WorldWideScience

Sample records for foams porous microstructure

  1. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  2. 3D Microstructure Modeling of Porous Metal Filters

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Vladimír; Čapek, M.

    2012-01-01

    Roč. 2, č. 3 (2012), s. 344-352 ISSN 2075-4701. [International Conference on Porous Metals and Metallic Foams /7./. Busan, 18.09.2011-21.09.2011] R&D Projects: GA ČR(CZ) GAP204/11/1206; GA ČR GA203/09/1353 Institutional support: RVO:67985858 Keywords : porous metal filter * stochastic reconstruction * microstructural descriptors Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Foams in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  4. Preparation and Characteristics of Porous Ceramics by a foaming Technology at Low Temperature

    Science.gov (United States)

    Zhang, H. Q.; Wang, S. P.; Wen, J.; Wu, N.; Xu, S. H.

    2017-12-01

    Recycling and converting coal gangue and red mud into porous ceramics with good performance is a feasible disposal route. In this present work, porous foam ceramics was prepared using coal gangue and red mud as main raw materials at low sintering temperature, The amount of coal gangue and red mud were up to 70 wt%. To regulate the forming and sintering performance of the product, quartz sands and clay material were added to the formula. The green body was formed by a foaming technology using aluminum powders as foaming agents at room temperature. After foamed, the specimens were dried at 60-80 °C, and then calcined at 1060°C. Effects of concentration of NaOH and amount of aluminum powders on the phase, mechanical properties and microstructure were investigated here. Such study is expected to provide a new utilization route of the coal gangue and red mud, and brings both intensive environmental and economic benefits.

  5. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid

    Science.gov (United States)

    Annur, Dhyah; Erryani, Aprilia; Lestari, Franciska P.; Nyoman Putrayasa, I.; Gede, P. A.; Kartika, Ika

    2017-03-01

    Magnesium alloys had been considered as promising biomedical devices due to their biocompatibility and biodegradability. In this present work, microstructure and corrosion properties of Mg-Zn-Ca-CaCO3 porous magnesium alloy were examined. Porous metals were fabricated through powder metallurgy process with CaCO3 addition as a foaming agent. CaCO3 content was varied (1, 5, and 10%wt) followed by sintering process in 650 °C in Argon atmosphere for 10 and 15 h. The microstructure of the resulted alloys was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry data (EDS). Further, to examine corrosion properties, electrochemical test were conducted using G750 Gamry Instrument in accordance with ASTM standard G5-94 in simulated body fluid (Hank’s solution). As it was predicted, increasing content of foaming agent was in line with the increasing of pore formation. The electrochemical testing indicated corrosion rate would increase along with the increasing of foaming agent. The porous Mg-Zn-Ca alloy which has more porosity and connecting area will corrode much faster because it can transport the solution containing chloride ion which accelerated the chemical reaction. Highest corrosion resistance was given by Mg-Zn-Ca-1CaCO3-10 h sintering with potential corrosion of  -1.59 VSCE and corrosion rate of 1.01 mmpy. From the microstructure after electrochemical testing, it was revealed that volcano shaped structure and crack would occur after exposure to Hank’s solution

  7. Experimental study on microstructure characters of foamed lightweight soil

    Science.gov (United States)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  8. Microstructure of high-strength foam concrete

    International Nuclear Information System (INIS)

    Just, A.; Middendorf, B.

    2009-01-01

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  9. Ceramic foams porous microstructure characterization by X-ray microtomography

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Appoloni

    2004-12-01

    Full Text Available Knowledge of the porous structure of amorphous materials is of fundamental importance in calculating geometrical parameters such as total porosity, pore size distribution and physical parameters relating to fluid flow inside void space. The present work deals with the measurement of the microstructural parameters of porous ceramic filters. Microtomographic measurements of samples were taken using an X-ray tube. Bremsstrahlung radiation was filtered in transmission mode with a Sn filter at 58.5 and 28.3 keV and the images analyzed in two ways. The first method consisted in analyzing transepts of the images in order to calculate total porosity based on the average particle size and media linear attenuation coefficients. The second method involved a study of the images using an image analysis software, called Imago, which allows one to calculate total porosity and pore size distribution. The total measured porosity of the filter C90 was 73.8%, 71.1%, 74.4% and 71.5% by, respectively, the Arquimedes method, simple gamma ray transmission, transept analysis and analysis of the microtomographic images at 28.3 keV.

  10. Dynamics of foam flow in porous media in the presence of oil

    Science.gov (United States)

    Shokri, N.; Osei-Bonsu, K.

    2016-12-01

    Foams demonstrate great potential for fluid displacement in porous media which is important in a number of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is down to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media [1-4]. To investigate the fundamental aspects of foam flow in porous media, we have conducted a systematic series of experiment using a well-characterised porous medium manufactured by a high resolution 3D printer. This enabled us to design and control the properties of porous media with high accuracy. The model porous medium was initially saturated with oil. Then the pre-generated foam was injected into the model at well-defined injection rates to displace oil. The dynamics of foam-oil displacement in porous media was recorded using a digital camera controlled by a computer [5]. The recorded images were analysed in MATLAB to determine the dynamics of foam-oil displacement under different boundary conditions. Effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to the heavy oil. Furthermore, higher foam quality appears to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil patterns formed during displacement revealed formation of a more stable front in the case of lower foam quality which affected the oil recovery efficiency. This study extends the physical understanding of governing mechanisms controlling oil displacement by foam in porous media. Grassia, P., E. Mas-Hernandez, N. Shokri, S.J. Cox, G. Mishuris, W.R. Rossen (2014), J. Fluid Mech., 751, 346-405. Grassia, P., C. Torres-Ulloa, S. Berres, E. Mas-Hernandez, N. Shokri (2016), European Physical Journal E, 39 (4), 42. Mas

  11. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  12. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  13. Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Giannitelli, S.M. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Basoli, F. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Rome (Italy); Mozetic, P. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Piva, P.; Bartuli, F.N.; Luciani, F. [University of Rome “Tor Vergata”, Rome (Italy); Arcuri, C. [Department of Periodontics, University of Rome “Tor Vergata”, Rome (Italy); U.O.C.C. Odontostomatology, “S. Giovanni Calibita, Fatebenefratelli” Hospital, Rome (Italy); Trombetta, M. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Rainer, A., E-mail: a.rainer@unicampus.it [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Licoccia, S. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Rome (Italy)

    2015-06-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material—characterized by a dense shell and a porous core—for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. - Highlights: • Graded porous polyurethane foams were synthesized via a one-pot foaming reaction. • The inner porous core might act as a scaffold for guided bone regeneration. • A dense outer shell was introduced to act as a barrier to gingival tissue ingrowth. • The synthesized foams were non-toxic and supportive of hBMSC adhesion.

  14. Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration

    International Nuclear Information System (INIS)

    Giannitelli, S.M.; Basoli, F.; Mozetic, P.; Piva, P.; Bartuli, F.N.; Luciani, F.; Arcuri, C.; Trombetta, M.; Rainer, A.; Licoccia, S.

    2015-01-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material—characterized by a dense shell and a porous core—for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. - Highlights: • Graded porous polyurethane foams were synthesized via a one-pot foaming reaction. • The inner porous core might act as a scaffold for guided bone regeneration. • A dense outer shell was introduced to act as a barrier to gingival tissue ingrowth. • The synthesized foams were non-toxic and supportive of hBMSC adhesion

  15. Foam flow in a model porous medium: I. The effect of foam coarsening.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will cause foam lamellae to move to low energy configurations in the pore throats, resulting in greater capillary resistance when restarting flow. Foam coarsening experiments were conducted in both a model-porous-media micromodel and in a sandstone core. In both cases, foam was generated by coinjecting surfactant solution and nitrogen. Once steady state flow had been achieved, the injection was stopped and the system sealed off. In the micromodel, the foam coarsening was recorded using time-lapse photography. In the core flood, the additional driving pressure required to reinitiate flow after coarsening was measured. In the micromodel the bubbles coarsened rapidly to the pore size. At the completion of coarsening the lamellae were located in minimum energy configurations in the pore throats. The wall effect meant that the coarsening did not conform to the unconstricted growth laws. The coreflood tests also showed coarsening to be a rapid process. The additional driving pressure to restart flow reached a maximum after just 2 minutes.

  16. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media

    NARCIS (Netherlands)

    Kahrobaei, S.S.; Vincent-Bonnieu, S.Y.F.; Farajzadeh, R.

    2017-01-01

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant,

  17. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media

    OpenAIRE

    Kahrobaei, S.; Vincent-Bonnieu, S.; Farajzadeh, R.

    2017-01-01

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at...

  18. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  19. The foam drainage equation for drainage dynamics in unsaturated porous media

    Science.gov (United States)

    Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.

    2017-07-01

    Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  20. Effect of Foam on Liquid Phase Mobility in Porous Media

    NARCIS (Netherlands)

    Eftekhari, A.A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by

  1. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries

    International Nuclear Information System (INIS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2017-01-01

    Highlights: • 3D transient thermal analysis of a pouch Li-ion cell has been carried out. • Using pin fin heat sink improves the temperature reduction at low pumping powers. • Using pin fin heat sink enhances the temperature uniformity at low air flow rates. • Porous aluminum foam insertion with pin fins improves temperature reduction. • Porous aluminum foam insertion with pin fins enhances temperature uniformity. - Abstract: Three-dimensional transient thermal analysis of an air-cooled module was carried out to investigate cumulative effects of using pin fin heat sink and porous metal foam on thermal management of a Li-ion (lithium-ion) battery pack. Five different cases were designed as Case 1: flow channel without any pin fin or porous metal foam insertion, Case 2: flow channel with aluminum pin fins, Case 3: flow channel with porous aluminum foam pin fins, Case 4: fully inserted flow channel with porous aluminum foam, and Case 5: fully inserted flow channel with porous aluminum foam and aluminum pin fins. The effects of porous aluminum insertions, pin fin types, air flow inlet temperature, and air flow inlet velocity on the temperature uniformity and maximum temperature inside the battery pack were systematically investigated. The results showed that using pin fin heat sink (Case 2) is appropriate only for low air flow velocities. In addition, the use of porous aluminum pin fins or embedding porous aluminum foam inside the air flow channel (Cases 3 and 4) are not beneficial for thermal management improvement. The combination of aluminum pin fins and porous aluminum foam insertion inside the air flow channel (Case 5) is a proper option that improves both temperature reduction and temperature uniformity inside the battery cell.

  2. Lighting emitting microstructures in porous silicon

    International Nuclear Information System (INIS)

    Squire, E.

    1999-01-01

    Experimental and theoretical techniques are used to examine microstructuring effects on the optical properties of single layer, multilayer, single and multiple microcavity structures fabricated from porous silicon. Two important issues regarding the effects of the periodic structuring of this material are discussed. Firstly, the precise role played by this microstructuring, given that the luminescence is distributed throughout the entire structure and the low porosity layers are highly absorbing at short wavelengths. The second issue examined concerns the observed effects on the optical spectra of the samples owing to the emission bandwidth of the material being greater than the optical stopband of the structure. Measurements of the reflectivity and photoluminescence spectra of different porous silicon microstructures are presented and discussed. The results are modelled using a transfer matrix technique. The matrix method has been modified to calculate the optical spectra of porous silicon specifically by accounting for the effects of dispersion, absorption and emission within the material. Layer thickness and porosity gradients have also been included in the model. The dielectric function of the two component layers (i.e. silicon and air) is calculated using the Looyenga formula. This approach can be adapted to suit other porous semiconductors if required. Examination of the experimental results have shown that the emitted light is strongly controlled by the optical modes of the structures. Furthermore, the data display an interplay of a wide variety of effects dependent upon the structural composition. Comparisons made between the experimental and calculated reflectivity and photoluminescence spectra of many different porous silicon microstructures show very good agreement. (author)

  3. Effect of Foam on Liquid Phase Mobility in Porous Media

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied...... by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative...

  4. Effect of gas type on foam film permeability and its implications for foam flow in porous media.

    Science.gov (United States)

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R

    2011-10-14

    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading

  5. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    Science.gov (United States)

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  6. A novel gel combustion procedure for the preparation of foam and porous pellets of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R.; Maji, Dasarath [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, Tamil Nadu (India)

    2017-01-15

    In this study, it has been demonstrated for the first time how sucrose gel-combustion could be used for the preparation of UO{sub 2} foam. Further the citrate gel-combustion was gainfully used for preparing porous pellets of UO{sub 2}. The utility of two-step sintering (1073 K for 30 min and 1473 K for 4 h) for obtaining these porous bodies was demonstrated for the first time. The foams and pellets possessed meso and macro pores. A starting mixture with sucrose to nitrate ratio of 2.4 was found to yield urania foam with adequate crush strength. The porous pellets were found to possess better handling strength, lesser carbon residue and higher overall density than the foam. A citric acid to nitrate ratio 0.25 in the starting mixture, 180 MPa compaction pressure were optimal for obtaining a pellet with 40% porosity. - Highlights: • Urania foam was successfully prepared for the first time by using sucrose-gel precursor method. • Porous urania pellets were successfully prepared for the first time by using citrate gel-combustion method. • The foam comprised both meso and macro pores, possessed good crush strength and porosity. • Citric acid to nitrate ratio of 0.25 and a compaction pressure of 180 MPa were best suited for the preparation of porous pellets.

  7. Porous materials based on foaming solutions obtained from industrial waste

    Science.gov (United States)

    Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.

    2018-03-01

    This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.

  8. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.

    Science.gov (United States)

    Xiao, Siyang; Zeng, Yongchao; Vavra, Eric D; He, Peng; Puerto, Maura; Hirasaki, George J; Biswal, Sibani L

    2018-01-23

    Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil. In the displacement front zone, foam coalesces upon initial contact with crude oil, which is known to destabilize the liquid lamellae of the foam. Directly upstream, a transition zone occurs where surface wettability is altered from oil-wet to water-wet. After this transition takes place, a strong foam bank zone exists where foam is generated within the porous media. We visualized each zone using a microfluidic platform, and we discuss the unique physicochemical phenomena that define each zone. In our analysis, we also provide an updated mechanistic understanding of the "smart rheology" of foam which builds upon simple "phase separation" observations in the literature.

  9. Computed tomographic analyses of water distribution in three porous foam media

    International Nuclear Information System (INIS)

    Brown, J.M.; Fonteno, W.C.; Cassel, D.K.; Johnson, G.A.

    1987-01-01

    The purpose of this paper is to review some of the details of CAT scanning that are of importance to the application of CAT scanning porous media and to evaluate the use of the CAT scanner to measure the spatial distribution of water in three different porous media. The scanner's response to changes in the spatial distribution of water in three different porous phenolic foam materials after draining for 16 h was investigated. Water content distributions were successfully detected with good resolution on the x-ray image. Comparisons of CAT vs. gravimetrically determined water content indicated a significant linear relationship between the methods. Results from these experiments indicate that the CAT scanner can nondestructively measure volume wetness in the phenolic foam media. The clarity of the CAT images suggests that CAT scanning has great potential for studies where small and rapid changes in water content within small volumes of media are desired

  10. Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support

    International Nuclear Information System (INIS)

    Jung, Eunjin; Lee, Yoon Joo; Won, Ji Yeon; Kim, Younghee; Kim, Soo Ryong; Shin, Dong-Geun; Kwon, Woo Teck; Lee, Hyun Jae

    2015-01-01

    ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at 150 .deg. C using TEOS, Al(NO 3 )•9H 2 O and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed 1-3 μm sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about 10Å size drastically enhanced and surface area increased from 0.83 m 2 /g to 30.75 m 2 /g after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.

  11. Effect of zirconium addition on the microstructure and performance of carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Li Wanqian [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zhang Hongbo, E-mail: wanqian20089@126.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiong Xiang; Xiao Feng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2010-05-15

    A novel carbon foam was prepared from mixtures of mesophase pitch and dopant (zirconium), followed by foaming, carbonization and graphitization. The influence of Zr on the microstructure and properties of these foams was analyzed. Results have shown that Zr can promote the graphitization degree of carbon foams, which lead to an increase of thermal conductivity. The high bulk thermal conductivity of 63 W/m K was achieved with an addition of 3 wt% at heat treatment temperature of 2573 K. The d{sub 002} spacings of graphitic foams are found to decrease with the increase of dopant concentration in the pitch. SEM analysis also showed micro-cracks at the ligament of the doped graphitic foam, which might be responsible for the decrease of the compressive strength.

  12. Influencing Factors for the Microstructure and Mechanical Properties of Micro Porous Titanium Manufactured by Metal Injection Molding

    Directory of Open Access Journals (Sweden)

    Zhen Lu

    2016-04-01

    Full Text Available Porous titanium is a new structural and functional material. It is widely used in many fields since it integrates the properties of biomaterials with those of metallic foam. A new technology that combines both the preparation and forming of porous materials has been proposed in this paper. Moreover, a new solder was developed that could be employed in the joining of porous materials. Influencing factors for microstructure and mechanical properties of the parent material and joint interface are identified. Metal injection molding (MIM technology was used for fabricating porous materials. The feedstock for injection molding of porous titanium powders was prepared from titanium powders and a polymer-based binder system. In addition, the proportion of powder loading and binders was optimized. Through MIM technology, a porous titanium filter cartridge was prepared. For the purpose of investigating the thermal debinding technology of the filter cartridge, effects of the sintering temperature on the porosity, morphology of micropores and mechanical properties were analyzed. It could be found that when the sintering temperature increased, the relative density, bending and compression strength of the components also increased. Moreover, the porosity reached 32.28% when the sintering temperature was 1000 °C. The microstructure morphology indicated that micropores connected with each other. Meanwhile, the strength of the components was relatively high, i.e., the bending and compression strength was 65 and 60 MPa, respectively. By investigating the joining technology of porous filter cartridges, the ideal components of the solder and pressure were determined. Further research revealed that the micropore structure of the joint interface is the same as that of the parent material, and that the bending strength of the joint interface is 40 MPa.

  13. PuMA: the Porous Microstructure Analysis software

    Science.gov (United States)

    Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.

    2018-01-01

    The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.

  14. Preparation of three-dimensional porous Cu film supported on Cu foam and its electrocatalytic performance for hydrazine electrooxidation in alkaline medium

    International Nuclear Information System (INIS)

    Liu, Ran; Ye, Ke; Gao, Yinyi; Long, Ziyao; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2016-01-01

    Highlights: • A binder-free Cu/Cu foam electrode is prepared by an electrochemical method. • The electrode owns a novel three-dimensional porous structure. • The electrode exhibits superior catalytic activity for hydrazine electrooxidation. - Abstract: A three-dimensional porous copper film is directly deposited on Cu foam by an electrodeposition method using hydrogen bubbles as dynamic template (denoted as Cu/Cu foam). Its electrocatalytic activity toward hydrazine electrooxidation is tested by linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Compared with Cu foam, hydrazine electrooxidation on the Cu/Cu foam electrode shows that the onset oxidation potential displays a ~100 mV negative shift, the current density at −0.6 V raises about 14 times, the apparent activation energy and the charge transfer resistance reduce significantly. The increasing electrocatalytic performance for hydrazine electrooxidation is mainly caused by the highly porous structure of the Cu/Cu foam electrode which can provide a large surface area and make electrolyte access the electrocatalyst surfaces more easily. Hydrazine electrooxidation on the Cu/Cu foam electrode proceeds through a near 4-electron process.

  15. In Situ Foaming of Porous (La 0.6 Sr 0.4 ) 0.98 (Co 0.2 Fe 0.8 ) O 3-δ (LSCF) Cathodes for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gandavarapu, Sodith [US DOE-National Energy Technology Laboratory, 3610 Collins Ferry Road P.O.Box.880 Morgantown West Virginia 26507; Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown West Virginia 26506; Sabolsky, Edward [US DOE-National Energy Technology Laboratory, 3610 Collins Ferry Road P.O.Box.880 Morgantown West Virginia 26507; Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown West Virginia 26506; Sabolsky, Katarzyna [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown West Virginia 26506; Gerdes, Kirk [US DOE-National Energy Technology Laboratory, 3610 Collins Ferry Road P.O.Box.880 Morgantown West Virginia 26507

    2013-07-18

    A binder system containing polyurethane precursors was used to in situ foam (direct foam) a (La{sub 0.6}Sr{sub 0.4}){sub 0.98} (Co{sub 0.2} Fe{sub 0.8}) O{sub 3-{ delta}} (LSCF) composition for solid oxide fuel cell (SOFC) cathode applications. The relation between in situ foaming parameters on the final microstructure and electrochemical properties was characterized by microscopy and electrochemical impedance spectroscopy (EIS), respectively. The optimal porous cathode architecture was formed with a 70 vol% solids loading within a polymer precursor composition with a volume ratio of 8:4:1 (isocyanate: PEG: surfactant) in a terpineol-based ink vehicle. The resultant microstructure displayed a broad pore size distribution with highly elongated pore structure.

  16. Study on the properties of porous magnetorheological elastomers under shock effect

    International Nuclear Information System (INIS)

    Ju, B X; Yu, M; Fu, J; Zheng, X; Yang, Q

    2013-01-01

    As a safe protector, buffer has been widely applied to engineering applications. The properties of cushion materials play a key role in the performance of the buffer under shock loading. Magnetorheological elastomers (MRE) are a kind of novel smart materials and show to have a controllable, field-dependent modulus, which have attracted increasing attentions and broad application prospects. This paper aims to fabricate a new kind of MRE, named as porous MRE, and study on the properties of porous MRE under shock effect in the presence of an external magnetic field. Three kinds of MRE samples based on polyurethane matrix were prepared without external magnetic field, and ammonium bicarbonate was used as foaming agent with content of 0 wt.%, 0.26 wt.%, 0.67 wt.%, respectively. The microstructures of the sample were observed by using a digital microscope, and image processing and analysis was applied to calculate the parameters of porous MRE. A sleeve structure and mass block were used to test the shock performance of porous MRE under shear mode, and an electromagnetic vibration and shock table was used to provide shock signal with half-sine shock signal. The results show that the content of foaming agent has an obvious influence on the microstructures of porous MRE. The porosity of the porous MRE samples increases with increasing of foaming agent content. Moreover, experimental results show that shock energy dissipation capacity is better than that of traditional MRE. This study is expected to provide guidance in the application of MRE in practical devices, such as in buffer devices.

  17. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    Science.gov (United States)

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leilei, E-mail: zhangleilei1121@aliyun.com; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  19. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    International Nuclear Information System (INIS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-01-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  20. Shrinkage deformation of cement foam concrete

    Science.gov (United States)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  1. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  2. Study on Microstructures and Mechanical Properties of Foam Titanium Carbide Ceramics Fabricated by Reaction Sintering Process

    Science.gov (United States)

    Ma, Yana; Bao, Chonggao; Chen, Jie; Song, Suocheng; Han, Longhao

    2018-05-01

    Foam titanium carbide (TiC) ceramics with a three-dimensional network structure were fabricated by the reaction sintering process, in which polyurethane foam was taken as the template, and TiO2 and phenolic resin were used as the reactants. Phase, microstructures and fracture morphologies of foam TiC ceramics were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that when the mass ratios of phenolic resin and TiO2 (F/T) are (0.8-1.2): 1, foam TiC ceramics with pure TiC phase can be formed. As the F/T ratios increase, crystal lattice parameters of fabricated foam TiC ceramics become bigger. When the value of F/T decreases from 1.2 to 0.8, grain size of TiC grows larger and microstructures get denser; meanwhile, the compressive strength increases from 0.10 to 1.05 MPa. Additionally, either raising the sintering temperatures or extending holding time can facilitate the completion of the reaction process and increase the compressive strength.

  3. Influence of Porous Aggregate on the Properties of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Namsone Elvija

    2016-12-01

    Full Text Available Nowadays energy-efficient use of building resources is getting more and more popular. Technological developments have promoted production of new building materials with improved physical, mechanical and thermal properties. Foamed concrete with porous aggregate can serve as an alternative material for the existing lightweight concrete materials. This building material shows good mechanical and thermal properties, as well as capillary absorption and shrinkage test results that attest the longevity of this building material.

  4. Microstructural changes in porous hematite nanoparticles upon calcination

    DEFF Research Database (Denmark)

    Johnsen, Rune; Knudsen, Kenneth D.; Molenbroek, Alfons M.

    2011-01-01

    This combined study using small-angle neutron scattering (SANS), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM) and adsorption isotherm techniques demonstrates radical changes in the microstructure of porous hematite (-Fe2O3) nanoparticles upon calcination in air. TEM....... The change in microstructure also causes a reduction in the surface area as calculated by gaseous adsorption. The XRPD and SANS data show that the crystallite and SANS particle sizes are virtually unchanged by calcination at 623 K. Calcination at 973 K induces a significant alteration of the sample. The XRPD...... data reveal that the crystallite size increases significantly, and the SANS and adsorption isotherm studies suggest that the specific surface area decreases by a factor of 5–6. The TEM images show that the particles are sintered into larger agglomerates, but they also show that parts of the porous...

  5. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass

    International Nuclear Information System (INIS)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P.

    2012-01-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , MnO 2 , Na 2 O, K 2 O, TiO 2 and P 2 O 5 ). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  6. The influence of supercritical foaming conditions on properties of polymer scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Kosowska Katarzyna

    2017-12-01

    Full Text Available The results of experimental investigations into foaming process of poly(ε-caprolactone using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa, temperature (323-373 K and time of saturation (1-6 h on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM, x-ray microtomography (μ-CT and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.

  7. Biological Effect of Gas Plasma Treatment on CO2 Gas Foaming/Salt Leaching Fabricated Porous Polycaprolactone Scaffolds in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tae-Yeong Bak

    2014-01-01

    Full Text Available Porous polycaprolactone (PCL scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering.

  8. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  9. Computational homogenization of sound propagation in a deformable porous material including microscopic viscous-thermal effects

    NARCIS (Netherlands)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2016-01-01

    Porous materials like acoustic foams can be used for acoustic shielding, which is important for high-tech systems and human comfort. In this paper, a homogenization model is proposed to investigate the relation between the microstructure and the resulting macroscopic acoustic properties. The

  10. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    Science.gov (United States)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  11. The effect of urea on microstructures of Ni{sub 3}S{sub 2} on nickel foam and its hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-11-15

    The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.

  12. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  13. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H{sub 2}O{sub 2} as foaming agents

    Energy Technology Data Exchange (ETDEWEB)

    Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.

    2016-03-15

    Recent innovations in geopolymer technology have led to the development of various different types of geopolymeric products, including highly porous geopolymer-based foams, which are formed by the addition of foaming agents to a geopolymer fly-ash based matrix. These agents decompose, or react with the liquid matrix or oxygen in the matrix, resulting in the release of gases which form pores prior to the hardening of the gel. The hardened structure has good mechanical and thermal properties, and can therefore be used for applications in acoustic panels and in lightweight pre-fabricated components for thermal insulation purposes. This study presents the results of the pore-forming process in the case when two different foaming agents, i.e. aluminium powder amounting to 0.07, 0.13 and 0.20 mass. % and H{sub 2}O{sub 2} amounting to 0.5, 1.0, 1.5 and 2.0 mass. %, were added to a fly-ash geopolymer matrix. The physical, mechanical, and microstructural properties of the thus obtained foams, and the effects of the type and amount of the added foaming agent, are presented and discussed. Highly porous structures were obtained in the case of both of the investigated foaming agents, with overall porosities up to 59% when aluminium powder was added, and of up 48% when H{sub 2}O{sub 2} was added. In the latter case, when 2% of the H{sub 2}O{sub 2} foaming agent was added, finer pores (with diameters up to 500 μm) occurred in the structure, whereas somewhat larger pores (some had diameters greater than 1 mm) occurred when the same amount of aluminium powder was added. The mechanical properties of the investigated foams depended on their porosity. In the case of highly porous structures a compressive strength of 3.3 MPa was nevertheless achieved for the samples containing 0.2% of aluminium powder, and 3.7 MPa for those containing 2.0% of H{sub 2}O{sub 2}. - Highlights: • Preparation of geopolymer foams based on fly ash with the addition of Al powder or H{sub 2}O{sub 2} as

  14. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  15. Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends

    International Nuclear Information System (INIS)

    Zhou Changchun; Li Wei; Ma Liang; Yao Donggang

    2011-01-01

    In scaffold-based tissue engineering, the fabrication process is important for producing suitable microstructures for seeded cells to grow and reformulate. In this paper, we present a new approach to scaffold fabrication by combining the solid-state foaming and the immiscible polymer-blending method. The proposed approach has the advantage of being versatile and able to create a wide range of pore size and porosity. The proposed method is studied with polylactic acid (PLA) and polystyrene (PS) blends. The interconnected porous structure was created by first foaming the PLA/PS blend and then extracting the PS phase. The solid-state foaming experiments were conducted under various conditions to achieve the desired pore sizes. It is shown that the PS phase of the PLA/PS blend can be extracted much faster in the foamed samples and the pore size of the scaffolds can be easily controlled with proper gas foaming parameters. The average pore size achieved in the foaming process ranged from 20 to 70 μm. After PS extraction, both pore size and porosity can be further improved. For example, the pore size and porosity increased from 48 μm and 49% to 59 μm and 67%, respectively, after the PS extraction process. The fabricated porous scaffolds were used to culture human osteoblast cells. Cells grew well and gradually formed a fibrous structure. The combined solid-state foaming and immiscible polymer blending method provides a new technique for fabricating tissue-engineering scaffolds.

  16. Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Yunfang Gao

    2018-04-01

    Full Text Available A hierarchically porous 3D starch-derived carbon foam (SCF with a high specific surface area (up to 1693 m2·g−1 was first prepared by a facile solvothermal treatment, in which Na2CO3 is used as both the template and activating agent. The hierarchically porous structure and high specific area endow the SCF with favorable electrochemical properties such as a high specific capacitance of 179.6 F·g−1 at 0.5 A·g−1 and a great rate capability and cycling stability, which suggest that the material can be a promising candidate for energy storage applications.

  17. Porous CoO nanostructures grown on three-dimension graphene foams for supercapacitors electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei, E-mail: dengweio@126.com [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Lan, Wei, E-mail: lanw@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Sun, Yaru, E-mail: sunyaru89@126.com [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Su, Qing, E-mail: suqing@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Xie, Erqing, E-mail: xieeq@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2014-06-01

    Three-dimensional graphene foams with good conductivity, light weight and chemical stability were produced by chemical vapor deposition. Then porous CoO nanowalls were deposited on graphene foam by a simple hydrothermal process and subsequent thermal treatment. This hybrid structures possessing large surface area in which the CoO nanowalls are separated by graphene foam with robust adhesion can directly serve as supercapacitor electrode including current collector without the need of any other binder materials and conductive agents. Electrochemical tests manifest a high specific capacitance of 231.87 F/g scaled to the mass of CoO (139.47 F/g for total mass of electrodes) at 1 A/g current, good rate capability and excellent cycling performance of >98% capacitance retention over 1000 cycles at 7 A/g current. The high conductivity, light weight and rational architectures, which provide fast electron pathway and the low diffusion resistance of ions, are responsible for the high performance of the electrodes.

  18. Foam flow in a model porous medium: II. The effect of trapped gas.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  19. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Synthesis of Various Silica Nanoparticles for Foam Stability

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Yoon, Inho; Jung, Chonghun; Kim, Chorong; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    The synthesis of the non-porous silica nanoparticles with uniform sizes has been reported through the Sto ber method, the synthesis of meso porous silica nanoparticles with a specific morphology such as core-shell, rod-like, and hexagonal shapes is not so common. As a synthetic strategy for controlling the particle size, shape, and porosity, the synthesis of core-shell silicas with meso porous shells formed on silica particle cores through the self-assembly of silica precursor and organic templates or spherical meso porous silicas using modified Sto ber method was also reported. Recently, in an effort to reduce the amount of radioactive waste and enhance the decontamination efficiency during the decontamination process of nuclear facilities contaminated with radionuclides, a few research for the preparation of the decontamination foam containing solid nanoparticles has been reported. In this work, the silica nanoparticles with various sizes, shapes, and structures were synthesized based on the previous literatures. The resulting silica nanoparticles were used to investigate the effect of the nanoparticles on the foam stability. In a study on the foam stability using various silica nanoparticles, the results showed that the foam volume and liquid volume in foam was enhanced when using a smaller size and lower density of the silica nanoparticles. Silica nanoparticles with various sizes, shapes, and structures such as a non-porous, meso porous core-shell, and meso porous silica were synthesized to investigate the effect of the foam stability. The sizes and structural properties of the silica nanoparticles were easily controlled by varying the amount of silica precursor, surfactant, and ammonia solution as a basic catalyst. The foam prepared using various silica nanoparticles showed that foam the volume and liquid volume in the foam were enhanced when using a smaller size and lower density of the silica nanoparticles

  1. Microstructural effects on the overall poroelastic properties of saturated porous media

    International Nuclear Information System (INIS)

    Bouhlel, M; Jamei, M; Geindreau, C

    2010-01-01

    At the macroscopic scale, the quasi-static deformation of an elastic porous medium saturated by an incompressible Newtonian fluid is described by the well-known Biot's model, which involves four effective parameters. In this work, the three effective poroelastic properties and the permeability of two periodic microstructures of saturated cohesive granular media, i.e. simple cubic (SC) and body-centered cubic (BCC) arrays of overlapping spheres, are computed by solving, over the representative elementary volume, boundary-value problems arising from the homogenization process. The influence of microstructure properties, i.e. solid volume fraction, arrangement of spheres, number of contacts as well as the intrinsic properties of the solid phase on the overall properties, is highlighted. Numerical results are then compared with rigorous bounds, self-consistent estimations, exact expansions and experimental results on ceramics and metals available in the literature. Finally, the capability of the obtained results on such periodic microstructures to describe the poroelastic properties of real porous media is discussed

  2. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A.L., E-mail: azdlobo@gmail.com [Instituto de Física-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Facultad de Ingeniería-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Espericueta, D.L. [Facultad de Ingeniería-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Facultad de Ciencias-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Palomares-Sánchez, S.A. [Facultad de Ciencias-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Elizalde-Galindo, J.T. [Instituto de Ingeniería y Tecnología-UACJ, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, Ciudad Juárez, Chihuahua (Mexico); Watts, B.E [IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Mirabal-García, M. [Instituto de Física-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico)

    2016-12-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties. - Highlights: • New way to obtain Sr-hexaferrite with foam structure and high magnetic performance. • Relation between pore structure and the magnetic properties in ceramic foams. • Analysis of magnetostatic interactions with the magnetism of Sr-hexaferrite foams. • Relation between microstructural characteristics and the magnetization of the foams.

  3. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    International Nuclear Information System (INIS)

    Guerrero, A.L.; Espericueta, D.L.; Palomares-Sánchez, S.A.; Elizalde-Galindo, J.T.; Watts, B.E; Mirabal-García, M.

    2016-01-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties. - Highlights: • New way to obtain Sr-hexaferrite with foam structure and high magnetic performance. • Relation between pore structure and the magnetic properties in ceramic foams. • Analysis of magnetostatic interactions with the magnetism of Sr-hexaferrite foams. • Relation between microstructural characteristics and the magnetization of the foams.

  4. Defining and comparing vibration attributes of AlSi10 foam and CFRP coated AlSi10 foam materials

    Science.gov (United States)

    Çolak, O.; Yünlü, L.

    2017-06-01

    Now, Aluminum materials have begun being manufactured as porous structures and being used with additive composite materials through emerging manufacturing technologies. These materials those porous structures have also begun being used in many areas such as automotive and aerospace due to light-weighted structures. In addition to examining mechanical behavior of porous metallic structures, examining vibration behavior is important for defining characteristic specifications. In this study, vibration attributes belong to %80 porous AlSi10 foam and CFRP coated %80 porous AlSi10 foam are determined with modal analysis. Modal parameters such as natural frequencies and damping coefficient from frequency response functions at the end of hammer impact tests. It is found that natural frequency of CFRP coated AlSi10 foam’s is 1,14 times bigger than AlSi10 foam and damping coefficient of CFRP coated AlSi10 foam is 5 times bigger than AlSi10 foam’s with tests. Dynamic response of materials in various conditions is simulated by evaluating modal parameters with FEM. According to results of the study, CFRP coating on AlSi10 foam effect vibration damping and resonance avoidance ability positively.

  5. Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors

    International Nuclear Information System (INIS)

    Sun, Youyi; Zhang, Wenhui; Li, Diansen; Gao, Li; Hou, Chunlin; Zhang, Yinghe; Liu, Yaqing

    2015-01-01

    In this study, the MnO 2 /reduced graphene oxide/Ni (MnO 2 /rGO/Ni) composite foam as a binder-free supercapacitor electrode was prepared by a facile method. The rGO film has been firstly coated on the skeletons of Ni foam current collectors by chemical deposition method and that have been used as substrates for preparation of a novel three dimensional rGO/Ni composite foam-supported porous MnO 2 film by the hydrothermal method. The structure of MnO 2 /rGO/Ni composite foam was characterized by Raman spectra, IR spectra and Scanning electron microscopy. It indicated that the high-quality rGO film have been coated on skeletons of Ni foam current collectors and the MnO 2 film had a 3D network microstructure, consisting of interlaced nanosheets. Furthermore, the binder-free MnO 2 /rGO/Ni composite foam electrode has been characterized by the cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectra. It exhibited excellent pseudocapacitive behavior with specific capacitance of 479.0 F/g. The capacitance could retain about 83.5% after 1000 charge–discharge cycles. This simple synthetic approach provides a convenient route for the large scale preparation of 3D porous MnO 2 /rGO/Ni composite foam for lots of applications in future. - Graphical abstract: The MnO 2 /rGO/Ni composite foam was prepared by a facile method as shown in Fig. 1 and the unique structure of composite foam was suited to be a binder-free supercapacitor electrode due to low resistance, 3D network and porous structure. - Highlights: • The MnO 2 /rGO directly grown on Ni foam was firstly reported. • The MnO 2 /rGO/Ni composite foam was prepared by a facile method. • The MnO 2 /graphene/Ni composite foam as a binder-free supercapacitor electrode exhibited excellent pseudocapacitive behavior

  6. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  7. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  8. Microstructural characterization of industrial foams by gamma ray transmission and X-ray microtomography

    International Nuclear Information System (INIS)

    Rodrigues, Luiz Eduardo

    2004-01-01

    This work presents the total porosity measurements of the aluminum and silicon carbide (SiC) foams samples. For porosity determination the gamma ray transmission and X-ray microtomography with conic beam techniques were used. These methods have more advantage than conventional ones, because they are non destructive and provide more details of the analyzed material porous structure. The aluminum foam samples with 10, 20, 30, 40 and 45 ppi (pores per inch) and SiC ceramic foam samples with 20, 30, 45, 60, 75, 80 and 90 ppi were analysed by gamma transmission. The SiC 60, 75 and 90 ppi samples were also analyzed by X-ray microtomography. For the gamma ray transmission measurements it was used an 241 Am source (59.53 keV), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyzer, at the LFNA/UEL. For the X-ray microtomographic measurements, the Fein Focus X-ray system of the Nuclear Instrumentation Laboratory of the COPPE, located at the Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, was used. This equipment provide us images with micrometric resolution (53.48 μm) using a conic X-ray beam and bidimensional detection. The microtomographic images were pre-processed and analyzed by the Imago software, developed at Porous Media and Materials Thermophysical Properties Laboratory (LMPT) of the Mechanical Engineering Department, located at Universidade Federal de Santa Catarina, Florianopolis, SC. Employing the The Imago software it was calculated the total porosity, pore size distribution and autocorrelation function C(u) of the binarized microtomographic images of the each sample. The microtomographic 3-D image of each sample was compared with 3-D image reconstructed by the Gaussian truncated method. This method generates a periodic 3-D porous structure by using of the autocorrelation function of one 2-D cross sectional image of the sample. (author)

  9. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Kobashi

    2009-12-01

    Full Text Available The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  10. Metal-Matrix Composites and Porous Materials: Constitute Models, Microstructure Evolution and Applications

    National Research Council Canada - National Science Library

    Castafieda, P

    2000-01-01

    Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...

  11. Facile synthesis of MnO{sub 2}/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Youyi; Zhang, Wenhui [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); Li, Diansen [Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Gao, Li; Hou, Chunlin [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); Zhang, Yinghe [International Center for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Liu, Yaqing, E-mail: lyqzgz2010@163.com [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China)

    2015-11-15

    In this study, the MnO{sub 2}/reduced graphene oxide/Ni (MnO{sub 2}/rGO/Ni) composite foam as a binder-free supercapacitor electrode was prepared by a facile method. The rGO film has been firstly coated on the skeletons of Ni foam current collectors by chemical deposition method and that have been used as substrates for preparation of a novel three dimensional rGO/Ni composite foam-supported porous MnO{sub 2} film by the hydrothermal method. The structure of MnO{sub 2}/rGO/Ni composite foam was characterized by Raman spectra, IR spectra and Scanning electron microscopy. It indicated that the high-quality rGO film have been coated on skeletons of Ni foam current collectors and the MnO{sub 2} film had a 3D network microstructure, consisting of interlaced nanosheets. Furthermore, the binder-free MnO{sub 2}/rGO/Ni composite foam electrode has been characterized by the cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectra. It exhibited excellent pseudocapacitive behavior with specific capacitance of 479.0 F/g. The capacitance could retain about 83.5% after 1000 charge–discharge cycles. This simple synthetic approach provides a convenient route for the large scale preparation of 3D porous MnO{sub 2}/rGO/Ni composite foam for lots of applications in future. - Graphical abstract: The MnO{sub 2}/rGO/Ni composite foam was prepared by a facile method as shown in Fig. 1 and the unique structure of composite foam was suited to be a binder-free supercapacitor electrode due to low resistance, 3D network and porous structure. - Highlights: • The MnO{sub 2}/rGO directly grown on Ni foam was firstly reported. • The MnO{sub 2}/rGO/Ni composite foam was prepared by a facile method. • The MnO{sub 2}/graphene/Ni composite foam as a binder-free supercapacitor electrode exhibited excellent pseudocapacitive behavior.

  12. TiO2 hierarchical porous film constructed by ultrastable foams as photoanode for quantum dot-sensitized solar cells

    Science.gov (United States)

    Du, Xing; He, Xuan; Zhao, Lei; Chen, Hui; Li, Weixin; Fang, Wei; Zhang, Wanqiu; Wang, Junjie; Chen, Huan

    2016-11-01

    It reported a novel and simple method for the first time to prepare TiO2 hierarchical porous film (THPF) using ultrastable foams as a soft template to construct porous structures. Moreover, dodecanol as one foam component was creatively used as solvent during the synthesis of CdSe quantum dots (QDs) to decrease reaction temperature and simplify precipitation process. The result showed that hierarchical pores in scale of microns introduced by foams were regarded to benefit for high coverage and unimodal distribution of QDs on the surface of THPF to increase the efficiencies of light-harvesting, charge-collection and charge-transfer. The increased efficiencies caused an enhancement in quantum efficiency of the cell and thus remarkably increased the short circuit current density (Jsc). In addition, the decrease of charge recombination resulted in the increase of the open circuit voltage (Voc) as well. The QDSSC based on THPF exhibited about 2-fold higher power conversion efficiency (η = 2.20%, Jsc = 13.82 mA cm-2, Voc = 0.572 V) than that of TiO2 nanoparticles film (TNF) (η = 1.06%, Jsc = 6.70 mA cm-2, Voc = 0.505 V). It provided a basis to use foams both as soft template and carrier to realize simultaneously construction and in-situ sensitization of photoanode in further work.

  13. Microstructural and mechanical properties of Al–SiO{sub 2} nanocomposite foams produced by an ultrasonic technique

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, A., E-mail: am_salehi85@yahoo.com [Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Babakhani, A., E-mail: babakhani@um.ac.ir [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Zebarjad, S. Mojtaba, E-mail: mojtabazebarjad@shirazu.ac.ir [Department of Materials Engineering, Faculty of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-06-25

    In this study, nanocomposite foams reinforced with different weight percentages of silicon dioxide nanoparticles (0.25, 0.5, 0.75 and 1.0 wt%) were fabricated using the ultrasonic and stir casting techniques. For this purpose heat treated TiH{sub 2} was used as foaming agent. Microstructural studies were done by optical microscope and scanning electron microscope. Hardness evaluation of precursor nanocomposites showed that the hardness was significantly increased by the addition of SiO{sub 2} nanoparticles and Al–0.75 wt% SiO{sub 2} nanocomposite makes the highest hardness. Evaluation of compressive behavior of Al–SiO{sub 2} nanocomposite foams showed that the plateau stress increases more than 3 times as the foam relative density increases from 0.09 to 0.16. Energy absorption of Al–SiO{sub 2} nanocomposite foams has been found to be dependent on both relative density and structural properties.

  14. Porous Graphene Microflowers for High-Performance Microwave Absorption

    Science.gov (United States)

    Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao

    2018-06-01

    Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.

  15. Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution.

    Science.gov (United States)

    Guo, Na; Su, Shi-Jun; Liao, Bing; Ding, Sang-Lan; Sun, Wei-Yi

    2017-06-01

    In this study, novel macro porous Ni 2+ -imprinted chitosan foam adsorbents (F-IIP) were prepared using sodium bicarbonate and glycerine to obtain a porogen for adsorbing nickel ions from aqueous solutions. The use of the ion-imprinting technique for adsorbents preparation improved the nickel ion selectivity and adsorption capacity. We characterised the imprinted porous foam adsorbents in terms of the effects of the initial pH value, initial metal ion concentration, and contact time on the adsorption of nickel ions. The adsorption process was described best by Langmuir monolayer adsorption models, and the maximum adsorption capacity calculated from the Langmuir equation was 69.93mgg -1 . The kinetic data could be fitted to a pseudo-second-order equation. Our analysis of selective adsorption demonstrated the excellent preference of the F-IIP foams for nickel ions compared with other coexisting metal ions. Furthermore, tests over five cycle runs suggested that the F-IIP foam adsorbents had good durability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method

    Science.gov (United States)

    Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.

    2018-05-01

    The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.

  17. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  18. Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors

    Science.gov (United States)

    Drieschner, Simon; von Seckendorff, Maximilian; del Corro, Elena; Wohlketzetter, Jörg; Blaschke, Benno M.; Stutzmann, Martin; Garrido, Jose A.

    2018-06-01

    Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm‑3 and 0.16 F cm‑2. The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.

  19. Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors.

    Science.gov (United States)

    Drieschner, Simon; Seckendorff, Maximilian von; Corro, Elena Del; Wohlketzetter, Jörg; Blaschke, Benno M; Stutzmann, Martin; Garrido, Jose A

    2018-06-01

    Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm -3 and 0.16 F cm -2 . The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.

  20. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.

    Science.gov (United States)

    Jiang, Z; Chen, W; Burkhart, C

    2013-11-01

    Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. COMPARISON OF THE MECHANICAL RESPONSE OF POROUS TI-6AL-4V ALLOYS PRODUCED BY DIFFERENT COMPACTION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G.İpek Selimoğlu

    2017-03-01

    Full Text Available Porous Ti-6Al-4V alloys are attractive candidates as implant materials due to their good biocompatibility combined with the porous structure leading to increased osseointegration and decreased stiffness. Accordingly, different processing techniques were employed for the production of Ti-6Al-4V foams in the literature. Among these techniques, sintering with space holder is used to produce porous Ti-6Al-4V alloys in this study. Magnesium was employed as the space holder material because of its relatively low boiling point as well as high oxygen affinity. Two different compaction techniques, die compaction with hydraulic pressing and cold isostatic pressing (CIP, were employed for obtaining green compacts. Both spherical and nonspherical Ti-6Al-4V powders were used to investigate the effect of powder shape on compaction. Processed foams were characterized in terms of both microstructural and mechanical aspects in order to investigate the effect of pressing conditions in combination with powder characteristics. It was observed that NS-CIP foam, which was produced by compacting nonspherical powders by cold isostatic press, has the highest strength. However, the S-DP foam, which was produced by die-pressing of spherical powders, has the highest toughness.

  2. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  3. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Pecci, Raffaella; Bedini, Rossella; Dentini, Mariella

    2013-01-08

    In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.

  4. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    Science.gov (United States)

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Microstructure characterization of porous microalloyed aluminium-silicate ceramics

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2011-01-01

    Full Text Available Kaolinite and bentonite clay powders mixed with active additives, based on Mg(NO32 and Al(NO32, sintered at high temperatures produce very porous ceramics with microcrystalline and amorphous regions and highly developed metalized surfaces (mainly with magnesium surplus. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. The ceramics samples were characterized by scanning electron microscopy (SEM, energy dispersive spectrometer (EDS, X-ray diffraction analysis (XRD and IR spectroscopy analysis, prior and after treatment in “synthetic water”, i.e. in aqueous solution of arsenic-salt. Grain size distribution for untreated and treated samples was done with software SemAfore 4. It has shown great variety in size distribution of grains from clay powders to sintered samples.

  6. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    Science.gov (United States)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  7. Liquid foam templating - A route to tailor-made polymer foams.

    Science.gov (United States)

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It

  8. Microstructure and Mechanical Properties of Porous Mullite

    Science.gov (United States)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  9. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors

    OpenAIRE

    Bingzhi Liu; Lili Zhang; Peirong Qi; Mingyuan Zhu; Gang Wang; Yanqing Ma; Xuhong Guo; Hui Chen; Boya Zhang; Zhuangzhi Zhao; Bin Dai; Feng Yu

    2016-01-01

    Nitrogen-doped banana peel?derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m2/g, large pore volume of 0.77 cm3/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and io...

  10. Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films

    International Nuclear Information System (INIS)

    Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

    1994-01-01

    The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p - porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n + and p + porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure

  11. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  12. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  13. Investigation of porous asphalt microstructure using optical and electron microscopy.

    Science.gov (United States)

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  14. Fabrication and performance of porous lithium sodium potassium niobate ceramic

    Science.gov (United States)

    Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong

    2018-02-01

    Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.

  15. Forming and bending of metal foams

    International Nuclear Information System (INIS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-01-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams

  16. Synthesis of α-Fe₂O₃ and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates.

    Science.gov (United States)

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi

    2018-02-11

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  17. Ceramic Foams from Pre-Ceramic Polymer Routes for Reusable Acreage Thermal Protection System Applications

    Science.gov (United States)

    Stackpoole, Mairead; Chien, Jennifer; Schaeffler, Michelle

    2004-01-01

    Contents include the following: Motivation. Current light weight insulation. Advantages of preceramic-polymer-derived ceramic foams. Rigid insulation materials. Tailor foam microstructures. Experimental approach. Results: sacrificial materials, sacrificial fillers. Comparison of foam microstructures. Density of ceramic foams. Phase evolution and properties: oxidation behavior. mechanical properties, aerothermal performance. Impact damage of microcellular foams. Conclusions.

  18. Nickel Nanowire@Porous NiCo2O4 Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Houzhao Wan

    2017-12-01

    Full Text Available A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo2O4 nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo2O4 nanorods and construct the well-defined NiCo2O4 nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo2O4/Ni foam electrode shows a high areal specific capacitance (7.4 F cm−2 at 5 mA cm−2, excellent rate capability (88.04% retained at 100 mA cm−2, and good cycling stability (74.08% retained after 1,500 cycles. The superior electrochemical properties made it promising as electrode for supercapacitors.

  19. Detailed microstructure analysis of as-deposited and etched porous ZnO films

    International Nuclear Information System (INIS)

    Shang, Congcong; Thimont, Yohann; Barnabé, Antoine; Presmanes, Lionel; Pasquet, Isabelle; Tailhades, Philippe

    2015-01-01

    Graphical abstract: - Highlights: • Porous ZnO thin films were deposited by rf magnetron sputtering. • Surface enhancement factors were deduced from geometrical considerations. • Enlargement of the inter-grain spaces have been achieved by HCl chemical etching. • Microstructural parameters were deduced from SEM, AFM and optical measurements. - Abstract: ZnO nanostructured materials in thin film forms are of particular interest for photovoltaic or photocatalysis processes but they suffer from a lack of simple methods for optimizing their microstructure. We have demonstrated that microporous ZnO thin films with optimized inter grain accessibility can be produce by radio frequency magnetron sputtering process and chemical etching with 2.75 mM HCl solution for different duration. The as-deposited ZnO thin films were first characterized in terms of structure, grain size, inter grain space, open cavity depth and total thickness of the film by XRD, AFM, SEM, profilometry and optical measurements. A specific attention was dedicated to the determination of the surface enhancement factor (SEF) by using basic geometrical considerations and images treatments. In addition, the porous fraction and its distribution in the thickness have been estimated thanks to the optical simulation of the experimental UV–Visible–IR spectrums using the Bruggeman dielectric model and cross section SEM images analysis respectively. This study showed that the microstructure of the as-deposited films consists of a dense layer covered by a porous upper layer developing a SEF of 12–13 m 2 m −2 . This two layers architecture is not modified by the etching process. The etching process only affects the upper porous layer in which the overall porosity and the inter-grain space increase with the etching duration. Column diameter and total film thickness decrease at the same time when the films are soaked in the HCl bath. The microporous structure obtained after the etching process could

  20. Foam Microrheology

    International Nuclear Information System (INIS)

    KRAYNIK, ANDREW M.; LOEWENBERG, MICHAEL; REINELT, DOUGLAS A.

    1999-01-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams

  1. Graphene oxide foams and their excellent adsorption ability for acetone gas

    International Nuclear Information System (INIS)

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-01-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials

  2. Nucleation and Growth of Porous MnO2 Coatings Prepared on Nickel Foam and Evaluation of Their Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Wenxin Huang

    2018-05-01

    Full Text Available Porous MnO2 was uniformly electrodeposited on nickel foam in MnSO4 solution, which was applied as the electrode of supercapacitors. The nucleation/growth mechanisms of porous MnO2 were investigated firstly. Then two kinds of electrochemical measuring technologies, corresponding to the cycle voltammetry (CV and galvanostatic charge-discharge, were adopted to assess the electrochemical performance of MnO2 electrodes. The results demonstrated that the deposition of MnO2 on nickel foam included four stages. Prior to the deposition, an extremely short incubation period of about 2 s was observed (the first stage. Then the exposed nickel foam was instantly covered by a large number of MnO2 crystal nuclei and crystal nuclei connected with each other in a very short time of about 3 s (the second stage. Nucleation predominated in the second stage. The sharply rise of current was caused by the increase in substrate surface area which due to nucleation of MnO2. Grain boundaries grew preferentially due to their high energy, accompanied with a honeycomb-like structure with the higher surface area was formed. However, accompanied with the electrochemical reactions gradually diffusion-controlled, the current presented the decline trend with increasing the time (the third stage. When the electrochemical reactions were completely diffusion-controlled, the porous MnO2 coating with an approximately constant surface area was formed (the fourth stage. MnO2 coatings deposited for different time (30, 60, 120, 300 s exhibited a similar specific capacitance (CV: about 224 F/g; galvanostatic charge-discharge: about 264 F/g. Comparatively speaking, the value of MnO2 deposited for 600 s was highest (CV: 270 F/g; galvanostatic charge-discharge: 400 F/g.

  3. 3D Microstructure Modeling of Porous Metal Filters

    Directory of Open Access Journals (Sweden)

    Vladimír Hejtmánek

    2012-09-01

    Full Text Available The contribution presents a modified method of stochastic reconstruction of two porous stainless-steel filters. The description of their microstructures was based on a combination of the two-point probability function for the void phase and the lineal-path functions for the void and solid phases. The method of stochastic reconstruction based on simulated annealing was capable of reproducing good connectivity of both phases, which was confirmed by calculating descriptors of the local porosity theory. Theoretical values of permeability were compared with their experimental counterparts measured by means of quasi-stationary permeation of four inert gases.

  4. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.

    Science.gov (United States)

    Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram

    2016-03-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  5. Laboratory Investigation on Compressive Strength and Micro-structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Wood Ash (WA and Silica Fume (SF exhibit good cementation properties and have great potential as supplementary binder materials for the concrete production industry. This study will focus on enhancing the micro-structural formation and compressive strength of foamed concrete with the addition of WA and SF. A total of 3 mixes were prepared with the addition of WA and SF at various cement replacement levels by total binder weight. For this particular study, the combination of WA (5%, 10%, and 15% by binder weight and SF (5%, 10%, and 15% by binder weight were utilized as supplementary binder materials to produce foamed concrete mixes. As was made evident from micrographs obtained in the study, the improvement observed in the compressive strength of the foamed concrete was due to a significant densification in the microstructure of the cement paste matrix in the presence of WA and SF hybrid supplementary binders. Experimental results indicated that the combination of 15% SF and 5% WA by binder weight had a more substantial influence on the compressive strength of foamed concrete compared to the control mix. Furthermore, the addition of WA and SF significantly prolonged the setting times of the blended cement paste of the foamed concrete.

  6. Process effects on leakage current of Si-PIN neutron detectors with porous microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Baoning; Zhao, Kangkang; Yang, Taotao [Beijing University of Technology, Chaoyang District, Pingleyuan 100, 100124 Beijing (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, 215123 Suzhou (China); Jiang, Yong; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, CAEP, Mianshan Road 64, 621900 Mianyang (China); Lu, Min [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, 215123 Suzhou (China); Han, Jun [Beijing University of Technology, Chaoyang District, Pingleyuan 100, 100124 Beijing (China)

    2017-06-15

    Using the technique of Microfabrication, such as deep silicon dry etching, lithography, etc. Si-PIN neutron detectors with porous microstructure have been successfully fabricated. In order to lower the leakage current, the key fabrication processes, including the Al windows opening, deep silicon etching and the porous side wall smoothing, have been optimized. The cross-section morphology and current-voltage characteristics have been measured to evaluate the microfabrication processes. With the optimized conditions presented by the measurements, a neutron detector with a leakage current density of 2.67 μA cm{sup -2} at a bias of -20 V is obtained. A preliminary neutron irradiation test with {sup 252}Cf neutron source has also been carried out. The neutron irradiation test shows that the neutron detection efficiency of the microstructured neutron detectors is almost 3.6 times higher than that of the planar ones. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  8. Behavior of porous beryllium under thermomechanical loading. Part 6. Effect of pressure on the microstructure of plasma-sprayed beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.; Snell, E.O.

    1975-01-01

    The effects of pressure and specimen preparation on the microstructure of two grades of porous plasma-sprayed beryllium were determined. One grade, P-1, was sintered after spraying while the other grade, P-10, was tested in the as-sprayed condition. the principal microstructural characteristics studied were grain size: grain morphology, and void distribution and size. It was found that machining can readily cause a significant dense surface layer on the porous beryllium specimens, and that the dense surface layer can be removed by etching. There was substantial difference in microstructure between the P-1 sintered and P-10 unsintered specimens both before and after being subjected to shock waves and static compression. (U.S.)

  9. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V

    Science.gov (United States)

    Ahmadi, S. M.; Jain, R. K. Ashok Kumar; Zadpoor, A. A.; Ayas, C.; Popovich, V. A.

    2017-12-01

    Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α‧ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.

  10. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  11. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2017-01-01

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil.

  12. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  13. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    Science.gov (United States)

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi

    2018-01-01

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450

  14. The Effect of Fluid and Solid Properties on the Auxetic Behavior of Porous Materials Having Rock-like Microstructures

    Science.gov (United States)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-12-01

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.

  15. Computation of Effective Steady-State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructures

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2015-01-01

    This paper investigates the effective steady-state creep response of porous Ni–YSZ composites used in solid oxide fuel cell applications by numerical homogenization based on three-dimensional microstructural reconstructions and steadystate creep properties of the constituent phases. The Ni phase...... is found to carry insignificant stress in the composite and has a negligible role in the effective creep behavior. Thus, when determining effective creep, porous Ni–YSZ composites can be regarded as porous YSZ in which the Ni phase is counted as additional porosity. The stress exponents of porous YSZ...... are the same as that of dense YSZ, but the effective creep rate increases by a factor of 8–10 due to porosity. The relationship of creep rate and volume fraction of YSZ computed by numerical homogenization is underestimated by most existing analytical models. The Ramakrishnan–Arunchalam creep model provides...

  16. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    Science.gov (United States)

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  17. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  18. Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-03-01

    Full Text Available The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a “space-holder” sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthesized by mechanical alloying and annealing mixed with 1.0 mm diameter of saccharose crystals was finally compacted in the form of pellets. In the next step, the saccharose crystals were dissolved in water, leaving open spaces surrounded by metallic-bioceramic scaffold. The sintering of the scaffold leads to foam formation. It was found that 1:1 Ti-10 wt% 45S5 Bioglass-1 wt% Ag/sugar ratio leads to porosities of about 70% with pore diameter of about 0.3–1.1 mm. The microstructure, corrosion resistance in Ringer’s solution of the produced foams were investigated. The value of the compression strength for the Ti-10 wt% 45S5 Bioglass-1 wt% Ag foam with 70% porosity was 1.5 MPa and the Young’s modulus was 34 MPa. Silver modified Ti-10 wt% 45S5 Bioglass composites possess excellent antibacterial activities against Staphylococcus aureus. Porous Ti-10 wt% 45S5 Bioglass-1 wt% foam could be a possible candidate for medical implants applications.

  19. Structural characterization of titanium porous foams by gamma rays transmission and X ray microtomography

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Appoloni, Carlos R.

    2007-01-01

    The advance in porous media studies and the consequent progresses of their applications in medicine, petroleum industry, metallurgy and others, rises the prominence of the area among scientists. This fact increases the research on different characterization techniques of porous materials. In this work three Titanium foams were analyzed by gamma rays transmission (GRT), and one of these was also analyzed by X-ray microtomography (μ-CT). The GRT experimental set consisted by a 2'' x 2''. NaI(Tl) detector, a 241-Am radioactive source (59,53 keV, 100 mCi) and a standard gamma spectrometry electronic chain. In the μ-CT technique it was used a SKYSCAN 1172 scanner consisting of an X-ray tube (20-100 kV and 0-250 μA), a CCD detector and a proper mechanic system for sample and detector movement. The system may reach ∼0.8 μm image resolution. Images of 815 slices of the sample were generated and analyzed by the IMAGO software. It permitted the determination of geometrical parameters like pore size distribution, total porosity and autocorrelation function. The analysis of data, obtained by both techniques, showed that porous media are homogeneous in the reached resolutions (1 mm to GRT and 5 μm to μ-CT). The average total porosities determined by GRT for each sample were φ 1 =53,47±0,36%, φ 2 =55,95±0,23% and φ 3 =56,80±0,56%, and the determined by μ-CT was φ 1 =53,47±0,36%. The porosity data of the Ti-1 sample shows good agreement from both techniques. The pore size distribution, from μ-CT technique of the Ti-1 sample, showed that 57% of porous phase have porous with radius in 20 to 80 μm range. (author)

  20. Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Boccaccini, Dino; Persson, Åsa Helen

    2016-01-01

    The effective steady-state creep response of porous metals is studied by numerical homogenization and analytical modeling in this paper. The numerical homogenization is based on finite element models of three-dimensional microstructures directly reconstructed from tomographic images. The effects ...... model, and closely matched by the Gibson-Ashby compression and the Ramakrishnan-Arunchalam creep models. [All rights reserved Elsevier]....

  1. Nickel Nanowire@Porous NiCo{sub 2}O{sub 4} Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Houzhao; Li, Lang; Zhang, Jun; Liu, Xiang; Wang, Hanbin; Wang, Hao, E-mail: nanoguy@126.com [Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan (China)

    2017-12-13

    A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo{sub 2}O{sub 4} nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo{sub 2}O{sub 4} nanorods and construct the well-defined NiCo{sub 2}O{sub 4} nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo{sub 2}O{sub 4}/Ni foam electrode shows a high areal specific capacitance (7.4 F cm{sup −2} at 5 mA cm{sup −2}), excellent rate capability (88.04% retained at 100 mA cm{sup −2}), and good cycling stability (74.08% retained after 1,500 cycles). The superior electrochemical properties made it promising as electrode for supercapacitors.

  2. Permeability of Aluminium Foams Produced by Replication Casting

    Directory of Open Access Journals (Sweden)

    Maxim L. Cherny

    2012-12-01

    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  3. Study of two-phase foam flow

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R S; Guliev, B B; Mekhtiev, K G; Kerimov, R G

    1970-01-01

    The objectives of this study were to determine characteristics of aqueous foam flow through porous media and to estimate the depth of foam penetration into a formation. Foam was generated by mixing air and 1% solution of surfactant PO-1. Foam density was maintained at 0.14 g/cc in all experiments. The foam was passed through sand columns (800 mm long x 30 mm diam) of permeabilities 26, 39, 80, 111, and 133 darcys. Flow rates were measured at various pressure drops and the relationship between system parameters was expressed analytically and graphically. From the data, distance of foam penetration into a formation as a function of pressure drop and permeability was calculated. The data indicate that under most conditions, foam will penetrate the formation to a negligible distance. This study indicates that when foam is used to remove sand from a well, a negligible loss of foam to the formation occurs.

  4. Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications.

    Science.gov (United States)

    Ball, Jordan P; Mound, Brittnee A; Nino, Juan C; Allen, Josephine B

    2014-07-01

    The potential of barium titanate (BT) to be electrically active makes it a material of interest in regenerative medicine. To enhance the understanding of this material for orthopedic applications, the in vitro biocompatibility of porous BT fabricated using a direct foaming technique was investigated. Characterization of the resultant foams yielded an overall porosity between 50 and 70% with average pore size in excess of 30 µm in diameter. A mouse osteoblast (7F2) cell line was cultured with the BT to determine the extent of the foams' toxicity using a LDH assay. After 72 h, BT foams showed a comparable cytotoxicity of 6.4 ± 0.8% to the 8.4 ± 1.5% of porous 45S5 Bioglass®. The in vitro inflammatory response elicited from porous BT was measured as a function of tumor necrosis factor alpha (TNF-α) secreted from a human monocytic leukemia cell line (THP-1). Results indicate that the BT foams do not cause a significant inflammatory response, eliciting a 9.4 ± 1.3 pg of TNF-α per mL of media compared with 20.2 ± 2.3 pg/mL from untreated cells. These results indicate that porous BT does not exhibit short term cytotoxicity and has potential for orthopedic tissue engineering applications. © 2013 Wiley Periodicals, Inc.

  5. Effect of Microstructure Constraints on the Homogenized Elastic Constants of Elastomeric Sylgard/GMB Syntactic Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steck, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packed into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.

  6. Microstructure and mechanical properties of lost foam cast 356 alloys

    Directory of Open Access Journals (Sweden)

    Qi-gui Wang

    2015-05-01

    Full Text Available Microstructure and mechanical properties of lost foam cast aluminum alloys have been investigated in both primary A356 (0.13% Fe and secondary 356 (0.47%. As expected, secondary 356 shows much higher content of Fe-rich intermetallic phases, and in particular the porosity in comparison with primary A356. The average area percent and size (length of Fe-rich intermetallics change from about 0.5% and 6 祄 in A356 to 2% and 25 祄 in 356 alloy. The average area percent and maximum size of porosity also increase from about 0.4% and 420 祄 to 1.4% and 600 祄, respectively. As a result, tensile ductility decreases about 60% and ultimate tensile strength declines about 8%. Lower fatigue strength was also experienced in the secondary 356 alloy. Low cycle fatigue (LCF strength decreased from 187 MPa in A356 to 159 MPa in 356 and high cycle fatigue (HCF strength also declined slightly from 68 MPa to 64 MPa.

  7. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    Directory of Open Access Journals (Sweden)

    Yuping Feng

    2018-02-01

    Full Text Available Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3 foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4 is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  8. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  9. Peculiarities of forming diffusion bimetallic joints of aluminum foam with a monolithic magnesium alloy

    Directory of Open Access Journals (Sweden)

    M. Khokhlov

    2016-12-01

    Full Text Available The work is carried out to determine an optimal method to obtain the welded bimetallic joints of monolithic Mg-alloy with porous Al-alloy using gallium as chemical activator and heating up to 300 °C by two different methods: long-term in vacuum oven and short-term without vacuum by passing of low voltage current. There is no microstructure change in Al-foam but indentation test records the negligible reduction of the mechanical properties. SEM showed the crystallization of two types of Mg5Ga2 and Mg2Ga inter-metallic phases in the wavy uneven diffusion zone on Mg-alloy side with significant increase of micro-hardness and Young's modulus. The narrow depth of the diffusion zone takes place in joints by short-term heating, so this method is more applicable for welding of monolithic and porous alloys at chemical activation using gallium.

  10. Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam

    Science.gov (United States)

    Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika

    2018-05-01

    The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.

  11. Oxidation behaviour of metallic glass foams

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, B.R. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States)], E-mail: bbarnard@utk.edu; Liaw, P.K. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States); Demetriou, M.D.; Johnson, W.L. [Department of Materials Science, Keck Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-08-15

    In this study, the effects of porosity on the oxidation behaviour of bulk-metallic glasses were investigated. Porous Pd- and Fe-based bulk-metallic glass (BMG) foams and Metglas ribbons were studied. Oxidizing experiments were conducted at 70 deg. C, and around 80 deg. C below glass-transition temperatures, (T{sub g}s). Scanning-electron microscopy/energy-dispersive spectroscopy (SEM/EDS) studies revealed little evidence of oxidation at 70 deg. C. Specimens exhibited greater oxidation at T{sub g} - 80 deg. C. Oxides were copper-based for Pd-based foams, Fe-, Cr-, and Mo-based for Fe-based foams, and Co-based with borosilicates likely for the Metglas. Pd-based foams demonstrated the best oxidation resistance, followed by Metglas ribbons, followed by Fe-based foams.

  12. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  13. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Poursamar, S. Ali [Institute for Creative Leather Technologies, Park Campus, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom); Lehner, Alexander N. [Centre for Physical Activity and Chronic Disease and the Aging Research Centre, Institute for Health and Wellbeing, School of Health, Park Campus, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom); Azami, Mahmoud; Ebrahimi-Barough, Somayeh [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Samadikuchaksaraei, Ali [Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Antunes, A.P.M., E-mail: Paula.Antunes@northampton.ac.uk [Institute for Creative Leather Technologies, Park Campus, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom)

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. - Highlights: • In-situ gas foaming application in the production of sponge-like gelatin structures • The crosslinkers molecular length impacts on the physical and mechanical properties of the structure. • The effect of crosslinkers on the biocompatibility of gelatin scaffolds.

  14. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold

    International Nuclear Information System (INIS)

    Poursamar, S. Ali; Lehner, Alexander N.; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A.P.M.

    2016-01-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. - Highlights: • In-situ gas foaming application in the production of sponge-like gelatin structures • The crosslinkers molecular length impacts on the physical and mechanical properties of the structure. • The effect of crosslinkers on the biocompatibility of gelatin scaffolds

  15. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting.

    Science.gov (United States)

    Sallica-Leva, E; Jardini, A L; Fogagnolo, J B

    2013-10-01

    Rapid prototyping allows titanium porous parts with mechanical properties close to that of bone tissue to be obtained. In this article, porous parts of the Ti-6Al-4V alloy with three levels of porosity were obtained by selective laser melting with two different energy inputs. Thermal treatments were performed to determine the influence of the microstructure on the mechanical properties. The porous parts were characterized by both optical and scanning electron microscopy. The effective modulus, yield and ultimate compressive strength were determined by compressive tests. The martensitic α' microstructure was observed in all of the as-processed parts. The struts resulting from the processing conditions investigated were thinner than those defined by CAD models, and consequently, larger pores and a higher experimental porosity were achieved. The use of the high-energy input parameters produced parts with higher oxygen and nitrogen content, their struts that were even thinner and contained a homogeneous porosity distribution. Greater mechanical properties for a given relative density were obtained using the high-energy input parameters. The as-quenched martensitic parts showed yield and ultimate compressive strengths similar to the as-processed parts, and these were greater than those observed for the fully annealed samples that had the lamellar microstructure of the equilibrium α+β phases. The effective modulus was not significantly influenced by the thermal treatments. A comparison between these results and those of porous parts with similar geometry obtained by selective electron beam melting shows that the use of a laser allows parts with higher mechanical properties for a given relative density to be obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    Science.gov (United States)

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  17. Rotating solid foam reactors : mass transfer and reaction rate

    NARCIS (Netherlands)

    Tschentscher, R.

    2012-01-01

    In this thesis the performance and applicability of rotating solid foam stirrers is investigated. The stirrer consists, thereby of a solid, highly porous structure, which is used as stirrer and catalyst support simultaneously. The solid foam block occupies a large part of the reactor volume.

  18. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  19. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  20. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  1. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  2. Foam rheology in porous media and enhanced oil recovery potential

    International Nuclear Information System (INIS)

    Burley, R.

    1985-01-01

    Previous studies using foam as a mobility control agent in partially depleted oil wells have shown that foam has a potential for enhancing oil recovery after primary water flooding. The characteristics of foam as indicated by the results of several studies point to three potential applications of foam in oil recovery processes. These are: Improving the displacement efficiency of gas-drive processes (mobility control). Improving the sweep efficiency of other fluid injection processes (mobility control and flow impediment). Restricting the flow of undesired fluids and plugging of high permeable oil 'thief' zones (partial or total pore blockage). (author)

  3. Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT

    Science.gov (United States)

    Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna

    2008-09-01

    Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.

  4. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  5. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  6. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  7. A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts.

    Science.gov (United States)

    Cai, Sixiang; Liu, Jie; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2017-05-04

    Owing to their advantages of strong mechanical stability, plasticity, thermal conductivity and mass transfer ability, metal foam or meshes are considered promising monolith supports for de-NO x application. In this work, we developed a facile method for the decoration of porous Mn-Co bi-metal oxides on Fe meshes. The block-like structure was derived from in situ coating, and simultaneous nucleation and growth of the Mn-Co hydroxide precursor, while the porous Mn-Co oxides were formed via the calcination process. Moreover, the decoration of the high-purity Co 2 MnO 4 spinel could lead to enhanced reducibility and adsorption behaviors, which are crucial to the catalytic process. Of note is the fact that the Fe mesh used in the synthesis procedure could be substituted by various metal supports including Ti mesh, Cu foam and Ni foam. Driven by the above motivations, metal supports decorated with Mn-Co oxides were evaluated as monolith de-NO x catalysts for the first time. Inspiringly, these catalysts demonstrate outstanding low-temperature catalytic activity, desirable stability and excellent H 2 O resistance. This work might open up a new path for the design and development of high performance de-NO x monolith catalysts.

  8. Porous Foam Based Wick Structures for Loop Heat Pipes

    Science.gov (United States)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  9. Investigation of pore-scale flow physics in porous media burners

    Science.gov (United States)

    Sobhani, Sadaf; Muhunthan, Priyanka; Boigne, Emeric; Mohaddes, Danyal; Ihme, Matthias; Stanford University Team

    2017-11-01

    Porous media burners (PMBs) operate on the principle that the solid porous matrix serves as a means of internally recirculating heat from the combustion products upstream to the reactants, enabling a reduction of the lean-flammability limit, higher power dynamic range, and lower NOx and CO emissions as compared to conventional systems. Accurate predictions of the flow features and properties such as pressure loss in reticulated ceramic foams is an important step in the characterization and optimization of combustion in porous media. In this work, an integrated framework is proposed from obtaining the porous sample to performing a computational fluid dynamics simulation, including X-ray microtomography scanning, digital topology rendering, and volume meshing. Three-dimensional numerical simulations of the flow in the complex geometries of porous foams are obtained by solution of the Navier-Stokes equations using an unstructured, finite-volume solver. This capability enables the investigation of pore-scale flow physics in a wide range of porous materials used in PMBs. In this talk, results obtained at pore-scale Reynolds numbers of order 10 to 100 in a Silicone Carbide foam are presented to demonstrate this capability.

  10. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  11. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  12. Spray-dried Powder Granulometry: Influence on the Porous Microstructure of Polished Porcelain Tile

    Directory of Open Access Journals (Sweden)

    Boschi, A. O.

    2010-10-01

    Full Text Available The low porosity of porcelain tile is the result of strict control of the material’s processing conditions (milling of raw materials, compaction and sintering and the characteristics of the raw materials used in its formulation (formation of liquid phases. Sealed pores remaining after the manufacturing process are revealed at the surface after polishing and are the main factor responsible for staining the product. The porous microstructure of the sintered material depends on the characteristics of the porous microstructure of the green compact and on how the densification process evolves during sintering. The present work evaluated how the size distribution of spray-dried granules acts upon the porous microstructure of green compacts and of polished porcelain tile. The results revealed that minor adjustments in the granulometric distribution curve can reduce the visibility of stains on the polished surface, thus improving this property.

    La baja porosidad de los revestimientos porcelánicos, es el resultado del estricto control que se ejerce sobre los distintos parámetros que condicionan el procesamiento de los materiales ( molienda de la materias primas, compactación y sinterización y de las características de las materias primas empleadas en su formulación (formación de fases líquidas. Los poros cerrados que se generan durante la fabricación, y que se abren en la superficie durante el proceso de pulido, son los principales responsables de las manchas que aparecen en la superficie del material. La porosidad microestructural de los materiales sinterizados está condicionada por la porosidad microstrucutural de la pieza en verde y por la evolución del proceso de densificación durante la sinterización. E l trabajo presente evalúa la influencia de la distribución granulométrica del granulado procedente del atomizador sobre la porosidad granulométrica de las piezas en verde y de la pieza ya pulida. Los resultados revelan como

  13. Preparation and Microstructure of Porous ZrB2 Ceramics Using Reactive Spark Plasma Sintering Method

    Institute of Scientific and Technical Information of China (English)

    YUAN Huiping; LI Junguo; SHEN Qiang; ZHANG Lianmeng

    2015-01-01

    Zirconium oxide (ZrO2) and boron carbide (B4C) were added to ZrB2 raw powders to prepare ZrB2 porous ceramics by reactive spark plasma sintering (RSPS). The reactions between ZrO2 and B4C which produce ZrB2 and gas (such as CO and B2O3) result in pore formation. X-Ray Diffraction results indicated that the products phase was ZrB2 and the reaction was completed after the RSPS process. The porosity could be controlled by changing the ratio of synthesized ZrB2 to raw ZrB2 powders. The porosity of porous ceramics with 20 wt% and 40 wt% synthsized ZrB2 are 0.185 and 0.222, respectivly. And dense ZrB2-SiC ceramic with a porosity of 0.057 was prepared under the same conditions for comparison. The pores were homogeneously distributed within the microstructure of the porous ceramics. The results indicate a promising method for preparing porous ZrB2-based ceramics.

  14. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Directory of Open Access Journals (Sweden)

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  15. Modeling Heat Transfer and Pressurization of Polymeric Methylene Diisocyanate (PMDI) Polyurethane Foam in a Sealed Container.

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Sarah Nicole

    2018-01-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. It can be advantageous to surround objects of interest, such as electronics, with foams in a hermetically sealed container to protect the electronics from hostile en vironments, such as a crash that produces a fire. However, i n fire environments, gas pressure from thermal decomposition of foams can cause mechanical failure of the sealed system . In this work, a detailed study of thermally decomposing polymeric methylene diisocyanate (PMDI) - polyether - polyol based polyurethane foam in a sealed container is presented . Both experimental and computational work is discussed. Three models of increasing physics fidelity are presented: No Flow, Porous Media, and Porous Media with VLE. Each model us described in detail, compared to experiment , and uncertainty quantification is performed. While the Porous Media with VLE model matches has the best agreement with experiment, it also requires the most computational resources.

  16. Drug delivery properties of macroporous polystyrene solid foams

    OpenAIRE

    Canal Barnils, Cristina; Aparicio, Rosa María; Vílchez, Alejandro; Esquena, Jordi; García-Celma, María José

    2012-01-01

    Purpose. Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. Methods. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Results. Solid foams with very h...

  17. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  18. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R., E-mail: paul24@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Zemlyanov, D. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A.; Roy, A.K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Fisher, T.S. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2014-12-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification.

  19. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    International Nuclear Information System (INIS)

    Paul, R.; Zemlyanov, D.; Voevodin, A.A.; Roy, A.K.; Fisher, T.S.

    2014-01-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification

  20. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  1. Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams via a solid state method

    KAUST Repository

    Wang, Yu; Pan, Ying; Zhu, Liangkui; Guo, Ningning; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2018-01-01

    A novel 3D foam-like porous carbon architectures with homogeneous N doping and unique mesopore-in-macropore structures have been fabricated from metal-organic complex via a facile template-free solid state method, which show high specific surface area (2732 m2 g-1), large pore volume (3.31 cm3 g-1), interconnected hierarchical pore structures with macro/meso/micro multimodal distribution and abundant surface functionality N doping (5.36 wt%). These characteristics afford high catalytic performance for oxygen reduction with an onset potential of 0.98 V (vs RHE) and a half-wave potential of 0.83 V (vs RHE) in alkaline media, which are comparable with those of the commercial 20 wt% Pt/C catalyst and many state-of-the-art noble-metal-free catalysts. These results demonstrate the significant advantages of the unique mesopore-in-macropore porous structures with efficient heteroatom doping, which provides abundant of accessible active sites for highly mass and charge transports. The present work pave a new facile and environmentally benign synthesis strategy for the preparation of 3D porous carbon architectures as efficient electrochemical energy devices and give deep insights into fabricating advanced nanostructured materials.

  2. Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams via a solid state method

    KAUST Repository

    Wang, Yu

    2018-01-09

    A novel 3D foam-like porous carbon architectures with homogeneous N doping and unique mesopore-in-macropore structures have been fabricated from metal-organic complex via a facile template-free solid state method, which show high specific surface area (2732 m2 g-1), large pore volume (3.31 cm3 g-1), interconnected hierarchical pore structures with macro/meso/micro multimodal distribution and abundant surface functionality N doping (5.36 wt%). These characteristics afford high catalytic performance for oxygen reduction with an onset potential of 0.98 V (vs RHE) and a half-wave potential of 0.83 V (vs RHE) in alkaline media, which are comparable with those of the commercial 20 wt% Pt/C catalyst and many state-of-the-art noble-metal-free catalysts. These results demonstrate the significant advantages of the unique mesopore-in-macropore porous structures with efficient heteroatom doping, which provides abundant of accessible active sites for highly mass and charge transports. The present work pave a new facile and environmentally benign synthesis strategy for the preparation of 3D porous carbon architectures as efficient electrochemical energy devices and give deep insights into fabricating advanced nanostructured materials.

  3. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.

    Science.gov (United States)

    Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu

    2017-12-06

    Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

  4. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Dung Luong

    2016-02-01

    Full Text Available The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36 matrix and including cenospheres as hollow particles at weight fractions (wt.% of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm3 hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.

  5. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    Directory of Open Access Journals (Sweden)

    Bao Lin

    2014-10-01

    Full Text Available Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30 and white gold (Au50Ag50 foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM. Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested.

  6. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    Science.gov (United States)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  7. Amorphous microcellular polytetrafluoroethylene foam film

    Science.gov (United States)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  8. Processing, Characterization, and Modeling of Polymer/Clay Nanocomposite Foams

    Science.gov (United States)

    Jo, Choonghee; Naguib, Hani E.

    2007-04-01

    The effects of the material parameters and processing conditions on the foam morphologies, and mechanical properties of polymer/clay nanocomposite foams were studied. Microcellular closed-cell nanocomposite foams were manufactured with poly(methylmethacrylate) (PMMA) and high density polyethylene (HDPE), where the nanoclay loadings of 0.5, 1.0, and 2.0 wt% were used. The effect of clay contents and foaming conditions on the volume expansion ratio, cell size, elastic modulus, tensile strength, and elongation at break were investigated and compared between amorphous and semicrystalline polymers. An elastic modulus model for tensile behavior of foams was proposed by using the micromechanics theory. The model was expressed in terms of microstructural properties of polymer and physical properties of the foams. The tensile experimental data of the foams were compared with those predicted by the theoretical model.

  9. Forming of porous mullite green bodies by albumin thermal consolidation

    International Nuclear Information System (INIS)

    Sandoval, M.L.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Pre-firing mullite microstructures developed by a new thermal consolidation method using globular proteins as foaming and consolidator/binders were analyzed. Commercial available powders of mullite (Baikowski) and bovine serum albumin (BSA, Aldricht) were employed. Stable aqueous suspensions (40 vol.%) of mullite- BSA (10 vol.%) were foamed (2300 rpm, 10 min) at: I) room temperature; II) 68 deg C, temperature slightly lower to the gelling 'onset' TG"0, and III) 68 deg C with the addition of 2 wt.% of methylcellulose. Green disks were prepared by pouring of foamed suspensions into pre-heated metal molds (70 deg C), thermal gelling (80 °C, 3h) and drying (50 °C, 12h). Previously, the developed foams were characterized and their rheological properties were determined as a function of temperature (TG"0). The characterization of the pre-firing microstructures were carried out by measurements of porosity (>80%) and microstructural analysis in fracture surface by SEM. (author)

  10. Porous Geopolymer Insulating Core from a Metakaolin/Biomass Ash Composite

    Directory of Open Access Journals (Sweden)

    Annalisa Natali Murri

    2017-12-01

    Full Text Available Ashes derived from the combustion of vegetal and animal biomass still represent a mostly unexplored secondary raw material for the production of alkali-activated materials, given their peculiar chemical nature. In this work, calcium phosphate biomass ashes were successfully used as partially reactive fillers in a metakaolin-based geopolymer composite to produce, by direct foaming, sustainable and lightweight boards with thermal insulating properties. The investigated materials were obtained by activating a blend of metakaolin and biomass ash in a weight ratio of 1: 1 and foamed with the addition of H2O2 in measure of 5 wt. %, to maximize the volume of disposed ash and ensure adequate properties to the material at the same time. The obtained geopolymer composite was characterized by microstructural, chemical-physical, mechanical and thermal analysis: the obtained results showed that biomass ash and metakaolin well integrated in the microstructure of the final porous material, which was characterized by a density of about 310 kg/m3 and a thermal conductivity of 0.073 W/mK at a mean test temperature of 30 °C, coupled with an acceptable compressive strength of about 0.6 MPa. Dilatometric and thermogravimetric analysis, performed up to 1000 °C, highlighted the thermal stability of the composite, which could be regarded as a promising material for low-cost, self-bearing thermal insulating partitions or lightweight cores for thermostructural sandwich panels.

  11. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    Science.gov (United States)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  13. Obtenção e propriedades de cerâmicas porosas pela técnica de incorporação de espuma Production and properties of porous ceramics obtained by foam addition technique

    Directory of Open Access Journals (Sweden)

    R. C. O. Romano

    2006-06-01

    Full Text Available Cerâmicas porosas, em geral, associam baixa condutividade térmica, alta área superficial, alta permeabilidade e resistência a ataques químicos. Essas características despertam grande interesse do setor de refratários para sua utilização como filtros em altas temperaturas e/ou como isolantes térmicos, quando sua porosidade é fechada. Diversas técnicas foram reportadas para obtenção desses materiais, tais como a queima de partículas orgânicas, a réplica e o gelcasting de espumas cerâmicas. No entanto, com as técnicas convencionais utilizadas até o momento, ainda não é possível o adequado controle da porosidade e da homogeneidade microestrutural. Por isso, no presente trabalho é proposta uma nova forma de obtenção de materiais porosos, onde uma espuma estável, produzida independentemente, é adicionada em uma suspensão de alumina, gerando materiais com elevada porosidade e estrutura homogênea (com estreita população de poros. Além disso, algumas propriedades, como resistência mecânica e módulo de Weibull são apresentadas e os resultados indicam que essa nova rota de processamento pode vir a ser utilizada para desenvolvimento de novos produtos.Porous ceramics materials, usually, associate low thermal conductivity, high superficial area, high permeability and high resistance to chemical corrosion. These are interesting features for refractory applications such as filters for high temperatures or thermal insulating purposes. Several techniques have been reported to obtain porous ceramics: organic particle burn-out, replica technique and gelcasting of ceramic foams. However, these processing routes generally result heterogeneous materials with a broad of pore size distribution. Therefore, in this work a novel technique is used in order to produce porous ceramics, where a stable foam, prepared independently, is mixed to a Al2O3 suspension, producing materials with high porosity and homogeneous microstructure (narrow

  14. Fluid-Driven Deformation of a Soft Porous Medium

    Science.gov (United States)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  15. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  16. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    International Nuclear Information System (INIS)

    Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-01-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  17. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses.

    Science.gov (United States)

    He, X; Zhang, Y Z; Mansell, J P; Su, B

    2008-07-01

    Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.

  18. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    Science.gov (United States)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  19. Applications of Polymer Matrix Syntactic Foams

    Science.gov (United States)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  20. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  1. Multifunctional porous solids derived from tannins

    Science.gov (United States)

    Celzard, Alain; Fierro, Vanessa; Pizzi, Antonio; Zhao, Weigang

    2013-03-01

    Tannins are extremely valuable, non toxic, wood extractives combining reactivity towards aldehydes, low cost, natural origin and easy handling. When polymerized in the presence of suitable chemicals including blowing agent, ultra lightweight rigid tannin-based foams are obtained. If pyrolyzed under inert gas, reticulated carbon foams having the same pore structure and the same density are obtained. The most remarkable features of tannin-based foams are the following: mechanical resistance similar to, or higher than, that of commercial phenolic foams, tuneable pore size and permeability, infusibility, very low thermal conductivity, cheapness, ecological character, high resistance to flame and to chemicals. Carbon foams have even better properties and are also electrically conducting. Consequently, various applications are suggested for organic foams: cores of sandwich composite panels, sound and shock absorbers and thermal insulators, whereas carbon foams can be used as porous electrodes, filters for molten metals and corrosive chemicals, catalyst supports and adsorbents.

  2. Differentiation study of porous hydroxyapatite body fabricated by using three different additives

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Idris Besar; Rusnah Mustaffa; Mohd Reusmaazran Yusof

    2005-01-01

    Porous hydroxyapatite is suitable for bone surgery applications because it allows bone ingrowth and promotes faster healing. In this study, a porous hydroxyapatite body was fabricated by slip casting route, followed by a comprehensive investigation of its physical properties. The porous body was prepared by mixing the hydroxyapatite slurry with three different additives namely; sago beads, potassium oleate and sodium dodecyl sulphate (SDS). The mixture of slurry and additives was then casted in plaster mold before it was dried and sintered at high temperature. The structure of the porous body could be tailored by using different composition and parameters of the additives; sago beads (pore former agent), potassium oleate (foaming agent) and SDS (foaming agent). The role of these three additives was investigated by several chemical, physical and mechanical evaluations method. The identification of additives was determined by FTIR, the porosity of porous hydroxyapatite was measured by Densitometer and the morphology of the porous structure was observed under Scanning Electron Microscopy and Image Analyzer. The results showed that potassium oleate contribute significantly towards porosity. However the resulting porosity would actually very dependent on the proportions of the additives, the more additives being added, the higher the porosity. All three additives produced macrostructure with pores larger than 100 mm, however the one produced by using sago beads showed a less pore interconnection structure compared to those obtained by both foaming agent. Playing with different proportions of these additives, it was possible to improve the foam stability, size of pores and pore connectivity in order to reproduce the porous hydroxyapatite body that having a similar pore structure of the natural bone. (Author)

  3. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  4. Microstructural characterization of porous materials by X-ray microtomography and gamma ray transmission techniques

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo

    2006-01-01

    This work presents the application of the X-ray microtomography and gamma ray transmission techniques for the microstructure characterization of different kinds of materials. Total porosity, pore size distribution and the two point correlation functions were measured. The two point correlation function, which allows the reconstruction of 3D models, was carried out for two samples. Seven ceramic tablets of Alumina (Al 2 O 3 ), seven tablets of Boron Carbide (B 4 C), three samples of sedimentary rocks and one sample of Titanium foam were analyzed. The experimental set up for the Gamma Ray Transmission technique consisted of: a 2'' x 2'' crystal NaI(Tl) detector, an 241 Am radioactive source (59,53 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Two microtomography systems were used: a Fein Focus system, constituted by an X-ray tube, operated at 160 kV and 0.3 to 1.1 mA, a CCD camera and the movement sample system, and a Skyscan system, model 1072, with a X-ray tube operated at 100 kV and 100μA, and a CCD camera. The ceramic tablets, analyzed by the gamma ray transmission technique presented results for most of the porosities data with smaller confidence intervals and inside the intervals supplied by the tablets manufacturer. The Titanium porous sample was analyzed by the two techniques, its microtomography images achieved a resolution of 17μm, obtained employing the Fein Focus system. For both techniques, this sample showed high porosity, which allows its application for this purpose. The sandstones samples were analyzed by the Skyscan system, achieving resolutions of 19μm, 11μm and 3.8μm for each sample, respectively. The resolutions of 11μm and 3.8μm were the ones that generated better 2D sections for the respective samples and, consequently, more reliable porosities. The 3.8μm resolution was the one that best quantified the pore size distribution data, showing information not shown by

  5. Microstructural characterization, petrophysics and upscaling - from porous media to fractural media

    Science.gov (United States)

    Liu, J.; Liu, K.; Regenauer-Lieb, K.

    2017-12-01

    We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging

  6. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)

    2008-12-30

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of {approx}21-{approx}55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of {approx}3400-{approx}6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  7. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-12-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of ˜21-˜55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of ˜3400-˜6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  8. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of ∼21-∼55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of ∼3400-∼6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  9. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  10. Stress wave propagation and mitigation in two polymeric foams

    Science.gov (United States)

    Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael

    2017-06-01

    Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.

  11. Porous hydroxyapatite composite with alumina for bone repair

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Mohd Reusmaazran Mohd Yusof; Idris Besar

    2010-01-01

    Porous fabrications, a number of techniques were investigated using polyurethane foam as the scaffold. These techniques involve dipping of the foam into a slurry prepared by mixing of HA+Al 2 O 3 powder with PVA and Sago as binder and subjecting to burn off procedure to get the porous products. Sintering parameter was studied at 1100, 1200 and 1300 degree Celsius. Initially HA powder was prepared by the sol-gel precipitation method using calcium hydroxide and ortho-phosphoric acid meanwhile Al 2 O 3 powder from supplier (MERK). The fine HA powder, measuring 2 O 3 . These techniques also produce the uniformity pore shape. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy analysis (SEM) and compression strength were studied. Mechanical properties showing that the composite of porous HA+Al 2 O 3 gives higher maximum compression strength compared to the porous hydroxyapatite itself. Observation from this studied the increasing of temperature will increase the strength. (author)

  12. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  13. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass; Influencia da temperatura de queima na microestrutura de espumas vitreas obtidas a partir de residuos de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P., E-mail: andrea_pokorny@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2012-07-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MnO{sub 2}, Na{sub 2}O, K{sub 2}O, TiO{sub 2} and P{sub 2}O{sub 5}). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  14. Facile synthesis of porous graphene as binder-free electrode for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guangsheng [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Academy of Space Technolgy, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Haifu, E-mail: haifuh@gmail.com [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); College of Physics Science and Engineering, Guangxi University, Nanning 530004 (China); Lei, Chenglong; Cheng, Zhenzhi; Wu, Xiaoshan [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Tang, Shaolong, E-mail: tangsl@nju.edu.cn [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Our results provide a facile method to fabricate a binder-free porous rGO electrode for supercapacitors. • Polystyrene (PS) colloidal particles were used as spacers to prepare high-performance porous grapheme deposited directly on Ni foam substrate. • The specific capacitance of the rGO/NF electrode decreased by 7% after 2000 cycles and high rate capability of 53% capacitance retention at 100 A g{sup −1}. - Abstract: Here, porous grapheme oxide (GO) gel deposited on nickel foam was prepared by using polystyrene (PS) colloidal particles as spacers for use as electrodes in high rate supercapacitors, then reduced by Vitamin C aqueous solution in ambient condition. The PS particles were surrounded by reduced graphene oxide (rGO) sheets, forming crinkles and rough textures. When PS particles were selectively removed, rGO gel coated on the skeleton of Ni foam can formed an open porous structure, which prevents elf-aggregation and restacking of graphene sheets. The porous rGO-based supercapacitors exhibit excellent electrochemical performances such as a specific capacitance of 152 F g{sup −1} at 1 A g{sup −1}, high rate capability of 53% capacitance retention upon a current increase to 100 A g{sup −1} and good cycle stability, due to effective rapid and short pathways for ionic and electronic transport provided by the sub-micrometer structure of rGO gel and 3D interconnected network of Ni foam.

  15. Rate Dependence of the Compressive Response of Ti Foams

    Directory of Open Access Journals (Sweden)

    Nik Petrinic

    2012-06-01

    Full Text Available Titanium foams of relative density ranging from 0.3 to 0.9 were produced by titanium powder sintering procedures and tested in uniaxial compression at strain rates ranging from 0.01 to 2,000 s−1. The material microstructure was examined by X-ray tomography and Scanning Electron Microscopy (SEM observations. The foams investigated are strain rate sensitive, with both the yield stress and the strain hardening increasing with applied strain rate, and the strain rate sensitivity is more pronounced in foams of lower relative density. Finite element simulations were conducted modelling explicitly the material’s microstructure at the micron level, via a 3D Voronoi tessellation. Low and high strain rate simulations were conducted in order to predict the material’s compressive response, employing both rate-dependant and rate-independent constitutive models. Results from numerical analyses suggest that the primary source of rate sensitivity is represented by the intrinsic sensitivity of the foam’s parent material.

  16. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  17. Time-dependent crashworthiness of polyurethane foam

    Science.gov (United States)

    Basit, Munshi Mahbubul; Cheon, Seong Sik

    2018-05-01

    Time-dependent stress-strain relationship as well as crashworthiness of polyurethane foam was investigated under constant impact energy with different velocities, considering inertia and strain-rate effects simultaneously during the impact testing. Even though the impact energies were same, the percentage in increase in densification strain due to higher impact velocities was found, which yielded the wider plateau region, i.e. growth in crashworthiness. This phenomenon is analyzed by the microstructure of polyurethane foam obtained from scanning electron microscopy. The equations, coupled with the Sherwood-Frost model and the impulse-momentum theory, were employed to build the constitutive equation of the polyurethane foam and calculate energy absorption capacity of the foam. The nominal stress-strain curves obtained from the constitutive equation were compared with results from impact tests and were found to be in good agreement. This study is dedicated to guiding designer use polyurethane foam in crashworthiness structures such as an automotive bumper system by providing crashworthiness data, determining the crush mode, and addressing a mathematical model of the crashworthiness.

  18. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  19. Notch-strengthening in two-dimensional foams

    NARCIS (Netherlands)

    Onck, P.R.

    Metallic foams show notch-strengthening behavior when analyzing double-edge notched specimen in compression and tension. A discrete microstructural model has been used to simulate the effect of notch depth and specimen size on the net-section-strength. The non-uniform deformation behavior is

  20. Auxetic Polyurethane Foam (Fabrication, Properties and Applications)

    International Nuclear Information System (INIS)

    Yousif, H.I.Y.

    2012-01-01

    Modern technology requires new materials of special properties. For the last two decades there has been a great interest in a class of materials known as auxetic materials. An auxetic material is a material that has a negative Poisson's ratio which means that this material expands laterally when they subjected to a tensile force unlike most of the other traditional materials. This material has superior properties over the traditional material such as high shear modulus and high impact resistance, which makes this material a good candidate for many engineering applications. In the present research work, auxetic flexible polyurethane polymeric foams having different densities were fabricated from conventional flexible polyurethane polymeric foam at different compression ratios. The microstructure of conventional and processed foams was examined by optical microscope to compare between the two structures. The microstructure of processed foam was compared with the one presented in the literature and it has shown the auxetic structure configuration. This is the first time to produce auxetic foam in Egypt. Conventional and auxetic foam samples having cylindrical and square cross-sections were produced from foams having different densities (25 kg/m 3 and 30 kg/m 3 ). The compression ratios used to produce the auxetic samples are (5.56, 6.94 and 9.26). Four mechanical tests were carried out to get the mechanical properties for both conventional and auxetic foams. Two quasi-static mechanical tests t ension and compression a nd two dynamic mechanical tests H ysteresis and resilience w ere carried out to compare between the conventional and auxetic foams. The quasi-static tensile test was carried out at speed was adjusted to be position control rate of 0.2 mm/s. The compression and hysteresis tests were carried out at strain control rate of 0.3 S -1 . The data recorded from the machine were stress and strain. The modulus of elasticity and Poisson's ratio of the test

  1. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.

    Science.gov (United States)

    Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    International Nuclear Information System (INIS)

    Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua

    2017-01-01

    Highlights: • Hierarchical porous graphene foam prepared by templating and embossing method.. • Vertically PANI nanowires aligned on interconnected porous graphene sheets. • The fRGO-F/PANI device exhibited 939 F g"−"1 at 1 A g"−"1. • ED and PD of fRGO-F/PANI device was 20.9 Wh kg"−"1 and 103.2 kW kg"−"1. - Abstract: Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile “templating and embossing” technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g"−"1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg"−"1 and 103.2 kW kg"−"1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  3. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pingping [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Department of Materials Science, Fudan University, Shanghai 200433 (China); Zhao, Xin, E-mail: xzhao@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Li, Yingzhi [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2017-01-30

    Highlights: • Hierarchical porous graphene foam prepared by templating and embossing method.. • Vertically PANI nanowires aligned on interconnected porous graphene sheets. • The fRGO-F/PANI device exhibited 939 F g{sup −1} at 1 A g{sup −1}. • ED and PD of fRGO-F/PANI device was 20.9 Wh kg{sup −1} and 103.2 kW kg{sup −1}. - Abstract: Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile “templating and embossing” technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g{sup −1}. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg{sup −1} and 103.2 kW kg{sup −1}, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  4. Technological parameters influence on the non-autoclaved foam concrete characteristics

    Science.gov (United States)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  5. Modeling approaches to natural convection in porous media

    CERN Document Server

    Su, Yan

    2015-01-01

    This book provides an overview of the field of flow and heat transfer in porous medium and focuses on presentation of a generalized approach to predict drag and convective heat transfer within porous medium of arbitrary microscopic geometry, including reticulated foams and packed beds. Practical numerical methods to solve natural convection problems in porous media will be presented with illustrative applications for filtrations, thermal storage and solar receivers.

  6. Steam foam studies in the presence of residual oil

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.A.; Demiral, B.; Castanier, L.M.

    1992-05-01

    The lack of understanding regarding foam flow in porous media necessitates further research. This paper reports on going work at Stanford University aimed at increasing our understanding in the particular area of steam foams. The behavior of steam foam is investigated with a one dimensional (6 ft. {times} 2.15 in.) sandpack under residual oil conditions of approximately 12 percent. The strength of the in-situ generated foam, indicated by pressure drops, is significantly affected by injection procedure, slug size, and steam quality. The surfactant concentration effect is minor in the range studied. In the presence of residual oil the simultaneous injection of steam and surfactant fails to generate foam in the model even though the same procedure generates a strong foam in the absence of oil. Nevertheless when surfactant is injected as a slug ahead of the steam using a surfactant alternating (SAG) procedure, foam is generated. The suggested reason for the success of SAG is the increased phase mixing that results from steam continually having to reestablish a path through a slug of surfactant solution.

  7. Effect of Microstructure Evolution on the Overall Response of Porous-Plastic Solids

    Directory of Open Access Journals (Sweden)

    Stefano Mariani

    2010-02-01

    Full Text Available Ductile fracture is the macroscopic result of a micromechanical process consisting in void nucleation and growth to coalescence. While growing in size, voids also evolve in shape because of the non-uniform deformation field in the surrounding material; this shape evolution is either disregarded or approximately accounted for by constitutive laws for porous-plastic solids. To assess the effect of void distortion on the overall properties of a porous-plastic material prior to any coalescence-dominated event, we here present a micromechanical study in which the void-containing material is treated as a two-phase (matrix and inclusion composite. A cylindrical representative volume element (RVE, featuring elliptic cross-section and containing a coaxial and confocal elliptic cylindrical cavity, is considered. In case of a matrix obeying J2 flow theory of plasticity, the overall yield domain and the evolution laws for the volume fraction and aspect ratio of the void are obtained. Under assigned strain histories, these theoretical findings are then compared to finite element unit-cell simulations, in order to assess the capability of the proposed results to track microstructure evolution. The improvements with respect to the customarily adopted Gurson’s model are also discussed.

  8. Fabrication of FeAl Intermetallic Foams by Tartaric Acid-Assisted Self-Propagating High-Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Karczewski

    2018-04-01

    Full Text Available Iron aluminides are intermetallics with interesting applications in porous form thanks to their mechanical and corrosion resistance properties. However, making porous forms of these materials is not easy due to their high melting points. We formed FeAl foams by elemental iron and aluminum powders sintering with tartaric acid additive. Tartaric acid worked as an in situ gas-releasing agent during the self-propagating high-temperature synthesis of FeAl intermetallic alloy, which was confirmed by X-ray diffraction measurements. The porosity of the formed foams was up to 36 ± 4%. In the core of the sample, the average equivalent circle diameter was found to be 47 ± 20 µm, while on the surface, it was 35 ± 16 µm; thus, the spread of the pore size was smaller than reported previously. To investigate functional applications of the formed FeAl foam, the pressure drop of air during penetration of the foam was examined. It was found that increased porosity of the material increased the flow of the air through the metallic foam.

  9. Water-Blown Polyurethane Foams Showing a Reversible Shape-Memory Effect

    Directory of Open Access Journals (Sweden)

    Elena Zharinova

    2016-11-01

    Full Text Available Water-blown polyurethane (PU foams are of enormous technological interest as they are widely applied in various fields, i.e., consumer goods, medicine, automotive or aerospace industries. The discovery of the one-way shape-memory effect in PU foams provided a fresh impetus for extensive investigations on porous polymeric actuators over the past decades. High expansion ratios during the shape-recovery are of special interest when big volume changes are required, for example to fill an aneurysm during micro-invasive surgery or save space during transportation. However, the need to program the foams before each operation cycle could be a drawback impeding the entry of shape-memory polymeric (SMP foams to our daily life. Here, we showed that a reversible shape-memory effect (rSME is achievable for polyurethane water-blown semicrystalline foams. We selected commercially available crystallizable poly(ε-caprolactone-diols of different molecular weight for foams synthesis, followed by investigations of morphology, thermal, thermomechanical and shape-memory properties of obtained compositions. Densities of synthesized foams varied from 110 to 180 kg∙m−3, while peak melting temperatures were composition-dependent and changed from 36 to 47 °C, while the melting temperature interval was around 15 K. All semicrystalline foams exhibited excellent one-way SME with shape-fixity ratios slightly above 100% and shape-recovery ratios from the second cycle of 99%. The composition with broad distribution of molecular weights of poly(ε-caprolactone-diols exhibited an rSME of about 12% upon cyclic heating and cooling from Tlow = 10 °C and Thigh = 47 °C. We anticipate that our experimental study opens a field of systematic investigation of rSMEs in porous polymeric materials on macro and micro scale and extend the application of water-blown polyurethane foams to, e.g., protective covers with zero thermal expansion or even cushions adjustable to a certain body

  10. Simulation of FIB-SEM images for analysis of porous microstructures.

    Science.gov (United States)

    Prill, Torben; Schladitz, Katja

    2013-01-01

    Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.

  11. DRY MIX FOR OBTAINING FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available Composition of a dry mix has been developed for production of non-autoclaved foam concrete with natural curing. The mix has been created on the basis of Portland cement, UFAPORE foaming agent, mineral additives (RSAM sulfoaluminate additive, MK-85 micro-silica and basalt fiber, plasticizing and accelerating “Citrate-T” additive and   redispersible Vinnapas-8034 H powder. It has been established that foam concrete with  density of 400–800 kg/m3, durability of 1,1–3,4 MPa, low water absorption (40–50 %, without shrinkable cracks has been formed while adding water of Water/Solid = 0.4–0.6 in the dry mix,  subsequent mechanical swelling and curing of foam mass.Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and  time reduction of its drying and curing. An investigation on microstructure of foam-concrete chipping surface carried out with the help of a scanning electron microscope has shown that the introduction of  basalt fiber and redispersible Vinnapas-8034 H powder into the composition of the dry mix promotes formation of more finely-divided crystalline hydrates. Such approach makes it possible to change purposefully morphology of crystalline hydrates and gives the possibility to operate foam concrete structurization process.

  12. Nitrogen-Doped Banana Peel-Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors.

    Science.gov (United States)

    Liu, Bingzhi; Zhang, Lili; Qi, Peirong; Zhu, Mingyuan; Wang, Gang; Ma, Yanqing; Guo, Xuhong; Chen, Hui; Zhang, Boya; Zhao, Zhuangzhi; Dai, Bin; Yu, Feng

    2016-01-15

    Nitrogen-doped banana peel-derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m²/g, large pore volume of 0.77 cm³/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.

  13. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bingzhi Liu

    2016-01-01

    Full Text Available Nitrogen-doped banana peel–derived porous carbon foam (N-BPPCF successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m2/g, large pore volume of 0.77 cm3/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.

  14. CT-Based Micro-Mechanical Approach to Predict Response of Closed-Cell Porous Biomaterials to Low-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mehrdad Koloushani

    2018-03-01

    Full Text Available In this study, a new numerical approach based on CT-scan images and finite element (FE method has been used to predict the mechanical behavior of closed-cell foams under impact loading. Micro-structural FE models based on CT-scan images of foam specimens (elastic-plastic material model with material constants of bulk aluminum and macro-mechanical FE models (with crushable foam material model with material constants of foams were constructed. Several experimental tests were also conducted to see which of the two noted (micro- or macro- mechanical FE models can better predict the deformation and force-displacement curves of foams. Compared to the macro-structural models, the results of the micro-structural models were much closer to the corresponding experimental results. This can be explained by the fact that the micro-structural models are able to take into account the interaction of stress waves with cell walls and the complex pathways the stress waves have to go through, while the macro-structural models do not have such capabilities. Despite their high demand for computational resources, using micro-scale FE models is very beneficial when one needs to understand the failure mechanisms acting in the micro-structure of a foam in order to modify or diminish them.

  15. Porous media microstructure reconstruction using pixel-based and object-based simulated annealing: comparison with other reconstruction methods

    Energy Technology Data Exchange (ETDEWEB)

    Diogenes, Alysson N.; Santos, Luis O.E. dos; Fernandes, Celso P. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Appoloni, Carlos R. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2008-07-01

    The reservoir rocks physical properties are usually obtained in laboratory, through standard experiments. These experiments are often very expensive and time-consuming. Hence, the digital image analysis techniques are a very fast and low cost methodology for physical properties prediction, knowing only geometrical parameters measured from the rock microstructure thin sections. This research analyzes two methods for porous media reconstruction using the relaxation method simulated annealing. Using geometrical parameters measured from rock thin sections, it is possible to construct a three-dimensional (3D) model of the microstructure. We assume statistical homogeneity and isotropy and the 3D model maintains porosity spatial correlation, chord size distribution and d 3-4 distance transform distribution for a pixel-based reconstruction and spatial correlation for an object-based reconstruction. The 2D and 3D preliminary results are compared with microstructures reconstructed by truncated Gaussian methods. As this research is in its beginning, only the 2D results will be presented. (author)

  16. Facile fabrication and configuration design of Co3O4 porous acicular nanorod arrays on Ni foam for supercapacitors.

    Science.gov (United States)

    Jiang, Tongtong; Yang, Siyu; Bai, Zhiman; Dai, Peng; Yu, Xinxin; Wu, Mingzai; Hu, Haibo

    2018-05-11

    The configuration of electrode materials is of great significance to the performance of supercapacitors (SCs) because of its direct effects on specific surface area and electron transfer path. Given this, herein, a series of Co3O4 hierarchical configurations composed of porous acicular nanorods are designedly synthesized on Ni foam with in-site self-organization method depending on the addition of NH4F. In the absence of NH4F, Co3O4 nanorods self-assemble into porous urchin-like structure (PULS), while the introduction of NH4F can induce the vertical growth of Co3O4 acicular nanorods, forming porous acicular nanorod arrays (PANRAs). By simply tuning the concentration of NH4F, the Co3O4 PANRAs with different specific surface area can be obtained. As expected, Co3O4 PANRAs electrode for SCs (using 1 mmol of NH4F) exhibits high specific capacitance (1486 F g-1 at 1 A g-1) and excellent cycling stability (98.8 % retention after 5000 continuous charge-discharge cycles), which are better than those of Co3O4 PULS electrode (658.2 F g-1 at 1 A g-1, 90.4 %). Corresponding solid-state symmetric SC achieves a high energy density of 48.63 Wh kg-1 at power density of 600 W kg-1. Such superior performance is attributed to fast charge-transfer kinetics, facile electron transport and ions diffusion rate resulting from porous array structure, indicating the importance of configuration design of electrode materials for high performance SCs. © 2018 IOP Publishing Ltd.

  17. Drug delivery properties of macroporous polystyrene solid foams.

    Science.gov (United States)

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  18. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  19. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Science.gov (United States)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  20. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  1. Determination of effective thermal conductivity for polyurethane foam by use of fractal method

    Institute of Scientific and Technical Information of China (English)

    SHI Mingheng; LI Xiaochuan; CHEN Yongping

    2006-01-01

    The microstructure of polyurethane foam is disordered, which influences the foam heat conduction process significantly. In this paper foam structure is described by using the local area fractal dimension in a certain small range of length scales. An equivalent element cell is constructed based on the local fractal dimensions along the directions parallel and transverse to the heat flux. By use of fractal void fraction a simplified heat conduction model is proposed to calculate the effective thermal conductivity of polyurethane foam. The predicted effective thermal conductivity agrees well with the experimental data.

  2. Exploiting novel sterilization techniques for porous polyurethane scaffolds.

    Science.gov (United States)

    Bertoldi, Serena; Farè, Silvia; Haugen, Håvard Jostein; Tanzi, Maria Cristina

    2015-05-01

    Porous polyurethane (PU) structures raise increasing interest as scaffolds in tissue engineering applications. Understanding the effects of sterilization on their properties is mandatory to assess their potential use in the clinical practice. The aim of this work is the evaluation of the effects of two innovative sterilization techniques (i.e. plasma, Sterrad(®) system, and ozone) on the morphological, chemico-physical and mechanical properties of a PU foam synthesized by gas foaming, using water as expanding agent. In addition, possible toxic effects of the sterilization were evaluated by in vitro cytotoxicity tests. Plasma sterilization did not affect the morphological and mechanical properties of the PU foam, but caused at some extent degradative phenomena, as detected by infrared spectroscopy. Ozone sterilization had a major effect on foam morphology, causing the formation of new small pores, and stronger degradation and oxidation on the structure of the material. These modifications affected the mechanical properties of the sterilized PU foam too. Even though, no cytotoxic effects were observed after both plasma and ozone sterilization, as confirmed by the good values of cell viability assessed by Alamar Blue assay. The results here obtained can help in understanding the effects of sterilization procedures on porous polymeric scaffolds, and how the scaffold morphology, in particular porosity, can influence the effects of sterilization, and viceversa.

  3. Effects of Sb2O3 on the Mechanical Properties of the Borosilicate Foam Glasses Sintered at Low Temperature

    Directory of Open Access Journals (Sweden)

    Chenxi Zhai

    2014-01-01

    Full Text Available The physical properties and microstructure of a new kind of borosilicate foam glasses with different Sb2O3 doping content are comprehensively investigated. The experimental results show that appropriate addition of Sb2O3 has positive impact on the bulk porosity and compressive strength of the foam glass. It is more suitable in this work to introduce 0.9 wt.% Sb2O3 into the Na2O-K2O-B2O3-Al2O3-SiO2 basic foam glass component and sinter at 775°C. And the obtained foam glasses present much more uniform microstructure, large pore size, and smooth cell walls, which bring them with better performance including a lower bulk density, low water absorption, and an appreciable compressive strength. The microstructure analysis indicates that, with the increase of the content of Sb2O3 additives, the cell size tends to increase at first and then decreases. Larger amounts of Sb2O3 do not change the crystalline phase of foam glass but increase its vitrification. It is meaningful to prepare the foam glass at a relatively low temperature for reducing the heat energy consumption.

  4. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    Science.gov (United States)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction

  5. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    Science.gov (United States)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  6. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  7. Improved construction materials for polar regions using microcellular thermoplastic foams

    Science.gov (United States)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  8. Microstructural characterization of industrial foams by gamma ray transmission and X-ray microtomography; Caracterizacao microestrutural de espumas industriais por transmissao de raios gama e microtomografia de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Luiz Eduardo

    2004-07-01

    This work presents the total porosity measurements of the aluminum and silicon carbide (SiC) foams samples. For porosity determination the gamma ray transmission and X-ray microtomography with conic beam techniques were used. These methods have more advantage than conventional ones, because they are non destructive and provide more details of the analyzed material porous structure. The aluminum foam samples with 10, 20, 30, 40 and 45 ppi (pores per inch) and SiC ceramic foam samples with 20, 30, 45, 60, 75, 80 and 90 ppi were analysed by gamma transmission. The SiC 60, 75 and 90 ppi samples were also analyzed by X-ray microtomography. For the gamma ray transmission measurements it was used an {sup 241} Am source (59.53 keV), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyzer, at the LFNA/UEL. For the X-ray microtomographic measurements, the Fein Focus X-ray system of the Nuclear Instrumentation Laboratory of the COPPE, located at the Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, was used. This equipment provide us images with micrometric resolution (53.48 {mu}m) using a conic X-ray beam and bidimensional detection. The microtomographic images were pre-processed and analyzed by the Imago software, developed at Porous Media and Materials Thermophysical Properties Laboratory (LMPT) of the Mechanical Engineering Department, located at Universidade Federal de Santa Catarina, Florianopolis, SC. Employing the The Imago software it was calculated the total porosity, pore size distribution and autocorrelation function C(u) of the binarized microtomographic images of the each sample. The microtomographic 3-D image of each sample was compared with 3-D image reconstructed by the Gaussian truncated method. This method generates a periodic 3-D porous structure by using of the autocorrelation function of one 2-D cross sectional image of the sample. (author)

  9. Properties and Characterization of Kenaf-Filled Natural Rubber Latex Foam

    Directory of Open Access Journals (Sweden)

    Ahmad Fikri Abdul Karim

    2015-12-01

    Full Text Available Kenaf powder was incorporated with natural rubber latex (NRL compound and foamed to make natural rubber latex foam (NRLF by using a well known technique called the Dunlop method. Different loadings of kenaf powder were added to NRL compound and was foamed to make NRLF. The mechanical properties, density, compression, thermal, and micro-structural characterization of control NRLF and kenaf incorporated NRLF were studied. Increasing content of kenaf reduced the tensile strength, elongation at break, and compressive strength of a NRLF. Modulus at 100% elongation and density of the NRLF increased with an increase in filler loading. Higher kenaf loading indicated higher elasticity of kenaf-filled NRLF, but the recovery percentage of kenaf-filled NRLF decreased with increasing kenaf loading. From thermogravimetric analysis (TGA result, an increase in the amount of kenaf loading from 1 to 7 phr increased the thermal stability of kenaf-filled NRLF. Morphological and micro-structural characterization performed by using scanning electron microscopy (SEM showed that kenaf powder filled up the micro-sized pores in the open cell structure of kenaf-filled NRLF.

  10. Synthesis, Characterization and Application of Multiscale Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hussami, Linda

    2010-07-01

    This thesis work brings fresh insights and improved understanding of nano scale materials through introducing new hybrid composites, 2D hexagonal in MCM-41 and 3D random interconnected structures of different materials, and application relevance for developing fields of science, such as fuel cells and solar cells. New types of porous materials and organometallic crystals have been prepared and characterized in detail. The porous materials have been used in several studies: as hosts to encapsulate metal-organic complexes; as catalyst supports and electrode materials in devices for alternative energy production. The utility of the new porous materials arises from their unique structural and surface chemical characteristics as demonstrated here using various experimental and theoretical approaches. New single crystal structures and arene-ligand exchange properties of f-block elements coordinated to ligand arene and halogallates are described in Paper I. These compounds have been incorporated into ordered 2D-hexagonal MCM-41 and polyhedral silica nano foam (PNF-SiO{sub 2}) matrices without significant change to the original porous architectures as described in Paper II and III. The resulting inorganic/organic hybrids exhibited enhanced luminescence activity relative to the pure crystalline complexes. A series of novel polyhedral carbon nano foams (PNF-C's) and inverse foams were prepared by nano casting from PNF-SiO{sub 2}'s. These are discussed in Paper IV. The synthesis conditions of PNF-C's were systematically varied as a function of the filling ratio of carbon precursor and their structures compared using various characterization methods. The carbonaceous porous materials were further tested in Paper V and VI as possible catalysts and catalyst supports in counter- and working electrodes for solar- and fuel cell applications

  11. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    Science.gov (United States)

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Naturally cured foamed concrete with improved thermal insulation properties

    Directory of Open Access Journals (Sweden)

    Mashkin Nikolay

    2018-01-01

    Full Text Available The paper is dedicated to investigation on improvement of thermal insulation properties of non-autoclaved concrete by increasing aggregate stability of foamed concrete mixture. The study demonstrates influence of mineral admixtures on the foam stability index in the mortar mixture and on decrease of foamed concrete density and thermal conductivity. The effect of mineral admixtures on thermal conductivity properties of non-autoclaved concrete was assessed through different ways of their addition: to the foam and to the mortar mixture. The admixtures were milled up to the specific surface area of 300 and 600 m2/kg using an AГO-9 centrifugal attrition mill with continuous operation mode (Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. Laboratory turbulent foam concrete mixer was used to prepare foamed concrete. Thermal conductivity coefficient was defined by a quick method using “ИTП-MГ 4 “Zond” thermal conductivity meter in accordance with the regulatory documents. The impact of modifiers on the foam structure stability was defined using the foam stability index for the mortar mixture. The research demonstrated the increase in stability of porous structure of non-autoclaved concrete when adding wollastonite and diopside. Improvement of thermal and physical properties was demonstrated, the decrease of thermal conductivity coefficient reaches 0.069 W/(m×°C

  13. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  14. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    Science.gov (United States)

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  15. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  16. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  17. Variation in thermal conductivity of porous media due to temperature and pressure

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2003-01-01

    In the last decade, a great amount of attention has been paid to the study of the temperature dependence of the thermal transport properties of insulating materials. Thermal insulators constitute one of the major areas of the porous ceramic consumption. Measurements of thermal transport properties are important tools in this field. In the present work a set of synthetic porous insulating foams, used as insulating materials is studied. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials in air and then volumetric heat capacity is calculated. The study of thermal transport properties of three synthetic porous insulators that are foam, closed cell foam and fiberglass, under different conditions of temperature pressure and with corresponding densities was done. Due to this research it is possible to work out the material with optimum performance, lower thermal expansion and conductivity, high temperature use, low as well as high-pressure use, so that the insulation with high margin of safety and space with lower cost could be obtained. As a result the proper type of insulation can be recommended in accordance with the specific application. The change in the temperature and pressure causes different behavior on the samples, even then all these samples are suitable for insulation purposes in scientific and commercial fields. Foam is the best choice because of its lowest thermal conductivity values, fiberglass is a better choice because of its consistency, and closed cell foam is the third choice because of its plastic nature and high density. (author)

  18. Preparation of sintered foam materials by alkali-activated coal fly ash.

    Science.gov (United States)

    Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling

    2010-02-15

    Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.

  19. Enhancing heavy oil recovery using foam injection in applications to cyclic steam stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada); Yuan, J.Y. [Canadian Natural Resources Ltd., Calgary, AB (Canada)

    2008-07-01

    Cyclic steam stimulation (CSS) is a widely used heavy oil production technology. However, steam-based processes that are not stabilized can develop conformance as the steam can over-ride and channel past oil-bearing zones. This presentation discussed a refined CSS steam foaming process designed to improve recovery in marginal cycles. Laboratory studies were initially conducted to examine surfactant properties and flow behaviour in porous media. The results of numerical simulations were then applied to the steam-foaming portion of the CSS process. Results of the study showed that during the foam co-injection with steam stage, the steam injection rate did not alter. Improvement to the CSS process varied, indicating that earlier foam forming surfactant co-injection was preferable when steam-foam performance was constant in all cycles. It was concluded that the steam foaming process may improve bitumen production without requiring additional steam. 13 refs., 5 figs.

  20. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Dorian K. [Northwestern University, Evanston, IL (United States); O' Dwyer, John G. [Waterford Institute of Technology (Ireland); Davis, Graham R. [Queen Mary, University of London (United Kingdom); Cady, Carl M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gray, George T. [Los Alamos National Laboratory, Los Alamos, NM (United States); Dunand, David C. [Northwestern University, Evanston, IL (United States)]. E-mail: dunand@northwestern.edu

    2005-01-25

    Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from -100 to -230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy-matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45 deg. to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.

  1. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Kimes, Katerina A.; Stevens, Erica L.; Toman, Jakub; Krimer, Yuval L.; Ullakko, Kari; Chmielus, Markus

    2017-01-01

    This study investigated microstructural evolution, phase transformation and magnetic behavior of additively manufactured magnetic shape memory alloy foam. Pre-alloyed angular Ni-Mn-Ga ball-milled powder was binder jet printed and sintered at 1020 °C for 4 h in both vacuum and argon atmospheres. Porosity of the manufactured foams was studied using micro-computed x-ray tomography and it was found that the relative density of the sintered parts was about 50–60%. In the printed sample that was sintered in argon, electron microscopy with elemental analysis showed no compositional gradient. X-ray diffraction indicated that 10M modulated martensite was present in the pre-alloyed powder as well as the sample sintered in argon. Differential scanning calorimetry and thermomagnetic results showed that martensitic transformation of the sample sintered in argon was at 34 °C, while barely detectable in the sample sintered in vacuum. Saturation magnetization of the printed sample sintered in argon atmosphere was around 68.4 Am"2/kg. Production of a magnetic shape memory alloy by printing would enable complex-shaped elements for demanding applications, and intentionally including porosity could allow these polycrystals to exhibit the magnetic shape memory effect. Therefore, a facile method for sintering of Ni–Mn–Ga printed parts has been presented for the first time.

  2. Foam stabilization by solid particle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Pitois, O. [UniversiteParis-Est Marne-La-Valle, Lab. Physique des Materiaux Divises et des Interfaces (LPMDI), 77 - Marne la Vallee (France)

    2008-07-01

    During the dismantling of nuclear facilities, radioactive deposits on exposed areas are removed and solubilized by successive rinses of reactive liquid. Using this liquid in a foam state reduces the amount of resulting wastes. During the required decontamination time (1 to 5 hours) the foam has to be sufficiently wet (1). In the Laboratory of Advanced Processes for Decontamination, new formulations are currently studied to slow down the drainage kinetics of these foams, by adding colloidal particles of hydrophilic fumed silica into the classical mixtures of well-defined non ionic foaming surfactants previously used (2). The objective of our study is to shed light on the foam surprising stability induced by these particles. The study focuses on drainage of foams generated by air sparging through a suspension lying on a porous glass. The foaming suspensions contain between 0 and 70 g.L-1 of a fumed silica (Aerosil 380) which is well-known to form gels for concentrations above 200 g.L{sup -1}. In the studied solutions this silica builds up into aggregates of dozens of microns, whose volume-averaged mean diameter after sonication is centred around 300 nm. Under gentle stirring, they display no sign of re-aggregation during 24 h. On a free drainage configuration, a foam that contains particles keeps a significant amount of its initial liquid: up to 60 % during up to 5 hours, in contrast to classical foams that drain out all of their liquid in about 20 minutes. From a rheological point of view, the most concentrated suspensions display a yield stress behaviour. This evidences the structuring of the aggregates into a coherent network that might explain the incomplete drainage of the solutions. For the lowest concentrated solutions, such rheological properties have not been observed although the corresponding foams can retain large amount of solution. This suggests that local concentrations of aggregates can rise owing to their retention by foam channels, until they form

  3. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams.

    Science.gov (United States)

    Chatterjee, Soumyajyoti; Shanmuganathan, Kadhiravan; Kumaraswamy, Guruswamy

    2017-12-27

    Polymeric foams used in furniture and automotive and aircraft seating applications rely on the incorporation of environmentally hazardous fire-retardant additives to meet fire safety norms. This has occasioned significant interest in novel approaches to the elimination of fire-retardant additives. Foams based on polymer nanocomposites or based on fire-retardant coatings show compromised mechanical performance and require additional processing steps. Here, we demonstrate a one-step preparation of a fire-retardant ice-templated inorganic/polymer hybrid that does not incorporate fire-retardant additives. The hybrid foams exhibit excellent mechanical properties. They are elastic to large compressional strain, despite the high inorganic content. They also exhibit tunable mechanical recovery, including viscoelastic "memory". These hybrid foams are prepared using ice-templating that relies on a green solvent, water, as a porogen. Because these foams are predominantly comprised of inorganic components, they exhibit exceptional fire retardance in torch burn tests and are self-extinguishing. After being subjected to a flame, the foam retains its porous structure and does not drip or collapse. In micro-combustion calorimetry, the hybrid foams show a peak heat release rate that is only 25% that of a commercial fire-retardant polyurethanes. Finally, we demonstrate that we can use ice-templating to prepare hybrid foams with different inorganic colloids, including cheap commercial materials. We also demonstrate that ice-templating is amenable to scale up, without loss of mechanical performance or fire-retardant properties.

  4. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites

    Science.gov (United States)

    He, Shuijian; Chen, Wei

    2014-09-01

    The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.

  5. Porous materials produced from incineration ash using thermal plasma technology.

    Science.gov (United States)

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sound transmission through double panel constructions lined with elastic porous materials

    Science.gov (United States)

    Bolton, J. S.; Green, E. R.

    1986-07-01

    Attention is given to a theory governing one-dimensional wave motion in elastic porous materials which is capable of reproducing experimental transmission measurements for unfaced polyurethane foam layers. Calculations of the transmission loss of fuselage-like foam-lined double panels are presented and it is shown that the foam/panel boundary conditions have a large effect on the panel performance; a hybrid arrangement whereby the foam is bonded directly to one panel and separated from the other by a thin air gap appears to be the most advantageous under practical circumstances. With this configuratiom, the mass-air-mass resonance is minimized and increased low-frequency performance is offered.

  7. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  8. Scaling up the Fabrication of Mechanically-Robust Carbon Nanofiber Foams

    Directory of Open Access Journals (Sweden)

    William Curtin

    2016-02-01

    Full Text Available This work aimed to identify and address the main challenges associated with fabricating large samples of carbon foams composed of interwoven networks of carbon nanofibers. Solutions to two difficulties related with the process of fabricating carbon foams, maximum foam size and catalyst cost, were developed. First, a simple physical method was invented to scale-up the constrained formation of fibrous nanostructures process (CoFFiN to fabricate relatively large foams. Specifically, a gas deflector system capable of maintaining conditions supportive of carbon nanofiber foam growth throughout a relatively large mold was developed. ANSYS CFX models were used to simulate the gas flow paths with and without deflectors; the data generated proved to be a very useful tool for the deflector design. Second, a simple method for selectively leaching the Pd catalyst material trapped in the foam during growth was successfully tested. Multiple techniques, including scanning electron microscopy, surface area measurements, and mechanical testing, were employed to characterize the foams generated in this study. All results confirmed that the larger foam samples preserve the basic characteristics: their interwoven nanofiber microstructure forms a low-density tridimensional solid with viscoelastic behavior. Fiber growth mechanisms are also discussed. Larger samples of mechanically-robust carbon nanofiber foams will enable the use of these materials as strain sensors, shock absorbers, selective absorbents for environmental remediation and electrodes for energy storage devices, among other applications.

  9. Deformation and energy absorption properties of powder-metallurgy produced Al foams

    International Nuclear Information System (INIS)

    Michailidis, N.; Stergioudi, F.; Tsouknidas, A.

    2011-01-01

    Highlights: → Porous Al fabricated via a dissolution and sintering method using raw cane sugar. → Different deformation mode depending on the relative density of the foams. → Enhanced energy absorption by reducing pore size and relative density of the foam. → Pore size uniformity and sintering temperature affect energy absorption. - Abstract: Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.

  10. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  11. Mechanical, electrical and micro-structural properties of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3} perovskite-based ceramic foams

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra K; Kim, Eun Yi; Noh, Ho Sung; Whang, Chin Myung [School of Materials Science and Engineering, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2008-02-07

    Mechanical, electrical and micro-structural properties of new electronic conducting ceramic foams are reported. Ceramic foams are prepared using the slurry of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF) by the polymeric sponge method, which is followed by spray coating for increasing the number of coatings-sinterings on polyurethane foams of 30, 45 and 60 ppi (pores per linear inch). An increase in the number of coatings-sinterings and ppi improved the compressive strength, density and electrical conductivity by decreasing the porosity to {approx}76%, as also observed by the SEM study. The three-times coated-sintered ceramic foams (60 ppi) exhibited optimum values of compressive strength of {approx}1.79 MPa and relative density of {approx}0.24 at 25 deg. C and electrical conductivity of {approx}22 S cm{sup -1} at 600 deg. C with an activation energy of {approx}0.22 eV indicating its suitability as a solid oxide fuel cell current collector. The experimental results are discussed in terms of the Gibson and Ashby theoretical model. (fast track communication)

  12. Determination of SiC ceramic foams microstructure properties by X-rays microtomography

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos Roberto; Fernandes, Jaquiel Salvi

    2009-01-01

    Silicon carbide ceramic foams (SiC) can operate at high temperatures, which allow them to be used as heat exchangers, liquid metal filters, composite of rocket nozzles, etc. For many of these applications it is very important to know the foams' porosity. In this work the porosity of SiC ceramic foams was determined by X-rays microtomography, a powerful non-destructive technique that allows the analysis of the sample's internal structure. The samples have pore densities of 30, 45, 60, 80 and 100 pores per inch (ppi). The spatial resolution obtained was 24.8 μm. The cross sections' reconstruction was performed with a cone beam filtered backprojection algorithm. In the analyses, micropores were observed in the foam's lattice wire of the 30 ppi and 45 ppi samples. Micropores were present in few cross sections of 60 ppi sample too, but it was not found in the 80 ppi and 100 ppi samples. The total porosities obtained were Φ = (88.8 ± 4.3) %, Φ = (85.2 ± 1.4) %, Φ = (82.3 ± 1.8) %, Φ (79.9 ± 1.3) % and Φ = (80.4 ± 1.5) %, for the 30, 45, 60, 80 and 100 ppi samples, respectively. (author)

  13. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  14. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  15. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    International Nuclear Information System (INIS)

    Aragon-Lezama, J.A.; Garcia-Borquez, A.; Torres-Villaseñor, G.

    2015-01-01

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm 3 were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10 −3 s −1 strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ max ) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ p ): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ max , LYP, and σ p )

  16. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  17. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  18. High-Rate Compaction of Aluminium Alloy Foams

    International Nuclear Information System (INIS)

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-01-01

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation

  19. Microstructural and Mechanical Properties of Porous 60NiTi Prepared by Conventional Press-and-sinter Method

    Directory of Open Access Journals (Sweden)

    Khanlari Khashayar

    2017-01-01

    Full Text Available An intermetallic nickel-titanium alloy, 60NiTi, comprised of approximately 60 wt.% Ni and 40 wt.% Ti, contains a broad combination of physical and mechanical properties such as high hardness, low elastic modulus, resistance to aqueous corrosion and good biocompatibility. These unique combinations make this alloy an attractive candidate for medical components such as implants and prosthesis, where biocompatible materials with high hardness and low stiffness are typically used. The conventional press-and-sinter method which represents the least complex, most flexible and economic powder metallurgy method was used to produce porous 60NiTi parts suitable for biomedical applications. The effect of sintering holding time on the microstructure and mechanical properties is investigated. The structure of the as sintered parts is quite porous which is beneficial based on the medical point of view. The ultimate compressive strength of the samples is higher than that of the compact human bone and can, therefore, meet the strength demand of implants for general bone replacement applications.

  20. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    OpenAIRE

    Fidancevska E.; Mangutova B.; Milosevski D.; Milosevski M.; Bossert J.

    2003-01-01

    Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss) of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  1. Bright x-ray sources from laser irradiation of foams with high concentration of Ti

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, F., E-mail: perez75@llnl.gov; Patterson, J. R.; May, M.; Colvin, J. D.; Biener, M. M.; Wittstock, A.; Kucheyev, S. O.; Charnvanichborikarn, S.; Satcher, J. H.; Gammon, S. A.; Poco, J. F.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Fujioka, S.; Zhang, Z.; Ishihara, K.; Tanaka, N.; Ikenouchi, T.; Nishimura, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    Low-density foams irradiated by a 20 kJ laser at the Omega laser facility (Laboratory for Laser Energetics, Rochester, NY, USA) are shown to convert more than 5% of the laser energy into 4.6 to 6.0 keV x rays. This record efficiency with foam targets is due to novel fabrication techniques based on atomic-layer-deposition of Ti atoms on an aerogel scaffold. A Ti concentration of 33 at. % was obtained in a foam with a total density of 5 mg/cm{sup 3}. The dynamics of the ionization front through these foams were investigated at the 1 kJ laser of the Gekko XII facility (Institute for Laser Engineering, Osaka, Japan). Hydrodynamic simulations can reproduce the average electron temperature but fail to predict accurately the heat front velocity in the foam. This discrepancy is shown to be unrelated to the possible water adsorbed in the foam but could be attributed to effects of the foam micro-structure.

  2. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  3. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    Science.gov (United States)

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  4. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    Directory of Open Access Journals (Sweden)

    Fidancevska E.

    2003-01-01

    Full Text Available Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  5. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    International Nuclear Information System (INIS)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing

    2017-01-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  6. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing, E-mail: hbdeng@whu.edu.cn

    2017-03-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  7. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    Energy Technology Data Exchange (ETDEWEB)

    Aragon-Lezama, J.A., E-mail: alja@correo.azc.uam.mx [Departamento de Materiales, Universidad Autónoma Metropolitana-A, Avenida San Pablo 180, Colonia Reynosa Tamaulipas, 02200 México, D.F., México (Mexico); Garcia-Borquez, A., E-mail: a.garciaborquez@yahoo.com.mx [Ciencia de Materiales, ESFM – Instituto Politécnico Nacional, Edif. 9, Unid. Prof. A. Lopez Mateos, Colonia Lindavista, 07738 México, D.F., México (Mexico); Torres-Villaseñor, G., E-mail: gtorres@unam.mx [Departamento de Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo., P 70-360, México, D.F., México (Mexico)

    2015-06-25

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm{sup 3} were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10{sup −3} s{sup −1} strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ{sub max}) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ{sub p}): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ{sub max}, LYP, and σ{sub p})

  8. Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials

    Science.gov (United States)

    Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.

    2018-03-01

    The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.

  9. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    Science.gov (United States)

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  10. Lost foam casting of aluminum alloy-SiCp composite material

    International Nuclear Information System (INIS)

    Baalasuburamaniam, R.; Cvetnic, C.; Ravindran, C.

    2002-01-01

    Metal matrix composites are a viable alternative to cast irons in automotive components with possible increase in strength-to-weight ratio. Lost foam casting of aluminum alloy matrix composite containing 20 volume percent SiC was carried out at 690, 730, and 770 o C with a view to determining the effects of cooling rate on microstructure, particle distribution, microporosity and mechanical properties. These results were compared with those for the matrix material cast under similar conditions. The results and the correlations are of particular interest as there is no published literature on lost foam casting of composite materials. (author)

  11. The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites.

    Science.gov (United States)

    Cordero, Andrés Ignacio; Amalvy, Javier Ignacio; Fortunati, Elena; Kenny, José María; Chiacchiarelli, Leonel Matías

    2015-12-10

    Nanocrystalline cellulose (CNC), obtained by sulphuric acid hydrolysis, was used to synthesize polyurethane foams (PUFs) based on a functionalized castor oil polyol and a Methylene diphenyl diisocyanate (MDI). Formulations with varying isocyanate index (FI) and NCO number were prepared. At 0.5 wt.%, SEM's of the fractured surface underlined that the CNC acted both as a nucleation agent and as a particulate surfactant with cell geometries and apparent density changing selectively. The chemical structure of the PUF (FTIR) changed after the incorporation of CNC by a relative change of the amount of urea, urethane and isocyanurate groups. A low NCO number and isocyanate index contributed to the migration of the CNC to the Hard Segment (HS), acting as reinforcement and improving substantially the compressive mechanical properties (Ec and σc improvements of 63 and 50%, respectively). For a high NCO number or isocyanate index, the CNC migrated to the Soft Segment (SS), without causing a reinforcement effect. The migration of the CNC was also detected with DSC, TGA and DMA, furtherly supporting the hypothesis that a low NCO number and index contributed both to the formation of a microstructure with a higher content of urethane groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production

    Science.gov (United States)

    Ma, Xinzhou; Zhang, Jingtao; Wang, Biao; Li, Qiuguo; Chu, Sheng

    2018-01-01

    Solar photoelectrochemical (PEC) hydrogen production is a promising way for solving energy and environment problems. Earth-abundant Cu2O is a potential light absorber for PEC hydrogen production. In this article, hierarchical porous Cu2O foams are prepared by thermal oxidation of the electrochemically deposited Cu foams. PEC performances of the Cu2O foams are systematically studied and discussed. Benefiting from their higher light harvesting and more efficient charge separation, the Cu2O foams demonstrate significantly enhanced photocurrents and photostability compared to their film counterparts. Moreover, by integrating g-C3N4, hierarchical Cu2O foam/g-C3N4 composites are prepared with further improved photocurrent and photostability, appearing to be potential photocathodes for solar PEC hydrogen production. This study may provide a new and useful insight for the development of Cu2O-based photocathodes for PEC hydrogen production.

  13. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    Science.gov (United States)

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  14. Synthesis and degradation properties of β-TCP/BG porous ...

    Indian Academy of Sciences (India)

    -TCP/BG porous composite materials were successfully fabricated by foaming technology. X-ray diffraction was used to determine the crystal structure of powders. The pore size and distribution of the resulting materials were characterized using scanning electron microscopy. The porosity and degradation performance of ...

  15. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  16. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    Science.gov (United States)

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  17. Bioglass {sup trademark} coated poly(DL-lactide) foams for tissue engineering scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Gough, J.E. [Materials Science Centre, UMIST, Manchester M1 7HS (United Kingdom); Arumugam, M. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Blaker, J. [Department of Materials and Centre for Tissue Engineering and Regenerative Medicine, Imperial College London, London SW7 2BP (United Kingdom); Boccaccini, A.R. [Dept. of Materials and Center for Tissue Engineering and Regenerative Medicine, Imperial College London, London SW7 28P (United Kingdom)

    2003-07-01

    The purpose of this study was to prepare poly(DL-lactic acid) (PDLLA)/Bioglass trademark composites of foam-like structure, to measure the degree of bioactivity of the composites by studying the formation of hydroxyapatite (HA) after immersion in simulated body fluid (SBF) and to test the initial attachment of human osteoblasts within the porous network. It was found that crystalline HA formed on the Bioglass trademark coated PDLLA foams after 7 days of immersion in SBF. HA formed also on the surfaces of non-coated PDLLA foams, however the rate and amount of HA formation were much lower than in the composites. The rapid formation of HA on the Bioglass trademark /PDLLA foam surfaces confirmed the high bioactivity of these materials. Osteoblasts attached within the porous network throughout the depth of the foams. Cell density was found to be higher in the PDLLA/Bioglass trademark composites compared to the pure PDLLA foams. The composite foams developed here exhibit the required bioactivity to be used as scaffolds for bone tissue engineering. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Die vorliegende Arbeit befasst sich mit der Herstellung von poroesen Verbundwerkstoffen bestehend aus Poly(DL-Laktidsaeure) (PDLLA) und Bioglass trademark und der anschliessenden Untersuchung der Bioaktivitaet. Die Bioaktivitaet wurde anhand von In-vitro-Methoden untersucht: Durch Ermittlung der Bildungsrate von Hydroxylapatit (HA) auf der Oberflaeche nach Eintauchen in simulierter Koerperfluessigkeit (SBF) und mittels Zellkulturstudien mit menschlichen Osteoblasten. Nach 7 Tagen in SBF hatte die Bildung von kristallinem HA auf der Oberflaeche von mit Bioglass trademark -beschichteten PDLLA Schaeumen stattgefunden. Auf der Oberflaeche von unbeschichtetem PDLLA konnte ebenfalls die Bildung von HA gezeigt werden, jedoch war die Bildungsrate hier bedeutend langsamer verglichen mit den Verbundwerkstoffen. Die rasche Formung von HA auf der Bioglass trademark /PDLLA

  18. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2011-10-01

    Full Text Available Biodegradable foams made from cassava starch, polyvinyl alcohol (PVA, sugarcane bagasse fibers and chitosan were obtained by extrusion. The composites were prepared with formulations determined by a constrained ternary mixtures experimental design, using as variables: (X1 starch / PVA (100 - 70%, (X2 chitosan (0 - 2% and (X3 fibers from sugar cane (0 - 28%. The effects of varying proportions of these three components on foam properties were studied, as well the relationship between their properties and foam microstructure. The addition of starch/PVA in high proportions increased the expansion index and mechanical resistance of studied foams. Fibers addition improved the expansion and mechanical properties of the foams. There was a trend of red and yellow colors when the composites were produced with the highest proportions of fibers and chitosan, respectively. All the formulations were resistant to moisture content increase until 75% relative humidity of storage.

  19. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, Shane D.; Srubar, Wil V., E-mail: wsrubar@colorado.edu

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm{sup 3}) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  20. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    International Nuclear Information System (INIS)

    Frazier, Shane D.; Srubar, Wil V.

    2016-01-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm"3) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  1. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  2. Forming of porous mullite green bodies by albumin thermal consolidation; Conformado de cuerpos porosos en verde de mullita por consolidacion termica con albumina

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.L.; Tomba Martinez, A.G.; Camerucci, M.A. [Laboratorio de Materiales Estructurales, Division Ceramicos, INTEMA-CONICET, Fac. de Ingenieri-UNMdP., Mar del Plata (Argentina)

    2011-07-01

    Pre-firing mullite microstructures developed by a new thermal consolidation method using globular proteins as foaming and consolidator/binders were analyzed. Commercial available powders of mullite (Baikowski) and bovine serum albumin (BSA, Aldricht) were employed. Stable aqueous suspensions (40 vol.%) of mullite- BSA (10 vol.%) were foamed (2300 rpm, 10 min) at: I) room temperature; II) 68 deg C, temperature slightly lower to the gelling 'onset' TG{sup 0}, and III) 68 deg C with the addition of 2 wt.% of methylcellulose. Green disks were prepared by pouring of foamed suspensions into pre-heated metal molds (70 deg C), thermal gelling (80 °C, 3h) and drying (50 °C, 12h). Previously, the developed foams were characterized and their rheological properties were determined as a function of temperature (TG{sup 0}). The characterization of the pre-firing microstructures were carried out by measurements of porosity (>80%) and microstructural analysis in fracture surface by SEM. (author)

  3. Outgassing From Open And Closed Magma Foams

    Science.gov (United States)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  4. Outgassing from Open and Closed Magma Foams

    Directory of Open Access Journals (Sweden)

    Felix W. von Aulock

    2017-06-01

    Full Text Available During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas.

  5. Geometrical characterization of perlite-metal syntactic foam

    Energy Technology Data Exchange (ETDEWEB)

    Borovinšek, Matej, E-mail: matej.borovinsek@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Taherishargh, Mehdi, E-mail: mehdi.taherishargh@newcastle.edu.au [The University of Newcastle, School of Engineering, University Drive, Callaghan, NSW 2308 (Australia); Vesenjak, Matej, E-mail: matej.vesenjak@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Ren, Zoran, E-mail: zoran.ren@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Fiedler, Thomas, E-mail: thomas.fiedler@newcastle.edu.au [The University of Newcastle, School of Engineering, University Drive, Callaghan, NSW 2308 (Australia)

    2016-09-15

    This paper introduces an improved method for the detailed geometrical characterization of perlite-metal syntactic foam. This novel metallic foam is created by infiltrating a packed bed of expanded perlite particles with liquid aluminium alloy. The geometry of the solidified metal is thus defined by the perlite particle shape, size and morphology. The method is based on a segmented micro-computed tomography data and allows for automated determination of the distributions of pore size, sphericity, orientation and location. The pore (i.e. particle) size distribution and pore orientation is determined by a multi-criteria k-nearest neighbour algorithm for pore identification. The results indicate a weak density gradient parallel to the casting direction and a slight preference of particle orientation perpendicular to the casting direction. - Highlights: •A new method for identification of pores in porous materials was developed. •It was applied on perlite-metal syntactic foam samples. •A porosity decrease in the axial direction of the samples was determined. •Pore shape analysis showed a high percentage of spherical pores. •Orientation analysis showed that more pores are oriented in the radial direction.

  6. Utilization of power plant bottom-ash particles as stabilizer in aluminum foams

    Energy Technology Data Exchange (ETDEWEB)

    Asavavisithchai, Seksak; Prapajaraswong, Attanadol [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2013-07-01

    Aluminum foams, produced via powder metallurgical (PM) process, normally require the addition of ceramic particles in compaction stage, in order to increase both foamability of precursors and mechanical properties of the final foam products. Bottom ash particles are a by-product waste obtained from thermoelectric power plants which are commonly found to be used in landfill facilities. The major chemical constituent, approximately between 30 wt.-% and 60 wt.-%, of bottom ash particles is SiO{sub 2}, depending on chemical composition in coal, sintering condition and environment, and other process parameters. In this study, we explore the feasibility of utilizing bottom ash particles of thermoelectric power plant wastes as stabilizer in aluminum foams. A small amount of two-size bottom ash particles (mean size of 78 {mu}m and 186 {mu}m), between 1 wt.-% and 5 wt.-%, have been added to aluminum foams. Foam expansion, macro- and microstructures as well as mechanical properties, such as compressive strength and microhardness, were investigated. The results from the present study suggest that bottom ash particles can be used as a stabilizing material which can improve both cellular structure and mechanical properties of aluminum foams. (orig.)

  7. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications

    International Nuclear Information System (INIS)

    Sevilla, P.; Aparicio, C.; Planell, J.A.; Gil, F.J.

    2007-01-01

    Metallic porous materials are designed to allow the ingrowth of living tissue inside the pores and to improve the mechanical anchorage of the implant. In the present work, tantalum and nickel-titanium porous materials have been characterized. The tantalum foams were produced by vapour chemical deposition (CVD/CVI) and the NiTi foams by self-propagating high temperature synthesis (SHS). The former exhibited an open porosity ranging between 65 and 73% and for the latter it ranged between 63 and 68%. The pore sizes were between 370 and 440 μm for tantalum and between 350 and 370 μm for nickel-titanium. The Young's modulus in compression of the foams studied, especially for tantalum, were very similar to those of cancellous bone. This similitude may be relevant in order to minimize the stress shielding effect in the load transfer from the implant to bone. The strength values for NiTi foam are higher than for tantalum, especially of the strain to fracture which is about 23% for NiTi and only 8% for tantalum. The fatigue endurance limit set at 10 8 cycles is about 7.5 MPa for NiTi and 13.2 MPa for tantalum. The failure mechanisms have been studied by scanning electron microscopy

  8. Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications

    CSIR Research Space (South Africa)

    Bello, A

    2013-10-01

    Full Text Available of the 3D porous cell structure of the nickel foam which allows for the growth of highly conductive graphene and subsequently provides support for uniform adsorption of the NiO onto the graphene. The NF-G/NiO electrode material showed excellent properties...

  9. Hierarchical porous Co3O4 films with size-adjustable pores as Li ion battery anodes with excellent rate performances

    International Nuclear Information System (INIS)

    Zhao, Guangyu; Xu, Zhanming; Zhang, Li; Sun, Kening

    2013-01-01

    Highlights: •Template-free synthesis of hierarchical porous Co 3 O 4 films on Ni foams. •Hierarchical porous Co 3 O 4 films with size-adjustable pores. •Excellent rate performances (650 mAh g −1 at 30 C) as Li ion battery anodes. -- Abstract: Constructing hierarchical porous structures on the current collectors is an attractive strategy for improving the rate performance of the Li ion battery electrodes. However, preparing hierarchical porous structures normally requires hard or soft templates to create hollows or pores in different sizes. Rigorous preparation conditions are needed to control the size (especially nanosize) and size distribution of the pores obtained by conventional methods. Herein, we describe a template-free two-step synthesis process to prepare hierarchical porous Co 3 O 4 films on Ni foam substrates. In this synthesis process, free-standing mesoporous precursor flakes are deposited on Ni foams by an electrochemical method. Subsequently, the meosporous precursor flake arrays are calcined to obtain hierarchical porous Co 3 O 4 films. More strikingly, the size of the mesopores in the flakes can be adjusted by altering the calcination temperature. The structure and morphology of the samples are characterized by scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements. The relationship of the in-flake-pore size and the calcinations temperature is proposed here. Electrochemical tests have revealed that the hierarchical porous Co 3 O 4 films demonstrate excellent rate performances (650 mAh g −1 at 30 C) as Li ion battery anodes due to the hierarchical porous structure, which endows fast ion transmission

  10. New ways to produce porous polymeric membranes by carbon dioxide foaming

    NARCIS (Netherlands)

    Krause, B.; van der Vegt, N.F.A.; Wessling, Matthias

    2002-01-01

    As a new solvent free method for membrane formation, we have investigated the foaming of high-Tg polymers. We report two different routes for the formation of open-microcellular and open-nanoporous membrane morphologies. Porosity is introduced by expansion of carbon dioxide saturated films and

  11. Fabrication and Microstructure of Metal-Metal Syntactic Foams

    National Research Council Canada - National Science Library

    Nadler, J

    1998-01-01

    .... The composite microstructure consists of thin-wall, hollow Fe-Cr stainless steel spheres cast in various metal matrices including aluminum alloys 6061, 7075, 413, magnesium alloy AZ31B, and unalloyed...

  12. Effect of Mesoporous Silica and Hydroxyapatite Nanoparticles on the Tensile and Dynamic Mechanical Thermal Properties of Polypropylene and Polypropylene Foam

    Directory of Open Access Journals (Sweden)

    Alireza Albooyeh

    2014-12-01

    Full Text Available The main purpose of this paper is the experimental study on the tensile and dynamic - mechanical thermal properties of polypropylene (PP and polypropylene foam reinforced with mesoporous silica (MCM-41, hydroxyapatite (HA and the composite of mesoporous silica and hydroxyapatite (MCM41-HA nanoparticles. Nanocomposites and nanocomposite foams containing PP, maleic anhydride grafted polypropylene, different nanoparticles and chemical blowing agent (for foam samples are mixed using the melt-compounding technique in a twin-screw extruder. The results of the tests show that at the same nanoparticles content, all the nanofillers cause better mechanical properties than neat PP and PP foam. Also, due to the porous structure of the foam samples, these samples have the higher damping characteristics and lower tensile properties than the solid samples. Because of higher rigidity and higher strength of HA nanoparticles, the greatest increase in modulus and tensile strength occurs by adding these nanoparticles to neat PP and PP foam. The highest damping factor is obtained by adding MCM-41-HA nanoparticles to PP and PP foam, because of the porous nature of the MCM-41 particles which were reinforced by HA particles. The results of differential scanning calorimetry show that the addition of different nanoparticles does not have any significant effect on crystallinity and melting behavior of PP. Scanning electron microscopy images show that the nanomaterials were fine and uniformly dispersed within the polymer matrix. Furthermore, the addition of different nanoparticles to PP foam causes to increase the cell density, to reduce the cell sizes and to improve the cell sizes distribution. In this respect, the lowest cell sizes and the highest cell density are created by adding HA and MCM41-HA  nanopaticles to PP foams.

  13. Effect of etching current density on microstructure and NH3-sensing properties of porous silicon with intermediate-sized pores

    International Nuclear Information System (INIS)

    Li, Mingda; Hu, Ming; Zeng, Peng; Ma, Shuangyun; Yan, Wenjun; Qin, Yuxiang

    2013-01-01

    In this work, porous silicon with intermediate-sized pores (intermediate–PS) was prepared by using galvanostatic electrochemical etching method and the effect toward sensing response characteristics of NH 3 gas was also studied. The morphology and surface chemical bonds of intermediate–PS were characterized by using field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The results showed the intermediate–PS microstructure can be significantly modulated by the etching current density. Moreover, the freshly prepared intermediate–PS surface could achieve reliable passivation after storage in ethanol. Furthermore, the gas-sensing measurements of the intermediate–PS sensors were carried out versus different concentrations of NH 3 . The PS sensor exhibited good NH 3 -sensing performances at room temperature owing to its unique microstructure features, including large specific surface area and highly ordered pore channels. In addition, the conceivable pore formation mechanism as well as gas sensing mechanism was also discussed

  14. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aushev, A A; Barinov, S P; Vasin, M G; Drozdov, Yu M; Ignat' ev, Yu V; Izgorodin, V M; Kovshov, D K; Lakhtikov, A E; Lukovkina, D D; Markelov, V V; Morovov, A P; Shishlov, V V [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2015-06-30

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied by alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)

  15. Effect of potential steps on porous silicon formation

    International Nuclear Information System (INIS)

    Cheng Xuan; Feng Zude; Luo Guangfeng

    2003-01-01

    Porous silicon microstructures were fabricated by applying potential steps through which both anodic and cathodic potentials were periodically applied to silicon wafers. The electrochemical behaviors of porous silicon layers were examined by performing polarization measurements, followed by analyzing the open-circuit potential (E ocp ) and the reaction rate in terms of corrosion current density (j corr ). The surface morphologies and surface products of porous silicon were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the values of E ocp and j corr varied more significantly and irregularly during different polarization stages when the potentials were continuously applied to the wafer surface, while virtually unchanged after 2 min of periodic potential application. In addition, slower reaction rates were observed with applying potential steps, as indicated by smaller values of j corr . The enhancement on refreshment of silicon surfaces by periodic potential polarization significantly accelerated the growth of porous silicon. The microstructures became more uniformed and better defined due to the improved passivating nature of wafer surfaces

  16. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeji [School of Materials Science and Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Um, Ji Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742 (Korea, Republic of); Choi, Hyelim [School of Materials Science and Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Yoon, Won-Sub [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Sung, Yung-Eun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742 (Korea, Republic of); Choe, Heeman, E-mail: heeman@kookmin.ac.kr [School of Materials Science and Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Cellmotive Co. Ltd., #518, Engineering Building, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2017-03-31

    Highlights: • Sn-Cu scaffold anode fabricated by freeze-casting and electroless plating. • Sn-Cu scaffold architecture shows superior capacity and cyclic stability at high current density. • Sn-Cu scaffold electrode is commercially promising. - Abstract: A Novel 3D porous Sn-Cu architecture is prepared as an anode material for use in an advanced lithium-ion battery. Micro-lamellar-structured 3D porous Cu foam, which is electroless-plated with Sn as an active material, is used as anode current collector. Compared to Sn-coated Cu foil, the 3D Sn-Cu foam exhibits superior Li-ion capacity and stable capacity retention, demonstrating the advantage of 3D porous architecture by preserving its structural integrity. In addition, the effect of heat-treatment after Sn plating is investigated. Sn/Sn{sub 6}Cu{sub 5} and SnO{sub 2}/Cu{sub 10}Sn{sub 3} were formed on and in the 3D Sn-Cu foam under the heat-treatment at 150 °C and 500 °C, respectively. The development of Cu{sub 10}Sn{sub 3} in the 3D Sn-Cu foam heat-treated at 500 °C can be a key factor for the enhanced cyclic stability because the Cu{sub 10}Sn{sub 3} inactively reacts with Li-ion and alleviates the volume expansion of SnO{sub 2} as an inactive matrix.

  17. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  18. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  19. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  20. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  1. Preparation and characterization of cellulose-based foams via microwave curing.

    Science.gov (United States)

    Demitri, Christian; Giuri, Antonella; Raucci, Maria Grazia; Giugliano, Daniela; Madaghiele, Marta; Sannino, Alessandro; Ambrosio, Luigi

    2014-02-06

    In this work, a mixture of a sodium salt of carboxymethylcellulose (CMCNa) and polyethylene glycol diacrylate (PEGDA700) was used for the preparation of a microporous structure by using the combination of two different procedures. First, physical foaming was induced using Pluronic as a blowing agent, followed by a chemical stabilization. This second step was carried out by means of an azobis(2-methylpropionamidine)dihydrochloride as the thermoinitiator (TI). This reaction was activated by heating the sample homogeneously using a microwave generator. Finally, the influence of different CMCNa and PEGDA700 ratios on the final properties of the foams was investigated. The viscosity, water absorption capacity, elastic modulus and porous structure were evaluated for each sample. In addition, preliminary biological characterization was carried out with the aim to prove the biocompatibility of the resulting material. The foam, including 20% of PEGDA700 in the mixture, demonstrated higher viscosity and stability before thermo-polymerization. In addition, increased water absorption capacity, mechanical resistance and a more uniform microporous structure were obtained for this sample. In particular, foam with 3% of CMCNa shows a hierarchical structure with open pores of different sizes. This morphology increased the properties of the foams. The full set of samples demonstrated an excellent biocompatibility profile with a good cell proliferation rate of more than 7 days.

  2. Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure.

    Science.gov (United States)

    Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling

    2016-10-03

    A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.

  3. Microstructured optical fibers for gas sensing systems

    Science.gov (United States)

    Challener, William Albert; Choudhury, Niloy; Palit, Sabarni

    2017-10-17

    Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the light energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.

  4. Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2017-07-01

    Full Text Available The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%. The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs.

  5. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  6. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  7. Manufacturing and Characterization of Temperature-Stable, Novel, Viscoelastic Polyurea Based Foams for Impact Management

    Science.gov (United States)

    Ramirez, Brian Josue

    The aim of this thesis was to develop advance, high performance polyurea foams for multi-hit capability in protective equipment that respond over a range of impact energies, temperatures, and strain rates. In addition, the microstructure of these materials should be tunable such that the peak stress (or force) transmitted across the foam section can be limited to a specific value defined by an injury threshold while maximizing impact energy absorption. Novel polyurea foams were manufactured and found to exhibit a reversible viscoelastic shear deformation at the molecular level. The intrinsic shear dissipation process is synergistically coupled to controlled collapse of a novel pore structure. The microstructure compromises of stochastic polyhedral cells ranging from 200 - 500 mum with perforated membranes with small apertures ( 20 mum). This makes them strain rate sensitive as the rate at which the air escapes the cells depend upon the loading rate. These mechanisms operate simultaneously and sequentially, thereby significantly reducing the transmitted impact forces across the foam section. Thus, they behave as an elastically modulated layered composite because the cells stiffen or soften in response to the changing loading rate. Therefore, the newly developed polyurea foams are able to manage the varying material strain rate that occurs within the same loading event without the need to modulate the stiffness or density. Additionally, polyurea foams were found to retain its excellent impact properties over a range of temperatures (0°C to 40°C) by having a glass transition temperature well below 0°C. This is in contrast to commercially available high performance foams that have the glass transition temperature near 0°C and absorb energy through phase transformation at ambient conditions, but significantly stiffen at lower temperatures, and dramatically soften at higher temperatures. This expands the application domain of polyurea foam material considerably as it

  8. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  9. Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Shy, S.S.; Chien, C.W. [Department of Mechanical Engineering, National Central University, 300 Jhong-da Road, Jhong-li 32001 (China); Lee, C.H. [Institute of Nuclear Energy Research, Lung-tan, Tao-yuan 32546 (China)

    2010-04-15

    This study reports effects of porosity ({epsilon}), permeability (k) and tortuosity ({tau}) of anodic microstructures to peak power density (PPD) of a single-unit planar anode-supported SOFC based on 3D electrochemical flow models using measured porous transport properties. Applying particle image velocimetry, a transparent porous rib-channel with different {epsilon} is applied to measure an effective viscosity ({mu}{sub e}) in the Brinkman equation commonly used to predict flow properties in porous electrodes. It is found that, contrary to the popular scenario, {mu}{sub e} is not equal to the fluid viscosity ({mu}{sub f}), but it is several orders in magnitude smaller than {mu}{sub f} resulting in more than 10% difference on values of PPD. Numerical analyses show: (1) while keeping k and {tau} fixed with {epsilon} varying from 0.2 to 0.6, the highest PPD occurs at {epsilon} = 0.3 where the corresponding triple-phase-boundary length is a maximum; (2) PPD increases slightly with k when k{<=}10{sup -11} m{sup 2} due to the diffusion limitation in anode; and (3) PPD decreases with {tau} when {tau}>1.5 due to the accumulation of non-depleted products. Hence, a combination of {epsilon}=0.3, k=10{sup -11}m{sup 2}, and {tau}=1.5 is suggested for achieving higher cell performance of planar SOFC. (author)

  10. Pyrolysis and gasification of single biomass particle – new openFoam solver

    International Nuclear Information System (INIS)

    Kwiatkowski, K; Zuk, P J; Bajer, K; Dudyński, M

    2014-01-01

    We present a new solver biomassGasificationFoam that extended the functionalities of the well-supported open-source CFD code OpenFOAM. The main goal of this development is to provide a comprehensive computational environment for a wide range of applications involving reacting gases and solids. The biomassGasificationFoam is an integrated solver capable of modelling thermal conversion, including evaporation, pyrolysis, gasification, and combustion, of various solid materials. In the paper we show that the gas is hotter than the solid except at the centre of the sample, where the temperature of the solid is higher. This effect is expected because the thermal conductivity of the porous matrix of the solid phase is higher than the thermal conductivity of the gases. This effect, which cannot be considered if thermal equilibrium between the gas and solid is assumed, leads to precise description of heat transfer into wood particles.

  11. Hydrodynamic modeling of laser interaction with micro-structured targets

    International Nuclear Information System (INIS)

    Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir

    2016-01-01

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  12. In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker

    OpenAIRE

    Martins Talita; Moreira Cheisy D. F.; Costa-Júnior Ezequiel S.; Pereira Marivalda M.

    2018-01-01

    In tissue engineering applications, 3D scaffolds with adequate structure and composition are required to provide durability that is compatiblewith the regeneration of native tissue. In the present study, the degradation of novel flexible 3D composite foams of chitosan (CH) combined with bioactive glass (BG)was evaluated, focusing on the role of BG as a physical crosslinker in the composites, and its effect on the degradation process. Highly porous CH/BG composite foams were obtained, and an e...

  13. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    International Nuclear Information System (INIS)

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean-Baptiste; Smith, William L.; Ali, Suzanne J.

    2017-01-01

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3 ) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3 ) along a length of <100 µm. Taking full advantage of this technology, however, is a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.

  14. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-01-01

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g −1 at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g −1 after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g −1 when lowering the charge/discharge rate to 0.06 C

  15. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route

    International Nuclear Information System (INIS)

    Jha, Nidhi; Mondal, D.P.; Dutta Majumdar, J.; Badkul, Anshul; Jha, A.K.; Khare, A.K.

    2013-01-01

    Highlights: ► NaCl crystals has been used as space holder. ► Variation of NaCl:Ti ratio varies porosity (65–80%). ► NaCl is cubic but the cells are spherical. ► Two types of pores: micro and macro pores are obtained. ► Foams are suitable for bones scaffolds and engineering applications. - Abstract: Open cell Titanium-foam (Ti-foam) with varying porosities (65–80%) was prepared using sodium chloride (NaCl) particles as space holder through powder metallurgy route. In order to ensure sufficient handling strength in cold compacted pallets, 2 wt.% polyvinyl alcohol (PVA) solutions (5 wt.% PVA in water) was mixed with the mixture of Ti and NaCl powders prior to cold compaction. After sintering, NaCl salt was removed by dissolving it in hot water. Detailed Energy dispersive X-ray (EDX) analysis and X-ray diffraction studies of the prepared Ti-foams were conducted to examine any physical and chemical changes in the phase constituents. The micro-architectural characteristics, density vis-a-vis porosity, and compressive deformation behavior of the synthesized foams were evaluated to examine their suitability as biomaterial and engineering applications

  16. High-Capacity and Ultrafast Na-Ion Storage of a Self-Supported 3D Porous Antimony Persulfide-Graphene Foam Architecture.

    Science.gov (United States)

    Lu, Yanying; Zhang, Ning; Jiang, Shuang; Zhang, Yudong; Zhou, Meng; Tao, Zhanliang; Archer, Lynden A; Chen, Jun

    2017-06-14

    The key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. Here, we report Sb 2 S 5 nanoparticles (∼5 nm) uniformly encapsulated in three-dimensional (3D) porous graphene foam, which were fabricated by a facile hydrothermal coassembly strategy, as a high-performance anode material for sodium-ion batteries. The as-prepared composite can be directly used as electrodes without adding a binder or current collector, exhibiting outstanding electrochemical performance with a high reversible capacity (845 mA h g -1 at 0.1 A g -1 ), ultralong cycling life (91.6% capacity retention after 300 cycles at 0.2 A g -1 ), and exceptional rate capability (525 mA h g -1 at 10.0 A g -1 ). This is attributed to fast Na + ion diffusion from the ultrasmall nanoparticles and excellent electric transport between the active material and 3D porous graphene, which also provide an effective strategy for anchoring the nanoparticles. Experimental results show that the Sb 2 S 5 undergoes a reversible reaction of Sb 2 S 5 + 16Na ↔ 5Na 2 S + 2Na 3 Sb during sodiation/desodiation. Moreover, a full cell with Na 3 (VO 0.5 ) 2 (PO 4 ) 2 F 2 /C cathode and the as-prepared composite anode was assembled, displaying high output voltage (∼2.2 V) with a stable capacity of 828 mA h g -1 for anode material (with 100 cycles at 0.1 A g -1 ), showing the potential for practical application.

  17. A fractal model of effective stress of porous media and the analysis of influence factors

    Science.gov (United States)

    Li, Wei; Zhao, Huan; Li, Siqi; Sun, Wenfeng; Wang, Lei; Li, Bing

    2018-03-01

    The basic concept of effective stress describes the characteristics of fluid and solid interaction in porous media. In this paper, based on the theory of fractal geometry, a fractal model was built to analyze the relationship between the microstructure and the effective stress of porous media. From the microscopic point of view, the influence of effective stress on pore structure of porous media was demonstrated. Theoretical analysis and experimental results show that: (i) the fractal model of effective stress can be used to describe the relationship between effective stress and the microstructure of porous media; (ii) a linear increase in the effective stress leads to exponential increases in fractal dimension, porosity and pore number of the porous media, and causes a decreasing trend in the average pore radius.

  18. Three dimensional carbon-bubble foams with hierarchical pores for ultra-long cycling life supercapacitors.

    Science.gov (United States)

    Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao

    2018-07-06

    Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.

  19. Porous structure analysis of radioactive spent resin cementation matrix

    International Nuclear Information System (INIS)

    Zhou Yaozhong; Yun Guichun

    2004-01-01

    According to a cement product microstructure, a radioactive spent resin cementation matrix has the properties of porous matters. The distributing of the pore size and the pore microstructure stability are closely related to many crucial macro properties, including strength and permeability of the matrixes. By using a new computer-controlled Hg pressure test, a experiment methods of the matrix micro-properties was studied. By using porous structure analyses, it was found that the experimental method is useful for the future cementation research. In this test, it was also found that ASC cement matrixes of spent resin have superior microstructure to the OPC's. They have better pore size distribution, more stable structure and higher ability to hold the Hg in the matrixes than OPC's, and these properties are the important factors that make ASC cement matrixes have more stable macro-structure and lower leaching of nuclides. (authors)

  20. Preparation and Enzymatic Degradation of Porous Crosslinked Polylactides of Biomass Origin

    Directory of Open Access Journals (Sweden)

    Yuya Kido

    2014-06-01

    Full Text Available To understand the enzymatic degradation behavior of crosslinked polylactide (PLA, the preparation and enzymatic degradation of both thermoplastic (linear and crosslinked PLAs that have pore structures with different dimensions were carried out. The porous structures of the linear PLA samples were of micro and nanoporous nature, and prepared by batch foaming with supercritical CO2 and compared with the porous structures of crosslinked PLA (Lait-X created by the salt leaching method. The surface and cross-sectional morphologies of the porous structures were investigated by using scanning electron microscopy. The morphological analysis of porous Lait-X showed a rapid loss of physical features within 120 h of exposure to proteinase-K enzymatic degradation at 37 °C. Due to the higher affinity for water, enhanced enzymatic activity as compared to the linear PLA porous structures in the micro and nanoporous range was observed.

  1. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance

    Science.gov (United States)

    Asfaw, Habtom D.; Roberts, Matthew R.; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina

    2014-07-01

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating

  2. Optical and microstructural investigations of porous silicon

    Indian Academy of Sciences (India)

    Raman scattering and photoluminescence (PL) measurements on (100) oriented -type crystalline silicon (-Si) and porous silicon (PS) samples were carried out. PS samples were prepared by anodic etching of -Si under the illumination of light for different etching times of 30, 60 and 90 min. Raman scattering from the ...

  3. APPLICATION OF THE THERMAL CONDUCTIVITY CRITERION IN THE DESIGN OF FOAM-CERAMIC CONCRETES BASED ON THE OPAL-CRYSTOBALITE ROCK

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valerevich

    2012-10-01

    Full Text Available Design method of the foam-ceramic concrete with the pre-set value of thermal conductivity is proposed. Computed dependencies between the thermal conductivity, strength and generalized structural criterion - porosity - are presented. As a result of the research, it was identified that local input materials are ecological and easy to extract, and that they may be used as the mineral basis for the manufacturing of effective foam-glass ceramic materials that demonstrate their porous structure, similar to the one of the foam-ceramic concrete. The employment of the proposed approach to the design of the composition of foam-glass ceramic materials may substantially improve the most important properties of this material, namely, it may reduce the sorption capacity and improve the strength, if compared with the benchmark composition.

  4. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  5. Oxidation limited lifetime of Ni-Base metal foams in the temperature range 700-900 C

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton; Singheiser, Lorenz; Quadakkers, Willem Joseph [Forschungszentrum Juelich GmbH, IEF-2, Juelich (Germany); Schulze, Sebastian Leif; Bleck, Wolfgang [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany); Piron-Abellan, Javier [Vallourec Mannesmann Tubes, Duesseldorf (Germany)

    2010-09-15

    INCONEL 625 metal foams produced from alloy powder by the slip-reaction-foam-sinter-process are tested in respect to cyclic oxidation behavior in air in the temperature range 700-900 C. The structure of the oxide scales formed on the foam particles is characterized using optical microscopy and SEM/EDX analysis. Main emphasis is put on studying the oxidation limited lifetimes of the foams as function of temperature and foam microstructure. It is shown that mechanical disintegration during long term oxidation at the highest test temperatures is caused by a critical depletion of the Cr content in the alloy as a result of the growth of the initially formed surface chromia layer. This results in chemical breakaway due to accelerated oxide growth of voluminous Ni-rich oxide on chromium exhausted alloy particles. Lifetime modeling based on calculation of Cr-depletion in the alloy at the oxide/metal interface of each individual foam particle using the DICTRA software is in good agreement with the experimentally determined values of the time to breakaway. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Ultralight porous metals: From fundamentals to applications

    Science.gov (United States)

    Lu, Tianjian

    2002-10-01

    Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts. The main aim is to develop lightweight structures which are stiff, strong, able to absorb large amount of energy and cheap for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious consideration for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find a widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to be included in a design. This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams.

  7. Ultralight porous metals. From fundamentals to applications

    International Nuclear Information System (INIS)

    Lu, T.

    2002-01-01

    Over the past few years a number of low cost metallic foams for application as the core of sandwich panels and net shaped parts have been produced. The main aim is to develop lightweight structures which are stiff, strong, absorb large amount of energy and are cheap, for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious scrutiny for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to give a design capability. This work aims at reviewing recent progress and present some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams. (author)

  8. Application of the new GeN-Foam multi-physics solver to the European sodium fast reactor and verification against available codes - 15226

    International Nuclear Information System (INIS)

    Fiorina, C.; Mikityuk, K.

    2015-01-01

    A new multi-physics solver for nuclear reactor analysis, named GeN-Foam (Generalized Nuclear Foam), has been developed by the FAST group at the Paul Scherrer Institut. It is based on OpenFOAM and has been developed for the multi-physics transient analyses of pin-based (e.g., liquid metal Fast Reactors, Light Water Reactors) or homogeneous (e.g., fast spectrum Molten Salt Reactors) nuclear reactors. It includes solutions of coarse or fine mesh thermal-hydraulics, thermal-mechanics and neutron diffusion. In particular, thermal-hydraulics solution can combine on the same mesh both a traditional RANS model and a porous medium model, depending on the desired degree of approximation for each region. In case the active reactor core is modeled as a porous medium, a simple sub-solver computes the sub-scale radial temperature profiles in fuel and cladding. The mesh used for neutronics calculations is deformed according to the displacement field predicted by the thermal-mechanics solver, thus allowing for a direct prediction of expansion-related feedback effects in Fast Reactors. To limit computational requirements, GeN-Foam permits the use of three different unstructured meshes for thermal-hydraulics, thermal-mechanics and neutron diffusion. For the same reason, an adaptive time step is employed. The different equations can be solved altogether or selectively included. In this work, GeN-Foam is applied to the analysis of the European Sodium Fast Reactor (ESFR). In particular, a 3-D model of the ESFR core is set up employing a coarse-mesh porous-medium approach for the thermal-hydraulics. The reactor steady-state and different accidental transients are investigated to offer an overview of GeN-Foam use and capabilities, as well as to preliminarily investigate the impact of a relatively accurate thermal-mechanic treatment on the predicted ESFR behavior. A code-to-code benchmark against the TRACE system code is performed to verify the adequacy of the results provided by the new

  9. Supported porous carbon and carbon-CNT nanocomposites for supercapacitor applications

    Science.gov (United States)

    Schopf, Dimitri; Es-Souni, Mohammed

    2016-03-01

    Supported porous carbon and porous carbon-MWCNT-nanocomposite films are produced by pyrolysis of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on thermally resistant substrates. All films are characterized by SEM, RAMAN and XRD. The application of these films as supercapacitors is explored with outstanding supercapacitance values ranging from 80 to 120 F g-1 (up to 70 mF cm-2) in a three-electrode set-up in 1 M KOH, depending on microstructure. Additionally, the implementation of porous nanocarbon-MWCNT-nanocomposite films as electrodes in a symmetrical supercapacitor device is investigated. In all cases, long-term charge-discharge stability is demonstrated.

  10. Numerical study of metal foam heat sinks under uniform impinging flow

    International Nuclear Information System (INIS)

    Andreozzi, A; Bianco, N; Iasiello, M; Naso, V

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses. (paper)

  11. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    Science.gov (United States)

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Torsion Property of the Structure Bonded Aluminum Foam Due to Impact

    Directory of Open Access Journals (Sweden)

    Hwang G.W.

    2017-06-01

    Full Text Available An aluminum foam added with foaming agent, is classified into an open-cell type for heat transfer and a closed-cell type for shock absorption. This study investigates the characteristic on the torsion of aluminum foam for a closed-cell type under impact. The fracture characteristics are investigated through the composite of five types of aluminum foam (the thicknesses of 25, 35, 45, 55 and 65 mm, when applying the torsional moment of impact energy on the junction of a porous structure attached by an adhesive. When applying the impact energy of 100, 200 and 300J, the aluminum foams with thicknesses of 25 mm and 35 mm broke off under all conditions. For the energy over 200J, aluminums thicker than 55 mm continued to be attached. Furthermore, the aluminum specimens with thicknesses of 55 mm and 65 mm that were attached with more than 30% of bonding interface remained, proving that they could maintain bonding interface against impact energy. By comparing the data based on the analysis and test result, an increase in the thickness of specimen leads to the plastic deformation as the stress at the top and bottom of bonding interface moves to the middle by spreading the stress horizontally. Based on this fracture characteristic, this study can provide the data on the destruction and separation of bonding interface and may contribute to the safety design.

  13. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  14. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.

    Science.gov (United States)

    Chevillotte, Fabien; Perrot, Camille

    2017-08-01

    The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.

  15. MECHANICAL STRENGTH ENHANCEMENT OF OPEN-CELL ALUMINA FOAMS USING OPTIMUM CONCENTRATION OF DEFLOCCULANT

    Directory of Open Access Journals (Sweden)

    A. Hadi

    2015-06-01

    Full Text Available Open-cell alumina foams were prepared using the appropriate alumina slurry and polyurethane sponge with linear pore density of approximately 14 pores per inch (ppi as a template by the replica method. The rheological studies showed that the optimum solid content for the slurries without deflocculants was 60 wt. %. In order to increase the slurry solid content, Tiron (1,2-dihydroxy-3,5-benzene disulfonic acid disodium salt was used as dispersant. To determine the optimum concentration of dispersant, the viscosity curves of alumina slurries containing different values of Tiron from 0 to 1.2 wt. % (based on dry material weight were studied. The optimum concentration of Tiron obtained for lowest viscosity was 0.8 wt. %. Thus, the solid content in the slurry could be increased from 60 to 66 wt. %. The effect of increase in the slurry solid content and the way it affects the foam structure and the mechanical strength were investigated. Microstructural observations of the foams show a significant reduction in macroscopic and microscopic defects in the foam struts when the slurry solid content is increased. Total porosity of the produced alumina foams prepared using slurries containing 60 and 66 wt. % solid are 83.3 and 80.4 %, respectively, while the compressive strength of the foams has increased from 1.33 to 3.24 MPa.

  16. Porous ceramic scaffolds with complex architectures

    Science.gov (United States)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  17. Impact of foamed matrix components on foamed concrete properties

    Science.gov (United States)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  18. Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes.

    Science.gov (United States)

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Lai, Mei-Chun; Hwang, Shyh-Shin; Lin, Hong-Ru; Liou, Shir-Joe

    2011-08-01

    In this study, PMMA/CNTs composite materials with carboxyl-multi walled carbon nanotubes (c-MWNTs) or untreated MWNTs were prepared via in-situ bulk polymerization. The as-prepared PMMA/CNTs composite materials were then characterized by Fourier-Transformation infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The molecular weights of PMMA extracted from PMMA/CNTs composite materials and bulk PMMA were determined by gel permeation chromatography (GPC) with THF used as the eluant. The PMMA/CNTs composite materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The cellular microstructure, insulation and compressive mechanical properties of PMMA/CNTs composite foams were also investigated in detail. Compared to neat PMMA foam, the presence of CNTs increases in cell density and reduces cell size. The insulation and compressive mechanical properties of PMMA/CNTs composite foams were found to improve substantially those of neat PMMA foam. In particular, 22.6% decrease in thermal conductivity, 19.7% decrease in dielectric constant and 160% increase in compressive modulus were observed with the addition of 0.3 wt% carboxyl-multi walled carbon nanotubes (c-MWNTs).

  19. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  2. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Lipsa, Dan; Roberts, Richard; Laramee, Robert

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  3. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    Science.gov (United States)

    Murr, L E; Amato, K N; Li, S J; Tian, Y X; Cheng, X Y; Gaytan, S M; Martinez, E; Shindo, P W; Medina, F; Wicker, R B

    2011-10-01

    Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platelets while the mesh and foam structures were characterized by α(')-martensite with some residual α. The Co-29Cr-6Mo containing 0.22% C formed columnar (directional) Cr(23)C(6) carbides spaced ~2 μm in the build direction, while HIP-annealed Co-Cr alloy exhibited an intrinsic stacking fault microstructure. A log-log plot of relative stiffness versus relative density for Ti-6Al-4V and Co-29Cr-6Mo open-cellular mesh and foams resulted in a fitted line with a nearly ideal slope, n = 2.1. A stress shielding design graph constructed from these data permitted mesh and foam implant prototypes to be fabricated for compatible bone stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    Science.gov (United States)

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  5. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  6. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roostapour, A. [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Kam, S.I., E-mail: kam@lsu.edu [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new mathematical framework established for vadose-zone foam remediation. Black-Right-Pointing-Pointer Graphical solutions presented by Method of Characteristics quantitatively. Black-Right-Pointing-Pointer Effects of design parameters in the field applications thoroughly investigated. Black-Right-Pointing-Pointer Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S{sub w}), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam

  7. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    International Nuclear Information System (INIS)

    Roostapour, A.; Kam, S.I.

    2012-01-01

    Highlights: ► A new mathematical framework established for vadose-zone foam remediation. ► Graphical solutions presented by Method of Characteristics quantitatively. ► Effects of design parameters in the field applications thoroughly investigated. ► Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S w ), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam strength, and foam stability) are shown to be all important, interacting with each other. Results also

  8. Porous SiC ceramics fabricated by quick freeze casting and solid state sintering

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering. Poly (vinyl alcohol (PVA was added as binder and pore morphology controller in this work. The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries. Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics. The solid content of slurries and PVA content varied from 60 to 67.5 wt% and 2–6 wt%, respectively. Besides, the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 °C. Porous SiC ceramics with an average porosity of 42.72%, flexural strength of 59.28 MPa were obtained at 2150 °C from 67.5 wt% slurries with 2 wt% PVA.

  9. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    International Nuclear Information System (INIS)

    Baharom, Syazwani; Ahmad, Sufizar; Taib, Hariati; Muda, Rizamarhaiza

    2016-01-01

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO_2) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO_2 were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO_2 that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO_2 ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO_2 ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO_2 ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm"3 up to 0.75 g/cm"3, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  10. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.

    Science.gov (United States)

    Fiocco, L; Li, S; Stevens, M M; Bernardo, E; Jones, J R

    2017-03-01

    Magnesium is a trace element in the human body, known to have important effects on cell differentiation and the mineralisation of calcified tissues. This study aimed to synthesise highly porous Ca-Mg silicate foamed scaffolds from preceramic polymers, with analysis of their biological response. Akermanite (Ak) and wollastonite-diopside (WD) ceramic foams were obtained from the pyrolysis of a liquid silicone mixed with reactive fillers. The porous structure was obtained by controlled water release from selected fillers (magnesium hydroxide and borax) at 350°C. The homogeneous distribution of open pores, with interconnects of modal diameters of 160-180μm was obtained and maintained after firing at 1100°C. Foams, with porosity exceeding 80%, exhibited compressive strength values of 1-2MPa. In vitro studies were conducted by immersion in SBF for 21days, showing suitable dissolution rates, pH and ionic concentrations. Cytotoxicity analysis performed in accordance with ISO10993-5 and ISO10993-12 standards confirmed excellent biocompatibility of both Ak and WD foams. In addition, MC3T3-E1 cells cultured on the Mg-containing scaffolds demonstrated enhanced osteogenic differentiation and the expression of osteogenic markers including Collagen Type I, Osteopontin and Osteocalcin, in comparison to Mg-free counterparts. The results suggest that the addition of magnesium can further enhance the bioactivity and the potential for bone regeneration applications of Ca-silicate materials. Here, we show that the incorporation of Mg in Ca-silicates plays a significant role in the enhancement of the osteogenic differentiation and matrix formation of MC3T3-E1 cells, cultured on polymer-derived highly porous scaffolds. Reduced degradation rates and improved mechanical properties are also observed, compared to Mg-free counterparts, suggesting the great potential of Ca-Mg silicates as bone tissue engineering materials. Excellent biocompatibility of the new materials, in accordance to

  11. Role of foam drainage in producing protein aggregates in foam fractionation.

    Science.gov (United States)

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Encapsulation of low density plastic foam materials for the fast ignition realization experiment (FIREX). Control of microstructure and density

    International Nuclear Information System (INIS)

    Nagai, Keiji; Yang, H.; Iwamoto, A.

    2008-10-01

    Development of foam capsule fabrication for cryogenically cooled fuel targets is overviewed in the present paper. The fabrication development was initiated as a part of the Fast Ignition Realization Experiment (FIREX) Project at the ILE, Osaka University in the way of bilateral collaboration between Osaka University and National Institute for Fusion Science (NIFS). A foam cryogenic target was designed where low-density foam shells with a conical light guide will be cooled down to the cryogenic temperature and will be fueled through a narrow pipe. The required diameter and thickness of the capsule are 500 μm and 20 μm, respectively. The material should be low-density plastics foam. We have prepared such capsules using 1) mixtureing a new material of (phloroglucinolcarboxylic acid)/formalin (PF) linear polymer to control kinematic viscosity of the precursor, 2) phase-transfer-catalyzed gelation process to keep density matching of three phases of the emulsion. 3) non-volatile silicone oil as outer oil of emulsion in order to prevent hazard halogenated hydrocarbon and flammable mineral oil. The obtained foam capsule had fine structure of 180 nm (outer surface) to 220 nm (inner surface) and uniform thickness reaching to resolution limit of optical analysis (∼0.5 μm). A small hole was made before the solvent exchange and the drying process to prevent distortion due to volume changes. The density of dried foam was 0.29 g/cm 3 . After attaching the petawatt laser guiding cone and fueling glass tube, poly([2,2]paracyclophane) was coated on the foam surface and supplied for a fueling test of cryogenic hydrogen. Generally, lower density is from larger pore, then precise control of thickness and its encapsulation becomes more difficult. We have clarified the relation between pore size and preparation conditions using several precursor materials, and revealed how to control pore size of low density foams, where the solvent affinity for the polymer chain plays fundamental

  13. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  14. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    Science.gov (United States)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  15. Preparation and Characterization of Porous Calcium Phosphate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    Honglian Dai; Xinyu Wang; Yinchao Han; Xin Jiang; Shipu Li

    2011-01-01

    β-tricalcium phosphate (β-TCP) powder and Na2O-CaO-MgO-P2O5 glass binder were synthesized and mixed, and then the biodegradable porous calcium phosphate ceramics were successfully prepared by foaming and sintering at 850℃. The as-prepared ceramics possess a high porosity with partial three-dimension interconnected macro- and micro-pores. As in vitro experiment testified, the calcium phosphate ceramics (CPCs) has good degradability.

  16. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  17. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  18. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  19. Microstructure in hardened cement pastes measured by mercury intrusion porosimetry and low temperature microcalorimetry

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.; Künzel, H.M.

    1996-01-01

    The present paper is presenting some of the results on microstructure from the CEC-Science Project CT91-0737 "Characterization of microstructure as a tool for prediction of moisture transfer in porous media". In the Project the microstructure for the porous media is studied by absorption isotherms......, image analysis, mercury intrusion porosimetry and low temperature microcalorimetry.The present paper is dealing with cumulated pore size distributions measured by mercury intrusion porosimetry (MIP) from two laboratories (LCPC, IBP) and low temperature microcalorimetry (CAL) from one laboratory (BKM......). The materials are five different hardened cement pastes. The materials, the preparation procedure for the samples, the experiments and the experimental results are described. Finally, the results are compared and discussed....

  20. Fabrication of polystyrene porous films with gradient pore structures

    International Nuclear Information System (INIS)

    Yan Hongwei; Zhang Lin; Li Bo; Yin Qiang

    2010-01-01

    Silica opals and multilayer heterostructures were fabricated by vertical deposition technique. Polystyrene inverse opals and gradient porous structures were obtained by colloidal templating, in order to control the pore microstructure of polymer porous materials. As shown in the scanning electron microscopy images, the polystyrene porous structures are precise replicas of inverse structures of the original templates. After being infiltrated with the polystyrene, the photonic stop-band position of the opal composite is redshifted compared with the original template, and it is blueshifted after the opal template being removed. The filling ratio of polystyrene was calculated according to the Bragg formula. (authors)

  1. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si

    Directory of Open Access Journals (Sweden)

    Edwin Soh

    2015-03-01

    Full Text Available Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF, foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  2. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  3. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  4. Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Stehlík, Štěpán; Kaman, Ondřej; Ižák, Tibor; Domonkos, Mária; Lee, D.S.; Kromka, Alexander

    2017-01-01

    Roč. 119, Aug (2017), s. 124-132 ISSN 0008-6223 R&D Projects: GA ČR GC15-22102J Institutional support: RVO:68378271 Keywords : nucleation * polyvinyl alcohol * nanodiamonds * carbon foam Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 6.337, year: 2016

  5. Cellular and Porous Materials Thermal Properties Simulation and Prediction

    CERN Document Server

    Öchsner, Andreas; de Lemos, Marcelo J S

    2008-01-01

    Providing the reader with a solid understanding of the fundamentals as well as an awareness of recent advances in properties and applications of cellular and porous materials, this handbook and ready reference covers all important analytical and numerical methods for characterizing and predicting thermal properties. In so doing it directly addresses the special characteristics of foam-like and hole-riddled materials, combining theoretical and experimental aspects for characterization purposes.

  6. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance.

    Science.gov (United States)

    Asfaw, Habtom D; Roberts, Matthew R; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina

    2014-08-07

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm(-2) at 0.1 mA cm(-2) (lowest rate) and 1.1 mA h cm(-2) at 6 mA cm(-2) (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.

  7. A method of producing a body comprising porous alpha silicon carbide and the body produced by the method

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method of producing porous alpha-SiC containing shaped body and porous alpha-SiC containing shaped body produced by that method. The porous alpha-SiC containing shaped body shows a characteristic microstructure providing a high degree of mechanical stability...

  8. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    International Nuclear Information System (INIS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-01-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  9. Characterization and microstructure of porous lead zirconate titanate ...

    Indian Academy of Sciences (India)

    Unknown

    need to have porous piezoelectric materials. These can be made by combining a PZT ceramic with a passive polymer or air phase. These materials greatly extend the range of properties offered by conventional PZT ceramics. More- over, porosity in the materials could reduce the effective acoustical impedance leading to an ...

  10. Study of the compression and wear-resistance properties of freeze-cast Ti and Ti‒5W alloy foams for biomedical applications.

    Science.gov (United States)

    Choi, Hyelim; Shil'ko, Serge; Gubicza, Jenő; Choe, Heeman

    2017-08-01

    Ti and Ti‒5wt% W alloy foams were produced by freeze-casting process and their mechanical behaviors were compared. The Ti‒5W alloy foam showed a typical acicular Widmanstätten α/β structure with most of the W dissolved in the β phase. An electron-probe microanalysis revealed that approximately 2wt% W was uniformly dissolved in the Ti matrix of Ti‒5W alloy foam with few partially dissolved W particles. The compressive-yield strength of Ti‒5W alloy foam (~323MPa) was approximately 20% higher than that of the Ti foam (~256MPa) owing to the solid-solution-strengthening effect of W in the Ti matrix, which also resulted in a dramatic improvement in the wear resistance of Ti‒5W alloy foam. The compressive behaviors of the Ti and Ti‒5W alloy foams were predicted by analytical models and compared with the experimental values. Compared with the Gibson-Ashby and cellular-lattice-structure-in-square-orientation models of porous materials, the orientation-averaging method provided prediction results that are much more accurate in terms of both the Young's modulus and the yield strength of the Ti and Ti‒5W alloy foams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    Science.gov (United States)

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  12. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    Energy Technology Data Exchange (ETDEWEB)

    Baharom, Syazwani, E-mail: hd140001@siswa.uthm.edu.my; Ahmad, Sufizar, E-mail: sufizar@uthm.edu.my; Taib, Hariati, E-mail: hariati@uthm.edu.my; Muda, Rizamarhaiza, E-mail: hd130013@siswa.uthm.edu.my [Department of Material and Design Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2016-07-19

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO{sub 2}) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO{sub 2} were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO{sub 2} that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO{sub 2} ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO{sub 2} ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO{sub 2} ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm{sup 3} up to 0.75 g/cm{sup 3}, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  13. Effective Thermal Conductivity of Open Cell Polyurethane Foam Based on the Fractal Theory

    Directory of Open Access Journals (Sweden)

    Kan Ankang

    2013-01-01

    Full Text Available Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.

  14. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Science.gov (United States)

    Molino, Giulia; Vitale Brovarone, Chiara

    2018-01-01

    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498

  15. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Directory of Open Access Journals (Sweden)

    Hamada Elsayed

    2018-02-01

    Full Text Available Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2 were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C, owing to the formation of a C–S–H (calcium silicate hydrate gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80% and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions.

  16. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    International Nuclear Information System (INIS)

    Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping

    2017-01-01

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  17. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinliang [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Sun, Quansheng [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Yang, Zhenning; Luo, Shengmin [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Xiao, Xianghui [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Arwade, Sanjay R. [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Zhang, Guoping, E-mail: zhangg@umass.edu [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States)

    2017-03-14

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  18. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.

    Science.gov (United States)

    Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui

    2017-09-26

    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.

  19. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    Science.gov (United States)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  20. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  1. Large, Linear, and Tunable Positive Magnetoresistance of Mechanically Stable Graphene Foam-Toward High-Performance Magnetic Field Sensors.

    Science.gov (United States)

    Sagar, Rizwan Ur Rehman; Galluzzi, Massimiliano; Wan, Caihua; Shehzad, Khurram; Navale, Sachin T; Anwar, Tauseef; Mane, Rajaram S; Piao, Hong-Guang; Ali, Abid; Stadler, Florian J

    2017-01-18

    Here, we present the first observation of magneto-transport properties of graphene foam (GF) composed of a few layers in a wide temperature range of 2-300 K. Large room-temperature linear positive magnetoresistance (PMR ≈ 171% at B ≈ 9 T) has been detected. The largest PMR (∼213%) has been achieved at 2 K under a magnetic field of 9 T, which can be tuned by the addition of poly(methyl methacrylate) to the porous structure of the foam. This remarkable magnetoresistance may be the result of quadratic magnetoresistance. The excellent magneto-transport properties of GF open a way toward three-dimensional graphene-based magnetoelectronic devices.

  2. Reproducibility of aluminum foam properties: Effect of precursor distribution on the structural anisotropy and the collapse stress and its dispersion

    International Nuclear Information System (INIS)

    Nosko, M.; Simancik, F.; Florek, R.

    2010-01-01

    The porous structure of aluminum foam manufactured through the foaming of precursors containing blowing agent is stochastic in nature, usually with a random distribution of pores of different size and shape, creating difficulties in the modeling and prediction of foam properties. In this study, the effect of the initial location of the precursor material in the mold on the foam structure and compression behavior was investigated. Structural characterization showed that the porosity distribution, surface skin thickness and pore orientation was affected by the location of the precursors in the mold and by the extrusion direction of the precursors. Moreover, compression tests demonstrated a significant effect of the structural anisotropy on the collapse stress and its dispersion. The collapse stress of the foam increased if the loading was performed parallel to the thicker surface skin or parallel to the preferential pore orientation, leading to a 20% difference in collapse stress. The dispersion of the collapse stress could be significantly decreased if the loading was performed with regard to the structural anisotropy.

  3. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  4. Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media

    Directory of Open Access Journals (Sweden)

    Meijuan Yun

    2014-01-01

    Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.

  5. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  6. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  7. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  8. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  9. Preparation of Au nanosheets supported on Ni foam and its electrocatalytic performance towards NaBH4 oxidation

    International Nuclear Information System (INIS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Highlights: • The unique Au nanosheets are electrodeposited uniformly on Ni foam substrate. • Au NSs/Ni foam electrode shows high catalytic activity for NaBH 4 electrooxidation. • The surface of a single Au sheet is consisted of many nano-scale corrugations. - Abstract: The unique Au nanosheets (Au NSs) are electrodeposited uniformly on Ni foam substrate via a one-step potentiostatic electrodeposition technique. The electrode is characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffractometer. It shows a unique open structure allowing the full utilization of Au surface active sites. NaBH 4 electrooxidation in KOH solution on the Au NSs/Ni foam electrode are studied by linear sweep voltammetry and chronoamperometry. The electrode exhibits a high catalytic performance outperforming the Au particles made by the same method. At the oxidation potential of 0 V, the current density of 827 mA cm −2 can be achieved on Au NSs/Ni foam electrode, and only 219 mA cm −2 was obtained on Au NPs/Ni foam electrode, indicating that the catalytic activity is increased by 278%, which is attributed to the porous 3D structure, ensuring the full utilization of Au surfaces. Besides, H 2 generated by NaBH 4 hydrolysis can quickly diffuse away from the electrode, preventing surface active sites of Au from blocking by adsorbed gas bubbles

  10. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  11. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  12. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  13. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  14. Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon

    Science.gov (United States)

    Singh, M.; Behrendt, D. R.

    1992-01-01

    Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.

  15. PUR-PIR foam produced based on poly(hydroxybutyl citrate foamed founded with different factories

    Directory of Open Access Journals (Sweden)

    Liszkowska Joanna

    2018-03-01

    Full Text Available A poly(hydroxybutyl citrate p(HBC was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR. The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams and with Solkane 365/227 (S foams. The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01.

  16. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  17. Fabrication and Characterization of Porous MgAl₂O₄ Ceramics via a Novel Aqueous Gel-Casting Process.

    Science.gov (United States)

    Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun

    2017-11-30

    A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl₂O₄ ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl₂O₄ ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl₂O₄ ceramics had a high apparent porosity (52.5-65.8%), a small average pore size structure (around 1-3 μm) and a relatively high compressive strength (12-28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al₂O₃-based porous ceramics.

  18. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  19. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting

    Science.gov (United States)

    Roscow, J. I.; Zhang, Y.; Kraśny, M. J.; Lewis, R. W. C.; Taylor, J.; Bowen, C. R.

    2018-06-01

    Energy harvesting is an important developing technology for a new generation of self-powered sensor networks. This paper demonstrates the significant improvement in the piezoelectric energy harvesting performance of barium titanate by forming highly aligned porosity using freeze casting. Firstly, a finite element model demonstrating the effect of pore morphology and angle with respect to poling field on the poling behaviour of porous ferroelectrics was developed. A second model was then developed to understand the influence of microstructure-property relationships on the poling behaviour of porous freeze cast ferroelectric materials and their resultant piezoelectric and energy harvesting properties. To compare with model predictions, porous barium titanate was fabricated using freeze casting to form highly aligned microstructures with excellent longitudinal piezoelectric strain coefficients, d 33. The freeze cast barium titanate with 45 vol.% porosity had a d 33  =  134.5 pC N‑1 compared to d 33  =  144.5 pC N‑1 for dense barium titanate. The d 33 coefficients of the freeze cast materials were also higher than materials with uniformly distributed spherical porosity due to improved poling of the aligned microstructures, as predicted by the models. Both model and experimental data indicated that introducing porosity provides a large reduction in the permittivity () of barium titanate, which leads to a substantial increase in energy harvesting figure of merit, , with a maximum of 3.79 pm2 N‑1 for barium titanate with 45 vol.% porosity, compared to only 1.40 pm2 N‑1 for dense barium titanate. Dense and porous barium titanate materials were then used to harvest energy from a mechanical excitation by rectification and storage of the piezoelectric charge on a capacitor. The porous barium titanate charged the capacitor to a voltage of 234 mV compared to 96 mV for the dense material, indicating a 2.4-fold increase that was similar to that

  20. Normalized inverse characterization of sound absorbing rigid porous media.

    Science.gov (United States)

    Zieliński, Tomasz G

    2015-06-01

    This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.

  1. Low-temperature thermal conductivity of highly porous copper

    International Nuclear Information System (INIS)

    Tomás, G; Bonfait, G; Martins, D; Cooper, A

    2015-01-01

    The development and characterization of new materials is of extreme importance in the design of cryogenic apparatus. Recently Versarien ® PLC developed a technique capable of producing copper foam with controlled porosity and pore size. Such porous materials could be interesting for cryogenic heat exchangers as well as of special interest in some devices used in microgravit.y environments where a cryogenic liquid is confined by capillarity.In the present work, a system was developed to measure the thermal conductivity by the differential steady-state mode of four copper foam samples with porosity between 58% and 73%, within the temperatures range 20 - 260 K, using a 2 W @ 20 K cryocooler. Our measurements were validated using a copper control sample and by the estimation of the Lorenz number obtained from electrical resistivity measurements at room temperature. With these measurements, the Resistivity Residual Ratio and the tortuosity were obtained. (paper)

  2. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  3. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  4. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    Science.gov (United States)

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  5. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers

    Directory of Open Access Journals (Sweden)

    Laura Fiocco

    2015-05-01

    Full Text Available Wollastonite (CaSiO3 and diopside (CaMgSi2O6 silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.

  6. Numerical Analysis of a Paraffin/Metal Foam Composite for Thermal Storage

    Science.gov (United States)

    Di Giorgio, P.; Iasiello, M.; Viglione, A.; Mameli, M.; Filippeschi, S.; Di Marco, P.; Andreozzi, A.; Bianco, N.

    2017-01-01

    In the last decade, the use of Phase Change Materials (PCMs) as passive thermal energy storage has been widely studied both analytically and experimentally. Among the PCMs, paraffins show many advantages, such as having a high latent heat, a low vapour pressure, being chemically inert, stable and non-toxic. But, their thermal conductivity is very low with a high volume change during the melting process. An efficient way to increase their poor thermal conductivity is to couple them with open cells metallic foams. This paper deals with a theoretical analysis of paraffin melting process inside an aluminum foam. A mathematical model is developed by using the volume-averaged governing equations for the porous domain, made up by the PCM embedded into the metal foam. Non-Darcian and buoyancy effects are considered in the momentum equation, while the energy equations are modelled with the Local Thermal Non-Equilibrium (LTNE) approach. The PCM liquefaction is treated with the apparent heat capacity method and the governing equations are solved with a finite-element scheme by COMSOL Multiphysics®. A new method to calculate the coupling coefficients needed for the thermal model has been developed and the results obtained have been validated comparing them to experimental data in literature.

  7. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir

    2007-01-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  8. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  9. Micro-configuration Observation of Porous Bioceramic for Sliding on Intestinal Mucus Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the porous material before and after sliding on the mucus ftlm are observed in 2D and 3 D by digital microscopy. We describe how much mucus enters and stays within different pores, and how the porous material with rough/porous surface contacts with the mucus film ( elastic surface/gel). The presented results illustrate that the material with different porous structure can lead to different mucus suction, surface scraping and changes of contact area and condition during sliding, which will be active for high friction of robotic endoscope with the intestinal wall for intestinal locomotion.

  10. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    International Nuclear Information System (INIS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-01-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  11. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    Science.gov (United States)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  12. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  13. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  14. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  15. Some micromechanical models of elastoplastic behaviors of porous geomaterials

    Directory of Open Access Journals (Sweden)

    W.Q. Shen

    2017-02-01

    Full Text Available Some micromechanics-based constitutive models are presented in this study for porous geomaterials. These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix (von Mises, Green type, Mises–Schleicher and Drucker–Prager. Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Drucker–Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials (sandstone, porous chalk and argillite. Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones.

  16. In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker

    Directory of Open Access Journals (Sweden)

    Martins Talita

    2018-02-01

    Full Text Available In tissue engineering applications, 3D scaffolds with adequate structure and composition are required to provide durability that is compatiblewith the regeneration of native tissue. In the present study, the degradation of novel flexible 3D composite foams of chitosan (CH combined with bioactive glass (BGwas evaluated, focusing on the role of BG as a physical crosslinker in the composites, and its effect on the degradation process. Highly porous CH/BG composite foams were obtained, and an elevated degradation temperature and lower degradation rate compared with pure chitosan were observed, probably as a result of greater intermolecular interaction between CH and BG. The Fourier transform infrared spectroscopy (FTIR data suggest that hydrogen bonds were responsible for the physical crosslinking between CH and BG. The results confirm that CH/BG foams can combine controllable bioactivity and degradation behavior and, therefore, could be useful for tissue regeneration matrices.

  17. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuanshen, E-mail: yuanshen.qi@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Contreras, Karla G. [Monash Institute of Medical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800 (Australia); Jung, Hyun-Do [Liquid Processing & Casting Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lapovok, Rimma [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Estrin, Yuri, E-mail: yuri.estrin@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 (Russian Federation)

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400 °C was shown to produce unique properties. - Highlights: • Porous Ti and porous Ti/Mg composite scaffolds were fabricated successfully. • Space holder-enabled severe plastic deformation was first used in this application. • Silicon particles as sacrificial space holders were used for the first time. • Ultrafine-grained microstructure and good bonding between particles were obtained. • Good preosteoblast cell response to as-manufactured porous Ti was achieved.

  18. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  19. [Experimental Study of PMI Foam Composite Properties in Terahertz].

    Science.gov (United States)

    Xing, Li-yun; Cui, Hong-liang; Shi, Chang-cheng; Han, Xiao-hui; Zhang, Zi-yin; Li, Wei; Ma, Yu-ting; Zheng, Yan; Zhang, Song-nian

    2015-12-01

    Polymethacrylimide (PMI) foam composite has many excellent properties. Currently, PMI is heat-resistant foam, with the highest strength and stiffness. It is suitable as a high-performance sandwich structure core material. It can replace the honeycomb structure. It is widely used in aerospace, aviation, military, marine, automotive and high-speed trains, etc. But as new sandwich materials, PMI performance testing in the THz band is not yet visible. Based on the Terahertz (THz) time-domain spectroscopy technique, we conducted the transmission and reflection experiments, got the time domain waveforms and power density spectrum. And then we analyzed and compared the signals. The MATALB and Origin 8. 0 was used to calculate and obtain the transmittance (transfer function), absorptivity Coefficient, reflectance and the refractive index of the different thickness Degussa PMI (Model: Rohacell WF71), which were based on the application of the time-domain and frequency-domain analysis methods. We used the data to compared with the THz refractive index and absorption spectra of a domestic PMI, Baoding Meiwo Technology Development Co. , Ltd. (Model: SP1D80-P-30). The result shows that the impact of humidity on the measurement results is obvious. The refractive index of PMI is about 1. 05. The attenuation of power spectrum is due to the signal of the test platform is weak, the sample is thick and the internal scattering of PMI foam microstructure. This conclusion provides a theoretical basis for the THz band applications in the composite PMI. It also made a good groundwork for THz NDT (Non-Destructive Testing, NDT) technology in terms of PMI foam composites.

  20. Thermal and mechanical improvement of aluminum open-cells foams through electrodeposition of copper and graphene

    Directory of Open Access Journals (Sweden)

    Simoncini Alessandro

    2016-01-01

    Full Text Available Thanks to its planar structure, graphene is characterized by unique properties, such as excellent chemical inactivity, high electrical and thermal conductivity, high optical transparency, extraordinary flexibility and high mechanical resistance, which make it suitable in a very wide range of applications. This paper details the state of the art in graphene coating applied to aluminum open-cells foams for the improvement of their mechanical and thermal behavior. Metallic foams are highly porous materials with extremely high convective heat transfer coefficients, thanks to their complex structure of three-dimensional open-cells. Graphene nanoplatelets have been used to improve thermal conductivity of aluminum foams, to make them better suitable during heat transfer in transient state. Also, an improvement of mechanical resistance has been observed. Before electrodeposition, all the samples have been subjected to sandblasting process, to eliminate the oxide layer on the surface, enabling a better adhesion of the coating. Different nanoparticles of graphene have been used. The experimental findings revealed a higher thermal conductivity for aluminum open cells foams electroplated with graphene. Considered the relatively low process costs and the improvements obtainable, these materials are very promising in many technological fields. The topics covered include surface modification, electrochemical plating, thermo-graphic analysis.

  1. Deformation bands in porous carbonate grainstones: Field and laboratory observations

    NARCIS (Netherlands)

    Cilona, A.; Baud, P.; Tondi, E.; Agosta, F.; Vinciguerra, S.; Rustichelli, A.; Spiers, C.J.

    2012-01-01

    Recent field-based studies documented deformation bands in porous carbonates; these structures accommodate volumetric and/or shear strain by means of pore collapse, grain rotation and/or sliding. Microstructural observations of natural deformation bands in carbonates showed that, at advanced stages

  2. OpenFOAM Analysis of CANDU-6 Moderator Flow

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Chang, Se-Myong

    2015-01-01

    In this study OpenFOAM (Open Field Operation and Manipulation), an open source CFD solver, is used to simulate the three-dimensional moderator flow in calandria tank of CANDU-6 reactor improving the computational efficiency by parallel computing which does not need any proprietary license. A prototype of CANDU-6 reactor is numerically analyzed about three-dimensional moderator flow in calandrian tank with OpenFOAM, an open source CFD code. The horizontal fuel channels in a CANDU-6 reactor (a pressurized heavy water reactor) are submerged in the heavy water (D 2 O) pool which is contained by a cylindrical tank, calandria. Each fuel channel consists of concentric tubes: a Pressure Tube (PT) and a Calandria Tube (CT). And the CO 2 gas is filled between these tubes. Consequently, a heat flux is rapidly transferred to the outer CT so that a film boiling may occur in CT. As a result, it is important to keep the subcooling in the moderator. It is one of the major concerns in the CANDU safety analyses to estimate the local subcooling margin of the moderator inside the calandria tank. Previous experimental studies showed that the film boiling would be unlikely to occur if the local moderator subcooling is sufficient. Therefore, an accurate prediction of the moderator temperature distribution in the calandria tank is needed to confirm the channel integrity. There have been numerous computational efforts to estimate the thermal hydraulics in the calandria tank using CFD codes. Hadaller et al. obtained a tube bank pressure drop model for tube bundle region of the calandria tank and implemented it into the MODTURC C LAS code. Yoon et al. used the CFX code to develop a CFD model with a porous media approach for the core region. However, it is known that porous media modeling provide only average values of flow velocities and temperatures and do not give any information about local flow variables near tube solid walls, which are necessary to implement accurate heat transfer

  3. OpenFOAM Analysis of CANDU-6 Moderator Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chang, Se-Myong [Kunsan National University, Gunsan (Korea, Republic of)

    2015-10-15

    In this study OpenFOAM (Open Field Operation and Manipulation), an open source CFD solver, is used to simulate the three-dimensional moderator flow in calandria tank of CANDU-6 reactor improving the computational efficiency by parallel computing which does not need any proprietary license. A prototype of CANDU-6 reactor is numerically analyzed about three-dimensional moderator flow in calandrian tank with OpenFOAM, an open source CFD code. The horizontal fuel channels in a CANDU-6 reactor (a pressurized heavy water reactor) are submerged in the heavy water (D{sub 2}O) pool which is contained by a cylindrical tank, calandria. Each fuel channel consists of concentric tubes: a Pressure Tube (PT) and a Calandria Tube (CT). And the CO{sub 2} gas is filled between these tubes. Consequently, a heat flux is rapidly transferred to the outer CT so that a film boiling may occur in CT. As a result, it is important to keep the subcooling in the moderator. It is one of the major concerns in the CANDU safety analyses to estimate the local subcooling margin of the moderator inside the calandria tank. Previous experimental studies showed that the film boiling would be unlikely to occur if the local moderator subcooling is sufficient. Therefore, an accurate prediction of the moderator temperature distribution in the calandria tank is needed to confirm the channel integrity. There have been numerous computational efforts to estimate the thermal hydraulics in the calandria tank using CFD codes. Hadaller et al. obtained a tube bank pressure drop model for tube bundle region of the calandria tank and implemented it into the MODTURC{sub C}LAS code. Yoon et al. used the CFX code to develop a CFD model with a porous media approach for the core region. However, it is known that porous media modeling provide only average values of flow velocities and temperatures and do not give any information about local flow variables near tube solid walls, which are necessary to implement accurate heat

  4. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    Deformation bands are commonly thin tabular zones of crushed or reorganized grains that form in highly porous rocks and sediments. Unlike a fault, typically the slip is negligible in deformation bands. In this dissertation the microstructure and petrophysical properties of deformation bands have been investigated through microscopy and numerical analysis of experimental and natural examples. The experimental work consists of a series of ring-shear experiments performed on porous sand at 5 and 20 MPa normal stresses and followed by microscopic examination of thin sections from the sheared samples. The results of the ring-shear experiments and comparison of them to natural deformation bands reveals that burial depth (level of normal stress in the experiments) and the amount of shear displacement during deformation are the two significant factors influencing the mode in which grains break and the type of shear zone that forms. Two end-member types of experimental shear zones were identified: (a) Shear zones with diffuse boundaries, which formed at low levels of normal stress and/or shear displacement; and (b) Shear zones with sharp boundaries, which formed at higher levels of normal stress and/or shear displacement. Our interpretation is that with increasing burial depth (approximately more than one kilometer, simulated in the experiments by higher levels of normal stress), the predominant mode of grain fracturing changes from flaking to splitting; which facilitates the formation of sharp-boundary shear zones. This change to grain splitting increases the power law dimension of the grain size distribution (D is about 1.5 in sharp boundary shear zones). Based on our observations, initial grain size has no influence in the deformation behavior of the sand at 5 MPa normal stresses. A new type of cataclastic deformation band is described through outcrop and microscopic studies; here termed a 'slipped deformation band'. Whereas previously reported cataclastic

  5. Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties

    Science.gov (United States)

    Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying

    2018-03-01

    In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.

  6. A SANS study of capillary condensation in porous media

    International Nuclear Information System (INIS)

    Lin, M.; Glinka, C.; Sinna, S.; Huang, J.; Abeles, B.; Johnson, J.; Drake, J.

    1990-01-01

    The authors use small angle neutron scattering (SANS) to study the microstructure of porous Vycor glass and the capillary condensation of fluids in the medium. Using a chord distribution model, they can predict the structure factor measured by SANS. Excellent agreement with the data is obtained. The fitted parameters characterize quantitatively the porous structure before and during the process of condensation, and are in good agreement with isotherm measurements. However, at the latest stages of the process, when all the pores are nearly filled, the model can no longer describe the system

  7. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  8. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    International Nuclear Information System (INIS)

    Cong Khanh Huynh; Trinh Vu Duc

    2009-01-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  9. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  10. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  11. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    International Nuclear Information System (INIS)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu; Han, In Sub; Kim, Ik Jin

    2016-01-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I_D/I_G ratio of 0.88.

  12. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  13. Photocatalytic evaluation of self-assembled porous network structure of ferric oxide film fabricated by dry deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yunchan; Kim, Hyungsub; Lee, Geon-Yong; Pawar, Rajendra C.; Lee, Jai-Sung; Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr

    2016-09-15

    Ferric oxide powder in the alpha phase (α-Fe{sub 2}O{sub 3}) was deposited on an aluminum oxide (Al{sub 2}O{sub 3}) substrate by a nanoparticle deposition system using the dry deposition method. X-ray diffraction (XRD) images confirmed that the phase of the deposited α-Fe{sub 2}O{sub 3} did not change. The deposited α-Fe{sub 2}O{sub 3} was characterized in terms of its microstructure using scanning electron microscopy (SEM). A porous network microstructure formed when small agglomerates of Fe{sub 2}O{sub 3} (SAF) were deposited. The deposition and formation mechanism of the microstructure were investigated using SEM and three-dimensional (3D) profile analysis. First, a dense coating layer formed when the film was thinner than the particle size. After that, as the film thickness increased to over 5 μm, the porous network structure formed by excavating the surface of the coating layer as it was bombarded by particles. Rhodamine B (RhB) was degraded after 6 h of exposure to the Fe{sub 2}O{sub 3} coating layer with SAF, which has good photocatalytic activity and a high porous network structure. The kinetic rate constants of the SAF and large agglomerates of Fe{sub 2}O{sub 3} (LAF) were calculated to be 0.197(h{sup −1}) and 0.128(h{sup −1}), respectively, based on the absorbance results. Using linear sweep voltammetry, we confirmed that the photoelectric effect occurred in the coating layer by measuring the resulting current under illuminated and dark conditions. - Graphical abstract: Self-assembled porous photocatalytic film fabricated by dry deposition method for water purification. - Highlights: • Different sizes of Fe{sub 2}O{sub 3} agglomerates were used to form porous network structure. • Fe{sub 2}O{sub 3} agglomerate particles were deposited using solvent-free process. • Self-assembled porous network microstructure formed better with small agglomerates of Fe{sub 2}O{sub 3}. • Fabricated porous network structure showed its potential to be used

  14. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors

    Science.gov (United States)

    Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin

    2015-08-01

    A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.

  15. In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography

    International Nuclear Information System (INIS)

    Lachambre, J.; Maire, E.; Adrien, J.; Choqueuse, D.

    2013-01-01

    Syntactic foams (hollow glass microspheres embedded in a polymeric matrix) are being used increasingly for the purpose of thermal insulation in ultradeep water. A better understanding of the damage mechanisms of these materials at the microsphere scale under such a hydrostatic loading condition is of prior importance in determining actual material limits, improving phenomenological modelling and developing novel formulations in the future. To achieve this goal, a study based on X-ray microtomography was performed on two syntactic foam materials (polypropylene and polyurethane matrix) and a standard foamed PP. A special set up has been designed in order to allow the X-ray microtomographic observation of the material during hydrostatic pressure loading using ethanol as the pressure fluid. Spatial resolution of (3.5 μm) 3 and in situ non-destructive scanning allowed a unique qualitative and quantitative analysis of the composite microstructure during stepwise isotropic compression by hydrostatic pressure up to 50 MPa. The collapse of weaker microspheres were observed during pressure increase and the damage parameters could be estimated. It is shown that the microspheres which are broken or the porosities which are close to the surface in the foamed PP are filled by a fluid (either the ethanol or the polymeric matrix itself). The hydrostatic pressure decreases the volume of the foam only slightly. In the PU matrix, ethanol diffusion is seen to induce swelling of the matrix, which is an unexpected phenomenon but reveals the high potential of X-ray microtomographic observation to improve diffusion analysis in complex media

  16. State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective

    Science.gov (United States)

    Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija

    2018-06-01

    Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.

  17. INTERRUPTED IN-SITU COMPRESSIVE DEFORMATION EXPERIMENTS ON MMC FOAMS IN AN XCT: EXPERIMENTS AND ESTIMATION OF DISPLACEMENT FIELDS

    Directory of Open Access Journals (Sweden)

    Katharina Losch

    2014-05-01

    Full Text Available The mechanical properties of a metal-matrix composite foam are investigated by interrupted in-situ compressive deformation experiments within an X-ray computed tomography device (XCT. Each in-situ experiment generates a sequence of reconstructed 3D images of the foam microstructure. From these data, the deformation field is estimated by registring the images corresponding to three consecutive steps. To this end, the generic registration framework of the itk software suite is exploited and combined with several image preprocessing steps. Both segmented (binary images having just two grey values for foreground (strut structure and background (pore space and the result of the Euclidean distance transform (EDT on pore space and solid phase are used. The estimation quality is evaluated based on a sequence of synthetic data sets, where the foam’s microstructure is modelled by a random Laguerre tessellation. For large deformations, a combination of non-rigid registration for the EDT images and partwise-rigid registration on strongly deformed regions of the binary images, yields surprisingly small estimation errors.

  18. Low cost porous MgO substrates for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.

    2016-01-01

    This paper delineates the fabrication of porous magnesium oxide (MgO) ceramics with high porosity and gas permeability by warm pressing using pre-calcined MgO powder and fugitive pore former (combination of graphite and polymethyl methacrylate). Effect of pore former on the microstructure...

  19. Solar grounds for the production of foamed concrete items

    Directory of Open Access Journals (Sweden)

    Dauzhanov Nabi Tokmurzaevich

    2014-04-01

    Full Text Available The method and low-energy intensive technology of manufacturing products of foamed concrete are developed providing bringing-in a solar energy in technological conversion for reducing the energy consumption for heat treating, allowing to obtain high quality products at low cost with a diurnal cycle of production. Thereby, the use of a minimal amount of additional electrical energy is stipulated for providing a consistence of temperature fields in the cross section of helio heated products in landfills in combination with solar energy. Until now, many scientists have investigated the issues of using the renewable energy resources in the construction industry including solar ones, for replacement of conventional fuels applied in the thermal treatment of concrete products and structures. However, pursuant to the analysis of the scientific literature, all known research studies and developments in this area are devoted to heliothermal treatment of conventional concrete, and at the same time the traditional methods for acceleration of hardening requiring significant energy consumption are still in use in production of such an effective building material as foam concrete. There are various methods of heliothermal treatment including combined ones, but they are not applicable in their production due to the specific characteristics (unlike conventional concrete of manufacturing technology, the used components, the particular rheological properties, as well as a porous structure of foam concrete. Both the examining the use of solar energy in acceleration of foam concrete hardening according to the literature data and the pre-studies have revealed a problem under unilateral heliothermal treatment of foam concrete. It is found out that the temperature field of across thickness of the massif, especially during the first 7-8 hours, is irregular, that significantly affects the process of heating moisture transfer occurring within the massif. According to the

  20. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.

    Science.gov (United States)

    Wu, Qian; Zhang, Qian; Zhao, Li; Li, Shi-Neng; Wu, Lian-Bin; Jiang, Jian-Xiong; Tang, Long-Cheng

    2017-08-15

    In this study, a novel strategy was developed to fabricate highly flame retardant polymer foam composite materials coated by synthesized silicone resin (SiR) polymer via a facile dip-coating processing. Applying the SiR polymer coating, the mechanical property and thermal stability of SiR-coated polymer foam (PSiR) composites are greatly enhanced without significantly altering their structure and morphology. The minimum oxygen concentration to support the combustion of foam materials is greatly increased, i.e. from LOI 14.6% for pure foam to LOI 26-29% for the PSiR composites studied. Especially, adjusting pendant group to SiOSi group ratio (R/Si ratio) of SiRs produces highly flame retardant PSiR composites with low smoke toxicity. Cone calorimetry results demonstrate that 44-68% reduction in the peak heat release rate for the PSiR composites containing different R/Si ratios over pure foam is achieved by the presence of appropriate SiR coating. Digital and SEM images of post-burn chars indicate that the SiR polymer coating can be transformed into silica self-extinguishing porous layer as effective inorganic barrier effect, thus preserving the polymer foam structure from fire. Our results show that the SiR dip-coating technique is a promising strategy for producing flame retardant polymer foam composite materials with improved mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Does laser-driven heat front propagation depend on material microstructure?

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  2. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  3. Stochastic microstructure characterization and reconstruction via supervised learning

    International Nuclear Information System (INIS)

    Bostanabad, Ramin; Bui, Anh Tuan; Xie, Wei; Apley, Daniel W.; Chen, Wei

    2016-01-01

    Microstructure characterization and reconstruction have become indispensable parts of computational materials science. The main contribution of this paper is to introduce a general methodology for practical and efficient characterization and reconstruction of stochastic microstructures based on supervised learning. The methodology is general in that it can be applied to a broad range of microstructures (clustered, porous, and anisotropic). By treating the digitized microstructure image as a set of training data, we generically learn the stochastic nature of the microstructure via fitting a supervised learning model to it (we focus on classification trees). The fitted supervised learning model provides an implicit characterization of the joint distribution of the collection of pixel phases in the image. Based on this characterization, we propose two different approaches to efficiently reconstruct any number of statistically equivalent microstructure samples. We test the approach on five examples and show that the spatial dependencies within the microstructures are well preserved, as evaluated via correlation and lineal-path functions. The main advantages of our approach stem from having a compact empirically-learned model that characterizes the stochastic nature of the microstructure, which not only makes reconstruction more computationally efficient than existing methods, but also provides insight into morphological complexity.

  4. Structural applications of metal foams considering material and geometrical uncertainty

    Science.gov (United States)

    Moradi, Mohammadreza

    Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition

  5. Laser-supported ionization wave in under-dense gases and foams

    International Nuclear Information System (INIS)

    Gus'kov, S. Yu.; Limpouch, J.; Nicolaie, Ph.; Tikhonchuk, V. T.

    2011-01-01

    Propagation of laser-supported ionization wave in homogeneous and porous materials with a mean density less than the critical plasma density is studied theoretically in the one-dimensional geometry. It is shown that the velocity of the ionization wave in a foam is significantly decreased in comparison with the similar wave in a homogeneous fully ionized plasma of the same density. That difference is attributed to the ionization and hydro-homogenization processes forming an under-critical density environment in the front of ionization wave. The rate of energy transfer from laser to plasma is found to be in a good agreement with available experimental data.

  6. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong, E-mail: zddai@nuaa.edu.cn

    2014-08-30

    Highlights: • Cu–Ni alloy open-cell foam integrated with CNTs was used for EMI shielding. • The composite was prepared by electroless, electro-, and electrophoretic deposition. • The main shielding mechanism was multiple reflections and absorptions of microwaves. • The composite had a porous structure, large surface area, and inherent permeability. - Abstract: A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu–Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu–Ni–CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8–12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  7. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  8. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  9. 2nd conference on Continuous Media with Microstructure

    CERN Document Server

    Kuczma, Mieczysław

    2016-01-01

    This book presents research advances in the field of Continuous Media with Microstructure and considers the three complementary pillars of mechanical sciences: theory, research and computational simulation. It focuses on the following problems: thermodynamic and mathematical modeling of materials with extensions of classical constitutive laws, single and multicomponent media including modern multifunctional materials, wave propagation, multiscale and multiphysics processes, phase transformations, and porous, granular and composite materials. The book presents the proceedings of the 2nd Conference on Continuous Media with Microstructure, which was held in 2015 in Łagów, Poland, in memory of Prof. Krzysztof Wilmański. .

  10. Microstructure development of in situ porous TiO/Cu composites

    International Nuclear Information System (INIS)

    Qin, Q.D.; Huang, B.W.; Li, W.; Shao, F.

    2016-01-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti_2CO and Cu powder. Ti_2CO powder is produced by the carbothermic reduction of titanium dioxide (TiO_2) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  11. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  12. Thermosetting Fluoropolymer Foams

    Science.gov (United States)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  13. A Fractal Study on the Effective Thermal Conductivity of Porous Media

    Science.gov (United States)

    Qin, X.; Cai, J.; Wei, W.

    2017-12-01

    Thermal conduction in porous media has steadily received attention in science and engineering, for instance, exploiting and utilizing the geothermal energy, developing the oil-gas resource, ground water flow in hydrothermal systems and investigating the potential host nuclear wastes, etc. The thermal conductivity is strongly influenced by the microstructure features of porous media. In this work, based on the fractal characteristics of the grains, a theoretical model of effective thermal conductivity is proposed for saturated and unsaturated porous media. It is found that the proposed effective thermal conductivity solution is a function of geometrical parameters of porous media, such as the porosity, fractal dimension of granular matrix and the thermal conductivity of the grains and pore fluid. The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data. The proposed model may provide a better understanding of the physical mechanisms of thermal transfer in porous media than conventional models.

  14. Three-dimensional microstructural effects on plane strain ductile crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2006-01-01

    Ductile crack growth under mode 1, plane strain, small scale yielding conditions is analyzed. Overall plane strain loading is prescribed, but a full 3D analysis is carried out to model three dimensional microstructural effects. An elastic-viscoplastic constitutive relation for a porous plastic...

  15. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    Science.gov (United States)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  16. Fabrication and Characterization of Porous MgAl2O4 Ceramics via a Novel Aqueous Gel-Casting Process

    Directory of Open Access Journals (Sweden)

    Lei Yuan

    2017-11-01

    Full Text Available A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl2O4 ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl2O4 ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl2O4 ceramics had a high apparent porosity (52.5–65.8%, a small average pore size structure (around 1–3 μm and a relatively high compressive strength (12–28 MPa. The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al2O3-based porous ceramics.

  17. INFLUENCE OF WATER-TO-CEMENT RATIO ON AIR ENTRAILMENT IN PRODUCTION OF NON-AUTOCLAVED FOAM CONCRETE USING TURBULENCE CAVITATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Gorshkov Pavel Vladimirovich

    2012-10-01

    Full Text Available Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish strong concrete mixtures (with the water-to-cement ratio equal to 0.3…0.4 and ductile ones (with the water-to-cement ratio equal to 0.5…0.7. Strong concrete mixtures are more durable. The lower the water-to-cement ratio, the higher the foam concrete strength. However super-plastic substances cannot be mixed by ordinary turbulent mixers. Foam concrete produced using the turbulence cavitation technology needs air-entraining, its intensity being dependent on several factors. One of the main factors is the amount of free water, if it is insufficient, the mixture will not be porous enough. A researcher needs to identify the optimal water-to-cement ratio based on the water consumption rate. Practical production of prefabricated concrete products and structures has proven that the reduction of the water-to-cement ratio improves the strength of the product. The task is to find the water-to-cement ratio for the foam concrete mixture to be plastic enough for air entraining. An increase in the ratio causes loss in the strength. The ratio shall vary within one hundredth points. Super-plasticizers are an alternative solution.

  18. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of); Han, In Sub [Korea Institute of Energy Research (KIER), #152 Gajeong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Ik Jin, E-mail: ijkim@hanseo.ac.kr [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of)

    2016-03-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I{sub D}/I{sub G} ratio of 0.88.

  19. ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors

    Science.gov (United States)

    Mirzaee, Majid; Dehghanian, Changiz; Sabet Bokati, Kazem

    2018-04-01

    This study presents composite electrode materials based on Electrochemically Reduced graphene oxide (ERGO) and Ni-Cu Foam for supercapacitor applications. Constant potential (CP) method was used to form reduced graphene oxide on Ni-Cu foam and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-Ray Photoelectron Spectra (XPS), Raman Spectroscopy and electrochemical measurements. ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure. The ERGO served as a conductive network to facilitate the collection and transportation of electrons during the cycling, improved the conductivity of Ni-Cu foam, and allowed for a larger specific surface area. The irregular porous structure allowed for the easy diffusion of the electrolyte into the inner region of the electrode. Moreover, the nanocomposite directly fabricated on Ni-Cu foam with a better adhesion and avoided the use of polymer binder. This method efficiently reduced ohmic polarization and enhanced the rate capability. As a result, the Ni-Cu foam/ERGO nanocomposite exhibited a specific capacitance of 1259.3 F g-1 at 2 A g-1and about 99.3% of the capacitance retained after 5000 cycles. The capacitance retention was about 3% when the current density increased from 2 A g-1 to 15 A g-1. This two-step process drop cast and GO reduction by potentiostatic method is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.

  20. Influence of Structure and Microstructure on Deformation Localization and Crack Growth in NiTi Shape Memory Alloys

    Science.gov (United States)

    Paul, Partha P.; Fortman, Margaret; Paranjape, Harshad M.; Anderson, Peter M.; Stebner, Aaron P.; Brinson, L. Catherine

    2018-04-01

    Porous NiTi shape memory alloys have applications in the biomedical and aerospace fields. Recent developments in metal additive manufacturing have made fabrication of near-net-shape porous products with complicated geometries feasible. There have also been developments in tailoring site-specific microstructures in metals using additive manufacturing. Inspired by these developments, we explore two related mechanistic phenomena in a simplified representation of porous shape memory alloys. First, we computationally elucidate the connection between pore geometry, stress concentration around pores, grain orientation, and strain-band formation during tensile loading of NiTi. Using this, we present a method to engineer local crystal orientations to mitigate the stress concentrations around the pores. Second, we experimentally document the growth of cracks around pores in a cyclically loaded superelastic NiTi specimen. In the areas of stress concentration around holes, cracks are seen to grow in large grains with [1 1 0] oriented along the tensile axis. This combined work shows the potential of local microstructural engineering in reducing stress concentration and increasing resistance to propagation of cracks in porous SMAs, potentially increasing the fatigue life of porous SMA components.

  1. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  2. Porous ceramics achievement by soybean and corn agricultural waste insertion

    International Nuclear Information System (INIS)

    Valdameri, C.Z.; Ank, A.; Zatta, L.; Anaissi, F.J.

    2014-01-01

    Porous ceramic materials are produced by incorporating organic particles and stable foams. Generally it improves low thermal conductivity, which gives thermal comfort for buildings. The southwest region of Parana state is one of the largest producers of grains in Brazil, this causes the disposal of a large amount of waste in the agricultural processing. This paper presents the characterization of porous ceramics produced from clay minerals and agricultural waste (soybeans and corn). The precursor was characterized by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) techniques. For the ceramic materials produced, characterizations about density, water absorption, tensile strength by diametrical compression strength and flexural strength curves was performed. The results showed high possibility of industrial/commercial application because the ceramic materials were produced from low costs precursors leading to ceramic products with properties of interest in construction. (author)

  3. Area 2. Use Of Engineered Nanoparticle-Stabilized CO2 Foams To Improve Volumetric Sweep Of CO2 EOR Processes

    Energy Technology Data Exchange (ETDEWEB)

    DiCarlo, David [Univ. of Texas, Austin, TX (United States); Huh, Chun [Univ. of Texas, Austin, TX (United States); Johnston, Keith P. [Univ. of Texas, Austin, TX (United States)

    2015-01-31

    The goal of this project was to develop a new CO2 injection enhanced oil recovery (CO2-EOR) process using engineered nanoparticles with optimized surface coatings that has better volumetric sweep efficiency and a wider application range than conventional CO2-EOR processes. The main objectives of this project were to (1) identify the characteristics of the optimal nanoparticles that generate extremely stable CO2 foams in situ in reservoir regions without oil; (2) develop a novel method of mobility control using “self-guiding” foams with smart nanoparticles; and (3) extend the applicability of the new method to reservoirs having a wide range of salinity, temperatures, and heterogeneity. Concurrent with our experimental effort to understand the foam generation and transport processes and foam-induced mobility reduction, we also developed mathematical models to explain the underlying processes and mechanisms that govern the fate of nanoparticle-stabilized CO2 foams in porous media and applied these models to (1) simulate the results of foam generation and transport experiments conducted in beadpack and sandstone core systems, (2) analyze CO2 injection data received from a field operator, and (3) aid with the design of a foam injection pilot test. Our simulator is applicable to near-injection well field-scale foam injection problems and accounts for the effects due to layered heterogeneity in permeability field, foam stabilizing agents effects, oil presence, and shear-thinning on the generation and transport of nanoparticle-stabilized C/W foams. This report presents the details of our experimental and numerical modeling work and outlines the highlights of our findings.

  4. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  5. Microstructure development of in situ porous TiO/Cu composites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Q.D., E-mail: 58124812@qq.com [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Huang, B.W. [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Li, W. [Department of Materials Engineering, Zhengzhou Technology College, No. 81 Zhengshang Road, Zhengzhou, 450051 (China); Shao, F. [2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China)

    2016-07-05

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti{sub 2}CO and Cu powder. Ti{sub 2}CO powder is produced by the carbothermic reduction of titanium dioxide (TiO{sub 2}) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  6. Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites.

    Science.gov (United States)

    Liu, Wenwen; Li, Jingde; Feng, Kun; Sy, Abel; Liu, Yangshuai; Lim, Lucas; Lui, Gregory; Tjandra, Ricky; Rasenthiram, Lathankan; Chiu, Gordon; Yu, Aiping

    2016-10-05

    Li-ion hybrid supercapacitors (LIHSs) have recently attracted increasing attention as a new and promising energy storage device. However, it is still a great challenge to construct novel LIHSs with high-performance due to the majority of battery-type anodes retaining the sluggish kinetics of Li-ion storage and most capacitor-type cathodes with low specific capacitance. To solve this problem, 3D graphene-wrapped MoO 3 nanobelt foam with the unique porous network structure has been designed and prepared as anode material, which delivers high capacity, improved rate performance, and enhanced cycle stability. First-principles calculation reveals that the combination of graphene dramatically reduces the diffusion energy barrier of Li + adsorbed on the surface of MoO 3 nanobelt, thus improving its electrochemical performance. Furthermore, 3D graphene-wrapped polyaniline nanotube foam derived carbon is employed as a new type of capacitor-type cathode, demonstrating high specific capacitance, good rate performance, and long cycle stability. Benefiting from these two graphene foam-enhanced materials, the constructed LIHSs show a wide operating voltage range (3.8 V), a long stable cycle life (90% capacity retention after 3000 cycles), a high energy density (128.3 Wh·kg -1 ), and a high power density (13.5 kW·kg -1 ). These encouraging performances indicate that the obtained LIHSs may have promising prospect as next-generation energy-storage devices.

  7. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  8. Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method

    International Nuclear Information System (INIS)

    Wang Huihu; Dong, Shijie; Chang Ying; Zhou Xiaoping; Hu Xinbin

    2012-01-01

    Different porous ZnO film structures on the surface of alumina substrates were prepared through a simple chemical bath deposition method in the methanolic zinc acetate solution. The surface morphology and phase structure of porous ZnO film were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Both initial zinc acetate concentration and sintering temperature have great impact on the final film structures. With the increase of initial zinc acetate concentration, the porous structures can be finely tuned from circular nest like assemblies composed film into successive nest like film, and finally to globular aggregates composed film. By increasing the sintering temperature, the porous structure of successive nest like film can be further controlled. Furthermore, the crystallinity of photocatalysts also can be greatly improved. The photodegradation results of Methyl Orange revealed that porous ZnO film with successive nest like structure sintered at 500 °C exhibited the highest photocatalytic activity under UV illumination.

  9. Combustion synthesized hierarchically porous WO{sub 3} for selective acetone sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chengjun; Liu, Xu; Guan, Hongtao; Chen, Gang; Xiao, Xuechun [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Djerdj, Igor [Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb (Croatia); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Mico-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-12-01

    An easy, inexpensive combustion route was designed to synthesize hierarchically porous WO{sub 3}. The tungsten source was fresh peroxiotungstic acid by dissolving tungsten powder into hydrogen peroxide. To promote the combustion reaction, a combined fuel of both glycine and hydrazine hydrate was used. The microstructure was well-connected pores comprised of subunit nanoparticles. Upon exposing towards acetone gas, the porous WO{sub 3} based sensor exhibits high gas response, rapid response and recovery, and good selectivity in the range of 5–1000 ppm under working temperature of 300 °C. This excellent sensing performance was plausibly attributed to the porous morphology, which hence provides more active sites for the gas molecules' reaction. - Graphical abstract: Hierarchically porous WO{sub 3} synthesized by combustion process exhibits high gas response, rapid response and recovery, and excellent selectivity for acetone, making it to be promising candidates for practical detectors for acetone. - Highlights: • Hierarchically porous WO{sub 3} synthesized by combustion process. • Hierarchically porous WO{sub 3} exhibits high gas response and excellent selectivity for acetone. • The excellent sensing property was plausibly attributed to the porous morphology.

  10. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  11. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  12. Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

    Directory of Open Access Journals (Sweden)

    Şelte A.

    2015-06-01

    Full Text Available In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

  13. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  14. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  15. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    Science.gov (United States)

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  16. Microstructural analysis nanoferritas Mn_0_,_5Zn_0_,_5Fe_2O_4 e Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M.

    2014-01-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn_0_,_5Zn_0_,_5Fe_2O_4 Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  17. Influence of Nanoparticles and Graphite Foam on the Supercooling of Acetamide

    International Nuclear Information System (INIS)

    Yu, J.; Chen, X.; Ma, X.; Song, Q.; Zhao, Y.; Cao, J.

    2014-01-01

    Acetamide is a promising phase change materials (PCMs) for thermal storage,but the large supercooling during the freezing process has limited its application. In this study, we prepared acetamide-SiO 2 composites by adding nano-SiO 2 into acetamide. This modified PCM was then impregnated into the porous graphite foam forming acetamide-SiO 2 -graphite foam form-stable composites. These composites were subjected to melting-solidification cycles 50 times; the time-temperature curves were tracked and recorded during these cycles. The time-temperature curves showed that, for the acetamide containing 2 wt. % SiO 2 , the supercooling phenomenon was eliminated and the material’s performance was stable for 50 cycles. The solidification temperature of the acetamide-SiO 2 -graphite foam samples was 65°C and the melting temperature was lowered to 65°C. The samples exhibited almost no supercooling and the presence of SiO 2 had no significant effect on the melting-solidification temperature. The microscopic supercooling of the acetamide-SiO 2 composite was measured using differential scanning calorimetry (DSC). The results indicated that when the content of SiO 2 was 1 wt. to 2 wt. %, the supercooling could be reduced to less than 10°C and heat was sufficiently released during solidification. Finally, a set of algorithms was derived using MATLAB software for simulating the crystallization of samples based on the classical nucleation theory. The results of the simulation agreed with the experiment results.

  18. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    Science.gov (United States)

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  19. Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, N., E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Bereciartu, A.; García-Rosales, C. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Moroño, A.; Malo, M.; Hodgson, E.R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abellà, J.; Colominas, S. [Institut Químic de Sarrià, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, L. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Porous SiC coated by CVD with a dense coating was developed for Flow Channel Inserts (FCI) in dual-coolant blanket concept. • Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives. • Flexural strength, thermal and electrical conductivity, and microstructure of uncoated and coated porous SiC are presented. • Adhesion of coating to porous SiC and its corrosion behavior under Pb-17.5Li at 700 °C are shown. - Abstract: Thermally and electrically insulating porous SiC ceramics are attractive candidates for Flow Channel Inserts (FCI) in dual-coolant blanket concepts thanks to its relatively inexpensive manufacturing route. To prevent tritium permeation and corrosion by Pb-15.7 a dense coating has to be applied on the porous SiC. Despite not having structural function, FCI must exhibit sufficient mechanical strength to withstand strong thermal gradients and thermo-electrical stresses during operation. This work summarizes the results on the development of coated porous SiC for FCI. Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives and a carbonaceous phase as pore former. Sintering was performed in inert gas at 1850–1950 °C during 15 min to 3 h, followed by oxidation at 650 °C to eliminate the carbonaceous phase. The most promising bulk materials were coated with a ∼30 μm thick dense SiC by CVD. Results on porosity, bending tests, thermal and electrical conductivity are presented. The microstructure of the coating, its adhesion to the porous SiC and its corrosion behavior under Pb-17.5Li are also shown.

  20. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  1. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  2. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    Science.gov (United States)

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  3. On the importance of FIB-SEM specific segmentation algorithms for porous media

    Energy Technology Data Exchange (ETDEWEB)

    Salzer, Martin, E-mail: martin.salzer@uni-ulm.de [Institute of Stochastics, Faculty of Mathematics and Economics, Ulm University, D-89069 Ulm (Germany); Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de [Laboratory for MEMS Applications, IMTEK, Department of Microsystems Engineering, University of Freiburg, D-79110 Freiburg (Germany); Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de [Laboratory for MEMS Applications, IMTEK, Department of Microsystems Engineering, University of Freiburg, D-79110 Freiburg (Germany); Schmidt, Volker, E-mail: volker.schmidt@uni-ulm.de [Institute of Stochastics, Faculty of Mathematics and Economics, Ulm University, D-89069 Ulm (Germany)

    2014-09-15

    A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin, is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.

  4. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  5. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    Science.gov (United States)

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  6. Modelling absorption in porous asphalt concrete for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    A numerical model to predict the sound absorption of porous asphalt has been developed. The approach is a combination between a microstructural approach and a finite element approach. The model used to describe the viscothermal properties of the air inside the pores of the asphalt is the low reduced

  7. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    Science.gov (United States)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  8. Generation of Microcellular Biodegradable Polycaprolactone Foams in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Xu Qun; Ren Xian-wen; Chang Yu-ning; Yu Long; Wang Jing-wu

    2004-01-01

    Present now the application of microcellular polymeric materials in biomedical field is growing rapidly, as that of guided tissue regeneration and cell transplantation. As far as guided tissue regeneration is concerned, porous implants are used as size selective membrane to promote the growth of a special tissue in a healing site. Ideally, the implant should be inherently biocompatible,have well-defined cell size and be resorbable with appropriate biodegradation rates.Poly(a-caprolactone) (PCL) is a kind of materials suit for the demands above. PCL is biocompatible and biodegradable aliphatic polyester which is nontoxic for living organisms and bioresorbable after a period of implantation. Because of its unique combination of biocompatibility, permeability and biodegradability, PCL and some of its copolymer with lactides and glycolide have been widely applied in medicine as artificial skin, artificial bone and containers for sustained drug release.Goel and Beckman have reported a new method to generate microcellular poly(methy l methacrylate) foams in which the samples are saturated with CO2 under a series of supercritical (SC)conditions, and then the system is rapidly depressurized to atmospheric pressure at constant temperature. Unlike traditional methods, it reduces glass-transition temperature (Tg) of the mixture to below the experimental temperature rather than directly heat the system above Tg. In this process of nucleation, no phase separation occurs as well as no phase boundary meets, so the cellular structure of the foam can be retained better.In this work, we have generated PCL foams by using supercritical CO2. Because of the low glass transition temperature (Tg = -60 ℃) of PCL far below the ice point, the experimental temperature in our study is much higher than Tg, which is different from the studies by others before. A series of variable factors on the foam structure as saturation temperature, saturation pressure, saturation time and depressurization

  9. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  10. N-Doped Porous Carbon Nanofibers/Porous Silver Network Hybrid for High-Rate Supercapacitor Electrode.

    Science.gov (United States)

    Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin

    2017-09-13

    A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m 2 /g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.

  11. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  12. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading

    International Nuclear Information System (INIS)

    Fíla, T.; Jiroušek, O.; Jung, A.; Kumpová, I.

    2016-01-01

    Hybrid foams are materials formed by a core from a standard open cell metal foam that is during the process of electrodeposition coated by a thin layer of different nanocrystalline metals. The material properties of the base metal foam are in this way modified resulting in higher plateau stress and, more importantly, by introduction of strain-rate dependence to its deformation response. In this paper, we used time-lapse X-ray micro-tomography for the mechanical characterization of Ni/Al hybrid foams (aluminium open cell foams with nickel coating layer). To fully understand the effects of the coating layer on the material's effective properties, we compared the compressive response of the base uncoated foam to the response of the material with coating thickness of 50 and 75 μm. Digital volume correlation (DVC) was applied to obtain volumetric strain fields of the deforming micro-structure up to the densification region of the deforming cellular structure. The analysis was performed as a compressive mechanical test with simultaneous observation using X-ray radiography and tomography. A custom design experimental device was used for compression of the foam specimens in several deformation states directly in the X-ray setup. Planar X-ray images were taken during the loading phases and a X-ray tomography was performed at the end of each loading phase (up to engineering strain 22%). The samples were irradiated using micro-focus reflection type X-ray tube and images were taken using a large area flat panel detector. Tomography reconstructions were used for an identification of a strain distribution in the foam using digital volumetric correlation. A comparison of the deformation response of the coated and the uncoated foam in uniaxial quasi-static compression is summarized in the paper.

  13. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  14. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    Science.gov (United States)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  15. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    Science.gov (United States)

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  17. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  18. Tensile behavior of porous scaffolds made from poly(para phenylene) - biomed 2013.

    Science.gov (United States)

    Dirienzo, Amy L; Yakacki, Christopher M; Safranski, David L; Frick, Carl P

    2013-01-01

    The goal of this study was to fabricate and mechanically characterize a high-strength porous polymer scaffold for potential use as an orthopedic device. Poly(para-phenylene) (PPP) is an excellent candidate due to its exceptional strength and stiffness and relative inertness, but has never been explicitly investigated for use as a biomedical device. PPP has strength values 3 to 10 times higher and an elastic modulus nearly an order of magnitude higher than traditional polymers such as poly(methyl methacrylate) (PMMA), polycaprolactone (PCL), ultra-high molecular weight polyethylene (UHMWPE), and polyurethane (PU) and is significantly stronger and stiffer than polyetheretherketone (PEEK). By utilizing PPP we can overcome the mechanical limitations of traditional porous polymeric scaffolds since the outstanding stiffness of PPP allows for a highly porous structure appropriate for osteointegration that can match the stiffness of bone (100-250 MPa), while maintaining suitable mechanical properties for soft-tissue fixation. Porous samples were manufactured by powder sintering followed by particle leaching. The pore volume fraction was systematically varied from 50–80 vol% for a pore sizes from150-500 µm, as indicated by previous studies for optimal osteointegration. The tensile modulus of the porous samples was compared to the rule of mixtures, and closely matches foam theory up to 70 vol%. The experimental modulus for 70 vol% porous samples matches the stiffness of bone and contains pore sizes optimal for osteointegration.

  19. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  20. Mass transfer measurements in foams

    International Nuclear Information System (INIS)

    Leblond, J.G.; Fournel, B.

    2004-01-01

    Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)