CliP and Bell couplers for use with an active middle ear implant. This is a multicenter, long-term, prospective trial with consecutive enrollment, involving 6 university hospitals in Germany. Bone conduction, air conduction, implant-aided warble-tone thresholds and Freiburger monosyllable word recognition scores were compared with unaided preimplantation results in 28 moderate-to-profound hearing-impaired patients after 12 months of follow-up. All patients had previously undergone failed reconstruction surgeries (up to 5 or more). In a subset of patients, additional speech tests at 12 months postoperatively were used to compare the aided with the unaided condition after implantation with the processor switched off. An established quality-of-life questionnaire for hearing aids was used to determine patient satisfaction. Postoperative bone conduction remained stable. Mean functional gain for all couplers was 37 dB HL (RW = 42 dB, OW = 35 dB, Bell = 38 dB, CliP = 27 dB). The mean postoperative Freiburger monosyllable score was 71% at 65 dB SPL. The postimplantation mean SRT50 (speech reception in quiet for 50% understanding of words in sentences) improved on average by 23 dB over unaided testing and signal-to-noise ratios also improved in all patients. The International Outcome Inventory for Hearing Aids (IOI-HA)quality-of-life questionnaire was scored very positively by all patients. A significant improvement was seen with all couplers, and patients were satisfied with the device at 12 months postoperatively. These results demonstrate that an active implant is an advantage in achieving good hearing benefit in patients with prior failed reconstruction surgery. © 2016 S. Karger AG, Basel.

  5. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of...

  6. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...

  7. Cylinder and metal grating polarization beam splitter

    Science.gov (United States)

    Yang, Junbo; Xu, Suzhi

    2017-08-01

    We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.

  8. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  9. Disorder effects in subwavelength grating metamaterial waveguides

    Czech Academy of Sciences Publication Activity Database

    Ortega-Moñux, A.; Čtyroký, Jiří; Cheben, P.; Schmid, J. H.; Wang, S.; Molina-Fernández, I.; Halíř, R.

    2017-01-01

    Roč. 25, č. 11 (2017), s. 12222-12236 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA16-00329S Institutional support: RVO:67985882 Keywords : Subwavelength grating * Integrated photonics * Diffraction effects Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.307, year: 2016

  10. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  11. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  12. Gaussian beam-to-slab waveguide coupler by graded index photonic crystal lens

    International Nuclear Information System (INIS)

    Bahari, B; Abrishamian, M S

    2013-01-01

    In this numerical study, a Gaussian beam-to-slab waveguide coupler for both modes of TM and TE has been studied. For this purpose, a concrete structure is suggested, in which the graded index photonic crystal lens and the slab waveguide are in the same structure composed of Si material, and can be fabricated with a single-step lithography process. For maximum power coupling, half-holes have been used as an input matching layer. Power coupling of 80% over a 450 nm bandwidth for the TM mode, and 60% over a 180 nm bandwidth for the TE mode is achieved. (paper)

  13. Bessel-function analysis of the optimized star coupler for uniform power splitting.

    Science.gov (United States)

    Song, G Hugh; Park, Mahn Yong

    2004-08-01

    An optimized N x N planar optic star coupler that utilizes directional coupling of arrayed waveguides for uniform power splitting is analyzed on the basis of special properties of the involved Bessel-function series. The analysis has provided a remarkably simple, novel basic design formula for such a device with much needed physical insights into the unique diffraction properties. For the analysis of diffraction from the end of directionally coupled arrayed waveguides, many useful formulas around the Bessel functions, such as the addition theorem and the Kepler-Bessel series, have been given in new forms.

  14. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    Science.gov (United States)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  15. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Fibreoptic distributed temperature sensor with spectral filtration by directional fibre couplers

    Science.gov (United States)

    Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.

    2009-11-01

    We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.

  16. Numerical simulation of waveguide input/output couplers for a planar mm-wave linac cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1994-01-01

    A double-sided planar mm-wave linear accelerating cavity structure has been studied. The input/output couplers for the accelerating cavity structure have been designed using the Hewlett-Packard High Frequency Structure Simulator (HFSS). The program is a frequency domain finite element 3-D field solver and can include matched port boundary conditions. The power transmission property of the structure is calculated in the frequency domain. The dimensions of the, coupling cavities and the irises at the input/output ports are adjusted to have the structure matched to rectangular waveguides. The field distributions in the accelerating structure for the 2π/3-mode traveling wave are shown

  17. Liquid droplet sensing using twisted optical fiber couplers fabricated by hydrofluoric acid flow etching

    Science.gov (United States)

    Son, Gyeongho; Jung, Youngho; Yu, Kyoungsik

    2017-04-01

    We report a directional-coupler-based refractive index sensor and its cost-effective fabrication method using hydrofluoric acid droplet wet-etching and surface-tension-driven liquid flows. The proposed fiber sensor consists of a pair of twisted tapered optical fibers with low excess losses. The fiber cores in the etched microfiber region are exposed to the surrounding medium for efficient interaction with the guided light. We observe that the etching-based low-loss fiber-optic sensors can measure the water droplet volume by detecting the refractive index changes of the surrounding medium around the etched fiber core region.

  18. Frequency support capability of variable speed wind turbine based on electromagnetic coupler

    DEFF Research Database (Denmark)

    You, Rui; Barahona Garzón, Braulio; Chai, Jianyun

    2015-01-01

    In the variable speed wind turbine based on electromagnetic coupler (WT-EMC), a synchronous generator is directly coupled with grid. So like conventional power plants WT-EMC is able to support grid frequency inherently. But due to the reduced inertia of synchronous generator, its frequency support...... capability has to be enhanced. In this paper, the frequency support capability of WT-EMC is studied at three typical wind conditions and with two control strategies-droop control and inertial control to enhance its frequency support capability. The synchronous generator speed, more stable than the grid...

  19. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    Science.gov (United States)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  20. Thermal-Mechanical Study of 3.9 GHz CW Coupler and Cavity for LCLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Gonin, Ivan [Fermilab; Harms, Elvin [Fermilab; Khabiboulline, Timergali [Fermilab; Solyak, Nikolay [Fermilab; Yakovlev, Vyacheslav [Fermilab

    2017-05-01

    Third harmonic system was originally developed by Fermilab for FLASH facility at DESY and then was adopted and modified by INFN for the XFEL project [1-3]. In contrast to XFEL project, all cryomodules in LCLS-II project will operate in CW regime with higher RF average power for 1.3 GHz and 3.9 GHz cavities and couplers. Design of the cavity and fundamental power coupler has been modified to satisfy LCLS-II requirements. In this paper we discuss the results of COMSOL thermal and mechanical analysis of the 3.9 GHz coupler and cavity to verify proposed modifica-tion of the design. For the dressed cavity we present simulations of Lorentz force detuning, helium pressure sensitivity df/dP and major mechanical resonances.

  1. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  2. Development of a segmented grating mount system for FIREX-1

    International Nuclear Information System (INIS)

    Ezaki, Y; Tabata, M; Kihara, M; Horiuchi, Y; Endo, M; Jitsuno, T

    2008-01-01

    A mount system for segmented meter-sized gratings has been developed, which has a high precision grating support mechanism and drive mechanism to minimize both deformation of the optical surfaces and misalignments in setting a segmented grating for obtaining sufficient performance of the pulse compressor. From analytical calculations, deformation of the grating surface is less than 1/20 lambda RMS and the estimated drive resolution for piston and tilt drive of the segmented grating is 1/20 lambda, which are both compliant with the requirements for the rear-end subsystem of FIREX-1

  3. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  4. Talbot Carpet Simulation for X-ray grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngju; Oh, Ohsung; Jeong, Hanseong; Kim, Jeongho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Kim, Jongyul; Moon, Myungkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, Talbot carpet simulator has been developed to visualize the X-ray grating interference patterns in grating interferometer. We have simulated X-ray interference for a variety of simulations and demonstrated a few examples in this summary. Grating interferometer produces interference of X-ray called Talbot pattern with gratings manufactured in micro scale. Talbot pattern is self-images of phase grating which develops interference as beam splitter that is one of gratings consisted of interferometer. As the other gratings, there are source grating makes coherence and analyze grating is used to analyze interference onto detector. Talbot carpet has been studied as the beam behavior which is distinguished with common X-ray imaging systems. It is helpful to understand grating interferometer and possible to expect beams' oscillation for designing theoretically. We confirm pattern has periodicity produced by interference after pi and pi/2 phase grating and changes in the perpendicular direction to entrance face according to phase objects.

  5. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  6. Analytical modeling and analysis of magnetic field and torque for novel axial flux eddy current couplers with PM excitation

    Science.gov (United States)

    Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin

    2017-10-01

    Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.

  7. Precise rotational alignment of x-ray transmission diffraction gratings

    International Nuclear Information System (INIS)

    Hill, S.L.

    1988-01-01

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 μradian. The electron-beam-exposed line-width can be large (5 to 15 μm wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ

  8. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    Science.gov (United States)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  9. 2×2 polymeric electro-optic MZI switch using multimode interference couplers

    Science.gov (United States)

    Li, H. P.; Liao, J. K.; Tang, X. G.; Lu, R. G.; Liu, Y. Z.

    2009-11-01

    We present the design of a 2×2 photonic switch operating at 1.55-μm wavelength using electro-optic (EO) polymer waveguides. A Mach-Zehnder interferometer (MZI) is used to implement the proposed switch in which two identical 2×2 multimode interference (MMI) couplers are connected by two identical parallel single mode waveguides (two MZI arms). These two single-mode waveguides with electrodes allow modulating the phase difference between the two MZI arms based on the EO effect. In the proposed switch, the EO polymer, IPC-E/polysulfone, is used for the core layer of optical waveguides. UV15 and NOA61 are employed for the lower and upper cladding layers, respectively. The singlemode waveguide structure and 2×2 MMI coupler have been designed and analyzed for the EO switch. Device performance has been simulated using the beam propagation method. It is found that the switch performance is most sensitive to the MMI width and less sensitive to the MMI length. Optimized structure has been obtained for the 2×2 polymeric EO switch, which has a crosstalk level better than -25 dB and insertion loss lower than -1.8 dB. This performance makes the switch a potential candidate for practical use in photonic systems.

  10. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  11. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  12. Theory of Fiber Optical Bragg Grating: Revisited

    Science.gov (United States)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  13. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  14. Varied line-space gratings: past, present and future

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1985-08-01

    A classically ruled diffraction grating consists of grooves which are equidistant, straight and parallel. Conversely, the so-called ''holographic'' grating (formed by the interfering waves of coherent visible light), although severely constrained by the recording wavelength and recording geometry, has grooves which are typically neither equidistant, straight nor parallel. In contrast, a varied line-space (VLS) grating, in common nomenclature, is a design in which the groove positions are relatively unconstrained yet possess sufficient symmetry to permit mechanical ruling. Such seemingly exotic gratings are no longer only a theoretical curiosity, but have been ruled and used in a wide variety of applications. These include: (1) aberration-corrected normal incidence concave gratings for Seya-Namioka monochromators and optical de-multiplexers, (2) flat-field grazing incidence concave gratings for plasma diagnostics, (3) aberration-corrected grazing incidence plane gratings for space-borne spectrometers, (4) focusing grazing incidence plane grating for synchrotron radiation monochromators, and (5) wavefront generators for visible interferometry of optical surfaces (particularly aspheres). Future prospects of VLS gratings as dispersing elements, wavefront correctors and beamsplitters appear promising. The author discusses the history of VLS gratings, their present applications, and their potential in the future. 61 refs., 24 figs

  15. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  16. Experimental test of a supercritical helium heat exchanger dedicated to EUROTRANS 150 kW CW power coupler

    Science.gov (United States)

    Souli, M.; Fouaidy, M.; Hammoudi, N.

    2010-05-01

    The coaxial power coupler needed for beta = 0.65 superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the proton beam. The estimated RF losses on the power coupler outer conductor in standing wave mode operation are 46 W. To remove these heat loads, a full scale copper coil heat exchanger brazed around the outer conductor was designed and tested using supercritical helium at T = 6 K as a coolant. Our main objective was to minimise the heat loads to cold extremity of SRF cavity maintained at 2 K or 4.2 K. A dedicated test facility named SUPERCRYLOOP was developed and successfully operated in order to measure the performance of the cold heat exchanger. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryomodule. After a short introduction, a brief discussion about the problem of power coupler cooling systems in different machines is made. After that, we describe the experimental set-up and test apparatus. Then, a heat exchanger thermal model will be developed with FEM code COSMOS/M to estimate the different heat transfer coefficients by comparison between numerical simulation results and experimental data in order to validate the design. Finally, thermo-hydraulic behavior of supercritical helium has been investigated as function of different parameters (inlet pressure, flow rate, heat loads).

  17. Fabrication of etched facets and vertical couplers in InP for packaging and on-wafer test

    NARCIS (Netherlands)

    Lemos Alvares Dos Santos, Rui; D'Agostino, D.; Soares, F. M.; Haghighi, H. Rabbani; Williams, K. A.; Leijtens, X. J. M.

    2016-01-01

    In this letter, the fabrication and the characterization of angled and straight etched facets in InP-based technology are reported. In addition, we report on etched facets combined with coupler mirrors for vertical outcoupling, realized with a wet-etching process.

  18. Optimization of the buffer layer of a side polished fiber slab coupler based on 3 D ADI beam propagation method

    International Nuclear Information System (INIS)

    Lee, Cherl Hee; Kim, Cheol; Park, Jae Hee

    2008-01-01

    A side polished fiber slab coupler has been widely applied to a sensor, which has the advantages of short response time, simple manufacturing process, and reusability as well as in line fiber component. A new type of a side polished fiber sensor providing remote sensing with an improved performance was also recently developed. The side polished fiber slab coupler is modeled as a fiber to planar waveguide coupler with four layers, including the fiber cladding, a buffer layer, planar waveguide and overlay material. The coupling effects by the buffer layer of a side polished fiber slab coupler are analyzed by using 3 dimensional alternating direction implicit (ADI)beam propagation method, where the refractive index and thickness of the buffer layer were tuned for efficient light coupling. The coupling is easily tuned and more occurred by the refractive index and thickness of the buffer layer for efficient coupling. This study tried to optimize the buffer layer parameters for achieving the desired light coupling and power transfer performance

  19. Effective shunt impedance comparison between s-band standing wave accelerators with on-axis and off-axis couplers

    International Nuclear Information System (INIS)

    Schriber, S.O.; Funk, L.W.; Hutcheon, R.M.

    1976-01-01

    The effective shunt impedances of a side-coupled S-band standing wave accelerating structure and a structure employing on-axis couplers have been compared by measuring the energy of accelerated electrons. Criteria for choosing an on-axis coupled structure compared to side-coupled and ''disk and washer'' accelerating structures are given. (author)

  20. Optimizing imbalance and loss in 2 x 2 3dB multimode interference couplers via access waveguide width

    NARCIS (Netherlands)

    Hill, M.T.; Leijtens, X.J.M.; Khoe, G.D.; Smit, M.K.

    2003-01-01

    The imbalance and excess loss in multimode interference couplers with fabrication errors are examined. Remarkably, there exists a number of optimum access waveguide widths which give a minimum imbalance. Furthermore, quite low excess loss can be simultaneously achieved by choosing one particular

  1. 1.28 Tbaud Nyquist-OTDM Transmission over a 7-Core Fiber Using an On-Chip SDM Coupler

    DEFF Research Database (Denmark)

    Hu, Hao; Medhin, Ashenafi Kiros; Ye, Feihong

    2014-01-01

    We have demonstrated the first 1.28-Tbaud Nyquist-OTDM-SDM transmission over a 67.4 - km seven-core fiber with an aggregated data rate of 7.2 Tbit/s using a silicon SDM coupler. 10 - GHz control pulses were transmitted through the center core...

  2. Multipacting Simulations of Tuner-adjustable waveguide coupler (TaCo) with CST Particle Studio®

    CERN Document Server

    Shafqat, N; Wegner, R

    2014-01-01

    Tuner-adjustable waveguide couplers (TaCo) are used to feed microwave power to different RF structures of LINAC4. This paper studies the multipacting phenomenon for TaCo using the PIC solver of CST PS. Simulations are performed for complete field sweeps and results are analysed.

  3. An X-ray grazing incidence phase multilayer grating

    CERN Document Server

    Chernov, V A; Mytnichenko, S V

    2001-01-01

    An X-ray grazing incidence phase multilayer grating, representing a thin grating placed on a multilayer mirror, is proposed. A high efficiency of grating diffraction can be obtained by the possibility of changing the phase shift of the wave diffracted from the multilayer under the Bragg and total external reflection conditions. A grazing incidence phase multilayer grating consisting of Pt grating stripes on a Ni/C multilayer and optimized for the hard X-ray range was fabricated. Its diffraction properties were studied at photon energies of 7 and 8 keV. The obtained maximum value of the diffraction efficiency of the +1 grating order was 9% at 7 keV and 6.5% at 8 keV. The data obtained are in a rather good accordance with the theory.

  4. Phasor analysis of binary diffraction gratings with different fill factors

    International Nuclear Information System (INIS)

    MartInez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors

  5. Phasor analysis of binary diffraction gratings with different fill factors

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Antonio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain); Sanchez-Lopez, Ma del Mar [Instituto de BioingenierIa y Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, 03202 Elche (Spain); Moreno, Ignacio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain)

    2007-09-11

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors.

  6. Towards freeform curved blazed gratings using diamond machining

    Science.gov (United States)

    Bourgenot, C.; Robertson, D. J.; Stelter, D.; Eikenberry, S.

    2016-07-01

    Concave blazed gratings greatly simplify the architecture of spectrographs by reducing the number of optical components. The production of these gratings using diamond-machining offers practically no limits in the design of the grating substrate shape, with the possibility of making large sag freeform surfaces unlike the alternative and traditional method of holography and ion etching. In this paper, we report on the technological challenges and progress in the making of these curved blazed gratings using an ultra-high precision 5 axes Moore-Nanotech machine. We describe their implementation in an integral field unit prototype called IGIS (Integrated Grating Imaging Spectrograph) where freeform curved gratings are used as pupil mirrors. The goal is to develop the technologies for the production of the next generation of low-cost, compact, high performance integral field unit spectrometers.

  7. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  8. Coupling Characteristics of Fused Optical Fiber Coupler Formed with Single-Mode Fiber and Photonic Crystal Fiber Having Air Hole Collapsed Taper

    Directory of Open Access Journals (Sweden)

    Hirohisa Yokota

    2016-01-01

    Full Text Available Fused coupler forming with a single-mode fiber (SMF and a photonic crystal fiber (PCF is one of the solutions for optical coupling from a light source to a PCF. In this paper, we presented coupling characteristics of a fused fiber coupler formed with an ordinary SMF and a PCF having air hole collapsed taper. A prototype of SMF-PCF coupler with air hole collapsed taper was fabricated using CO2 laser irradiation. The coupling efficiency from SMF to PCF was −6.2 dB at 1554 nm wavelength in the fabricated coupler. The structure of the SMF-PCF coupler to obtain high coupling efficiency was theoretically clarified by beam propagation analysis using an equivalent model of the coupler with simplification. It was clarified that appropriately choosing the prestretched or etched SMF diameter and the length of air hole collapsed region was effective to obtain high coupling efficiency that was a result of high extinction ratio at cross port and low excess loss. We also demonstrated that the diameter of prestretched SMF to obtain high coupling efficiency was insensitive to the air hole diameter ratio to pitch of the PCF in the air hole collapsed SMF-PCF coupler.

  9. The cross waveguide grating: proposal, theory and applications.

    Science.gov (United States)

    Muñoz, Pascual; Pastor, Daniel; Capmany, José

    2005-04-18

    In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.

  10. Observation of narrowband intrinsic spectra of Brillouin dynamic gratings.

    Science.gov (United States)

    Song, Kwang Yong; Yoon, Hyuk Jin

    2010-09-01

    We experimentally demonstrate that the reflection spectrum of a Brillouin dynamic grating in a polarization-maintaining fiber can be much narrower than the intrinsic linewidth of the stimulated Brillouin scattering, matching well with the theory of a fiber Bragg grating in terms of the linewidth and the reflectivity. A 3 dB bandwidth as narrow as 10.5 MHz is observed with the Brillouin dynamic grating generated in a 9 m uniform fiber.

  11. Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers

    International Nuclear Information System (INIS)

    Zhou Zheng; Zhang Li-Juan; Zhu Bo

    2015-01-01

    We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)

  12. Design of a 300 GHz Broadband TWT Coupler and RF-Structure

    CERN Document Server

    Krawczyk, F L

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.

  13. High Power Tm3+-Doped Fiber Lasers Tuned by a Variable Reflective Output Coupler

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2008-01-01

    Full Text Available Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-clad Tm3+-doped silica fiber lasers diode-pumped at ∼790  nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106  nm from 1949 to 2055  nm. The output power exceeds 20  W over 90-nm range and the maximum output power is 32  W at 1949  nm for 51-W launched pump power, corresponding to a slope efficiency of ∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240  nm from 1866 to 2107  nm with the output power larger than 10  W.

  14. The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell

    International Nuclear Information System (INIS)

    Arsenyev, Sergey A.; Simakov, Evgenya I.

    2012-01-01

    We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

  15. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Longfeng; Pu, Shengli, E-mail: shlpu@usst.edu.cn; Tang, Jiali [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [2Key Laboratory of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Department of Physics, Faculty of Sciences, Laboratory L.P.S., Badji Mokhtar-Annaba University, P. O. Box 12, 23000 Annaba (Algeria)

    2015-05-11

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work. In addition, a sensitivity of −0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing.

  16. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    International Nuclear Information System (INIS)

    Luo, Longfeng; Pu, Shengli; Tang, Jiali; Zeng, Xianglong; Lahoubi, Mahieddine

    2015-01-01

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work. In addition, a sensitivity of −0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing

  17. Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids.

    Science.gov (United States)

    Pumpe, Sebastian; Chemnitz, Mario; Kobelke, Jens; Schmidt, Markus A

    2017-09-18

    We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.

  18. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  19. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  20. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.

    2016-01-01

    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  1. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  2. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  3. Fiber facet gratings for high power fiber lasers

    Science.gov (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  4. Tolerance study for the components of the probe-type and hook-type Higher Order Mode couplers for the HL-LHC 800 MHz harmonic system

    CERN Document Server

    Blanco, Esteban

    2016-01-01

    A superconducting 800 MHz second harmonic RF system is one of the considered options as a Landau damping mechanism for HiLumi LHC. The Higher Order Mode (HOM) coupler designs require tight manufacturing tolerances in order to operate at the design specifications. The project consists of defining the mechanical tolerances for the different components of both the probe-type and hook-type HOM coupler. With the use of electromagnetic field simulation software it is possible to identify the critical components of the HOM coupler and to quantify their respective tolerances. The obtained results are discussed in this paper.

  5. Tunable arrayed waveguide grating driven by surface acoustic waves

    Science.gov (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  6. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  7. Operation of a quasi-optical gyrotron with a gaussian output coupler

    Energy Technology Data Exchange (ETDEWEB)

    Hogge, J.P.; Tran, T.M.; Paris, P.J.; Tran, M.Q. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-03-01

    The operation of a 92 GHz quasi-optical gyrotron (QOG) having a resonator formed by a spherical mirror and a diffraction grating placed in -1 order Littrow mount is presented. A power of 150 kW with a gaussian output pattern was measured. The gaussian content in the output was 98% with less than 1% of depolarization. By optimizing the magnetic field at fixed frequency, a maximum efficiency of 15% was reached. (author) 12 figs., 2 tabs., 22 refs.

  8. Streaked, x-ray-transmission-grating spectrometer

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Roth, M.; Hawryluk, A.M.

    1981-08-01

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/Δlambda of 4 to 50, limited primarily by source size and collimation effects

  9. Development of 20 kW input power coupler for 1.3 GHz ERL main linac. Component test at 30 kW IOT test stand

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Umemori, Kensei; Sakanaka, Shogo; Takahashi, Takeshi; Furuya, Takaaki; Shinoe, Kenji; Ishii, Atsushi; Nakamura, Norio; Sawamura, Masaru

    2009-01-01

    We started to develop an input coupler for a 1.3 GHz ERL superconducting cavity. Required input power is about 20 kW for the cavity acceleration field of 20 MV/m and the beam current of 100 mA in energy recovery operation. The input coupler is designed based on the STF-BL input coupler and some modifications are applied to the design for the CW 20 kW power operation. We fabricated input coupler components such as ceramic windows and bellows and carried out the high-power test of the components by using a 30 kW IOT power source and a test stand constructed for the highpower test. In this report, we mainly describe the results of the high-power test of ceramic window and bellows. (author)

  10. Design, construction and tuning of S-band coupler for electron linear accelerator of institute for research in fundamental sciences (IPM E-linac)

    International Nuclear Information System (INIS)

    Ghasemi, F.; Abbasi Davani, F.; Lamehi Rachti, M.; Shaker, H.; Ahmadiannamin, S.

    2015-01-01

    Design and construction of an electron linear accelerator by Institute for Research in Fundamental Science (IPM) is considered as Iran’s first attempt to construct such an accelerator. In order to design a linear accelerating tube, after defining the accelerating tube and buncher geometries, RF input and output couplers must be designed. In this article, firstly, a brief report on the specifications of an S-band electron linear accelerator which is in progress in the school of particles and accelerators is presented and then, the design process and construction reports of the couplers required for this accelerator are described. Through performing necessary calculations and tuning the coupling factor and resonant frequency, couplers with desired specification have been fabricated by shrinking method. The final obtained coupling factor and resonant frequency have been respectively 1.05 and 2997 MHz for the first coupler, and 0.98 and 2996.9 MHz for the second one that are close to calculation results

  11. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  12. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  13. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  14. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor

    International Nuclear Information System (INIS)

    Arif, Khalid Mahmood

    2016-01-01

    We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations. - Highlights: • DDA was used to study the relationship between the number of beads forming gratings and ratio of first and zeroth order diffraction intensities. • A very flexible modeling program was developed to design complicated objects for DDA. • Material and spatial effects of bead distribution on surfaces were studied. • It has been shown that bead enhanced grating biosensor can be useful for fast detection of small amounts of biomolecules. • Experimental results qualitatively support the simulations and thus open a way to optimize the grating biosensors.

  15. Photoanisotropic polarization gratings beyond the small recording angle regime

    NARCIS (Netherlands)

    Xu, M.; De Boer, D.K.G.; Van Heesch, C.M.; Wachters, A.J.H.; Urbach, H.P.

    2010-01-01

    Polarization gratings can be realized by polarization holographic recording in photoanisotropic materials. In this paper, we study two types of polarization gratings. One is recorded with two orthogonally circularly (OC) polarized beams and the other one with two orthogonally linearly (OL) polarized

  16. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  17. Smith-Purcell radiation from concave dotted gratings

    Science.gov (United States)

    Sergeeva, D. Yu.; Tishchenko, A. A.; Aryshev, A. S.; Strikhanov, M. N.

    2018-02-01

    We present the first-principles theory of Smith-Purcell effect from the concave dotted grating consisting of bent chains of separated micro- or nanoparticles. The numerical analysis demonstrates that the obtained spectral-angular distributions change significantly depending on the structure of the grating.

  18. Talbot effect of the defective grating in deep Fresnel region

    Science.gov (United States)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  19. Analysis of the optical parameters of phase holographic gratings

    Directory of Open Access Journals (Sweden)

    Є.О. Тихонов

    2008-03-01

    Full Text Available  Suitability of 2- wave approximation of the coupled waves theory tor description of holographic phase gratings recorded on photopolymer compound ФПК-488 is proved. Using the basic formulas of the theory, main grating optical parameters - a depth of modulation and finished thickness are not measured immediately are determined.

  20. Slit and phase grating diffraction with a double crystal diffractometer

    International Nuclear Information System (INIS)

    Treimer, Wolfgang; Hilger, Andre; Strobl, Markus

    2006-01-01

    The lateral coherence properties of a neutron beam (λ=0.5248nm) in a double crystal diffractometer (DCD) were studied by means of single slit diffraction and by diffraction by different perfect Silicon phase gratings. Perfect agreements were found for the lateral coherence length measured with the slit and for the one determined by Silicon phase gratings, however, some peculiarities are still present

  1. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  2. Magnetoresistance and magnetization in submicron ferromagnetic gratings

    Science.gov (United States)

    Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.

    1994-05-01

    A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.

  3. Study on talbot pattern for grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Seung Wook [Dept. of School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [Neutron Instrument Division, Korea Atomic Energy Reserch Institute, Daejeon (Korea, Republic of)

    2015-04-15

    One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.

  4. A Single-Element Plane Grating Monochromator

    Directory of Open Access Journals (Sweden)

    Michael C. Hettrick

    2016-01-01

    Full Text Available Concerted rotations of a self-focused varied line-space diffraction grating about its groove axis and surface normal define a new geometric class of monochromator. Defocusing is canceled, while the scanned wavelength is reinforced at fixed conjugate distances and horizontal deviation angle. This enables high spectral resolution over a wide band, and is of particular advantage at grazing reflection angles. A new, rigorous light-path formulation employs non-paraxial reference points to isolate the lateral ray aberrations, with those of power-sum ≤ 3 explicitly expanded for a plane grating. Each of these 14 Fermat equations agrees precisely with the value extracted from numerical raytrace simulations. An example soft X-ray design (6° deviation angle and 2 × 4 mrad aperture attains a resolving power > 25 , 000 over a three octave scan range. The proposed rotation scheme is not limited to plane surfaces or monochromators, providing a new degree of freedom in optical design.

  5. Ultra-Broadband Silicon-Wire Polarization Beam Combiner/Splitter Based on a Wavelength Insensitive Coupler With a Point-Symmetrical Configuration

    OpenAIRE

    Uematsu, Takui; Kitayama, Tetsuya; Ishizaka, Yuhei; Saitoh, Kunimasa

    2014-01-01

    An ultrabroadband silicon wire polarization beam combiner/splitter (PBCS) based on a wavelength-insensitive coupler is proposed. The proposed PBCS consists of three identical directional couplers and two identical delay lines. We design the PBCS using the 3-D finite element method. Numerical simulations show that the proposed PBCS can achieve the transmittance of more than 90% over a wide wavelength range from 1450 to 1650 nm for both TE and TM polarized modes.

  6. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  7. Polarization sensitivity testing of off-plane reflection gratings

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor

    2015-09-01

    Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  8. Unified design of sinusoidal-groove fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lu, Peng

    2010-10-20

    A general design rule of deep-etched subwavelength sinusoidal-groove fused-silica grating as a highly efficient polarization-independent or polarization-selective device is studied based on the simplified modal method, which shows that the device structure depends little on the incident wavelength, but mainly on the ratio of groove depth to incident wavelength and the ratio of wavelength to grating period. These two ratios could be used as the design guidelines for wavelength-independent structure from deep ultraviolet to far infrared. The optimized grating profile with a different function as a polarizing beam splitter, a polarization-independent two-port beam splitter, or a polarization-independent grating with high efficiency of -1st order is obtained at a wavelength of 1064 nm, and verified by using the rigorous coupled-wave analysis. The performance of the sinusoidal grating is better than a conventional rectangular one, which could be useful for practical applications.

  9. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  10. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    Science.gov (United States)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  11. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Melloni, Andrea [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-04-28

    By hybrid integration of plasmonic and dielectric waveguide concepts, it is shown that nearly perfect coherent absorption can be achieved in a co-propagating coupler geometry. First, the operating principle of the proposed device is detailed in the context of a more general 2 × 2 lossy coupler formalism. Then, it is shown how to tune the device in a wide region of possible working points, its broadband operation, and the tolerance to fabrication uncertainties. Finally, a complete picture of the electromagnetic modes inside the hybrid structure is analyzed, shining light onto the potentials which the proposed device holds in view of classical and quantum signal processing, nonlinear optics, polarization control, and sensing.

  12. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  13. The influence of grating shape formation fluctuation on DFB laser diode threshold condition

    Science.gov (United States)

    Bao, Shiwei; Song, Qinghai; Xie, Chunmei

    2018-03-01

    Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ , and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.

  14. Design of electro-absorption modulator with tapered-mode coupler on the GeSi layer

    International Nuclear Information System (INIS)

    Li, Ym; Cheng, Bw

    2013-01-01

    A tapered-mode coupler integrated GeSi electro-absorption (EA) modulator is investigated theoretically. To improve the parameter insensitivity and modulation efficiency of the GeSi EA modulator based on evanescent coupling, a tapered coupler on the GeSi layer is introduced in our design. The two coupling mechanisms in our suggested structure are compared. Both the beam propagation method (BPM) calculation and coupling mode theory show almost 100% power transfer from the bottom rib waveguide to the GeSi layer. After a series of designs of the tapered coupler, we get a modulator with the advantages of both evanescent-coupling modulators (Feng et al 2011 Opt. Express 19 7062–7, Feng et al 2012 Opt. Express 20 22224–32, Liu et al 2008 Nature Photon. 2 433–7, Liu et al 2007 Opt. Express 15 623–8) and butt-coupling modulators (Lim et al 2011 Opt. Express 19 5040–6), that are ease of fabrication, low coupling loss, performance stability and high modulation efficiency. (paper)

  15. Plane grating monochromators for synchrotron radiation

    International Nuclear Information System (INIS)

    Howells, M.R.

    1979-01-01

    The general background and theoretical basis of plane grating monochromators (PGM's) is reviewed and the particular case of grazing incidence PGM's suitable for use with synchrotron radiation is considered in detail. The theory of reflection filtering is described and the problem of the finite source distance is shown to be of special importance with high brightness storage rings. The design philosophy of previous instruments is discussed and a new scheme proposed, aimed at dealing with the problem of the finite source distance. This scheme, involving a parabolic collimating mirror fabricated by diamond turning, is considered in the context of Wolter-type telescopes and microscopes. Some practical details concerning an instrument presently under construction using the new design are presented

  16. Magnetomechanically induced long period fiber gratings

    International Nuclear Information System (INIS)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-01-01

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs

  17. Gratings in passive and active optical waveguides

    DEFF Research Database (Denmark)

    Berendt, Martin Ole

    1999-01-01

    will not only couple to the backward propagating fundamental mode, but also to cladding modes. Cladding modes are strongly bound, but slightly leaky, higher-order modes in the core-cladding-air index structure. If the waveguide is not surrounded by air, but by a recoating the cladding modes become highly...... attenuated. In either case the cladding mode coupling gives loss on the short wavelength side of the reflection band. The cladding mode coupling loss is a major problem for the utilization of fiber Bragg gratings in wavelength division multiplexed (WDM) system. In this project, a numerical model for cladding...... mode coupling has been developed. The model can predict the spectral location and size of coupling, for various fiber designs. By the aid of this modeling tool, a fiber has been optimized to give low cladding-mode losses. The optimized fiber has been produced and the predicted reduction of cladding...

  18. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława

    Surface plasmon polaritons (SPPs) are collective electron oscillations, confined at metal-dielectric interfaces. Coupling incident photons to SPPs may lead to spectrally broad field enhancement and confinement below the diffraction limit [1]. This phenomenon facilitates various applications......, including highly sensitive refractive index sensing [2], and plasmonic dipole mirrors for cold atoms [3]. Key to a successful application is a strong photon-to-SPP coupling. To this end, prism-based coupling is classically used, but this method contradicts compact device applications. An alternative...... the proposed plasmonic transmission gratings via near-field optical scanning microscopy (NSOM) and goniometric far field measurements. We support the evidence of our analyses with numerical calculations, carried out via rigorous coupled wave analysis (RCWA) and finite-difference in time-domain (FDTD...

  19. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  20. Asymmetric focusing study from twin input power couplers using realistic rf cavity field maps

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2011-03-01

    Full Text Available Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the combined system of an rf cavity and a beam bunch. While these simulations are important for a complete understanding of the beam dynamics in rf cavities, they require significant time and computing power. These techniques are therefore not readily included in real time simulations useful to the beam physicist during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic cavity fields significantly faster than self-consistent codes, while still incorporating enough of the necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorporates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

  1. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  2. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes

    Science.gov (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming

    2008-07-01

    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  3. Design of a 300 GHZ broadband coupler and RF-structure

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Carlsten, B.E.; Earley, L.M.; Sigler, F.E.; Potter, J.M.; Schulze, M.E.

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 95 and 300 GHz structures. They aim at power generation from low power (100W-2kW) with a round electron beam (120kV, 0.1-1.0 A) to high power (2-100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design of a 300 GHz RF-structure with a broadband (> 6% bandwidth) power coupler is presented. The choice of two input/output waveguides, a special coupling region and the structure parameters are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented. We are investigating planar micro-fabricated traveling-wave tube amplifiers as sources for the generation of millimeter waves from 95 to 300 GHz. While for low energy applications narrow structures with pencil beams are proposed, for high energy operation flat, thin sheet beams are required. For the latter vane-loaded rectangular waveguides that operate in a slow-wave mode matched to the velocity of the electron beam are especially well suited. The 300 GHz effort initially is limited to narrow structures for pencil beams. The main emphasis for this work are the study of fabrication issues and the understanding of features that allow a broadband operation (5-10% bandwidth).

  4. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  5. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler

    Science.gov (United States)

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2015-01-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013

  6. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  7. Radiative properties tailoring of grating by comb-drive microactuator

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Liu, L.J.; Hsu, P.-F.

    2014-01-01

    Micro-scale grating structures are widely researched in recent years. Although micro-scale fabrication technology is highly advanced today, with grating aspect ratio greater than 25:1 being achievable some fabrication requirements, such as fine groove processing, are still challenging. Comb-drive microactuator is proposed in this paper to be utilized on simple binary grating structures for tailoring or modulating spectral radiation properties by active adjustment. The rigorous coupled-wave analysis (RCWA) is used to calculate the absorptance of proposed structures and to investigate the impacts brought by the geometry and displacement of comb-drive microactuator. The results show that the utilization of comb-drive microactuator on grating improves the absorptance of simple binary grating while avoiding the difficulty fine groove processing. Spectral radiation property tailoring after gratings are fabricated becomes possible with the comb-drive microactuator structure. - Highlights: • A microscale grating structure with comb-driven microactuator is proposed. • The movement of microactuator changes peak absorptance resonance wavelength. • Geometric and displacement effects of comb finger on absorptance are investigated. • Both RCWA and LC circuit models are developed to predict the resonance wavelength. • Resonance frequency equations of LC circuits allow quick design analysis

  8. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  9. Holographic diffraction gratings as laser radiation protection filters

    International Nuclear Information System (INIS)

    Pantelic, D.; Pantelic, G.

    2006-01-01

    Holographic volume diffraction gratings are used as attenuation filters, due to their selective spectral transmission. They can be tailored to reflect or transmit narrow spectral ranges by adjusting spatial frequency of Bragg grating in carefully chosen photosensitive materials, like silver-halide emulsion or di-chromated gelatin layers. If properly recorded and chemically processed, resulting gratings can significantly attenuate light at wavelengths corresponding to various laser spectral lines. Thus, they can be used as filters in laser protection goggles. We analyze the characteristics of Bragg gratings necessary to obtain high attenuation coefficients. Also, their angular selectivity is taken into account and corresponding experimental conditions are investigated. Although di-chromated gelatin seems to be almost ideal material, due to its almost 100% diffraction efficiency, environmental stability is poor (degradation under humid environment), thus making its practical usage difficult. Thus, we have analyzed alternative materials like di-chromated pullulan, which is stable under normal environmental conditions (without drop in diffraction efficiency after prolonged exposure to humidity). Pullulan is polymer (polysaccharide) of biologic origin produced by certain bacteria. If doped with chromium ions it becomes photosensitive, enabling recording of diffraction gratings with spatial frequency of more than 3000 lines/mm. Material is chemically processed by mixture of isopropyl alcohol and water. Both thick and thin layers can be produced by gravity settling. Spectral properties of resulting gratings are analyzed, showing that they can significantly attenuate laser light of particular wavelength, depending of grating period and its slant angle. (authors)

  10. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  11. [Diffraction gratings used in x-ray spectroscopy]: Final report

    International Nuclear Information System (INIS)

    Smith, H.I.

    1988-01-01

    This subcontract was initiated in order to facilitate the development at MIT of technologies for fabricating the very fine diffraction grating required in x-ray spectroscopy at Lawrence Livermore Laboratory (LLL). These gratings are generally gold transmission gratings with spatial periods of 200 nm or less. The major focus of our efforts was to develop a means of fabricating gratings of 100 nm period. We explored two approaches: e-beam fabrication of x-ray lithography masks, and achromatic holographic lithography. This work was pursued by Erik Anderson as a major component of his Ph.D. thesis. Erik was successful in both the e-beam and holographic approaches. However, the e-beam method proved to be highly impractical: exposure times of about 115 days would be required to cover an area of 1 cm 2 . The achromatic holography, on the other hand, should be capable of exposing areas well in excess of 1 cm 2 in times under 1 hour. Moreover, 100 nm-period gratings produced by achromatic holography are coherent over their entire area whereas gratings produced by e-beam lithography are coherent only over areas /approximately/100 μm. The remainder of this report consists of portions excerpted from Erik Anderson's thesis. These contain all the details of our work on 100 nm period gratings. 26 refs., 17 figs

  12. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  13. Design of compressors for FEL pulses using deformable gratings

    Science.gov (United States)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  14. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  15. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  16. Aplanatic grazing incidence diffraction grating: a new optical element

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1986-01-01

    We present the theory of a grazing incidence reflection grating capable of imaging at submicron resolution. The optic is mechanically ruled on a spherical or cylindrical surface with varied groove spacings, delivering diffraction-limited response and a wide field of view at a selected wavelength. Geometrical aberrations are calculated on the basis of Fermat's principle, revealing significant improvements over a grazing incidence mirror. Aplanatic and quasi-aplanatic versions of the grating have applications in both imaging and scanning microscopes, microprobes, collimators, and telescopes. A 2-D crossed system of such gratings, similar to the grazing incidence mirror geometry of Kirkpatrick and Baez, could potentially provide spatial resolutions of --200 A

  17. Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.

    Science.gov (United States)

    Trimborn, Barbara; Meyer, Pascal; Kunka, Danays; Zuber, Marcus; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Baumbach, Tilo; Koenig, Thomas

    2016-01-21

    X-ray grating interferometry is one among various methods that allow extracting the so-called phase and visibility contrasts in addition to the well-known transmission images. Crucial to achieving a high image quality are the absorption gratings employed. Here, we present an in-depth analysis of how the grating type and lamella heights influence the final images. Benchmarking gratings of two different designs, we show that a frequently used proxy for image quality, a grating's so-called visibility, is insufficient to predict contrast-to-noise ratios (CNRs). Presenting scans from an excised rat lung, we demonstrate that the CNRs obtained for transmission and visibility images anti-correlate. This is explained by the stronger attenuation implied by gratings that are engineered to provide high visibilities by means of an increased lamella height. We show that even the visibility contrast can suffer from this effect when the associated reduced photon flux on the detector is not outweighed by a corresponding gain in visibility. Resulting in an inevitable trade-off between the quality of the two contrasts, the question of how an optimal grating should be designed can hence only be answered in terms of Pareto optimality.

  18. Pemodelan Tapis Fabry-perot pada Serat Optik dengan Menggunakan Fiber Bragg Grating

    OpenAIRE

    Pramuliawati, Septi; ', Saktioto; ', Defrianto

    2015-01-01

    Fabry-perot filter was successfully developed by a uniform Fiber Bragg Grating in fiber optic. A characterization of Bragg Grating was analyzed by using computational model with second-order of Transfer Matrix Method based on Coupled Mode Theory. The reflectivity, length of grating, and bandwidth were parametrics to determine the performance of single Bragg Grating. The transmission spectrum showed the longer grating is designed, the larger the reflectivity was produced, so that the transmiss...

  19. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  20. Grating geophone signal processing based on wavelet transform

    Science.gov (United States)

    Li, Shuqing; Zhang, Huan; Tao, Zhifei

    2008-12-01

    Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.

  1. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal; Jabbour, Ghassan E.

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  2. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  3. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  4. Distributed Bragg grating frequency control in metallic nano lasers

    NARCIS (Netherlands)

    Marell, M.J.H.; Hill, M.T.

    2010-01-01

    We show that Bragg gratings can be readily incorporated into metallic nano-lasers which exploit waveguides with semiconductor cores, via modulation of the waveguide width. This provides a simple way to implement laser wavelength control.

  5. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  6. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  7. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  8. Fabrication of the polarization independent spectral beam combining grating

    Science.gov (United States)

    Liu, Quan; Jin, Yunxia; Wu, Jianhong; Guo, Peiliang

    2016-03-01

    Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions to achieve high-power high-brightness fiber laser output. The spectral beam combining (SBC) is a promising method to achieve high average power output without influencing the beam quality. A polarization independent spectral beam combining grating is one of the key elements in the SBC. In this paper the diffraction efficiency of the grating is investigated by rigorous coupled-wave analysis (RCWA). The theoretical -1st order diffraction efficiency of the grating is more than 95% from 1010nm to 1080nm for both TE and TM polarizations. The fabrication tolerance is analyzed. The polarization independent spectral beam combining grating with the period of 1.04μm has been fabricated by holographic lithography - ion beam etching, which are within the fabrication tolerance.

  9. Reconfigurable terahertz grating with enhanced transmission of TE polarized light

    Directory of Open Access Journals (Sweden)

    J. W. He

    2017-07-01

    Full Text Available We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD. The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.

  10. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response.

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Mareš, D.; Lyutakov, O.; Koštejn, Martin; Lapčák, L.; Svorčík, V.

    2015-01-01

    Roč. 119, č. 17 (2015), s. 9506-9512 ISSN 1932-7447 Institutional support: RVO:67985858 Keywords : enhanced raman-scattering * metallic surface * relief gratings Subject RIV: CC - Organic Chemistry Impact factor: 4.509, year: 2015

  11. Recording multiple holographic gratings in silver-doped ...

    Indian Academy of Sciences (India)

    doped photopolymer film using peristrophic multiplexing techniques. Constant and variable exposure scheduling methods were adopted for storing gratings in the film using He–Ne laser (632.8 nm). The role of recording geometry on the dynamic ...

  12. The effect of aberrated recording beams on reflecting Bragg gratings

    Science.gov (United States)

    SeGall, Marc; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid B.

    2013-03-01

    The effect of aberrations present in the recording beams of a holographic setup is discussed regarding the period and spectral response of a reflecting volume Bragg grating. Imperfect recording beams result in spatially varying resonant wavelengths and the side lobes of the spectrum are washed out. Asymmetrical spectra, spectral broadening, and a reduction in peak diffraction efficiency may also be present, though these effects are less significant for gratings with wider spectral widths. Reflecting Bragg gratings (RBGs) are used as elements in a variety of applications including spectral beam combining1,2, mode locking3,4, longitudinal and transverse mode selection in lasers5,6, and sensing7,8. For applications requiring narrow spectral selectivity9, or large apertures10, these gratings must have a uniform period throughout the length of the recording medium, which may be on the order of millimeters. However, when using typical recording techniques such as two-beam interference for large aperture gratings and phase-mask recording of fiber gratings, aberrations from the optical elements in the system result in an imperfect grating structure11-13. In this paper we consider the effects of aberrations on large aperture gratings recorded in thick media using the two-beam interference technique. Previous works in analyzing the effects of aberrations have considered the effects of aberrations in a single recording plane where the beams perfectly overlap. Such an approach is valid for thin media (on the order of tens of microns), but for thick recording media (on the order of several millimeters) there will be a significant shift in the positions of the beams relative to each other as they traverse the recording medium. Therefore, the fringe pattern produced will not be constant throughout the grating if one or both beams have a non-uniform wavefront. Such non-uniform gratings may have a wider spectral width, a shifted resonant wavelength, or other problems. It is

  13. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  14. The potential of diffraction grating for spatial applications

    Science.gov (United States)

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  15. Dynamic theory of neutron diffraction from a moving grating

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, V. A., E-mail: vabushuev@yandex.ru [Moscow State University (Russian Federation); Frank, A. I.; Kulin, G. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-01-15

    A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.

  16. A phase mask fiber grating and sensing applications

    Directory of Open Access Journals (Sweden)

    Preecha P. Yupapin

    2003-09-01

    Full Text Available This paper presents an investigation of a fabricated fiber grating device characteristics and its applications, using a phase mask writing technique. The use of a most common UV phase laser (KrF eximer laser, with high intensity light source was focussed to the phase mask for writing on a fiber optic sample. The device (i.e. grating characteristic especially, in sensing application, was investigated. The possibility of using such device for temperature and strain sensors is discussed.

  17. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were compa...... mixing in the furnace is a key issue leading to these problems. q 2003 Elsevier Ltd. All rights reserved....

  18. Angle-specific transparent conducting electrodes with metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  19. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    International Nuclear Information System (INIS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-01-01

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI

  20. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldini, Mehdi [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft (Iran, Islamic Republic of); Jafri, Mohd Zubir Mat [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.

  1. Holographic grating relaxation technique for soft matter science

    Energy Technology Data Exchange (ETDEWEB)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation); Kiessling, Andy [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Current address: Illinois Institute of Technology, 10 West 33rd Street, Chicago,IL60616 (United States); Bartsch, Eckhard [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Veniaminov, Andrey, E-mail: veniaminov@phoi.ifmo.ru [ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation)

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making it possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.

  2. Time-domain Brillouin scattering assisted by diffraction gratings

    Science.gov (United States)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  3. An imaging grating diffractometer for traceable calibration of grating pitch in the range 20 μm to 350 nm

    International Nuclear Information System (INIS)

    Brasil, D A; Alves, J A P; Pekelsky, J R

    2015-01-01

    This work describes the development of a grating diffratometer to provide traceable calibration of grating pitch in range 20 μm to 350 nm. The approach is based on the Littrow configuration in which a laser beam is directed onto the grating which is mounted on a rotary table and can be turned so that each selected diffraction order is retro-reflected in the laser incidence direction. A beamsplitter and a lens direct the reflected diffraction order to form a small image spot on a CCD camera and the spot centering is used to adjust to rotation angle, thereby giving the diffraction angle. Knowing the diffraction angle for several orders and the wavelength of the laser, the average grating pitch can be determined to an uncertainty the order of 14 pm. (paper)

  4. Feasibility of Fiber Bragg Grating and Long-Period Fiber Grating Sensors under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2010-11-01

    Full Text Available This paper presents the feasibility of utilizing fiber Bragg grating (FBG and long-period fiber grating (LPFG sensors for nondestructive evaluation (NDE of infrastructures using Portland cement concretes and asphalt mixtures for temperature, strain, and liquid-level monitoring. The use of hybrid FBG and LPFG sensors is aimed at utilizing the advantages of two kinds of fiber grating to implement NDE for monitoring strains or displacements, temperatures, and water-levels of infrastructures such as bridges, pavements, or reservoirs for under different environmental conditions. Temperature fluctuation and stability tests were examined using FBG and LPFG sensors bonded on the surface of asphalt and concrete specimens. Random walk coefficient (RWC and bias stability (BS were used for the first time to indicate the stability performance of fiber grating sensors. The random walk coefficients of temperature variations between FBG (or LPFG sensor and a thermocouple were found in the range of −0.7499 °C/ to −1.3548 °C/. In addition, the bias stability for temperature variations, during the fluctuation and stability tests with FBG (or LPFG sensors were within the range of 0.01 °C/h with a 15–18 h time cluster to 0.09 °C/h with a 3–4 h time cluster. This shows that the performance of FBG or LPFG sensors is comparable with that of conventional high-resolution thermocouple sensors under rugged conditions. The strain measurement for infrastructure materials was conducted using a packaged FBG sensor bonded on the surface of an asphalt specimen under indirect tensile loading conditions. A finite element modeling (FEM was applied to compare experimental results of indirect tensile FBG strain measurements. For a comparative analysis between experiment and simulation, the FEM numerical results agreed with those from FBG strain measurements. The results of the liquid-level sensing tests show the LPFG-based sensor could discriminate five stationary liquid

  5. Multipoint sensor based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Mendez-Zepeda, O; Munoz-Aguirre, S; Beltran-Perez, G; Castillo-Mixcoatl, J

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  6. Fiber Bragg grating based arterial localization device

    Science.gov (United States)

    Ho, Siu Chun Michael; Li, Weijie; Razavi, Mehdi; Song, Gangbing

    2017-06-01

    A critical first step to many surgical procedures is locating and gaining access to a patients vascular system. Vascular access allows the deployment of other surgical instruments and also the monitoring of many physiological parameters. Current methods to locate blood vessels are predominantly based on the landmark technique coupled with ultrasound, fluoroscopy, or Doppler. However, even with experience and technological assistance, locating the required blood vessel is not always an easy task, especially with patients that present atypical anatomy or suffer from conditions such as weak pulsation or obesity that make vascular localization difficult. With recent advances in fiber optic sensors, there is an opportunity to develop a new tool that can make vascular localization safer and easier. In this work, the authors present a new fiber Bragg grating (FBG) based vascular access device that specializes in arterial localization. The device estimates the location towards a local artery based on the bending of a needle inserted near the tissue surrounding the artery. Experimental results obtained from an artificial circulatory loop and a mock artery show the device works best for lower angles of needle insertion and can provide an approximately 40° range of estimation towards the location of a pulsating source (e.g. an artery).

  7. A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability

    DEFF Research Database (Denmark)

    You, Rui; Barahona Garzón, Braulio; Chai, Jianyun

    2013-01-01

    This paper presents a novel type of variable speed wind turbine with a new drive train different from the variable speed wind turbine commonly used nowadays. In this concept, a synchronous generator is directly coupled with the grid, therefore, the wind turbine transient overload capability...... and the synchronous generator, so the synchronous generator torque oscillations during a grid fault are not transmitted to the gearbox. The EMCD is composed of an electromagnetic coupler and a one quadrant operation converter with reduced capability and low cost. A control strategy for the new wind turbine...

  8. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, Raymond, E-mail: RaymondSark@gmail.com; O' Brien, John [Electrophysics department, University of Southern California, Los Angeles, California 90089 (United States)

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  9. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler.

    Science.gov (United States)

    Xu, Dan; Yang, Fei; Chen, Dijun; Wei, Fang; Cai, Haiwen; Fang, Zujie; Qu, Ronghui

    2015-08-24

    A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

  10. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  11. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  12. LiNbO/sub 3/:Ti directional-coupler modulators for high-bandwidth, single-shot instrumentation systems operating at 800 nm

    International Nuclear Information System (INIS)

    Lowry, M.; Jander, D.; Lancaster, G.; Kwiat, P.; McWright, G.; Peterson, R.T.; Tindall, W.; Roeske, F.

    1987-01-01

    The authors update their work on optical directional-coupler modulators (ODCMs) for single-shot, analog instrumentation systems operating at -- 800 nm. They can now fabricate directional-coupler devices that have one input and two output pigtails with insertion losses of 8.9 dB on average. Data for the ODCMs indicate an impulse response of less than 40 ps. They have implemented these devices in an ultrafast, x-ray measurement system. They discuss our data from this implementation and their implications for continued ODCM development

  13. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper.

    Science.gov (United States)

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-11-17

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM(0) mode into the TE(1) mode, which will output as the TE(0) mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a silicon photonics technology.

  14. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.

    Science.gov (United States)

    Barmenkov, Yuri O; Zalvidea, Dobryna; Torres-Peiró, Salvador; Cruz, Jose L; Andrés, Miguel V

    2006-07-10

    In this paper, we describe the properties of Fabry-Perot fiber cavity formed by two fiber Bragg gratings in terms of the grating effective length. We show that the grating effective length is determined by the group delay of the grating, which depends on its diffraction efficiency and physical length. We present a simple analytical formula for calculation of the effective length of the uniform fiber Bragg grating and the frequency separation between consecutive resonances of a Fabry-Perot cavity. Experimental results on the cavity transmission spectra for different values of the gratings' reflectivity support the presented theory.

  15. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    Science.gov (United States)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  16. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit

    International Nuclear Information System (INIS)

    Forno, Massimo Dal; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-01-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations

  17. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit.

    Science.gov (United States)

    Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-11-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.

  18. Measurement system for diffraction efficiency of convex gratings

    Science.gov (United States)

    Liu, Peng; Chen, Xin-hua; Zhou, Jian-kang; Zhao, Zhi-cheng; Liu, Quan; Luo, Chao; Wang, Xiao-feng; Tang, Min-xue; Shen, Wei-min

    2017-08-01

    A measurement system for diffraction efficiency of convex gratings is designed. The measurement system mainly includes four components as a light source, a front system, a dispersing system that contains a convex grating, and a detector. Based on the definition and measuring principle of diffraction efficiency, the optical scheme of the measurement system is analyzed and the design result is given. Then, in order to validate the feasibility of the designed system, the measurement system is set up and the diffraction efficiency of a convex grating with the aperture of 35 mm, the curvature-radius of 72mm, the blazed angle of 6.4°, the grating period of 2.5μm and the working waveband of 400nm-900nm is tested. Based on GUM (Guide to the Expression of Uncertainty in Measurement), the uncertainties in the measuring results are evaluated. The measured diffraction efficiency data are compared to the theoretical ones, which are calculated based on the grating groove parameters got by an atomic force microscope and Rigorous Couple Wave Analysis, and the reliability of the measurement system is illustrated. Finally, the measurement performance of the system is analyzed and tested. The results show that, the testing accuracy, the testing stability and the testing repeatability are 2.5%, 0.085% and 3.5% , respectively.

  19. Grating-based tomography applications in biomedical engineering

    Science.gov (United States)

    Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert

    2017-10-01

    For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.

  20. Two-dimensional grating guided-mode resonance tunable filter.

    Science.gov (United States)

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  1. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  2. Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar

    mechanisms in polymer fibres using a CO2 laser. One is etching and the other one is perturbation of the microstructured region. After inscription of LPGs, the concept of a biocompatible distributed medical endoscope is presented, where an all-plastic LPG based device is produced. A transducer pod is made...... of applications and pushing the limits. The first part of the work focuses on the fabrication of FBGs in polymer optical fibres. FBGs are a periodic perturbation of the refractive index of the optical fibre core which act as a wavelength specific reflector. The fibres used are made of Polymethyl methacrylate....... In this system a high power CO2 laser is used for the inscription. An LPG is also a periodic perturbation of the guided core mode in fibre, but unlike FBG which reflects the core mode, the LPG couples the core mode to a cladding mode outside the core. We have shown that the LPG grating can be formed through two...

  3. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  4. The in-focus variable line spacing plane grating monochromator

    International Nuclear Information System (INIS)

    Reininger, R.

    2011-01-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  5. Model based control of grate combustion; Modellbaserad roststyrning

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Kjellstroem, Bjoern; Niklasson, Fredrik; Boecher Poulsen, Kristian

    2006-12-15

    An existing dynamic model for grate combustion has been further developed. The model has been used for studies of possible advantages that can be gained from utilisation of measurements of grate temperatures and fuel bed height for control of a boiler after disturbances caused by varying fuel moisture and fuel feeding. The objective was to asses the possibilities to develop a control system that would adjust for such disturbances quicker than measurements of steam output and oxygen in the exhaust. The model is based on dividing the fuel bed into three layers, where the different layers include fuel being dried, fuel being pyrolysed and char reacting with oxygen. The grate below the fuel bed is also considered. A mass balance, an energy balance and a volume balance is considered for each layer in 22 cells along the grate. The energy balances give the temperature distribution and the volume balances the bed height. The earlier version of the model could not handle layers that are consumed. This weakness has now been eliminated. Comparisons between predicted grate temperatures and measurements in a 25 MW boiler fuelled with biofuel have been used for validation of the model. The comparisons include effects of variations in primary air temperature, fuel moisture and output power. The model shows good agreement with observations for changes in the air temperature but the ability of the model to predict effects of changed fuel moisture is difficult to judge since the steam dome pressure control caused simultaneous changes of the primary air flow, which probably had a larger influence on the grate temperature. A linearised, tuned and reduced version of the model was used for design of a linear quadratic controller. This was used for studies of advantages of using measurements of grate temperatures and bed height for control of pusher velocity, grate speed, primary air flow and air temperature after disturbances of fuel moisture and fuel flow. Measurements of the grate

  6. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  7. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  8. Launching focused surface plasmon in circular metallic grating

    International Nuclear Information System (INIS)

    Kumar, Pawan; Tripathi, V. K.; Kumar, Ashok; Shao, X.

    2015-01-01

    The excitation of focused surface plasma wave (SPW) over a metal–vacuum interface embedded with circular surface grating is investigated theoretically. The normally impinged radiation imparts oscillatory velocity to free electrons that beats with the surface ripple to produce a nonlinear current, driving the SPW. As SPW propagates, it gets focused. The focused radiation has a maximum at the centre of grating and decreases beyond the centre due to diffraction. The amplitude of SPW is fixed for a given groove depth and increases rapidly around the resonance frequency. The intensity at the focus point depends on dimensions of the grating. It increases with the radiation frequency approaching the surface plasmon resonance. The scheme has potential applications for photonic devices and surface enhanced Raman scattering

  9. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  10. Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings

    Science.gov (United States)

    Szalai, A.; Szekeres, G.; Balázs, J.; Somogyi, A.; Csete, Maria

    2013-09-01

    Theoretical investigation of rotated grating coupling phenomenon was performed on a multilayer comprising 416-nmperiodic shallow rectangular polymer grating on bimetal film made of gold and silver layers. During the multilayer illumination by 532 nm wavelength p-polarized light the polar and azimuthal angles were varied. In presence of 0-35 nm, 0-50 nm and 15-50 nm thick polymer-layers at the valleys and hills splitting was observed on the dual-angle dependent reflectance in two regions: (i) close to 0° azimuthal angle corresponding to incidence plane parallel to the periodic pattern (P-orientation); and (ii) around ~33.5°/29°/30° azimuthal angle (C-orientation), in agreement with our previous experimental studies. The near-field study revealed that in P-orientation the E-field is enhanced at the glass side with p/2 periodicity at the first minimum appearing at 49°/50°/52° polar angles, and comprises maxima below both the valleys and hills; while E-field enhancement is observable both at the glass and polymer side with p-periodicity at the second minimum developing at 55°/63/64° tilting, comprising maxima intermittently below the valleys or above the hills. In Corientation coupled plasmonic modes are observable, involving modes propagating along the valleys at the secondary maxima appearing at ~35°/32°/32° azimuthal and ~49°/51°/56° polar angles, while modes confined along the polymer hills are observable at the primary minima, which are coupled most strongly at the ~31.5°/25°/28° azimuthal and ~55°/63°/66° polar angles. The secondary peak observable in C-orientation is proposed for biosensing applications, since the supported modes are confined along the valleys, where biomolecules prefer to attach.

  11. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  12. Laser-induced grating in ZnO

    DEFF Research Database (Denmark)

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  13. Recording polarization gratings with a standing spiral wave

    Science.gov (United States)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  14. Recording polarization gratings with a standing spiral wave

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Jonathan P.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way, Suite 1, Wright-Patterson Air Force Base, Ohio 45433 (United States); Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tabiryan, Nelson V., E-mail: nelson@beamco.com [BEAM Engineering for Advanced Measurements Company, 809 South Orlando Avenue, Suite I, Winter Park, Florida 32789 (United States)

    2013-11-11

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  15. Recording polarization gratings with a standing spiral wave

    International Nuclear Information System (INIS)

    Vernon, Jonathan P.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tabiryan, Nelson V.

    2013-01-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques

  16. Security System Responsive to Optical Fiber Having Bragg Grating

    Science.gov (United States)

    Gary, Charles K. (Inventor); Ozcan, Meric (Inventor)

    1997-01-01

    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel.

  17. Time-dependent Bragg diffraction by multilayer gratings

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2016-01-01

    Time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystals (André J-M and Jonnard P 2015 J. Opt. 17 085609) and also by extending the Takagi–Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry. (paper)

  18. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  19. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half......, Technical University of Denmark. During fabrication the planar waveguides were annealed in an oxygen rich atmosphere. This reduces the photosensitivity to a negligible level and Bragg gratings cannot be written within reasonable time unless the waveguides are sensitized by deuterium loading. Samples were...

  20. Miniaturized NIR scanning grating spectrometer for use in mobile phones

    Science.gov (United States)

    Knobbe, Jens; Pügner, Tino; Grüger, Heinrich

    2016-05-01

    An extremely miniaturized scanning grating spectrometer at the size of a sugar cube has been developed at Fraunhofer IPMS. To meet the requirements for the integration into a mobile phone a new system approach has been pursued. The key component within the system is a silicon-based deflectable diffraction grating with an integrated driving mechanism. A first sample of the new spectrometer was built and characterized. It was found to have a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The results show that the performance of the new MEMS spectrometer is in good agreement with the requirements for mobile phone integration.

  1. VCSELs and silicon light sources exploiting SOI grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2012-01-01

    In this talk, novel vertical-cavity laser structure consisting of a dielectric Bragg reflector, a III-V active region, and a high-index-contrast grating made in the Si layer of a silicon-on-insulator (SOI) wafer will be presented. In the Si light source version of this laser structure, the SOI...... the Bragg reflector. Numerical simulations show that both the silicon light source and the VCSEL exploiting SOI grating mirrors have superior performances, compared to existing silicon light sources and long wavelength VCSELs. These devices are highly adequate for chip-level optical interconnects as well...

  2. Color multiplexing using directional holographic gratings and linear polarization

    International Nuclear Information System (INIS)

    Lugo, L I; Rodriguez, A; Ramirez, G; Guel, S; Nunez, O F

    2011-01-01

    We propose a system of multiplexing and de-multiplexing, which uses a holographic diffraction grating to compel modulated light of different colors to be sent through an optical fiber. Diffraction gratings were fabricated specifically to pick the desired direction in which we wanted the light of different wavelengths to impinge the optic fiber, and also to be separated at the output. It was been found that the system preserves the polarization of light, which give us a one more freedom degree, allowing us to process twice the original information amount.

  3. Geometric effect on second harmonic generation from gold grating

    Science.gov (United States)

    Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin

    2018-05-01

    We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.

  4. Development of an optical resonator with high-efficient output coupler for the JAERI far-infrared free-electron laser

    International Nuclear Information System (INIS)

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Sawamura, Masaru; Kikuzawa, Nobuhiro; Shizuma, Toshiyuki; Minehara, Eisuke

    2001-01-01

    An optical resonator with a high-efficient output coupler was developed for the JAERI far-infrared free-electron laser. The optical resonator is symmetrical near-concentric geometry with an insertable scraper output coupler. As a result of the development of the optical resonator, the JAERI-FEL has been successfully, lased with averaged power over 1 kW. Performance of the optical resonator with the output coupler was evaluated at optical wavelength of 22 μm by using an optical mode calculation code. The output coupling and diffractive loss with a dominant eigen-mode of the resonator were calculated using an iterative computation called Fox-Li procedure. An efficiency factor of the optical resonator was introduced for the evaluation of the optical resonator performance. The efficiency factor was derived by the amount of the output coupling and diffractive loss of the optical resonator. It was found that the optical resonator with the insertable scraper coupler was the most suitable to a high-power and high-efficient far-infrared free-electron laser. (author)

  5. Design and length optimization of an adiabatic coupler for on-chip vertical integration of rare-earth-doped double tungstate waveguide amplifiers

    NARCIS (Netherlands)

    Mu, Jinfeng; Sefünç, Mustafa; García Blanco, Sonia Maria

    2014-01-01

    The integration of rare-earth doped double tungstate waveguide amplifiers onto passive technology platforms enables the on-chip amplification of very high bit rate signals. In this work, a methodology for the optimized design of vertical adiabatic couplers between a passive Si3N4 waveguide and the

  6. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bache, Morten

    2011-01-01

    We report on a detailed study of the inscription and characterization of fiber Bragg gratings (FBGs) in commercial step index polymer optical fibers (POFs). Through the growth dynamics of the gratings, we identify the effect of UV-induced heating during the grating inscription. We found that FBGs...

  7. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.

    2016-01-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing...

  8. Highly efficient blazed grating with multilayer coating for tender X-ray energies

    NARCIS (Netherlands)

    Senf, F.; Bijkerk, Frederik; Eggenstein, F.; Gwalt, G.; Huang, Qiushi; van de Kruijs, Robbert Wilhelmus Elisabeth; Kutz, O.; Lemke, S.; Louis, Eric; Mertin, M.; Packe, I.; Rudolph, I.; Schafers, F.; Siewert, F.; Sokolov, A.; Sturm, Jacobus Marinus; Waberski, C.; Wang, Z.; Wolf, J.; Zeschke, T.; Erko, A.

    2016-01-01

    For photon energies of 1 – 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer

  9. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    Science.gov (United States)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  10. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    Science.gov (United States)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  11. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. (Zukun)

    2001-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.

  12. Design of Miniaturized 10dB Wideband Branch Line Coupler Using Dual and T-Shape Transmission Lines

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2018-04-01

    Full Text Available This paper presents a design mechanism of miniaturized wideband branch line coupler (BLC with loose coupling of 10 dB. Dual transmission lines are used as a feed network which provides a size reduction of 32% with a fractional bandwidth (FBW of 60% for 10±0.5 dB coupling but return loss performance is found to be poor in the operating band. For further improvement of return loss performance as well as for size reduction of the BLC, a T- shape transmission lines are used instead of series quarter wavelength transmission lines, and hence the overall size reduction of around 44% with FBW of 50.4% is achieved. The return loss and isolation performance is found to be les than 15 dB in the entire operating band (2.5–4.1 GHz with respect to design frequency 3G Hz. The proposed BLC is analyzed, fabricated and tested.

  13. A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Yan, Wende

    2014-01-01

    Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.

  14. Design and numerical optimization of a mode multiplexer based on few-mode fiber couplers

    International Nuclear Information System (INIS)

    Xie, Yiwei; Fu, Songnian; Liu, Hai; Zhang, Hailiang; Tang, Ming; Liu, Deming; Shum, P

    2013-01-01

    Mode division multiplexing (MDM) transmission based on few-mode fibers (FMFs) appears to be an alternative solution for overcoming the capacity limit of single-mode fibers (SMFs). A FMF coupler-based mode division multiplexer/demultiplexer (MMUX/DeMMUX) is proposed and theoretically investigated after the fabricated FMF is characterized. MMUXs/DeMMUXs with a mode contrast ratio (MCR) of more than 20 dB can be obtained for two-mode multiplexing and three-mode multiplexing over a wavelength span of 60 and 10 nm, respectively. We numerically verify the proposed MMUX/DeMMUX which has the advantages of high MCR, easy fabrication and maintenance, and low wavelength dependence. (paper)

  15. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    Science.gov (United States)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  16. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  17. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsenyev

    2016-08-01

    Full Text Available We present a study of higher order mode (HOM damping in the first multicell superconducting radio-frequency (SRF cavity with a photonic band gap (PBG coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs. Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  18. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss

    Directory of Open Access Journals (Sweden)

    Jeff Chiles

    2017-11-01

    Full Text Available We propose and experimentally demonstrate a photonic routing architecture that can efficiently utilize the space of multi-plane (3D photonic integration. A wafer with three planes of amorphous silicon waveguides was fabricated and characterized, demonstrating < 3 × 1 0 − 4 dB loss per out-of-plane waveguide crossing, 0.05 ± 0.02 dB per interplane coupler, and microring resonators on three planes with a quality factors up to 8.2 × 1 0 4 . We also explore a phase velocity mapping strategy to mitigate the cross talk between co-propagating waveguides on different planes. These results expand the utility of 3D photonic integration for applications such as optical interconnects, neuromorphic computing and optical phased arrays.

  19. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  20. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  1. Rational solitons in deep nonlinear optical Bragg grating

    NARCIS (Netherlands)

    Alatas, H.; Iskandar, A.A.; Tjia, M.O.; Valkering, T.P.

    2006-01-01

    We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the

  2. Plasmonic Optical Fiber-Grating Immunosensing: A Review.

    Science.gov (United States)

    Guo, Tuan; González-Vila, Álvaro; Loyez, Médéric; Caucheteur, Christophe

    2017-11-26

    Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.

  3. Reflection-grating photorefractive self-pumped ring mirror

    Science.gov (United States)

    D'Iakov, V. A.; Korol'Kov, S. A.; Mamaev, A. V.; Shkunov, V. V.; Zozulia, A. A.

    1991-10-01

    A reflection-grating ring mirror using a photorefractive KNbO2 crystal with a response time of several milliseconds and a reflectivity of as much as 50 percent has been experimentally fabricated. A theoretical analysis of the geometry involved is made which provides only qualitative agreement with the experimental findings.

  4. First Results of ISO-SWS Grating Observations of Jupiter

    NARCIS (Netherlands)

    Encrenaz, Th.; de Graauw, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Jupiter has been recorded on April 12, 1996, between 2.75 and 14.5 mu m, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is 1500 and the sensitivity limit is better than 1 Jy. The corresponding S/N ratio is better

  5. A Manually Operated Cassava Grating Machine | Odigboh | Nigerian ...

    African Journals Online (AJOL)

    The design and development of a manually operated cassava grating machine prototype are presented. The prototype grater is shown to be easy to operate at 30 - 45 rpm to give a product whose quality is as good as that from motorized graters at a throughput of 125 - 185 kg/h. The prototype grater is a powerful alternative ...

  6. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Stampanoni-Panariello, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  7. Modeling, simulation, and design of SAW grating filters

    Science.gov (United States)

    Schwelb, Otto; Adler, E. L.; Slaboszewicz, J. K.

    1990-05-01

    A systematic procedure for modeling, simulating, and designing SAW (surface acoustic wave) grating filters, taking losses into account, is described. Grating structures and IDTs (interdigital transducers) coupling to SAWs are defined by cascadable transmission-matrix building blocks. Driving point and transfer characteristics (immittances) of complex architectures consisting of gratings, transducers, and coupling networks are obtained by chain-multiplying building-block matrices. This modular approach to resonator filter analysis and design combines the elements of lossy filter synthesis with the transmission-matrix description of SAW components. A multipole filter design procedure based on a lumped-element-model approximation of one-pole two-port resonator building blocks is given and the range of validity of this model examined. The software for simulating the performance of SAW grating devices based on this matrix approach is described, and its performance, when linked to the design procedure to form a CAD/CAA (computer-aided design and analysis) multiple-filter design package, is illustrated with a resonator filter design example.

  8. Topology-optimized broadband surface relief transmission grating

    DEFF Research Database (Denmark)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.

    2014-01-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane...

  9. Analysis of higher order harmonics with holographic reflection gratings

    Science.gov (United States)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  10. Polarization control method for UV writing of advanced bragg gratings

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...

  11. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  12. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  13. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  14. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...

  15. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  16. Polarization-Independent Wideband High-Index-Contrast Grating Mirror

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Park, Gyeong Cheol; Malureanu, Radu

    2015-01-01

    Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ∼192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show...

  17. Design and development of long-period grating sensors for ...

    Indian Academy of Sciences (India)

    Raja Ramanna Centre for Advanced Technology, Indore 450 213. ∗ e-mail: ... Home built CO2 laser (Max power 20 Watt) is focused onto .... Claus R O 1997 Temperature-insensitive and strain insensitive long-period grating sensors for smart.

  18. Holographic construction of open structure, dispersion transmission gratings

    NARCIS (Netherlands)

    Dijkstra, J.H.; Lantwaard, L.J.

    1975-01-01

    A method of fabricating free-standing transmission gratings with line densities of the order of 1000 /nm is described. The technique involves a combination of two well-known procedures: application of photoresist and electroplating for the production of fine metal grids, and holographic

  19. Bragg gratings in air-silica structured fibers

    NARCIS (Netherlands)

    Groothoff, N.; Canning, J.; Buckley, E.; Lyttikainen, K.; Zagari, J.

    2003-01-01

    We report on grating writing in air-silica structured optical fibers with pure silica cores by use of two-photon absorption at 193 nm. A decrease in propagation loss with irradiation was observed. The characteristic growth curves were obtained. © 2003 Optical Society of America.

  20. Programmed Control of Optical Grating Scales for Visual Research.

    Science.gov (United States)

    1980-12-01

    A -AOO .9 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 14/2 PROGRAMMED CONTROL OF OPTI CAL GRATING SCALES FOR VISUAL RESEARC --ETC(fl...custom system for AMRL. The cost in memory parts alone was $40,000, a good indication that the market is not over-priced. Ca-? western Reserve