WorldWideScience

Sample records for foam void filling

  1. Urethane foam void filling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    compares the cost and performance of the baseline segmentation technology and the innovative void filling technology using expanded polyurethane foam

  2. Optimization of foam-filled bitubal structures for crashworthiness criteria

    International Nuclear Information System (INIS)

    Zhang, Yong; Sun, Guangyong; Li, Guangyao; Luo, Zhen; Li, Qing

    2012-01-01

    Highlights: ► The paper aims to optimize foam-filled bitubal squared column for crashworthiness. ► It explores different formulations and configurations of design. ► The optimal foam-filled bitubal column is better than foam-filled monotubal column. ► The optimal foam-filled bitubal column is better than empty bitubal column. -- Abstract: Thin-walled structures have been widely used as key components in automobile and aerospace industry to improve the crashworthiness and safety of vehicles while maintaining overall light-weight. This paper aims to explore the design issue of thin-walled bitubal column structures filled with aluminum foam. As a relatively new filler material, aluminum foam can increase crashworthiness without sacrificing too much weight. To optimize crashworthiness of the foam-filled bitubal square column, the Kriging meta-modeling technique is adopted herein to formulate the objective and constraint functions. The genetic algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) are used to seek the optimal solutions to the single and multiobjective optimization problems, respectively. To compare with other thin-walled configurations, the design optimization is also conducted for empty bitubal column and foam-filled monotubal column. The results demonstrate that the foam-filled bitubal configuration has more room to enhance the crashworthiness and can be an efficient energy absorber.

  3. Convex-based void filling method for CAD-based Monte Carlo geometry modeling

    International Nuclear Information System (INIS)

    Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time

  4. Blind void filling in LR-EPONs: How efficient it can be?

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work proposes a novel blind void (idle periods) filling in Long-Reach Ethernet Passive Optical Networks (LR-EPONs) namely Size Controlled Batch Void Filling (SCBVF). We emphasize on reducing grant delays and hence reducing the average packet delay. SCBVF delay reduction is achieved by early flushing data during the idle time periods (voids) between allocated grants. The proposed approach can be integrated with almost all of the previously reported dynamic bandwidth allocation schemes. SCBVF is less sensitive to differential distance between ONUs and can work well in case of small differential distances compared to previously reported void filling schemes. We support our work by extensive simulation study considering bursty traffic with long range dependency. Numerical results show a delay reduction up to 35% compared to non-void filling scheme outperforming its main competitors that can achieve up to 7% delay reduction.

  5. Blind void filling in LR-EPONs: How efficient it can be?

    KAUST Repository

    Elrasad, Amr

    2015-07-01

    This work proposes a novel blind void (idle periods) filling in Long-Reach Ethernet Passive Optical Networks (LR-EPONs) namely Size Controlled Batch Void Filling (SCBVF). We emphasize on reducing grant delays and hence reducing the average packet delay. SCBVF delay reduction is achieved by early flushing data during the idle time periods (voids) between allocated grants. The proposed approach can be integrated with almost all of the previously reported dynamic bandwidth allocation schemes. SCBVF is less sensitive to differential distance between ONUs and can work well in case of small differential distances compared to previously reported void filling schemes. We support our work by extensive simulation study considering bursty traffic with long range dependency. Numerical results show a delay reduction up to 35% compared to non-void filling scheme outperforming its main competitors that can achieve up to 7% delay reduction.

  6. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  7. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads

    Science.gov (United States)

    Ebrahimi, Saeed; Vahdatazad, Nader; Liaghat, Gholamhossein

    2018-03-01

    This paper deals with the energy absorption characterization of functionally graded foam (FGF) filled tubes under axial crushing loads by experimental method. The FGF tubes are filled axially by gradient layers of polyurethane foams with different densities. The mechanical properties of the polyurethane foams are firstly obtained from axial compressive tests. Then, the quasi-static compressive tests are carried out for empty tubes, uniform foam filled tubes and FGF filled tubes. Before to present the experimental test results, a nonlinear FEM simulation of the FGF filled tube is carried out in ABAQUS software to gain more insight into the crush deformation patterns, as well as the energy absorption capability of the FGF filled tube. A good agreement between the experimental and simulation results is observed. Finally, the results of experimental test show that an FGF filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled tube with the same weight.

  8. Holes in the ocean: Filling voids in bathymetric lidar data

    Science.gov (United States)

    Coleman, John B.; Yao, Xiaobai; Jordan, Thomas R.; Madden, Marguertie

    2011-04-01

    The mapping of coral reefs may be efficiently accomplished by the use of airborne laser bathymetry. However, there are often data holes within the bathymetry data which must be filled in order to produce a complete representation of the coral habitat. This study presents a method to fill these data holes through data merging and interpolation. The method first merges ancillary digital sounding data with airborne laser bathymetry data in order to populate data points in all areas but particularly those of data holes. What follows is to generate an elevation surface by spatial interpolation based on the merged data points obtained in the first step. We conduct a case study of the Dry Tortugas National Park in Florida and produced an enhanced digital elevation model in the ocean with this method. Four interpolation techniques, including Kriging, natural neighbor, spline, and inverse distance weighted, are implemented and evaluated on their ability to accurately and realistically represent the shallow-water bathymetry of the study area. The natural neighbor technique is found to be the most effective. Finally, this enhanced digital elevation model is used in conjunction with Ikonos imagery to produce a complete, three-dimensional visualization of the study area.

  9. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    Science.gov (United States)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  10. Partial discharge patterns and surface deterioration in voids in filled and unfilled epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    1992-01-01

    /height analyses were performed over a period of 2400 h and showed very characteristic discharge patterns for each material combination. A unique behavior with regard to changes of pulse repetition rate and maximum apparent charge was observed for PD in alumina- and silica-filled epoxy. The void surfaces were...

  11. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    Science.gov (United States)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  12. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  13. Impact of benign prostatic hyperplasia surgical treatment on voiding and urinary bladder filling symptoms

    Directory of Open Access Journals (Sweden)

    Milićević Snježana

    2010-01-01

    Full Text Available Background/Aim. Benign prostatic hyperplasia (BHP is one of the most common diseases of elderly men. The aim of this study was to evaluate the effect of surgical treatment of benign prostatic hyperplasia to voiding and urinary bladder filling symptoms. Quantification of voiding and filling symptoms was done with the International Prostate Symptom Score (IPSS. Method. The study included 80 patients with BHP, of whom 40 were treated with open prostatectomy (group A, and other 40 with transurethral resection of prostate gland (group B. All the patients were under 80 years old (average age in the group A was 70.23 years with a variation interval of 21 years, and in the group B 69.37 years with a variation interval of 22 years, with a value of IPSS > 19 points, quantity of residual urine higher than 150 mL, the weight of benign prostatic gland hyperplasia tissue over 30 grams for the method of prostate transurethral resection, and over 80 grams for the method of open prostatectomy. To all patients, for two times, the value of IPSS was determined, and then in a postoperative period in time intervals of 4 and 12 weeks. Results. Arithmetic mean of IPSS preoperatively was 32.05 points in the group A and 31.75 points in the group B. During the postoperative check-ups in time intervals of 4 and 12 weeks, arithmetic means of IPSS in the group A were 5.4 and 1.85 points, respectively, and in the group B 11.425 and 9.025 points, respectively. Surgical treatment had better effect on voiding symptoms than on urinary bladder filling ones. Conclusion. After the mentioned surgical procedures a significant reduction of the lower urinary tract symptoms quantified by the IPSS was observed. Surgical treatment of BHP had a more pronounced effect on the voiding symptoms in relation to filling ones.

  14. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam.

    Science.gov (United States)

    McKeegan, D E F; Reimert, H G M; Hindle, V A; Boulcott, P; Sparrey, J M; Wathes, C M; Demmers, T G M; Gerritzen, M A

    2013-05-01

    Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane, emergency killing method. In laboratory trials, broiler chickens, adult laying hens, ducks, and turkeys were exposed to air-, N2-, or CO2-filled high expansion foam (expansion ratio 300:1) under standardized conditions. Birds were equipped with sensors to measure cardiac and brain activity, and measurements of oxygen concentration in the foam were carried out. Initial behavioral responses to foam were not pronounced but included headshakes and brief bouts of wing flapping. Both N2- and CO2-filled foam rapidly induced ataxia/loss of posture and vigorous wing flapping in all species, characteristic of anoxic death. Immersion in air-filled, high expansion foam had little effect on physiology or behavior. Physiological responses to both N2- and CO2-filled foam were characterized by a pronounced bradyarrythymia and a series of consistent changes in the appearance of the electroencephalogram. These were used to determine an unequivocal time to loss of consciousness in relation to submersion. Mean time to loss of consciousness was 30 s in hens and 18 s in broilers exposed to N2-filled foam, and 16 s in broilers, 1 s in ducks, and 15 s in turkeys exposed to CO2-filled foam. Euthanasia achieved with anoxic foam was particularly rapid, which is explained by the very low oxygen concentrations (below 1%) inside the foam. Physiological observations and postmortem examination showed that the mode of action of high expansion, gas-filled foam is anoxia, not occlusion of the airway. These trials provide proof-of-principle that submersion in gas-filled, high expansion foam provides a rapid and highly effective method of euthanasia, which may have potential to provide humane emergency killing

  15. Welfare assessment of gas-filled foam as an agent for killing poultry

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Hindle, V.A.; Mckeegan, D.E.F.; Sparrey, J.

    2010-01-01

    During outbreaks of notifiable diseases in poultry measures are taken to restrict the spread of the disease. Mass on-farm killing of birds using gasfilled foam is such a measure. This study examines the method and technologies involved using gas-filled foam and looks at the problems involved by

  16. Finite Element Analysis and Crashworthiness Optimization of Foam-filled Double Circular under Oblique Loading

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available Abstract Finite element analysis and optimization design carry out for the quasi static responses of foam-filled double circular tube is presented in this paper. In the investigation of the crashworthiness capability, some aspects were considered for variations in geometry parameters of tubes and the loading condition to investigate the crashworthiness capability. Empty, foam-filled, and full foam-filled doublé tubes of thin walled structures were observed subjected to oblique impact (0˚ - 40˚. The numerical solution was used to determine the crashworthiness parameters. In addition, NSGA II and Radial Basis Function were used to optimize the crashworthiness capability of tubes. In conclution, the crash performaces of foam-filled double tube is better than the other structures in this work. The outcome that expected is the new design information of various kinds of cylindrical tubes for energy absorber application.

  17. Polystyrene foam products equation of state as a function of porosity and fill gas

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta N [Los Alamos National Laboratory; Swift, Damian C [LLNL

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{sub 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.

  18. Polystyrene foam products equation of state as a function of porosity and fill gas

    International Nuclear Information System (INIS)

    Mulford, Roberta N.; Swift, Damian C.

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO 2 -blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O 2 -blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO 2 decomposes at high temperatures.

  19. Utilization of crushed radioactive concrete for mortar to fill waste container void space

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Ohnishi, Kazuhiko; Oguri, Daiichiro; Ueki, Hiroyuki

    2004-01-01

    Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in a shallow burial disposal facility as low level radioactive waste must be solidified by cement or other materials with adequate strength and must provide no harmful opening. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete for fine aggregate for mortars to fill void space in waste containers. Tests were performed with pre-placed concrete waste and with filling mortar using recycled fine aggregate produced from concrete. It was estimated that the improved method substantially increases the waste fill ratio in waste containers, thereby decreasing the total volume of disposal waste. (author)

  20. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    Science.gov (United States)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  1. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams

    Science.gov (United States)

    Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit

    2017-10-01

    The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.

  2. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available AbstractFuel consumption and safety are currently key aspects in automobile design. The foam-filled thin-walled aluminium tube represents a potentially effective material for use in the automotive industry, due to its energy absorption capability and light weight. Multi-objective crashworthiness design optimization for foam-filled double cylindrical tubes is presented in this paper. The double structures are impacted by a rigid wall simulating quasi-static and dynamic loadings. The optimal parameters under consideration are the minimum peak crushing force and maximum specific energy absorption, using the non-dominated sorting genetic algorithm-II (NSGA-II technique. Radial basis functions (RBF and D-Optimal are adopted to determine the more complex crashworthiness functional objectives. The comparison is performed by finite element analysis of the impact crashworthiness characteristics in tubes under static and dynamic loads. Finally, the optimum crashworthiness performance of empty and foam-filled double tubes is investigated and compared to the traditional single foam-filled tube. The results indicate that the foam-filled double aluminium circular tube can be recommended for crashworthy structures.

  3. Mechanical and morphological properties of kenaf powder filled natural rubber latex foam

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ahmad Fikri Abdul, E-mail: a.fikri-89@yahoo.com; Ariff, Zulkifli Mohamad [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Ismail, Hanafi [Cluster for Polymer Composites (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    This research is carried out by incorporate kenaf powder with natural rubber latex (NRL) compound and is foamed to make natural rubber latex foam (NRLF) by using a well known technique called Dunlop method. Different loading of kenaf powder was added to NRL compound and was foamed to make NRLF. The tensile properties, and morphology of kenaf filled NRLF was studied. Increase in kenaf loading reduced the tensile strength and elongation at break and of a compound. Modulus at 100% elongation of the compound increased with increased in filler loading. The morphological and micro structural characterization has been performed by using scanning electron microscopy (SEM)

  4. Mechanical and morphological properties of kenaf powder filled natural rubber latex foam

    International Nuclear Information System (INIS)

    Karim, Ahmad Fikri Abdul; Ariff, Zulkifli Mohamad; Ismail, Hanafi

    2015-01-01

    This research is carried out by incorporate kenaf powder with natural rubber latex (NRL) compound and is foamed to make natural rubber latex foam (NRLF) by using a well known technique called Dunlop method. Different loading of kenaf powder was added to NRL compound and was foamed to make NRLF. The tensile properties, and morphology of kenaf filled NRLF was studied. Increase in kenaf loading reduced the tensile strength and elongation at break and of a compound. Modulus at 100% elongation of the compound increased with increased in filler loading. The morphological and micro structural characterization has been performed by using scanning electron microscopy (SEM)

  5. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  6. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    Science.gov (United States)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  7. Critical analysis of partial discharge dynamics in air filled spherical voids

    Science.gov (United States)

    Callender, G.; Golosnoy, I. O.; Rapisarda, P.; Lewin, P. L.

    2018-03-01

    In this paper partial discharge (PD) is investigated inside a spherical air filled void at atmospheric pressure using a drift diffusion model. Discharge dynamics consisted of an electron avalanche transitioning into positive streamer, in agreement with earlier work on dielectric barrier discharges. Different model configurations were utilised to test many of the concepts employed in semi-analytical PD activity models, which use simplistic descriptions of the discharge dynamics. The results showed that many of these concepts may be erroneous, with significant discrepancies between the canonical reasoning and the simulation results. For example, the residual electric field, the electric field after a discharge, is significantly lower than the estimates used by classical PD activity models in the literature.

  8. Influence of root canal sealer on the radiographic appearance of filling voids in maxillary single-rooted teeth.

    Science.gov (United States)

    Bodanezi, Augusto; Munhoz, Etiene Andrade; Capelozza, Ana Lúcia Álvares; Bernardineli, Norberti; Moraes, Ivaldo Gomes de; Garcia, Roberto Brandão; Bramante, Clovis Monteiro

    2012-01-01

    This study compared the influence of three epoxy resin-based sealers with distinct radiopacities on the observers' ability to detect root canal filling voids during radiographic analysis. The root canals of 48 extracted maxillary canines were prepared and divided into three groups. Each group was laterally condensed with one sealer (AH Plus®, Acroseal® or a non-radiopaque sealer), and a longitudinal void was simulated in half of the specimens from each group (n=8). Buccolingual radiographs were obtained and randomly interpreted for voids by a radiologist and an endodontist in a blinded fashion. Teeth were cut and inspected under a microscope to confirm the position of void. Differences in sensitivity and specificity between groups and examiners were compared using the Fisher's Exact and McNemar tests, respectively (α=0.05). Significantly lower sensitivity levels (p<0.05) were observed in the coronal portion of fillings performed with both radiopaque sealers. Specificity values for Acroseal® were significantly higher (p<0.05) in the coronal and apical portions of fillings. The type of root canal sealer can affect the observers' ability to detect root canal filling voids during radiographic analysis of upper single-rooted teeth.

  9. Influence of root canal sealer on the radiographic appearance of filling voids in maxillary single-rooted teeth

    Directory of Open Access Journals (Sweden)

    Augusto Bodanezi

    2012-08-01

    Full Text Available OBJECTIVE: This study compared the influence of three epoxy resin-based sealers with distinct radiopacities on the observers' ability to detect root canal filling voids during radiographic analysis. MATERIAL AND METHODS: The root canals of 48 extracted maxillary canines were prepared and divided into three groups. Each group was laterally condensed with one sealer (AH Plus®, Acroseal® or a non-radiopaque sealer, and a longitudinal void was simulated in half of the specimens from each group (n=8. Buccolingual radiographs were obtained and randomly interpreted for voids by a radiologist and an endodontist in a blinded fashion. Teeth were cut and inspected under a microscope to confirm the position of void. Differences in sensitivity and specificity between groups and examiners were compared using the Fisher's Exact and McNemar tests, respectively (α=0.05. RESULTS: Significantly lower sensitivity levels (p<0.05 were observed in the coronal portion of fillings performed with both radiopaque sealers. Specificity values for Acroseal® were significantly higher (p<0.05 in the coronal and apical portions of fillings. CONCLUSIONS: The type of root canal sealer can affect the observers' ability to detect root canal filling voids during radiographic analysis of upper single-rooted teeth.

  10. [Experimental study of percutaneous vertebroplasty with a novel bone void filling container system].

    Science.gov (United States)

    Wang, Tai-Ping; Zhang, Kui-bo; Zheng, Zhao-min; Liu, Hui; Yu, Bin-sheng

    2011-04-19

    To investigate vertebral augmentation with a novel reticulate bone filling container system by polymethyl methacrylate (PMMA) injection in cadaveric simulated vertebral compressive fracture and explore the effect of reticulate bone filling container on cement distribution controlling within vertebral body and the restoration of biomechanical properties after augmentation. A total of 28 freshly frozen human vertebrae specimens were randomly divided into 4 groups. After the measurements of bone mineral density (BMD) and vertebral height, each vertebra received an axle load by a MTS (material testing system) machine to test the initial strength and stiffness. Subsequently a simultaneous compressive fracture model was created to measure the stiffness and height of fractured vertebrae. Then the augmentation procedure was performed. Afterward the biomechanical properties and the vertebral height were similarly measured as pre-operatively. The expansion of bone filling container and the distribution of cement within vertebral body were morphologically observed by crossing the specimens in sagittal midline and also integrated with the radiographic results. Stiffness was significantly restored comparing with that of fractured level (P container groups while it was irregular in single-layer groups. After crossing, the double-layer version expanded well in vertebral body and could enwrap most of injected cement. There was only a little leakage near the vessel layer. But the single-layer version had a poor expansion and a large amount of cement leakage. This novel reticulate bone void filling container system with different layers may restore both the biomechanical properties and the height of fractured vertebrae. But, with the benefit of reducing cement leakage, a double-layer design can enwrap most of injected PMMA and has a brighter prospect of clinical application.

  11. Adjustable Polyurethane Foam as Filling Material for a Novel Spondyloplasty: Biomechanics and Biocompatibility.

    Science.gov (United States)

    Jiang, Hongzhen; Sitoci-Ficici, Kerim Hakan; Reinshagen, Clemens; Molcanyi, Marek; Zivcak, Jozef; Hudak, Radovan; Laube, Thorsten; Schnabelrauch, Matthias; Weisser, Jürgen; Schäfer, Ute; Pinzer, Thomas; Schackert, Gabriele; Zhang, Xifeng; Wähler, Mario; Brautferger, Uta; Rieger, Bernhard

    2018-04-01

    To investigate the biomechanics and biocompatibility of polyurethane (PU) foam with adjustable stiffness as a filling material for a novel spondyloplasty that is designed to reduce the risk of postoperative adjacent level fractures. Sixty individual porcine lumbar vertebrae were randomly split into 4 groups: A, B, C, and D. Group A served as unmodified vertebral body controls. Groups B, C, and D consisted of hollowed vertebral bodies. Vertebrae of groups C and D were filled with adjustable PU foams of different stiffness. The compressive strength and stiffness of vertebrae from groups A-D were recorded and analyzed. 3T3 mouse fibroblasts were cultured with preformed PU foams for 4 days to test biocompatibility. The strength and stiffness of the hollowed groups were lower than in group A. However, the differences were not statistically significant between group A and group C (P > 0.05), and were obviously different between group A and group B or group D (P < 0.01 and <0.05, respectively). Moreover, the strength and stiffness after filling foams in group C or group D were significantly greater than in group B (P < 0.01 and <0.05, respectively). Live/dead staining of 3T3 cells confirmed the biocompatibility of the PU foam. The new PU foam shows adaptability regarding its stiffness and excellent cytocompatibility in vitro. The results support the clinical translation of the new PU foams as augmentation material in the development of a novel spondyloplasty. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam

    NARCIS (Netherlands)

    Mckeegan, D.E.F.; Reimert, H.G.M.; Hindle, V.A.; Boulcott, P.; Sparrey, J.M.; Wathes, C.M.; Demmers, T.G.M.; Gerritzen, M.A.

    2013-01-01

    Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane,

  13. Properties and Characterization of Kenaf-Filled Natural Rubber Latex Foam

    Directory of Open Access Journals (Sweden)

    Ahmad Fikri Abdul Karim

    2015-12-01

    Full Text Available Kenaf powder was incorporated with natural rubber latex (NRL compound and foamed to make natural rubber latex foam (NRLF by using a well known technique called the Dunlop method. Different loadings of kenaf powder were added to NRL compound and was foamed to make NRLF. The mechanical properties, density, compression, thermal, and micro-structural characterization of control NRLF and kenaf incorporated NRLF were studied. Increasing content of kenaf reduced the tensile strength, elongation at break, and compressive strength of a NRLF. Modulus at 100% elongation and density of the NRLF increased with an increase in filler loading. Higher kenaf loading indicated higher elasticity of kenaf-filled NRLF, but the recovery percentage of kenaf-filled NRLF decreased with increasing kenaf loading. From thermogravimetric analysis (TGA result, an increase in the amount of kenaf loading from 1 to 7 phr increased the thermal stability of kenaf-filled NRLF. Morphological and micro-structural characterization performed by using scanning electron microscopy (SEM showed that kenaf powder filled up the micro-sized pores in the open cell structure of kenaf-filled NRLF.

  14. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  15. The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes

    Science.gov (United States)

    Othman, A.; Ismail, A. E.

    2018-04-01

    The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.

  16. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    Directory of Open Access Journals (Sweden)

    Hu Wen

    2017-01-01

    Full Text Available Spontaneous combustion of residual coal in a gob due to air leakage poses a major risk to mining safety. Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally. The compressive strength of this material increased with the amount of sulphoaluminate cement. With an increasing water–cement ratio, the initial setting time was gradually extended while the final setting time firstly shortened and then extended. The change in compressive strength had the opposite tendency. Additionally, as the foam expansion ratio increased, the solidification time tended to decrease but the compressive strength remained approximately constant. With an increase in foam production, the solidification time increased and the compressive strength decreased exponentially. The results can be used to determine the optimal material ratios of inorganic solidified foam-filled material for coal mines, and filling technology for an airtight wall was designed. A field application of the new material demonstrated that it seals crossheadings tightly, leaves no fissures, suppresses air leakage to the gob, and narrows the width of the spontaneous combustion and heat accumulation zone.

  17. Thermal, crystallinity and morphological studies of the filled RBD palm kernel oil polyurethane foam

    International Nuclear Information System (INIS)

    Khairiah Badri; Sahrim Ahmad; Sarani Zakaria

    2000-01-01

    The synthesis of RBD palm kernel oil (PKO) polyurethane polyol and the polyurethane foam has well been documented. However, less study has been put in discovering the thermal properties and crystallinity of the foam. It is also an initiative to investigate the effect of oil palm empty fruit bunch (EFB) and sorbitol as fillers in the polyurethane (PU) foam to these properties. Thermogravimetric (TGA) investigation of the PKO PU foam was performed to study their decompositions. The semi-crystalline nature of EFB-filled PU was confirmed by x-ray diffratogram and DSC thermogram of glass transition temperature, T g . The x-ray diffraction (XRD) study of the unfilled PU showed a broad amorphous halo, indicative of absence of crystallinity in the polymer, which has been explained as due to strong hydrogen bonding in the hard phase. Overall crystallinity decreases with an increase in the polyester content in agreement with the XRD results. The crystallinity however, increases with the inclusion of EFB in the polyurethane system. This study was followed by the observation of the surface morphologies of the PKO PU foam with and without fillers. The scanning electron micrographs verified the finding on the improved k-factor values. (Author)

  18. EXPERIMENTAL STUDIES ON THE QUASI-STATIC AXIAL CRUSHING BEHAVIOR OF FOAM-FILLED STEEL EXTRUSION TUBES

    OpenAIRE

    AL EMRAN ISMAIL

    2010-01-01

    The concerns of automotive safety have been given special attention in order to reduce human fatalities or injuries. One of the techniques to reduce collision impact or compression energy is by filling polymeric foam into metallic tubes. In this work, polyurethane foam was introduced into the steel extrusion tubes and quasi-statically compressed at constant cross-head displacement. Different tube thicknesses and foam densities were used and these parameters were related to the crashwor...

  19. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    Science.gov (United States)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  20. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    International Nuclear Information System (INIS)

    Villa, Andrea; Mussi, Valerio; Strano, Matteo

    2011-01-01

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH 2 blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  1. Analytical and Numerical Study of Foam-Filled Corrugated Core Sandwich Panels under Low Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mohammad Nouri Damghani

    2016-05-01

    Full Text Available Analytical and finite element simulations are used to predict the effect of core density on the energy absorption of composite sandwich panels under low-velocity impact. The composite sandwich panel contains two facesheets and a foam-filled corrugated core. Analytical model is defined as a two degree-of-freedom system based on equivalent mass, spring, and dashpot to predict the local and global deformation response of a simply supported panel. The results signify a good agreement between analytical and numerical predictions.

  2. Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods

    International Nuclear Information System (INIS)

    Ortega, Y; Dieker, Ch; Jaeger, W; Piqueras, J; Fernandez, P

    2010-01-01

    ZnO nanorods containing different hollow structures have been grown by a thermal evaporation-deposition method with a mixture of ZnS and SnO 2 powders as precursor. Transmission electron microscopy shows rods with rows of voids as well as rods with empty channels along the growth axis. The presence of Sn nanoprecipitates associated with the empty regions indicates, in addition, that these are generated by diffusion processes during growth, probably due to an inhomogeneous distribution of Sn. The mechanism of forming voids and precipitates appears to be based on diffusion processes similar to the Kirkendall effect, which can lead to void formation at interfaces of bulk materials or in core-shell nanostructures. In some cases the nanorods are ZnO tubes partially filled with Sn that has been found to melt and expand by heating the nanotubes under the microscope electron beam. Such metal-semiconductor nanostructures have potential applications as thermal nanosensors or as electrical nanocomponents.

  3. Filling material for a buried cavity in a collapse area using light-weighted foam and active feldspar

    Science.gov (United States)

    Cho, Jin Woo; Lee, Ju-hyoung; Kim, Sung-Wook; Choi, Eun-Kyeong

    2017-04-01

    Concrete which is generally used as filling material for a buried cavity has very high strength but significantly high self-load is considered its disadvantage. If it is used as filling material, the second collapse due to additional load, causing irreversible damage. If light-weighted foam and active feldspar are used to solve this problem, the second collapse can be prevented by reducing of self-load of filling material. In this study, the specimen was produced by mixing light-weighted foam, active feldspar and cement, and changes in the density, unconfined compressive strength and hydraulic conductivity were analyzed. Using the light-weighted foam could enable the adjustment of density of specimen between 0.5 g/cm3 and 1.7 g/cm3, and if the mixing ratio of the light-weighted foam increases, the specimen has more pores and smaller range of cross-sectional area. It is confirmed that it has direct correlation with the density, and if the specimen has more pores, the density of the specimen is lowered. The density of the specimen influences the unconfined compressive strength and the hydraulic conductivity, and it was also confirmed that the unconfined compressive strength could be adjusted between 0.6 MPa and 8 MPa and the hydraulic conductivity could be adjusted between 10-9cm/sec and 10-3cm/sec. These results indicated that we can adjust unconfined compressive strength and hydraulic conductivity of filling materials by changing the mixing amount of lightweight-weighted foam according to the requirements of the field condition. Keywords: filling material, buried cavity, light-weighted foam, feldspar Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  4. [Specialized outpatient care in the Unified Health System: how to fill a void].

    Science.gov (United States)

    Tesser, Charles Dalcanale; Poli, Paulo

    2017-03-01

    The structuring of specialized outpatient care is a bottleneck in the operation of the Unified Health System. Based on a brief discussion about this void in an organizational model, we propose the federal induction of a format of specialized services from the experiences of Centers of Support for Family Health (NASF). They adapted matrix operations and constitute an excellent prototype for the organization of specialized outpatient care. It allows for equal access and maximum proximity to the specialized care of the reality of primary care users, the personal relationship and the close relationship between the family health teams and medical and non-medical specialists, enabling mutual lifelong learning, negotiated regulation and increased efficacy of primary care. Municipal experiences of Florianopolis and Curitiba are synthesized as partial examples of the proposal. the structure of care in mental health of Florianópolis, all organized as a matrix support is briefly described; and we focus on the change in the action of the support teams of Curitiba, which gradually began to engage, involve and mediate the relationship between basic and specialized care. This format can be expanded to most medical specialties.

  5. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    Science.gov (United States)

    Ambur, Damodar R.

    1995-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.

  6. Preparation and characterization of starch-based loose-fill packaging foams

    Science.gov (United States)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  7. Axial Crushing and Energy Absorption of Empty and Foam Filled Jute-glass/ Epoxy Bi-tubes

    Directory of Open Access Journals (Sweden)

    Khalid Asad A.

    2016-01-01

    Full Text Available Experimental work on the axial crushing of empty and polyurethane foam filled bi-tubular composite cone-tube has been carried out. Hand lay-up method was used to fabricate the bi-tubes using woven roving glass, jute and hybrid jute-glass/epoxy materials. The tubes were of 56 mm diameter, and the cones top diameters were 65 mm. Cone semi-apical angles of 5°, 10°, 15°, 20° and 25° were examined. Height of 120 mm was maintained for all the fabricated specimens. Effects of material used, cone semi apical angle and foam filler on the load-displacement relation, maximum load, crush force efficiency, and the specific energy absorption and failure mode were investigated. Results show that the foam filler improved the progressive crushing process, increased the maximum load and the absorbed energy of the bi-tubes. The maximum crushing load and the specific energy absorption increased with increasing the cone semi apical angle up to 20° for the empty bi-tubes and up to 25° for the foam filled bi-tubes. Progressive failure mode with fiber and matrix cracking was observed at the top narrow side of the fractured bi-tubes as well as at the bottom surface of 20° and 25° cone semi-apical angle bi-tubes.

  8. Filling the Void: A Comprehensive Survey of the Intergalactic Medium at z 1 Using STIS/COS Archival Spectra

    Science.gov (United States)

    Khaire, Vikram

    2017-08-01

    There exists a large void in our understanding of the intergalactic medium (IGM) at z=0.5-1.5, spanning a significant cosmic time of 4 Gyr. This hole resulted from a paucity of near-UV QSO spectra, which were historically very expensive to obtain. However, with the advent of COS and the HST UV initiative, sufficient STIS/COS NUV spectra have finally become available, enabling the first statistical analyses. We propose a comprehensive study of the z 1 IGM using the Ly-alpha forest of 26 archival QSO spectra. This analysis will: (1) measure the distribution of HI absorbers to several percent precision down to log NHI science cases. These results, along with our state-of-the-art hydrodynamical simulations, and theoretical models of the UVB, will fill the 4 Gyr hole in our understanding of the IGM. When combined with existing HST and ground-based data from lower and higher z, they will lead to a complete, empirical description of the IGM from HI reionization to the present, spanning more than 10 Gyr of cosmic history, adding substantially to Hubble's legacy of discovery on the IGM.

  9. Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation using Solid-by-Solid model: Application to via and trench filling

    International Nuclear Information System (INIS)

    Kaneko, Yutaka; Hiwatari, Yasuaki; Ohara, Katsuhiko; Asa, Fujio

    2013-01-01

    In this paper we present the Kinetic Monte Carlo simulation system for the simulation of three-dimensional shape evolution with void formation as a model for electrodeposition. The basic system is the Solid-by-Solid model which is an extension of the conventional Solid-on-Solid model for crystal growth to include void formation. The advantage of the Solid-by-Solid model is that complex three-dimensional shape evolution accompanying void formation (from point defects to macro voids) can be simulated without the difficulty of treating moving boundaries. This model has been extended to include the solution part in which the migration of ions is simulated by the coarse-grained random walk. A multi-scale method is employed to generate the concentration gradient in the diffusion layer. The extended model is applied to the simulation of via and trench fillings by copper electrodeposition. Three kinds of additives are included: suppressors, accelerators and chloride ions. The mechanism of void formation, effects of additives and their influence on the bottom-up filling are discussed within the framework of this model

  10. Investigation of gating parameter, temperature and density effects on mold filling in the lost foam casting (LFC process by direct observation method

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2013-03-01

    Full Text Available Mold filling sequence of A356 aluminum alloy was investigated with the aid of direct observation method (photography method. The results show that increase of the foam density causes decrease of the filling rate and increase of the filling time. Foam density has more pronounced effect on mold filling rate rather than pouring temperature. Gating design also affects the profile of molten metal advancement in the mold. The results show that the higher filling rate was obtained with G2 gating than with other gating system. Regarding the mold filling pattern, G3 gating system has more effective contact interface than G2 gating system and has lower filling time. Filling time in G4 gating and G1 gating system are nearly the same.

  11. Effect of pressure in mould on the mould cavity filling in Lost Foam process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-10-01

    Full Text Available In this study, the analysis of the influence of the pressure in mould on manufacture process of castings by the Lost Foam method wasintroduced. In particular, numerical simulation results of effect of pressure in mould on pouring rate, gas gap pressure and gas gap sizewere analyzed. For simulating investigations of the Lost Foam process introduced mathematical model of the process was used. In thismodel in detail was described and derived equation relating to the changes of the gas pressure in the gas gap. The mathematical description uses the equation of gas state and the equation of Darcy’s rate of filtration. Presented studies indicated, that with decrease of pressure in mould the pouring rate increased and the gas pressure in gas gap and gas gap size decreased. For pressures in mould from the range of 20÷100 kPa, pouring rates achieved values from 30÷3 cm/s respectively.

  12. Results from MARBLE DT Experiments on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    Science.gov (United States)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Cooley, J. H.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2017-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first experiments using deuterated foam and tritium gas have been performed. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  13. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    Science.gov (United States)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  14. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  15. Utilization of fly ash and ultrafine GGBS for higher strength foam concrete

    Science.gov (United States)

    Gowri, R.; Anand, K. B.

    2018-02-01

    Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.

  16. Highway Security: Filling the Void

    Science.gov (United States)

    2011-09-01

    Infrastructure Protection Plan PERF – Police Executive Research Forum PIRA – Provisional Irish Republican Army SCC – Sector Coordinating Council TSA...experience dealing with IEDs, such as the United Kingdom whose “troubles” with the Provisional Irish Republic Army ( PIRA ) was fraught with IED

  17. Fill and aspirate foam sclerotherapy (FAFS): a new approach for sclerotherapy of large superficial varicosities concomitant to endovenous laser ablation of truncal vein

    International Nuclear Information System (INIS)

    Atasoy, M.M.

    2015-01-01

    Aim: To define and assess the short-term clinical feasibility of fill and aspirate foam sclerotherapy (FAFS) for treating large superficial varicose veins concomitant to endovenous laser ablation (EVLA). Materials and methods: Twenty-seven patients who refused to have phlebectomies with great saphenous vein reflux and large superficial varicosities were included in the study. Both EVLA and FAFS were performed concomitantly. FAFS is a technique in which all or most of the bubbles and blood–foam mixture are removed from the targeted large varicose veins immediately after the foam has caused sufficient damage to the endothelial cells. Patients were reviewed 1 month and 6 months after the treatment. Improvement in the clinical, aetiological, anatomical, and pathological classification (CEAP), and clinical severity was graded using the revised venous clinical severity score (rVCSS) and cosmetic results were investigated at the 6 month visit. Results: Ablation of GSV was performed in 27 limbs in 27 patients (19 males, 70.3%; mean age 44 years; range 21–69 years). All patients had a technically successful FAFS treatment. The CEAP classification score, the rVCSS values, and the cosmetic results showed prominent improvement 6 months after the treatment. There were no significant complications, such as stroke, skin burns, necrosis, paresthesia, deep-vein thrombosis, or allergic reaction. None of the patients experienced neurological events. Conclusion: FAFS is a promising safe and effective technique for treating large superficial varicosities concomitant to EVLA of the truncal veins with excellent clinical results. Randomized prospective studies with larger series are required to compare the FAFS with ambulatory phlebectomy and standard foam sclerotherapy. - Highlights: • Fill and aspirate foam sclerotherapy (FAFS) is a easy and feasible alternative to the ambulatory phlebectomy for the treatment of large superficial varicose veins. • By using FAFS, foam can be

  18. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  19. Structural applications of metal foams considering material and geometrical uncertainty

    Science.gov (United States)

    Moradi, Mohammadreza

    Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition

  20. On the crush behavior of an ultra light multi-cell foam-filled composite structures for energy absorption: Part 2-Numerical simulation

    International Nuclear Information System (INIS)

    Taher, Siavash T.; Rizal Zahari; Faizal Mustapha; Ataollahi, Simin

    2010-01-01

    The present paper is dealing with the implementation of the finite element explicit dynamic analysis code module incorporated ANSYS/ LS-DYNA computer software to the simulation of the crash behavior and energy adsorption characteristics of a novel multi-cell cost-effective crash worthy composite sandwich structure. In a previous paper, the authors developed the concept of the triple-layered foam-filled block and submitted experimental results of the crash behaviour and crash worthiness characteristics of such structure. The obtained numerical results of axial compression model of composite blocks are compared with actual experimental data of crash energy adsorption, load-displacement history and crush zone characteristics, showing very good agreement. Theoretical and experimental results showed good similarities in peak load, average load and energy absorption with and without use of two types of collapse trigger mechanism. (author)

  1. Thermosetting Fluoropolymer Foams

    Science.gov (United States)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  2. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America.

    Directory of Open Access Journals (Sweden)

    Kenneth Feeley

    Full Text Available Large-scale studies are needed to increase our understanding of how large-scale conservation threats, such as climate change and deforestation, are impacting diverse tropical ecosystems. These types of studies rely fundamentally on access to extensive and representative datasets (i.e., "big data". In this study, I asses the availability of plant species occurrence records through the Global Biodiversity Information Facility (GBIF and the distribution of networked vegetation census plots in tropical South America. I analyze how the amount of available data has changed through time and the consequent changes in taxonomic, spatial, habitat, and climatic representativeness. I show that there are large and growing amounts of data available for tropical South America. Specifically, there are almost 2,000,000 unique geo-referenced collection records representing more than 50,000 species of plants in tropical South America and over 1,500 census plots. However, there is still a gaping "data void" such that many species and many habitats remain so poorly represented in either of the databases as to be functionally invisible for most studies. It is important that we support efforts to increase the availability of data, and the representativeness of these data, so that we can better predict and mitigate the impacts of anthropogenic disturbances.

  3. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties.

    Science.gov (United States)

    Pan, Haifeng; Wang, Wei; Pan, Ying; Song, Lei; Hu, Yuan; Liew, Kim Meow

    2015-01-14

    A fire blocking coating made from chitosan, titanate nanotubes and alginate was deposited on a flexible polyurethane (FPU) foam surface by a layer-by-layer assembly technique in an effort to reduce its flammability. First, titanate nanotubes were prepared by a hydrothermal method. And then the coating growth was carried out by alternately submerging FPU foams into chitosan solution, titanate nanotubes suspension and alginate solution. The mass gain of coating on the surface of FPU foams showed dependency on the concentration of titanate nanotubes suspension and the trilayers's number. Scanning electron microscopy indicated that titanate nanotubes were distributed well on the entire surface of FPU foam and showed a randomly oriented and entangled network structure. The cone calorimeter result indicated that the coated FPU foams showed reduction in the peak heat release rate (peak HRR), peak smoke production rate (peak SPR), total smoke release (TSR) and peak carbon monoxide (CO) production compared with those of the control FPU foam. Especially for the FPU foam with only 5.65 wt % mass gain, great reduction in peak HRR (70.2%), peak SPR (62.8%), TSR (40.9%) and peak CO production (63.5%) could be observed. Such a significant improvement in flame retardancy and the smoke suppression property for FPU foam could be attributed to the protective effect of titanate nanotubes network structure formed, including insulating barrier effect and adsorption effect.

  4. A finite element/level set model of polyurethane foam expansion and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunini, Victor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tinsley, James [Honeywell Federal Manufacturing & Technologies, Kansas City, MO (United States); Mondy, Lisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Polyurethane foams are used widely for encapsulation and structural purposes because they are inexpensive, straightforward to process, amenable to a wide range of density variations (1 lb/ft3 - 50 lb/ft3), and able to fill complex molds quickly and effectively. Computational model of the filling and curing process are needed to reduce defects such as voids, out-of-specification density, density gradients, foam decomposition from high temperatures due to exotherms, and incomplete filling. This paper details the development of a computational fluid dynamics model of a moderate density PMDI structural foam, PMDI-10. PMDI is an isocyanate-based polyurethane foam, which is chemically blown with water. The polyol reacts with isocyanate to produces the polymer. PMDI- 10 is catalyzed giving it a short pot life: it foams and polymerizes to a solid within 5 minutes during normal processing. To achieve a higher density, the foam is over-packed to twice or more of its free rise density of 10 lb/ft3. The goal for modeling is to represent the expansion, filling of molds, and the polymerization of the foam. This will be used to reduce defects, optimize the mold design, troubleshoot the processed, and predict the final foam properties. A homogenized continuum model foaming and curing was developed based on reaction kinetics, documented in a recent paper; it uses a simplified mathematical formalism that decouples these two reactions. The chemo-rheology of PMDI is measured experimentally and fit to a generalized- Newtonian viscosity model that is dependent on the extent of cure, gas fraction, and temperature. The conservation equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite element method. The equations are combined with a level set method to determine the location of the foam-gas interface as it evolves to fill the mold. Understanding the thermal history and loads on the foam due to exothermicity and oven

  5. Experimental and theoretical study of flowing foam and of the liquid film formed on the wall for the improvement of decontamination processes using foams

    International Nuclear Information System (INIS)

    Pouvreau, J.

    2002-01-01

    Amongst chemical decontamination techniques, the foam cleaning process has the advantage of reducing the amount of liquid used, thus limiting the quantity of the chemical reagents and the secondary waste volume. In order to improve this process, it is essential to understand the behaviour of the foam in the vicinity of the contaminated surface. Two methods of study have been initiated. Firstly, the characterization of the liquid film formed on the wall, and secondly, the characterization of the foam bed. Furthermore, our goal is to set up a drainage model which enables a choice of process parameters. Flush-mounted conductance probes have been developed in order to determine the thickness of the liquid film at the surface and the foam liquid fraction. The influence of the foam on the film structure and the interpretation of the thickness measured is discussed. The process studied consists of filling the facility with foam and letting the foam drain once the facility is full. It was demonstrated that the liquid film thickness varies between a few microns and 50 μm and that the value depends on position and time. Furthermore, a strong correlation links the film thickness and the foam liquid fraction. A drift-flux model has been built to describe the drainage of the upstream flow or static foam. The model is solved by using the method of characteristics. Analytical solutions are obtained and the liquid fraction evolution can easily be represented on a single diagram. The parameters of the void-drift closure law have been deducted from the experiments. The comparison to experimental data has shown that the model is well adapted. The laboratory therefore has experimental and theoretical equipment to study any foam. Finally, the model is applied to realistic decontamination configurations in order to present how determine the parameters of the process. (author) [fr

  6. Dynamics of poroelastic foams

    Science.gov (United States)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  7. Partial discharges in spheroidal voids: Void orientation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1997-01-01

    Partial discharge transients can be described in terms of the charge induced on the detecting electrode. The influence of the void parameters upon the induced charge is examined and discussed for spheroidal voids. It is shown that a quantitative interpretation of the induced charge requires...

  8. Pediatric Voiding Cystourethrogram

    Science.gov (United States)

    Scan for mobile link. Children's (Pediatric) Voiding Cystourethrogram A children’s (pediatric) voiding cystourethrogram uses fluoroscopy – a form of real-time x-ray – to examine a child’s bladder ...

  9. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  10. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  11. Parallel Void Thread in Long-Reach Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work investigates void filling (idle periods) in long-reach Ethernet passive optical networks. We focus on reducing grant delays and hence reducing the average packet delay. We introduce a novel approach called parallel void thread (PVT), which

  12. Industrial waste utilization for foam concrete

    Science.gov (United States)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  13. Use of urethane foam in preparing for decontamination and decommissioning of radioactive facilities

    International Nuclear Information System (INIS)

    1981-01-01

    Portable urethane foam generating equipment has been in use for 15 to 20 years for a large number of applications, such as roof systems, tank insulation, and building insulation. Still another industrial application is its use in the decontamination and decommissioning of radioactive facilities at Mound Facility. The major problems encountered with urethane foams were with the packaging and stabilization procedures. The operation for spraying the foam on interior surfaces and equipment involved getting the gun inside without opening up the interior to the outside environment. A Gusmer FF proportioner and Model D spray gun was used for this operation. The gun was modified so that the trigger could be remotely located to facilitate its entry through a glovebox gloveport opening. The Model D gun has an air cap to blow foam off the tip of the gun. This cap was used to hold a plastic bag in place around the gun. The plastic bag is then put on a glove port and fastened securely. Urethane spray is applied on all exposed surfaces. This assures that all residual material is fixed for shipment. This simplifies cleaning operations as there is no need to remove the last trace of plutonium and results in a considerable shortening of the time required to prepare the gloveboxes. With the interior foamed, the gloveboxes are moved to the loading and packaging areas. Urethane foams are used to fill in the voids in our final shipping container. Radioactive waste materials are segregated according to the level of radioactive material present. One category is low level or low specific activity (LSA) and the other high level or Transuranic (TRU). Foam is used in TRU packages as packaging material to stabilize the loads and to help cushion against shock in transit on truck or railcar

  14. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  15. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  16. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  17. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  18. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  19. Void hierarchy and cosmic structure

    International Nuclear Information System (INIS)

    Weygaert, Rien van de; Ravi Sheth

    2004-01-01

    Within the context of hierarchical scenarios of gravitational structure formation we describe how an evolving hierarchy of voids evolves on the basis of two processes, the void-in-void process and the void-in-cloud process. The related analytical formulation in terms of a two-barrier excursion problem leads to a self-similarly evolving peaked void size distribution

  20. Air void clustering.

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...

  1. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  2. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  3. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  4. Foam Microrheology

    International Nuclear Information System (INIS)

    KRAYNIK, ANDREW M.; LOEWENBERG, MICHAEL; REINELT, DOUGLAS A.

    1999-01-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams

  5. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  6. Void effects on BWR Doppler and void reactivity feedback

    International Nuclear Information System (INIS)

    Hsiang-Shou Cheng; Diamond, D.J.

    1978-01-01

    The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)

  7. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry

    Science.gov (United States)

    Özdemir, İ. Bedii; Akar, Fırat

    2018-05-01

    The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.

  8. Determination of the void nucleation rate from void size distributions

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    A method of estimating the void nucleation rate from one void size distribution and from observation of the maximum void radius at prior times is proposed. Implicit in the method are the assumptions that both variations in the critical radius with dose and vacancy thermal emission processes during post-nucleation quasi-steady-state growth may be neglected. (Auth.)

  9. Void shape effects and voids starting from cracked inclusion

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2011-01-01

    Numerical, axisymmetric cell model analyses are used to study the growth of voids in ductile metals, until the mechanism of coalescence with neighbouring voids sets in. A special feature of the present analyses is that extremely small values of the initial void volume fraction are considered, dow...

  10. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  11. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  12. Quality of root fillings performed with two root filling techniques. An in vitro study using micro-CT

    DEFF Research Database (Denmark)

    Møller, L; Wenzel, A; Wegge-Larsen, AM

    2013-01-01

    -section images from Micro-computed Tomography scans. Results. All root canal fillings had voids. Permutation test showed no statistically significant difference between the two root filling techniques in relation to presence of voids (p = 0.092). A statistically significant difference in obturation time between...

  13. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  14. Archaeology of Void Spaces

    Science.gov (United States)

    Look, Cory

    The overall goal of this research is to evaluate the efficacy of pXRF for the identification of ancient activity areas at Pre-Columbian sites in Antigua that range across time periods, geographic regions, site types with a variety of features, and various states of preservation. These findings have important implications for identifying and reconstructing places full of human activity but void of material remains. A synthesis for an archaeology of void spaces requires the construction of new ways of testing anthrosols, and identifying elemental patterns that can be used to connect people with their places and objects. This research begins with an exploration of rich middens in order to study void spaces. Midden archaeology has been a central focus in Caribbean research, and consists of an accumulation of discarded remnants from past human activities that can be tested against anthrosols. The archaeological collections visited for this research project involved creating new databases to generate a comprehensive inventory of sites, materials excavated, and assemblages available for study. Of the more than 129 Pre-Columbian sites documented in Antigua, few sites have been thoroughly surveyed or excavated. Twelve Pre-Columbian sites, consisting of thirty-six excavated units were selected for study; all of which contained complete assemblages for comparison and soil samples for testing. These excavations consisted almost entirely of midden excavations, requiring new archaeological investigations to be carried out in spaces primarily void of material remains but within the village context. Over the course of three seasons excavations, shovel test pits, and soil augers were used to obtain a variety of anthrosols and archaeological assemblages in order to generate new datasets to study Pre-Columbian activity areas. The selection of two primary case study sites were used for comparison: Indian Creek and Doigs. Findings from this research indicate that accounting for the

  15. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    Science.gov (United States)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  16. Analysis of Tube Bank Heat Transfer In Downward Directed Foam Flow

    Directory of Open Access Journals (Sweden)

    Jonas Gylys

    2004-06-01

    Full Text Available Apparatus with the foam flow are suitable to use in different technologies like heat exchangers, food industry, chemical and oil processing industry. Statically stable liquid foam until now is used in technologic systems rather seldom. Although a usage of this type of foam as heat transfer agent in foam equipment has a number of advantages in comparison with one phase liquid equipment: small quantity of liquid is required, heat transfer rate is rather high, mass of equipment is much smaller, energy consumption for foam delivery into heat transfer zone is lower. The paper analyzes the peculiarities of heat transfer from distributed in staggered order and perpendicular to foam flow in channel of rectangular cross section tube bundle to the foam flow. It was estimated the dependence of mean gas velocity and volumetric void fraction of foam flow to heat transfer in downward foam flow. Significant difference of heat transfer intensity from front and back tubes of tube row in laminar foam flow was noticed. Dependence of heat transfer on flow velocity and volumetric void fraction of foam was confirmed and estimated by criterion equations.

  17. Is abdominal wall contraction important for normal voiding in the female rat?

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2007-03-01

    Full Text Available Abstract Background Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats Methods A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI, voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. Results Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p Conclusion The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR for the physiologic voiding-associated EMG

  18. Displacive stability of a void in a void lattice

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    It has recently been suggested that the stability of the void-lattice structure in irradiated metals may be attributed to the effect of the overlapping of the point-defect diffusion fields associated with each void. It is shown here, however, that the effect is much too weak. When one void is displaced from its lattice site, the displacement is shown to relax to zero as proposed, but a conservative estimate indicates that the characteristic time is equivalent to an irradiation dose of the order of 300 displacements per atom which is generally much greater than the dose necessary for void-lattice formation

  19. Flammability of Gas-Filled Polymers

    Directory of Open Access Journals (Sweden)

    Ushkov Valentin Anatol'evich

    2017-09-01

    Full Text Available The regularities of flame propagation on the horizontal surface of gas-filled polymers are considered depending on the concentration of oxygen in the oxidizer flow. The values of the coefficients in the expression describing relationship between the rate of flame propagation on the surface of foams and oxygen concentration are obtained. It was shown that with the mass content of reactive organophosphorus compounds reaching 4.0...5.9%, non-smoldering resole foam plastics with high performance characteristics are obtained. It was found that in order to obtain moderately combustible polyurethane foams based on oxyethylated phosphorus-containing polyols, the phosphorus concentration should not exceed 3 % of mass. To obtain flame-retardant urea-formaldehyde foam cellular plastics, the concentration of phosphorus should not exceed 0.3 % of mass. Physical-mechanical properties and flammability indices of developed gas-filled polymers based on reactive oligomers are presented.

  20. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  1. When Earth Songs Filled the Void of Space

    Science.gov (United States)

    Gallagher, Dennis L.

    2003-01-01

    Before the late 50's we had the planets, our Sun, the stars, galaxies, spectacular clouds of dust and very little else in our universe. There was evidence for a highly tenuous "sea" of dust in interstellar space, but little else. Space was empty above the ionized gases of our upper atmosphere, a little like there was no color in the world before the 40's. The clues were there to think otherwise, however, and in the late 50's and early 60's a few researchers dared to challenge the conventional ideas about space. It was a time of discovery and, with our new ability to fly in space, a time that launched a new science. Today that science makes it possible to literally see some of the plasmas that populate near-Earth space, which are now known to exist everywhere.

  2. Stabilization void-fill encapsulation high-efficiency particulate filters

    International Nuclear Information System (INIS)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment

  3. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  4. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  5. Evaluation of Canisterized Foams and Evaluation of Radiation Hardened Foams for D&D Activities

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The introduction of polyurethane foams has previously been examined elsewhere within the DOE complex with regards to decontamination and decommissioning (D&D) activities, though its use has been prohibited as a result of excessive heat generation and flammability concerns per the safety basis. Should these foams be found compatible with respect to the facility safety basis requirements, D&D work involving large void containing structures such as gloveboxes could be eased through the fixation of residual contamination after decontamination efforts have concluded. To this end, SRNL embarked on a characterization of commercial epoxy foams to identify the characteristics that would be most important to safety basis requirements. Through SRNL’s efforts, the performance of commercial two-part epoxy foams was evaluated for their foaming characteristics, temperature profiles, loading capability with high-Z (high density) additives, and applicability for shielding gamma emission from isotopes including; Am-241, Cs-137, and Co-60. It was found that these foams are capable of encapsulation of a desired volume, though the ideal and experimental expansion coefficients were found to differ. While heat is generated during the reaction, no samples generated heat above 70 °C. Of the down–selected materials, heating was on the order of 40 °C for the flexible foam and 60 °C for the rigid foam. Both were found to return to room temperature after 20 minutes regardless of the volume of foam cast. It was also found that the direct introduction of high-Z additives were capable of attenuating 98% of Am-241 gamma signal, 16% of Cs-137 signal, and 9.5% of Co-60 signal at 1:1 loading capacities of total liquid constituent weight to additive weight. These efforts are currently being reviewed for the ASTM January 2017 subcommittee discussions to address the lack of test methods and standards regarding these materials with respect to D&D environments.

  6. Coated foams, preparation, uses and articles

    Science.gov (United States)

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  7. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  8. Determination of effective thermal conductivity for polyurethane foam by use of fractal method

    Institute of Scientific and Technical Information of China (English)

    SHI Mingheng; LI Xiaochuan; CHEN Yongping

    2006-01-01

    The microstructure of polyurethane foam is disordered, which influences the foam heat conduction process significantly. In this paper foam structure is described by using the local area fractal dimension in a certain small range of length scales. An equivalent element cell is constructed based on the local fractal dimensions along the directions parallel and transverse to the heat flux. By use of fractal void fraction a simplified heat conduction model is proposed to calculate the effective thermal conductivity of polyurethane foam. The predicted effective thermal conductivity agrees well with the experimental data.

  9. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  10. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  11. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    International Nuclear Information System (INIS)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-01-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  12. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  13. Fire retardant polyisocyanurate foam

    Science.gov (United States)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  14. Air void clustering : [technical summary].

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...

  15. Mechanical properties and impact behavior of a microcellular structural foam

    Directory of Open Access Journals (Sweden)

    M. Avalle

    Full Text Available Structural foams are a relatively new class of materials with peculiar characteristics that make them very attractive in some energy absorption applications. They are currently used for packaging to protect goods from damage during transportation in the case of accidental impacts. Structural foams, in fact, have sufficient mechanical strength even with reduced weight: the balance between the two antagonist requirements demonstrates that these materials are profitable. Structural foams are generally made of microcellular materials, obtained by polymers where voids at the microscopic level are created. Although the processing technologies and some of the material properties, including mechanical, are well known, very little is established for what concerns dynamic impact properties, for the design of energy absorbing components made of microcellular foams. The paper reports a number of experimental results, in different loading conditions and loading speed, which will be a basis for the structural modeling.

  16. Fire-Induced Response in Foam Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Borek, T.T.; Chu, T.Y.; Erickson, K.L.; Gill, W.; Hobbs, M.L.; Humphries, L.L.; Renlund, A.M.; Ulibarri, T.A.

    1999-04-02

    The paper provides a concise overview of a coordinated experimental/theoretical/numerical program at Sandia National Laboratories to develop an experimentally validated model of fire-induced response of foam-filled engineered systems for nuclear and transportation safety applications. Integral experiments are performed to investigate the thermal response of polyurethane foam-filled systems exposed to fire-like heat fluxes. A suite of laboratory experiments is performed to characterize the decomposition chemistry of polyurethane. Mass loss and energy associated with foam decomposition and chemical structures of the virgin and decomposed foam are determined. Decomposition chemistry is modeled as the degradation of macromolecular structures by bond breaking followed by vaporization of small fragments of the macromolecule with high vapor pressures. The chemical decomposition model is validated against the laboratory data. Data from integral experiments is used to assess and validate a FEM foam thermal response model with the chemistry model developed from the decomposition experiments. Good agreement was achieved both in the progression of the decomposition front and the in-depth thermal response.

  17. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  18. The relationship between temperament, gender, and childhood dysfunctional voiding.

    Science.gov (United States)

    Colaco, Marc; Dobkin, Roseanne D; Sterling, Matthew; Schneider, Dona; Barone, Joseph

    2013-08-01

    Dysfunctional voiding (DV) is an extremely common pediatric complaint. The goal of this study was to examine the relationship between DV and childhood temperament. Information about the voiding behaviors and temperaments of 50 children was examined using a case-control model. Caregivers were asked to fill out the Children's Behavior Questionnaire in order to rate their child on the dimensions of surgency, negative affect, and effortful control. The relationship between DV and these dimensions was then evaluated. Males with DV were found to have lower effortful control than males with normal voiding habits. Females with DV did not demonstrate a difference in effortful control, but did demonstrate a higher rate of surgency. The results suggest that temperament does have an association with DV. These findings are in line with temperamental associations with other externalizing trouble behaviors and may inform potential treatment strategies for DV.

  19. Alignment of voids in the cosmic web

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2008-01-01

    We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly

  20. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  1. Dynamics of core voiding during boiloff experiments

    International Nuclear Information System (INIS)

    Analytis, G.T.; Aksan, S.N.; Stierli, F.; Yadigaroglu, G.

    1987-01-01

    A series of boiloff experiments were conducted at the EIR NEPTUN test facility with a bundle consisting of 37 PWR fuel rod simulators. The test section was filled with subcooled coolant and the power was turned on. After an initial heatup phase, coolant was expelled from the test section due to rapid vapor generation near the mid-plane where the power generation was highest. Gradual boiloff of the remaining water followed. It was found that the ''collapsed liquid level'' (CLL) and the rod temperature histories could be predicted well, provided the initial expulsion of the coolant was calculated correctly. The axial void fraction and enthalpy profiles calculated with TRAC-BD/MOD1 provided the information needed for understanding the importance of heat transfer to the coolant before the inception of vapor generation, and the sensitivity of the results to the interfacial friction correlation used

  2. Predictive efficacy of radioisotope voiding cystography for renal outcome

    International Nuclear Information System (INIS)

    Kim, Seok Ki; Lee, Dong Soo; Kim, Kwang Myeung; Choi, Whang; Chung, June Key; Lee, Myung Chul

    2000-01-01

    As vesicoureteral reflux (VUR) could lead to renal functional deterioration when combined with urinary tract infection, we need to decide whether operative anti-reflux treatment should be performed at the time of diagnosis of VUR. Predictive value of radioisotope voiding cystography (RIVCG) for renal outcome was tested. In 35 children (18 males, 17 females), radiologic voiding cystoure-thrography (VCU), RIVCG and DMSA scan were performed. Change in renal function was evaluated using the follow-up DMSA scan, ultrasonography, and clinical information. Discriminant analysis was performed using individual or integrated variables such as reflux amount and extent at each phase of voiding on RIVCG, in addition to age, gender and cortical defect on DMSA scan at the time of diagnosis. Discriminant function was composed and its performance was examined. Reflux extent at the filling phase and reflux amount and extent at postvoiding phase had a significant prognostic value. Total reflux amount was a composite variable to predict prognosis. Discriminant function composed of reflux extent at the filling phase and reflux amount and extent at postvoiding phase showed better positive predictive value and specificity than conventional reflux grading. RIVCG could predict renal outcome by disclosing characteristic reflux pattern during various voiding phases.=20

  3. How institutional voids influence Brazilian foreign direct investment in Angola

    Directory of Open Access Journals (Sweden)

    Renato Virches

    2017-04-01

    Full Text Available How do institutional voids influence emerging market multinationals (EMNEs foreign direct investment (FDI in developing countries? In this article we respond to this question by examining Brazilian FDI in Angola as our analytical setting. We focus on the host country’s institutions and its institutional voids as essential factors that attract the FDI of EMNES to developing countries. The research indicates that Brazilian companies fill in much of these voids within the market intermediaries, often creating a point of competitive advantage, and also creating advantages in relation to FDI from other economies that invest in Angola. The scarce literature on FDI in Africa has been largely dedicated to the analysis of Chinese investment in the region. We aim to complement recent research on the influence of the host country’s institutions on the behavior of FDI in developing countries, explaining how some EMNEs are able to use the institutional voids of developing countries as market opportunities. Our findings should provide also implications for EMNEs managers from other emerging markets by providing a better understanding of how Brazilian multinationals expand their business in less developed countries, handle institutional voids and manage relationships with local and foreign institutions in the host country.

  4. Radiopacity of root filling materials

    International Nuclear Information System (INIS)

    Beyer-Olsen, E.M.

    1983-01-01

    A method for measuring the radiopacity of root filling materials is described. Direct measurements were made of the optic density values of the materials in comparison with a standard curve relating optic density to the thickness of an aluminium step wedge exposed simultaneously. By proper selection of film and conditions for exposure and development, it was possible to obtain a near-linear standard curve which added to the safety and reproducibility of the method. The technique of radiographic assessment was modified from clinical procedures in evaluating the obturation in radiographs, and it was aimed at detecting slits or voids between the dental wall and the filling material. This radiographic assessment of potensial leakage was compared with actual in vitro lekage of dye (basic fuchsin) into the roots of filled teeth. The result of the investigation show that root filling materials display a very wide range of radiopacity, from less than 3 mm to more than 12 mm of aluminium. It also seem that tooth roots that appear to be well obturated by radiographic evaluation, stand a good chance of beeing resistant to leakage in vitro, and that the type of filling material rather than its radiographic appearance, determines the susceptibility of the filled tooth to leakage in vitro. As an appendix the report contains a survey of radiopaque additives in root filling materials

  5. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  6. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials

    International Nuclear Information System (INIS)

    Weck, A.; Wilkinson, D.S.; Maire, E.; Toda, H.

    2008-01-01

    The literature contains many models for the process of void nucleation, growth and coalescence leading to ductile fracture. However, these models lack in-depth experimental validation, in part because void coalescence is difficult to capture experimentally. In this paper, an embedded array of holes is obtained by diffusion bonding a sheet filled with laser-drilled holes between two intact sheets. The experiments have been performed with both pure copper and Glidcop. Using X-ray computed tomography, we show that void growth and coalescence (or linkage) are well captured in both materials. The Brown and Embury model for void coalescence underestimates coalescence strains due to constraining effects. However, both the Rice and Tracey model for void growth and the Thomason model for void coalescence give good predictions for copper samples when stress triaxiality is considered. The Thomason model, however, fails to predict coalescence for the Glidcop samples; this is primarily due to secondary void nucleation

  7. Assisted heterogeneous multinucleation and bubble growth in semicrystalline ethylene-vinyl acetate copolymer/expanded graphite nanocomposite foams: Control of morphology and viscoelastic properties

    Directory of Open Access Journals (Sweden)

    O. Yousefzade

    2015-10-01

    Full Text Available Nanocomposite foams of ethylene-vinyl acetate copolymer (EVA reinforced by expanded graphite (EG were prepared using supercritical nitrogen in batch foaming process. Effects of EG particle size, crosslinking of EVA chains and foaming temperature on the cell morphology and foam viscoelastic properties were investigated. EG sheet surface interestingly provide multiple heterogeneous nucleation sites for bubbles. This role is considerably intensified by incorporating lower loadings of EG with higher aspect ratio. The amorphous and non-crosslinked domains of EVA matrix constitute denser bubble areas. Higher void fraction and more uniform cell structure is achieved for non-crosslinked EVA/EG nanocomposites foamed at higher temperatures. With regard to the structural variation, the void fraction of foam samples decreases with increasing the EG content. Storage and loss moduli were analyzed to study the viscoelastic properties of nanocomposite foams. Surprisingly, the foaming process of EVA results in a drastic reduction in loss and storage moduli regardless of whether the thermoplastic matrix contains EG nanofiller or not. For the EVA/EG foams with the same composition, the nanocomposite having higher void fraction shows relatively lower loss modulus and more restricted molecular movements. The study findings have verified that the dynamics of polymer chains varies after foaming EVA matrix in the presence of EG.

  8. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  9. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  10. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  11. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  12. Finding Brazing Voids by Holography

    Science.gov (United States)

    Galluccio, R.

    1986-01-01

    Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.

  13. Inflatable Tubular Structures Rigidized with Foams

    Science.gov (United States)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  14. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  15. Spatial dependence of void coefficient in the University of Arizona TRIGA research reactor

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Doane, Harry; Wells, Robert

    1980-01-01

    The spatial dependence of the moderator void coefficient of reactivity in the axial direction was experimentally measured in the A-ring using a hollow, air-filled aluminum cylinder. It was found that the void coefficient was positive in the central region of the fuel section reaching a maximum value of approximately + .045 cents/cm 3 and was negative towards the outer edges of the fuel section reaching a maximum of - .09 cents/cm 3 . (author)

  16. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  17. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  18. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  19. Analysis on void reactivity of DCA lattice

    International Nuclear Information System (INIS)

    Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.

    2001-01-01

    In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction

  20. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  1. Research on Properties of Foamed Concrete Reinforced with Small Sized Glazed Hollow Beads

    Directory of Open Access Journals (Sweden)

    Chi Hu

    2016-01-01

    Full Text Available Foamed concrete (400 kg/m3 was prepared through a physical foaming method using ordinary Portland cement (42.5R, vegetable protein foaming agent, fly ash, and glazed hollow beads (GHB, K46 as raw materials. The performance of cement paste as well as the structure and distribution of air voids was characterized by rheometry, SEM, and XRD analyses with imaging software. The effects of GHBs on the compressive strength and thermal conductivity of the foamed concrete sample were also explored. Results show that the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the test sample mixed with 2.4 wt% GHBs are 94.44%, 182.10 μm, 2.39 MPa, and 0.0936 w/(m·k, respectively. Excessive amount of GHBs (>2.4 wt% increases the amount of air voids with diameter smaller than 50 μm in the hardened foamed concrete as well as the degree of open porosity. Moreover, the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the sample mixed with 4.0 wt% GHBs are 88.54%, 140.50 μm, 2.05 MPa, and 0.0907 w/(m·k, respectively.

  2. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  3. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  4. Improved construction materials for polar regions using microcellular thermoplastic foams

    Science.gov (United States)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  5. Void migration in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2002-01-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium

  6. Void migration in fusion materials

    Science.gov (United States)

    Cottrell, G. A.

    2002-04-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.

  7. Impact of foamed matrix components on foamed concrete properties

    Science.gov (United States)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  8. Polymer microcapsules with "foamed" membranes.

    Science.gov (United States)

    Lavergne, Fleur-Marie; Cot, Didier; Ganachaud, François

    2007-06-05

    This article describes the preparation of capsules displaying craters at their surfaces and independent holes inside their membranes. These poly(methylmethacrylate) capsules of 20 to 200 microm diameter are prepared by a solvent evaporation process and typically contain a dispersant, polyvinyl alcohol, and an excipient, namely, a fatty acid triglyceride (miglyol 812). Spectroscopic methods showed that, depending on the miglyol content, the craters at the surface exhibited sizes of about 1 to 2 microm, whereas the core structure of the membrane changed significantly, typically from "soft-part-of-bread" up to "foamed"-like aspects. Among several spectroscopy techniques, confocal fluorescence microscopy confirmed that the capsules retained the miglyol in their core and not in the craters or holes, even after centrifugation and handling. This technique also showed that holes in the membrane are filled with water. A possible analysis of the "foaming" phenomenon based on the surface tensions of different oils, as well as their optimal hydrophile-lipophile balance (HLBO), is added to generalize the concept.

  9. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...

  10. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Nocturia: The circadian voiding disorder

    Directory of Open Access Journals (Sweden)

    Jin Wook Kim

    2016-05-01

    Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.

  12. Polypropylenes foam consisting of thermally expandable microcapsule as blowing agent

    Science.gov (United States)

    Jeoung, Sun Kyung; Hwang, Ye Jin; Lee, Hyun Wook; Kwak, Sung Bok; Han, In-Soo; Ha, Jin Uk

    2016-03-01

    The structure of thermally expandable microcapsule (TEMs) is consisted of a thermoplastic shell which is filled with liquid hydrocarbon at core. The shell of TEMs becomes soft when the temperature is higher than boiling temperature of liquid hydrocarbon. The shell of TEMs is expanded under the high temperature because the inner pressure of TEMs is increased by vaporization of hydrocarbon core. Therefore, the TEMs are applicable for blowing agents and light weight fillers. In this research, we fabricated the polypropylene (PP) foam by using the TEMs and chemical blowing agents and compared to their physical properties. The density of the specimen was decreased when the contents of chemical blowing agents and TEMs were increased. In addition, the mechanical properties (i.e. tensile strength and impact strength) of specimens were deteriorated with increasing amount of chemical blowing agents and TEMs. However, PP foam produced with TEMs showed higher impact strength than the one with the chemical blowing agent. In order to clarify the dependence of impact strength of PP foam as the blowing agent, the morphology difference of the PP foams was investigated. Expanding properties of PP foams produced with TEMs was changed with TEMs content of PP foams. Processing conditions also influenced the mechanical properties of PP foam containing TEMs.

  13. Preparation of microcellular foam in cylindrical metal targets

    International Nuclear Information System (INIS)

    Apen, P.G.; Armstrong, S.V.; Moore, J.E.; Espinoza, B.F.; Gurule, V.; Gobby, P.L.; Williams, J.M.

    1992-01-01

    The preparation of microcellular foam in cylindrical gold targets is described. The goal cylinders were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing trimethylolpropanetriacrylate (TMPTA). Low density, microcellular polymeric foam was prepared by in situ photopolymerization of the TMPTA solution. Foam preparation was extremely sensitive to metal ion contaminants. In particular, copper ions left behind from the leaching process inhibit polymerization and must be removed in order to obtain uniform, non-shrinking foams. A study on the effects of potential contaminants and polymerization inhibitors on TMPTA photopolymerization is presented. In addition, a procedure for the effective leaching and cleaning of gold cylinders is described

  14. Reducing wall plasma expansion with gold foam irradiated by laser

    International Nuclear Information System (INIS)

    Zhang, Lu; Ding, Yongkun; Jiang, Shaoen; Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-01-01

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum

  15. Reducing wall plasma expansion with gold foam irradiated by laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  16. Pitch-based carbon foam heat sink with phase change material

    Science.gov (United States)

    Klett, James W.; Burchell, Timothy D.

    2004-08-24

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  17. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  18. The Beckoning Void in Moravagine

    Directory of Open Access Journals (Sweden)

    Stephen K. Bellstrom

    1979-01-01

    Full Text Available The Chapter «Mascha,» lying at the heart of Cendrars's Moravagine , contains within it a variety of images and themes suggestive of emptiness. The philosophy of nihilism is exemplified in the motivations and actions of the group of terrorists seeking to plunge Russia into revolutionary chaos. Mascha's anatomical orifice, symbolizing both a biological and a psychological fault, and the abortion of her child, paralleled by the abortion of the revolutionary ideal among her comrades, are also emblematic of the chapter's central void. Moreover, Cendrars builds the theme of hollowness by describing Moravagine with images of omission, such as «empan» (space or span, «absent,» and «étranger.» Moravagine's presence, in fact, characteristically causes an undercurrent of doubt and uncertainty about the nature of reality to become overt. It is this parodoxical presence which seems to cause the narrator (and consequently the narrative to «lose» a day at the most critical moment of the story. By plunging the reader into the narrator's lapsus memoriae , Cendrars aims at creating a feeling of the kind of mental and cosmic disorder for which Moravagine is the strategist and apologist. This technique of insufficiency is an active technique, even though it relies on the passive idea of removing explanation and connecting details. The reader is invited, or lured, into the central void of the novel and, faced with unresolvable dilemmas, becomes involved in the same disorder that was initially produced.

  19. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  20. Geotechnical reduction of void ratio in low-level radioactive waste burial sites: treatment alternatives

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.; McGuire, H.E.

    1981-01-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development

  1. Elastic wave scattering from multiple voids (porosity)

    International Nuclear Information System (INIS)

    Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.

    1983-01-01

    This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given

  2. Cosmology with void-galaxy correlations.

    Science.gov (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  3. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  4. Determining stress during finger propagation in 2D foams

    NARCIS (Netherlands)

    Staicu, A.D.; van Gelder, Bas; Hilgenfeldt, Sascha; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    We investigate the formation of fingering patterns in a radial Hele-Shaw cell filled with quasi-two-dimensional polydisperse foam of very small liquid content. Air is used as the low-viscosity driving fluid. Using high speed imaging (up to 2000fps), we directly observe the topological rearrangements

  5. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  6. The use of castor oil polyurethane foam in impact limiters for radioactive materials packages

    International Nuclear Information System (INIS)

    Mouro, R.P.; Neto, M.M.

    2003-01-01

    This paper presents ongoing research aiming to assess the use of a 'bio based' polyurethane foam as filling material in impact limiters for transport packages in the nuclear field. The foam is made from castor oil, which replaces the petroleum based polyols in the manufacture of polyurethane products, with good environmental advantages. The research comprises the selection of the cellular material, its structural characterisation by mechanical laboratory tests, the development of a case study, preliminary determination of the best foam density for the case study, performance of the case and its numerical simulation using the finite element method. Prototypes with foam density that is pre-determined as ideal, as well as prototypes using lighter and heavier foams, were tested for comparison. The results obtained validate the research methodology, as expectations about the ideal foam density were confirmed by the drop tests and the numerical simulation. (author)

  7. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  8. Brushite foams--the effect of Tween® 80 and Pluronic® F-127 on foam porosity and mechanical properties.

    Science.gov (United States)

    Unosson, Johanna; Montufar, Edgar B; Engqvist, Håkan; Ginebra, Maria-Pau; Persson, Cecilia

    2016-01-01

    Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 -300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F-127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  9. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  10. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  11. Experimental Investigation of Properties of Foam Concrete for Industrial Floors in Testing Field

    Science.gov (United States)

    Vlcek, Jozef; Drusa, Marian; Scherfel, Walter; Sedlar, Bronislav

    2017-12-01

    Foam concrete (FC), as a mixture of cement, water, additives and technical foam, is well known for more than 30 years. It is building material with good mechanical properties, low thermal conductivity, simple and even high technological treatment. Foam concrete contains closed void pores, what allows achieving low bulk density and spare of raw materials. Thanks to its properties, it is usable as a replacement of conventional subbase layers of the industrial floors, the transport areas or as a part of the foundation structures of the buildings. Paper presents the preparation of the testing field (physical model) which was created for experimental investigation of the foam concrete subbase layer of the industrial floor in a real scale.

  12. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  13. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.; Levy, V.; Adda, Y.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to a general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented [fr

  14. Void Fraction Instrument operation and maintenance manual

    International Nuclear Information System (INIS)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O ampersand MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document

  15. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to our general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented

  16. Statistics and geometry of cosmic voids

    International Nuclear Information System (INIS)

    Gaite, José

    2009-01-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids

  17. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  18. Foams in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  19. One-Group Perturbation Theory Applied to Measurements with Void

    International Nuclear Information System (INIS)

    Persson, Rolf

    1966-09-01

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m 2 and 0.267 ± 0.005/m 2 resp. From single-rod experiments differences between diffusion coefficients are determined to δD r /D = 0.083 ± 0.004 and δD z /D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D z /D r ) air = 1.034 ± 0.020

  20. One-Group Perturbation Theory Applied to Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-09-15

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.

  1. Void Measurement by the ({gamma}, n) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Zia

    1962-09-15

    It is proposed to use the ({gamma}, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D{sub 2}O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. {sup 24}Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions.

  2. Void Measurement by the (γ, n) Reaction

    International Nuclear Information System (INIS)

    Rouhani, S. Zia

    1962-09-01

    It is proposed to use the (γ, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D 2 O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. 24 Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions

  3. Pores and Void in Asclepiades’ Physical Theory

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  4. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    Science.gov (United States)

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing

    2018-03-21

    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  5. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  6. On the abundance of extreme voids II: a survey of void mass functions

    International Nuclear Information System (INIS)

    Chongchitnan, Siri; Hunt, Matthew

    2017-01-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  7. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  8. Toepassingsmogelijkheden van schuim voor het doden van pluimvee = Application of foam for emergency depopulation of poultry farms

    NARCIS (Netherlands)

    Gerritzen, M.A.

    2007-01-01

    Culling animals is an important instrument in fighting infectious animal diseases. To prevent the spread of infectious diseases filling a poultry house with foam is a possible alternative to depopulating the house with CO2 gas

  9. Flexible polyurethane foams

    NARCIS (Netherlands)

    2012-01-01

    Embodiments of the invention provide for a method of preparing a polyurethane foam, including reacting least one initiator comprising at least two hydroxyl groups with at least one 12-hydroxystearic acid to form at least one polyester polyol, reacting the at least one polyester polyol with at least

  10. Experimental Investigation into Pull-Out Strength of Foamed Concrete Using Different Types of Screw

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available This study focuses on the results of the comprehensive strength test to quantify the mechanical properties of the screw’s pullout strength on foamed concrete. Foamed concrete is classified as lightweight concrete that been produced by cement paste or mortar in which air-voids are entrapped in the mortar by a suitable foaming agent. These days, the use of foamed concrete has been recognized in the construction industry as wall blocks, wall panels and also material floor and roof screeds. Hence, the applications of this material should be maximized as it is multi-functional. As we know, the use of screws on the wall or ceiling is common in a building. The objective of this research is to examine and determine the pullout strength of various properties and types of screws in lightweight foamed concrete with various densities that may depict the best result of the pullout strength on foamed concrete. To visualize the different results of pullout strength, screws with and without wall plug will be used as well. The pullout strength will be tested using the Universal Testing Machine where it shall measure the ultimate load of the screws attached to the foamed concrete may resist.

  11. Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Kim, H.S. [University of Newcastle, Callaghan, NSW (Australia). Faculty of Engineering & Built Environments

    2007-08-15

    Novel syntactic foams for potential building material applications were developed using starch as binder and ceramic hollow micro-spheres available as waste from coal-fired power stations. Foams of four different micro-sphere size groups were manufactured with either pre- or post-mould gelatinization process. They were of ternary system including voids with a foam density range of approximately 0.33-0.44 g/cc. Compressive failure behaviour and mechanical properties of the manufactured foams were evaluated. Not much difference in failure behaviour or in mechanical properties between the two different processes (pre- and post-mould gels) was found for a given binder content. Compressive failure of all syntactic foams was of shear on plane inclined 45 degrees to compressive loading direction. Failure surfaces of most syntactic foams were characterized by debonded micro-spheres. Compressive strength and modulus of syntactic foams were found to be dependant mainly on binder content but mostly independent of micro-sphere size. Some conditions of relativity arising from properties of constituents leading to the rule of mixtures relationships for compressive strength and to understanding of compressive/transitional failure behaviour were developed. The developed relationships based on the rule of mixtures were partially verified. Some formation of starch webs on failure surfaces was discussed.

  12. VIDE: The Void IDentification and Examination toolkit

    Science.gov (United States)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.

  13. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  14. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  15. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  16. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  17. The sink strengths of voids and the expected swelling for both random and ordered void distributions

    International Nuclear Information System (INIS)

    Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.

    1981-10-01

    The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)

  18. Evaluation of the Air Void Analyzer

    Science.gov (United States)

    2013-07-01

    concrete using image analysis: Petrography of cementitious materials. ASTM STP 1215. S.M. DeHayes and D. Stark, eds. Philadelphia, PA: American...Administration (FHWA). 2006. Priority, market -ready technologies and innovations: Air Void Analyzer. Washington D.C. PDF file. Germann Instruments (GI). 2011...tests and properties of concrete and concrete-making materials. STP 169D. West Conshohocken, PA: ASTM International. Magura, D.D. 1996. Air void

  19. Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams

    Directory of Open Access Journals (Sweden)

    Maciej Combrzyński

    2018-03-01

    Full Text Available Abstract The aim of this work was to determine selected physical properties of biodegradable thermoplastic starch (TPS filling foams manufactured by extrusion-cooking technique from different combinations of potato starch and two additives: poly(vinyl alcohol PVA and Plastronfoam PDE. Foams were processed with seven starch/additives combinations at two different extruder-cooker’s screw rotational speeds. The densities of starch foams depended significantly on the additive type and content. The linear relationship between the Young modulus and the ultimate compression force and apparent density was found. The foams processed with the addition of PVA had low density, porosity and lower values of the Young modulus than the foams prepared with PDE.

  20. Using voids to unscreen modified gravity

    Science.gov (United States)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius

    2018-04-01

    The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.

  1. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  2. A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Mondy, Lisa Ann [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Noble, David R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Brunini, Victor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Roberts, Christine Cardinal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Long, Kevin Nicholas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Soehnel, Melissa Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Celina, Mathias C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Wyatt, Nicholas B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Thompson, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Tinsley, James

    2015-09-01

    We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to

  3. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  4. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  5. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  6. Pourable Foam Insulation

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1989-01-01

    Report describes search for polyisocyanurate/polyurethane foam insulation with superior characteristics. Discusses chemistry of current formulations. Tests of formulations, of individual ingredients and or alternative new formulations described. Search revealed commercially available formulations exhibiting increased thermal stability at temperatures up to 600 degree C, pours readily before curing, presents good appearance after curing, and remains securely bonded to aluminum at cryogenic temperatures. Total of 42 different formulations investigated, 10 found to meet requirements.

  7. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  8. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  9. The effect of water binder ratio and fly ash on the properties of foamed concrete

    Science.gov (United States)

    Saloma, Hanafiah, Urmila, Dea

    2017-11-01

    Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.

  10. Foam injection method and system

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W C; Parmley, J B; Shepard, J C

    1977-05-10

    A method is described for more efficiently practicing in situ combustion techniques by generating a gas-water mist or foam adjacent to the combustion formation within the injection well. The mist or foam is forced out of the well into the formation to transport heat away from the burned region of the formation toward the periphery of the combustion region to conserve fuel. Also taught are a method and system for fluid treating a formation while maintaining enhanced conformance of the fluid injection profile by generating a mist or foam down-hole adjacent to the formation and then forcing the mist or foam out into the formation. (19 claims)

  11. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  12. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  13. 38 CFR 3.207 - Void or annulled marriage.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...

  14. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It is caused

  15. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    Science.gov (United States)

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  16. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  17. Software quality assurance plan for void fraction instrument

    International Nuclear Information System (INIS)

    Gimera, M.

    1994-01-01

    Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101

  18. Post-void residual urine under 150 ml does not exclude voiding dysfunction in women

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Klarskov, Niels; Lose, Gunnar

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: It has been claimed that post-void residual urine (PVR) below 150 ml rules out voiding dysfunction in women with stress urinary incontinence (SUI) and provides license to perform sling surgery. The cut-off of 150 ml seems arbitrary, not evidence-based, and so we sough...

  19. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  20. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  1. The Metallicity of Void Dwarf Galaxies

    Science.gov (United States)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  2. Mass transfer measurements in foams

    International Nuclear Information System (INIS)

    Leblond, J.G.; Fournel, B.

    2004-01-01

    Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)

  3. Development of gamma-ray densitometer and measurement of void fraction in instantaneous pipe rupture under BWR LOCA condition

    International Nuclear Information System (INIS)

    Yano, Toshikazu

    1983-11-01

    In order to clarify the transient mass flow rate under the instantaneous pipe rupture condition, it is necessary to use a highly sensitive void meter. Therefore, a high-response gamma-ray densitometer was developed for the measurement of void fraction variation caused by flashing vaporization of the high-pressure and -temperature water under the instantaneous pipe rupture accident. The measurement of void fraction was performed in the pipe rupture test under the BWR LOCA condition with a 6-inch diameter pipe. Initial conditions of the water were 6.86 MPa in pressure and the saturation temperature. To prove the reliability and accuracy, a calibration test by falling acrylic void simulators and an air injection test into cold water filled in the pipe were also conducted. The following results are obtained in the pipe rupture test. (1) The cone slit method is very useful to increase the measuring accuracy. (2) It is clearly observed that the apparent increase of void fraction occurs after the rarefaction wave passes. (3) The first maximum of void fraction occurs with some delay time after break. The following minimum void fraction concurs with the maximum pressure in the pressure recovering phenomena and with the maximum blowdown thrust force. (author)

  4. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  5. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Lipsa, Dan; Roberts, Richard; Laramee, Robert

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  6. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  7. Comparative study of void fraction models

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1985-01-01

    Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt

  8. From Voids to Yukawaballs And Back

    International Nuclear Information System (INIS)

    Land, V.; Goedheer, W. J.

    2008-01-01

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  9. Improving the support characteristics of hydraulic fill

    Energy Technology Data Exchange (ETDEWEB)

    Corson, D. R.; Dorman, K. R.; Sprute, R. H.

    1980-05-15

    Extensive laboratory and field testing has defined the physical properties of hydraulic fill. Effect of void ratio on percolation rate has been quantified, and tests were developed to estimate waterflow through fill material in a given state underground. Beneficial effect on fill's support capability through addition of cement alone or in conjunction with vibratory compaction has been investigated. Two separate field studies in operating cut-and-fill mines measured vein-wall deformation and loads imposed on backfilled stopes. Technology has been developed that will effectively and efficiently dewater and densify ultra-fine-grained slurries typical of metal mine hydraulic backfill. At least two operators are using this electrokinetic technique to dewater slimes collected in underground sumps or impoundments. This technique opens up the possibility of using the total unclassified tailings product as a hydraulic backfill. Theoretical enhancement of ground support and rock-burst control through improved support capability will be tested in a full-scale mine stope installation. Both a horizontal layer and a vertical column of high modulus fill will be placed in an attempt to reduce stope wall closure, support more ground pressure, and lessen rock-burst occurrence.

  10. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  11. Partial discharges in ellipsoidal and spheroidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, P. W.; Pedersen, Aage

    1989-01-01

    Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying it to a s......Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying...

  12. Voids and overdensities of coupled Dark Energy

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2009-01-01

    We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component

  13. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  14. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  15. Numerical predictions of bubbly two-phase flows with OpenFOAM

    International Nuclear Information System (INIS)

    Michta, E.; Fu, K.; Anglart, H.; Angele, K.

    2011-01-01

    A new model for simulation of bubbly two-phase flows has been developed and implemented into an open-source Computational Fluid Dynamics (CFD) code OpenFOAM. The model employs the two-fluid framework with closure relationships for the interfacial momentum transfer. The bubble size is calculated based on the solution of the interfacial area concentration equations. The predictions are validated against a wide range of experimental data containing measured void fraction, the phasic velocity and the interfacial area concentration. The new model demonstrates the ability to capture the wall peaking of void fraction for small bubbles. The predicted levels of void fraction and phasic velocities are in good agreement with measured data. (author)

  16. Numerical Predictions of Bubbly Two-Phase Flows with OpenFOAM

    Directory of Open Access Journals (Sweden)

    Edouard Michta

    2012-12-01

    Full Text Available A new model for simulation of bubbly two-phase flows has been developed and implemented into an open-source Computational Fluid Dynamics (CFD code OpenFOAM. The model employs the two-fluid framework with closure relationships for the interfacial momentum transfer. The bubble size is calculated based on the solution of the transport equation of the interfacial area concentration. The predictions are validated against selected data obtained in the DEDALE experiment and containing the measured void fraction, the phasic velocities and the interfacial area concentration. In general, good agreement between calculated and measured data is demonstrated; however, the relative phasic velocity is systematically over-predicted. The levels of void fraction and the observed wall void peaking are well captured in the calculations.

  17. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  18. The evolution of voids in the adhesion approximation

    Science.gov (United States)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-08-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent

  19. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    Science.gov (United States)

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  20. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  1. How sudden is a compelling desire to void? An observational cystometric study on the suddenness of this sensation.

    Science.gov (United States)

    De Wachter, Stefan; Wyndaele, Jean-Jacques

    2008-04-01

    To evaluate whether a compelling desire to void (CDV) is always perceived suddenly, or whether it can result from the gradual build-up of bladder-filling sensations. The pattern of filling sensations was evaluated during standard cystometric bladder filling in 75 patients who complained of urgency and showed detrusor overactivity during cystometry. Cystometric filling ended when a CDV was reported. The 'warning volume' is defined as the difference in volume between the first perception of filling and the volume at CDV. Different patterns of bladder-filling sensations were reported. A CDV occurred suddenly, without a preceding sensation in 13% of the patients, whereas 66% reported at least two normal preceding filling sensations before a CDV. The bladder volume at the CDV was significantly smaller in patients that reported no or just one preceding sensation compared with those that reported the normal pattern of two or three sensations (P perception was reported was not different regardless of whether it was described as a first sensation of filling, a first desire or a CDV (P = 0.42). The warning volumes were not different between patients with one or no standardized filling sensations (P = 0.7), but they were significantly smaller than in patients with two or three filling sensations (P = 0.85). A CDV can occur suddenly if normal filling sensation is disturbed, but also gradually if normal filling sensation is preserved. In cases of disturbed filling sensation, the volume at CDV and the warning volume are significantly lower.

  2. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the

  3. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  4. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  5. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....

  6. PUR-PIR foam produced based on poly(hydroxybutyl citrate foamed founded with different factories

    Directory of Open Access Journals (Sweden)

    Liszkowska Joanna

    2018-03-01

    Full Text Available A poly(hydroxybutyl citrate p(HBC was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR. The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams and with Solkane 365/227 (S foams. The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01.

  7. System Description for the K-25/K-27 D and D Project Polyurethane Foam Delivery System, East Tennessee Technology Park, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Boris, G.

    2008-01-01

    The Foam Delivery System used in the decontamination and decommissioning (D and D) project for the K-25/K-27 Buildings at the East Tennessee Technology Park (ETTP) is comprised of a trailer-mounted Gusmer(reg s ign) H20/35 Pro-TEC Proportioning Unit and the associated equipment to convey electrical power, air, and foam component material to the unit. This high-pressure, plural-component polyurethane foam pouring system will be used to fill process gas and non-process equipment/piping (PGE/P) within the K-25/K-27 Buildings with polyurethane foam to immobilize contaminants prior to removal. The system creates foam by mixing isocyanate and polyol resin (Resin) component materials. Currently, the project plans to utilize up to six foaming units simultaneously during peak foaming activities. Also included in this system description are the foam component material storage containers that will be used for storage of the component material drums in a staging area outside of the K-25/K-27 Buildings. The Foam Delivery System and foam component material storage enclosures (i.e., Foaming Component Protective Enclosures) used to store polymeric methylene diphenyl diisocyanate (PMDI) component material are identified as Safety Significant (SS) Structures, Systems and Components (SSC) in the Documented Safety Analysis (DSA) for the project, Documented Safety Analysis for the K-25 and K-27 Facilities at the East Tennessee Technology Park, Oak Ridge, Tennessee, DSA-ET-K-25/K-27-0001

  8. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  9. Experimental study of a foam concrete based on local Tunisian materials

    Directory of Open Access Journals (Sweden)

    Ellouze Dorra

    2018-01-01

    Full Text Available The building sector in Tunisia is very energy-intensive, the largest share of energy consumption comes from factories of building materials namely brick and cement plants. This work is part of the reduction of the energy bill in the building envelope. Indeed, the foam concrete can be walls in single or double wall with better insulating power. This paper presents an experimental study on the technical problems related to the formulation and manufacture of a new cellular concrete in Tunisia, called "foam" concrete, from Tunisian local materials. Indeed, six varieties of sand of different provenance and grain size will be analyzed, the "good" sand is the one that is best suited for the manufacture of foam concrete. Two clean, fine-grained (0/2mm rolled grain sands were retained. Then four foam concretes were formulated using each time a single type of sand and varying the density namely 0.8 and 1. These four formulations were tested mechanically and thermally. The results found showed that compressive strengths do not exceed 1.5 MPa at 28 days. Thus, the foam concrete can be used only as a filling concrete in non-load bearing elements such as partition walls. The guarded hot plate method was used to determine the thermal conductivities of the four foamed concretes studied. A low thermal conductivity was found of the order of 0.22 W/m°K which prove the insulating power of foam concrete.

  10. Method of forming a continuous polymeric skin on a cellular foam material

    Science.gov (United States)

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  11. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  12. Tank SY-101 void fraction instrument functional design criteria

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations

  13. Risk management of low air void asphalt concrete mixtures.

    Science.gov (United States)

    2013-07-01

    Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...

  14. Amorphous microcellular polytetrafluoroethylene foam film

    Science.gov (United States)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  15. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  16. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  17. Foaming in manure based digesters

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occurred in the Danish full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically formatted in the main biogas reactor or in the pre-storage tank and the entrapped solids in the foam...... cause severe operational problems, such as blockage of mixing devices, and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses derived from the reduced biogas production, extra labour work and additional maintenance costs...... was increased by the addition of glucose in the feeding substrate. During the 2nd and 4th period the organic loading rate was maintained constant, but instead of glucose, higher concentration of Na-oleate or gelatine was added in the feeding substrate. The results obtained from the above experiment showed...

  18. Photoactivity of Titanium Dioxide Foams

    Directory of Open Access Journals (Sweden)

    Maryam Jami

    2018-01-01

    Full Text Available TiO2 foams have been prepared by a simple mechanical stirring method. Short-chain amphiphilic molecules have been used to stabilize colloidal suspensions of TiO2 nanoparticles. TiO2 foams were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, UV-vis absorption spectroscopy, and scanning electron microscopy (SEM. The photoassisted oxidation of NO in the gas phase according to ISO 22197-1 has been used to compare the photoactivity of the newly prepared TiO2 foams to that of the original powders. The results showed that the photoactivity is increased up to about 135%. Foam structures seem to be a good means of improving the photoactivity of semiconductor materials and can readily be used for applications such as air purification devices.

  19. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  20. Space-filling Curves

    Indian Academy of Sciences (India)

    void hilbert(int r, int d, int t, int u, int i, int h, int &x, int &y). { if(i >0). { i- -; hilbert ( d,r, u,e ,i,h,x,y); move(r ,h,x,y); hilbert(r,d,t,u,i,h,x,y); move ( d,h,x,y); hilbert(r,d,e,u,i ...

  1. Supercapacitors based on carbon foams

    Science.gov (United States)

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1993-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  2. A cement based syntactic foam

    International Nuclear Information System (INIS)

    Li Guoqiang; Muthyala, Venkata D.

    2008-01-01

    In this study, a cement based syntactic foam core was proposed and experimentally investigated for composite sandwich structures. This was a multi-phase composite material with microballoon dispersed in a rubber latex toughened cement paste matrix. A trace amount of microfiber was also incorporated to increase the number of mechanisms for energy absorption and a small amount of nanoclay was added to improve the crystal structure of the hydrates. Three groups of cement based syntactic foams with varying cement content were investigated. A fourth group of specimens containing pure cement paste were also prepared as control. Each group contained 24 beam specimens. The total number of beam specimens was 96. The dimension of each beam was 30.5 cm x 5.1 cm x 1.5 cm. Twelve foam specimens from each group were wrapped with plain woven 7715 style glass fabric reinforced epoxy to prepare sandwich beams. Twelve cubic foam specimens, three from each group, with a side length of 5.1 cm, were also prepared. Three types of testing, low velocity impact test and four-point bending test on the beam specimens and compression test on the cubic specimens, were conducted to evaluate the impact energy dissipation, stress-strain behavior, and residual strength. Scanning electron microscope (SEM) was also used to examine the energy dissipation mechanisms in the micro-length scale. It was found that the cement based syntactic foam has a higher capacity for dissipating impact energy with an insignificant reduction in strength as compared to the control cement paste core. When compared to a polymer based foam core having similar compositions, it was found that the cement based foam has a comparable energy dissipation capacity. The developed cement based syntactic foam would be a viable alternative for core materials in impact-tolerant composite sandwich structures

  3. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  4. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  5. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  6. Stability of metallic foams studied under microgravity

    CERN Document Server

    Wuebben, T; Banhart, J; Odenbach, S

    2003-01-01

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  7. Study of two-phase foam flow

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R S; Guliev, B B; Mekhtiev, K G; Kerimov, R G

    1970-01-01

    The objectives of this study were to determine characteristics of aqueous foam flow through porous media and to estimate the depth of foam penetration into a formation. Foam was generated by mixing air and 1% solution of surfactant PO-1. Foam density was maintained at 0.14 g/cc in all experiments. The foam was passed through sand columns (800 mm long x 30 mm diam) of permeabilities 26, 39, 80, 111, and 133 darcys. Flow rates were measured at various pressure drops and the relationship between system parameters was expressed analytically and graphically. From the data, distance of foam penetration into a formation as a function of pressure drop and permeability was calculated. The data indicate that under most conditions, foam will penetrate the formation to a negligible distance. This study indicates that when foam is used to remove sand from a well, a negligible loss of foam to the formation occurs.

  8. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...

  9. A review of aqueous foam in microscale.

    Science.gov (United States)

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V

    2018-06-01

    In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Void probability scaling in hadron nucleus interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Bhattacharyya, Swarnapratim; Ghosh, Jayita; Bandyopadhyay, Prabhat; Das, Rupa; Mukherjee, Sima

    2002-01-01

    Heygi while investigating with the rapidity gap probability (that measures the chance of finding no particle in the pseudo-rapidity interval Δη) found that a scaling behavior in the rapidity gap probability has a close correspondence with the scaling of a void probability in galaxy correlation study. The main aim in this paper is to study the scaling behavior of the rapidity gap probability

  11. Filling the Void: Community Spanish Language Programs in Los Angeles Serving to Preserve the Language

    Science.gov (United States)

    Carreira, Maria M.; Rodriguez, Rey M.

    2011-01-01

    An extensive body of research documents the successes of immigrant groups in establishing community language schools. Studied within this tradition, Latino immigrant communities appear to come up short, because of the scarcity of such schools for Spanish-speaking children. However, as we show in this paper, Latino immigrant communities do have…

  12. (SSMB) was founded to fill in a void in medical, nursing, pharmacy ...

    African Journals Online (AJOL)

    Angel_D

    Soldiers emerge from the war with disabilities such as limb amputations, impaired vision or hearing and ... disability in the Southern Sudan needs to be carried out to ensure that help is targeted at those ... Upper Nile regions. We need some ...

  13. Sampling forest regeneration across northern U.S. forests: filling a void in regeneration model input

    Science.gov (United States)

    William H. McWilliams; Charles D. Canham; Randall S. Morin; Katherine Johnson; Paul Roth; James A. Westfall

    2012-01-01

    The Forest Inventory and Analysis Program of the Northern Research Station (NRS-FIA) has implemented new Advance Tree Seedling Regeneration (ATSR) protocols that include measurements of seedlings down to 2 inches in height. The addition of ATSR protocols is part of an evaluation of NRS-FIA Phase 3 indicator variables to increase sampling intensity from 1/96,000 acres...

  14. Transcutaneous sacral neurostimulation for irritative voiding dysfunction.

    Science.gov (United States)

    Walsh, I K; Johnston, R S; Keane, P F

    1999-01-01

    Patients with irritative voiding dysfunction are often unresponsive to standard clinical treatment. We evaluated the response of such individuals to transcutaneous electrical stimulation of the third sacral nerve. 32 patients with refractory irritative voiding dysfunction (31 female and 1 male; mean age 47 years) were recruited to the study. Ambulatory transcutaneous electrical neurostimulation was applied bilaterally to the third sacral dermatomes for 1 week. Symptoms of frequency, nocturia, urgency, and bladder pain were scored by each patient throughout and up to 6 months following treatment. The mean daytime frequency was reduced from 11.3 to 7.96 (p = 0.01). Nocturia episodes were reduced from a mean of 2.6 to 1.8 (p = 0.01). Urgency and bladder pain mean symptom scores were reduced from 5.97 to 4.89 and from 1.48 to 0.64, respectively. After stopping therapy, symptoms returned to pretreatment levels within 2 weeks in 40% of the patients and within 6 months in 100%. Three patients who continued with neurostimulation remained satisfied with this treatment modality at 6 months. Transcutaneous third sacral nerve stimulation may be an effective and noninvasive ambulatory technique for the treatment of patients with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief.

  15. Void fraction measurements using neutron radiography

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Vance, W.H.; Joo, H.

    1992-01-01

    Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented

  16. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required.

  17. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    International Nuclear Information System (INIS)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required

  18. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092 (China); Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903 (United States); Wang, Yang; Weng, George J., E-mail: weng@jove.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903 (United States); Zhong, Zheng [School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092 (China)

    2016-08-28

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-void composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.

  19. Development of drilling foams for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  20. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  1. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  2. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  3. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. The size effect on the onset of coalescence is studied, and results for the void volume fraction and the strain at the onset of coalescence are presented. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance...... to the fracture strength of ductile materials....

  4. Liquid versus foam sclerotherapy.

    Science.gov (United States)

    Hamel-Desnos, C; Allaert, F-A

    2009-12-01

    A systematic review to compare efficacy and safety of foam (F) sclerotherapy versus liquid (L) sclerotherapy for primary varicose veins of the lower limbs. Systematic searches of electronic databases were conducted in April 2009 to identify relevant published studies. Database searches were augmented with abstracts from conference proceedings and electronic and hand searching of journals not consistently indexed in the major databases. For treatment of saphenous veins, six trials (four randomized controlled trials) were considered. Despite containing much less sclerosing agent, F was markedly more effective compared with L, the difference being put at between 20% and 50%. Four studies were included in a meta-analysis showing efficacy of F at 76.8% (95% confidence interval [CI] 71-82) versus L at 39.5% (95% CI 33-46), chi(2) = 60.9740; P reticular veins and telangiectases, only two comparative trials were found and do not at present provide any conclusive evidence to support the superiority of efficacy of one form over the other. Statistically, the side-effects reported in all the available comparative trials do not differ between F and L forms, even if visual disturbances seem to be more common with F. In the treatment of varices of the lower limbs, F shows much greater efficacy compared to L. Concerning the side effects, no statistical significant differences were found between L and F.

  5. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  6. Voiding dysfunction in children aged five to 15 years

    Directory of Open Access Journals (Sweden)

    Karaklajić Dragana

    2004-01-01

    Full Text Available Voiding dysfunction in children was analyzed in 91 patients in a period from January 1st to October 1st 1998. Most of the patients had functional voiding disorder (92.31%, and only 7.69% manifested monosymptomatic night enuresis. The number of girls was bigger in the group of patients with voiding dysfunction while the boys were predominant in the group with mono-symptomatic nocturnal enuresis. More than a half of children with functional voiding disorder had repeated urinal infections (58.23%, incontinence (93.49%, need for urgent voiding (68.13%, and vesicoureteral reflux (47.61%. The most common type of voiding dysfunction was urge syndrome/urge incontinence. The incidence of dysfunctional voiding disorder was more often in children with scaring changes of kidney which were diagnosed by static scintigraphy.

  7. On the observability of coupled dark energy with cosmic voids

    Science.gov (United States)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  8. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... any noticeable effect of surface diffusion. Axisymmetric unit cell model computations are used to study void growth in a material containing a periodic array of voids, and the onset of the coalescence process is defined as the stage where plastic flow localizes in the ligaments between neighbouring...... voids. The focus of the study is on various relatively high stress triaxialties. In order to represent the results in terms of a porous ductile material model a set of constitutive relations are used, which have been proposed for void growth in a material undergoing power law creep....

  9. Stability analysis of uniform equilibrium foam states for EOR processes

    NARCIS (Netherlands)

    Ashoori, E.; Marchesin, D.; Rossen, W.R.

    2011-01-01

    The use of foam for mobility control is a promising mean to improve sweep efficiency in EOR. Experimental studies discovered that foam exhibits three different states (weak foam, intermediate foam, and strong foam). The intermediate-foam state is found to be unstable in the lab whereas the weak- and

  10. Foam for combating mine fires

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    The application of foam in dealing with underground fire is well known due to its smothering action by cutting off air feed to burning fuel as well as acting as coolant. Besides plugging air feed to fire, water could be virtually reached to the fire affected areas much beyond the jet range as underground galleries with low roof restrict jet range of water. This method also enables a closer approach of a fire fighting team by isolating the toxic gases and smoke with a foam plug. The paper describes the development of high expansion foam composition and its application technology in order that foam plug method can be suitably utilized for combating mine fires in India. Three compositions were recommended for generation of high expansion foam: (a) 0.5% sodium/ammonium lauryl sulphate, 0.15 to 0.2% sodium carboxy methyl cellulose, 0.1% booster; (b) 0.5% sodium/ammonium lauryl sulfate, 0.12 to 0.15% alkaline solution of gum arabic, 0.1 to 0.2% ferrous gluconate; and (c) 0.35% sodium/ammonium lauryl sulfate, 0.20% booster, 0.2% xylene sulfonate.

  11. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  12. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  13. Some aspects of image processing using foams

    International Nuclear Information System (INIS)

    Tufaile, A.; Freire, M.V.; Tufaile, A.P.B.

    2014-01-01

    We have explored some concepts of chaotic dynamics and wave light transport in foams. Using some experiments, we have obtained the main features of light intensity distribution through foams. We are proposing a model for this phenomenon, based on the combination of two processes: a diffusive process and another one derived from chaotic dynamics. We have presented a short outline of the chaotic dynamics involving light scattering in foams. We also have studied the existence of caustics from scattering of light from foams, with typical patterns observed in the light diffraction in transparent films. The nonlinear geometry of the foam structure was explored in order to create optical elements, such as hyperbolic prisms and filters. - Highlights: • We have obtained the light scattering in foams using experiments. • We model the light transport in foams using a chaotic dynamics and a diffusive process. • An optical filter based on foam is proposed

  14. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  15. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  16. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  17. Patient dose reduction during voiding cystourethrography

    International Nuclear Information System (INIS)

    Ward, Valerie L.

    2006-01-01

    Voiding cystourethrography (VCUG) is a commonly performed examination in a pediatric uroradiology practice. This article contains suggestions on how the radiation dose to a child from VCUG can be made ''as low as reasonably achievable'' (ALARA). The pediatric radiologist should consider the appropriateness of the clinical indication before performing VCUG and utilize radiation exposure techniques and parameters during VCUG to reduce radiation exposure to a child. The medical physicist and fluoroscope manufacturer can also work together to optimize a pulsed-fluoroscopy unit and further reduce the radiation exposure. Laboratory and clinical research is necessary to investigate methods that reduce radiation exposures during VCUG, and current research is presented here. (orig.)

  18. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  19. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  20. Modelling of Churn-Annular foam flows

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. According to Nimwegen, who performed experiments with foam flows, foam

  1. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  2. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  3. Morphological Segregation in the Surroundings of Cosmic Voids

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardelli, Elena; Tamone, Amelie [Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny (Switzerland); Cava, Antonio [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Varela, Jesus, E-mail: elena.ricciardelli@epfl.ch [Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan 1, E-44001 Teruel (Spain)

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  4. A NEW STATISTICAL PERSPECTIVE TO THE COSMIC VOID DISTRIBUTION

    International Nuclear Information System (INIS)

    Pycke, J-R; Russell, E.

    2016-01-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  5. Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2017-07-01

    Full Text Available The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%. The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs.

  6. Damping of liquid sloshing by foams: from everyday observations to liquid transport

    Science.gov (United States)

    Sauret, Alban; Boulogne, Francois; Cappello, Jean; Stone, Howard

    2014-11-01

    When a liquid-filled container is set in motion, the free surface of the liquid starts to slosh, i.e. oscillate. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rim of the container. However, beer does not slosh as readily, which suggests that the presence of foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of liquid foam placed on top of a liquid bath in a Hele-Shaw cell. We generate a monodisperse 2D liquid foam and track its motion. The influence of the foam on the sloshing dynamics is characterized: 2 to 3 layers of bubbles are sufficient to significantly damp the oscillations. For more than 5 layers of bubbles, the original vertical motion of the foam becomes mainly horizontal. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient. This study motivated by everyday observations has promising applications in numerous industrial applications such as the transport of liquid in cargoes.

  7. Silicone foam for penetration seal

    International Nuclear Information System (INIS)

    Hoshino, Yoshikazu

    1986-01-01

    In nuclear power plants or general buildings, it is very important to form a fire-resistant seal around cables, cable trays and conduits passing through a wall or a floor. Rockwool, asbestos, glasswool and flame-retarded urethane foam have so far been used for these purposes. However, they were not satisfactory in sealing property, workability and safety. The silicone foam newly developed, ''TOSSEAL'' 300, has cleared these defects. It has now come to be used for fire resistant seal in nuclear power plants. (author)

  8. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  9. Via fill properties of organic BARCs in dual-damascene application

    Science.gov (United States)

    Huang, Runhui

    2004-05-01

    With the introduction of copper as the interconnect metal, the Dual Damascene (DD) process has been integrated into integrated circuit (IC) device fabrication. The DD process utilizes organic bottom anti-reflective coatings (BARCs) not only to eliminate the thin film interference effects but also to act as via fill materials. However, three serious processing problems are encountered with organic BARCs. One is the formation of voids, which are trapped gas bubbles (evaporating solvent, byproduct of the curing reaction and air) inside the vias. Another problem is non-uniform BARC layer thickness in different via pitch areas. The third problem is the formation of fences during plasma etch. Fences are formed from materials that are removed by plasma and subsequently deposited on the sidewall surrounding the via openings during the etching process. Voids can cause variations in BARC top thickness, optical properties, via fill percentage, and plasma etch rate. This study focuses on the factors that influence the formation of voids and addresses the ways to eliminate them by optimizing the compositions of formulations and the processing conditions. Effects of molecular weight of the polymer, nature of the crosslinker, additives, and bake temperature were examined. The molecular weight of the polymer is one of the important factors that needs to be controlled carefully. Polymers with high molecular weights tend to trap voids inside the vias. Low molecular weight polymers have low Tg and low viscosity, which enables good thermal flow so that the BARC can fill vias easily without voids. Several kinds of crosslinkers were investigated in this study. When used with the same polymer system, formulations with different crosslinkers show varying results that affect planar fill, sidewall coverage, and, in some cases, voids. Additives also can change via fill behavior dramatically, and choosing the right additive will improve the via fill property. Processing conditions such as

  10. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Su, Xilin [Shaanxi Supernova Lighting Technology Co., Ltd., Xi’an, Shaanxi 710075 (China)

    2016-07-15

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  11. Simultaneous in vivo comparison of water-filled and air-filled pressure measurement catheters: Implications for good urodynamic practice.

    Science.gov (United States)

    Gammie, A; Abrams, P; Bevan, W; Ellis-Jones, J; Gray, J; Hassine, A; Williams, J; Hashim, H

    2016-11-01

    This study aimed to evaluate whether the pressure readings obtained from air-filled catheters (AFCs) are the same as the readings from simultaneously inserted water-filled catheters (WFCs). It also aimed to make any possible recommendations for the use of AFCs to conform to International Continence Society (ICS) Good Urodynamic Practices (GUP). Female patients undergoing urodynamic studies in a single center had water-filled and air-filled catheters simultaneously measuring abdominal and intravesical pressure during filling with saline and during voiding. The pressures recorded by each system at each event during the test were compared using paired t-test and Bland-Altman analyses. 62 patients were recruited, of whom 51 had pressures that could be compared during filling, and 23 during voiding. On average, the pressures measured by the two systems were not significantly different during filling and at maximum flow, but the values for a given patient were found to differ by up to 10 cmH 2 O. This study shows that AFCs and WFCs cannot be assumed to register equal values of pressure. It has further shown that even when the p det readings are compared with their value at the start of a test, a divergence of values of up to 10 cmH 2 O remains. If AFCs are used, care must be taken to compensate for any p det variations that occur during patient movement. Before AFCs are adopted, new normal values for resting pressures need to be developed to allow good quality AFC pressure readings to be made. Neurourol. Urodynam. 35:926-933, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Relationship between voided volume and the urge to void among patients with lower urinary tract symptoms.

    Science.gov (United States)

    Blaivas, Jerry G; Tsui, Johnson F; Amirian, Michael; Ranasinghe, Buddima; Weiss, Jeffrey P; Haukka, Jari; Tikkinen, Kari A O

    2014-12-01

    The aim of this study was to explore the relationship between voided volume (VV) and urge to void among patients with lower urinary tract symptoms. Consecutive adult patients (aged 23-90 years) were enrolled, and completed a 24 h bladder diary and the Urgency Perception Scale (UPS). Patients were categorized as urgency or non-urgency based on the Overactive Bladder Symptom Score. The relationship between UPS and VV (based on the bladder diary) was analyzed by Spearman's rho and proportional odds model. In total, 1265 micturitions were evaluated in 117 individuals (41 men, 76 women; 56 individuals in the urgency and 61 in the non-urgency group). The mean (± SD) VV and UPS were 192 ± 127 ml and 2.4 ± 1.2 ml in the urgency group and 173 ± 124 ml and 1.7 ± 1.1 ml in the non-urgency group, respectively. Spearman's rho (between UPS and VV) was 0.21 [95% confidence interval (CI) 0.13-029, p < 0.001] for the urgency group, 0.32 (95% CI 0.25-0.39, p < 0.001) for the non-urgency group, and 0.28 (95% CI 0.23-0.33, p < 0.001) for the total cohort. Urgency patients had higher UPS [odds ratio (OR) 3.1, 95% CI 2.5-3.8]. Overall, each additional 50 ml VV increased the odds of having a higher UPS with OR 1.2 (95% CI 1.2-1.3). The relationship between VV and UPS score was similar in both groups (p = 0.548 for interaction). Although urgency patients void with a higher UPS score, among both urgency and non-urgency patients there is only a weak correlation between VV and the urge to void. This suggests that there are factors other than VV that cause the urge to void.

  13. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  14. Geomechanical investigations for the designing of cemented filling

    Energy Technology Data Exchange (ETDEWEB)

    Berry, P.

    1980-05-15

    Laboratory and in situ investigations have led to the identification of the main geomechanical parameters that condition the stability of the cemented fill in the Gavorrano pyrite mine (Tuscany, Italy); such parameters were used for working out a satisfactory mining method. The pyrite is mined with the descending horizontal slice method with integral cemented filling which is obtained by throwing a mixture of limestone aggregates and cement into the mined voids. The laboratory geomechanical investigations carried out on fill samples have pointed out that the physical and mechanical characteristics are highly variable and this is essentially due to the fact that the fill is cast into place by compressed air. In particular, it was pointed out that the strength depends upon the cement content and upon the porosity according to a power law. The in situ measurements of the convergence between the roof and the floor, and the load measurements pointed out the considerable importance of the horizontal and vertical joints that cross the fill mass and that are inevitably brought about by a discontinuity of the fill. The results of the study made it possible to adopt an acceptable geomechanical behaviour model of the fill. On the basis of this model the mining pattern was deeply modified, the width and the height of the slices were considerably enlarged and thus the output was improved.

  15. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  16. Void migration, coalescence and swelling in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2003-01-01

    A recent analysis of the migration of voids and bubbles, produced in neutron irradiated fusion materials, is outlined. The migration, brought about by thermal hopping of atoms on the surface of a void, is normally a random Brownian motion but, in a temperature gradient, can be slightly biassed up the gradient. Two effects of such migrations are the transport of voids and trapped transmutation helium atoms to grain boundaries, where embrittlement may result; and the coalescence of migrating voids, which reduces the number of non-dislocation sites available for the capture of knock-on point defects and thereby enables the dislocation bias process to maintain void swelling. A selection of candidate fusion power plant armour and structural metals have been analysed. The metals most resistant to void migration and its effects are tungsten and molybdenum. Steel and beryllium are least so and vanadium is intermediate

  17. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  18. Method of making a cyanate ester foam

    Science.gov (United States)

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  19. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  20. Dependence of calculated void reactivity on film-boiling representation

    International Nuclear Information System (INIS)

    Whitlock, J.; Garland, W.

    1992-01-01

    Partial voiding of a fuel channel can lead to complicated neutronic analysis, because of highly nonuniform spatial distributions. An investigation of the distribution dependence of void reactivity in a Canada deuterium uranium (CANDU) lattice, specifically in the regime of film boiling, was done. Although the core is not expected to be critical at the time of sheath dryout, this study augments current knowledge of void reactivity in this type of lattice

  1. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.

    1980-01-01

    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  2. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    ); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  3. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  4. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  5. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  6. Viscous Control of the Foam Glass Process

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    The production of foam glass as heat insulating material is an important industrial process because it enables low-cost recycling of glass waste from a variety of chemical compositions. Optimization of the foaming process of new glass waste compositions is time consuming, since many factors affect...... the foaming process such as temperature, particle size, type and concentration of foaming agent. The foaming temperature is one of the key factors, because even small temperature changes can affect the melt viscosity by several orders of magnitude. Therefore, it is important to establish the viscosity range...... in which the foaming process should take place, particularly when the type of recycled cullet is changed or several types of cullet are mixed in one batch. According to recent glass literature, the foaming process should occur at viscosity 103 to 105 Pa s. However, no systematic studies have hitherto been...

  7. Traces: making sense of urodynamics testing--Part 8: Evaluating sensations of bladder filling.

    Science.gov (United States)

    Gray, Mikel

    2011-01-01

    The "Traces" series discusses how the urodynamic clinician generates usable data from a filling cystometrogram (CMG). Part 8 focuses on the question, "What are the sensations of bladder filling?" Recent research suggests that sensations of bladder filling wax and wane from consciousness in healthy persons free of bothersome lower urinary tract symptoms. Because of its invasive and atypical nature when compared to daily life, multichannel urodynamics testing cannot reproduce the numerous and complex variables that influence bladder sensation in the healthy individual, making the evaluation of sensations of bladder filling a particularly challenging component of the filling CMG. Routine assessment of bladder sensations focuses on identification of three landmarks--first sensation of bladder filling, first desire to void, and a strong desire to void. A fourth sensation, bladder fullness or a compelling desire to void, is recommended. In addition to assessing these sensations, the urodynamic clinician must assess sensations indicating associated disease or disorders affecting lower urinary tract function, including urgency, pain, and atypical sensations. This assessment should be completed in the context of the results of one or more validated instruments used to measure bladder sensations.

  8. Visualization of mold filling stages in thermal nanoimprint by using pressure gradients

    DEFF Research Database (Denmark)

    Schift, H.; Bellini, S.; Mikkelsen, Morten Bo Lindholm

    2007-01-01

    A method for the visualization of mold filling during a thermoplastic imprint at a microscopic level was developed, which is based on superposition of images of a series of different states of imprint. The animated movie sequence gives an insight into the complex flow of polymer and shows how voids...

  9. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    Baez, John C; Christensen, J Daniel

    2002-01-01

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  10. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  11. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  12. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance to the fracture strength of ductile materials....

  13. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  14. Brushite foams—the effect of Tween® 80 and Pluronic® F‐127 on foam porosity and mechanical properties

    Science.gov (United States)

    Montufar, Edgar B.; Engqvist, Håkan; Ginebra, Maria‐Pau; Persson, Cecilia

    2016-01-01

    Abstract Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 −300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F‐127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 67–77, 2016. PMID:25615405

  15. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...

  16. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  17. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  18. Void fraction instrument acceptance test procedure

    International Nuclear Information System (INIS)

    Stokes, T.I.; Pearce, K.L.

    1994-01-01

    This document presents the results of the acceptance test for the mechanical and electrical features (not specifically addressed by the software ATP) of the void fraction instrument (VFI). Acceptance testing of the VFI, control console, and decontamination spray assembly was conducted in the 306E building high bay and area adjacent to the facility. The VFI was tested in the horizontal position supported in multiple locations on rolling tables. The control console was located next to the VFI pneumatic control assembly. The VFI system was operated exactly as is expected in the tank farm, with the following exceptions: power was provided from a building outlet and the VFI was horizontal. The testing described in this document verifies that the mechanical and electrical features are operating as designed and that the unit is ready for field service

  19. How to perform the perfect voiding cystourethrogram

    International Nuclear Information System (INIS)

    Agrawalla, Seema; Pearce, Rowena; Goodman, T.Robin

    2004-01-01

    The voiding cystourethrogram (VCUG) examination is a difficult investigation to perform and is a stressful experience for patients and their parents, as well as for the radiologists, technicians and paediatric radiology nurses involved in the examination. Despite the VCUG being one of the most commonly performed fluoroscopic procedures in paediatric radiology practice, there is no general consensus as to the best way to perform this investigation. This is particularly concerning when one considers the potentially high gonadal radiation dose children may receive. Because of this, we have undertaken a comprehensive literature review of various aspects of the test in order to determine the best way to perform the VCUG in modern paediatric radiology practice. (orig.)

  20. Numerical simulation on void bubble dynamics using moving particle semi-implicit method

    International Nuclear Information System (INIS)

    Tian Wenxi; Ishiwatari, Yuki; Ikejiri, Satoshi; Yamakawa, Masanori; Oka, Yoshiaki

    2009-01-01

    In present study, the collapse of void bubble in liquid has been simulated using moving particle semi-implicit (MPS) code. The liquid is described using moving particles and the bubble-liquid interface was set to be vacuum pressure boundary without interfacial heat mass transfer. The topological shape of bubble can be traced according to the motion and location of interfacial particles. The time dependent bubble diameter, interfacial velocity and bubble collapse time were obtained under wide parametric range. The comparison with Rayleigh and Zababakhin's prediction showed a good agreement which validates the applicability and accuracy on MPS method in solving present momentum problems. The potential void induced water hammer pressure pulse was also evaluated which is instructive for further material erosion study. The bubble collapse with non-condensable gas has been further simulated and the rebound phenomenon was successfully captured which is similar with vapor-filled cavitation phenomenon. The present study exhibits some fundamental characteristics of void bubble hydrodynamics and it is also expected to be instructive for further applications of MPS method to complicated bubble dynamics problems.

  1. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  2. Post Operative Voiding Efficacy after Anterior Colporrhaphy

    Directory of Open Access Journals (Sweden)

    Behnoosh Miladpoor

    2010-02-01

    Full Text Available The aim of this study was to determine the most effective and suitable time to remove the urinary catheter (Foley after anterior and posterior colporrhaphy surgery. Patients who experience anterior Colporrhaphy operation for genuine stress incontinency or pelvic organ prolapsed will have post operative voiding dysfunction. These patients need postoperative drainage. One of the methods preferred for this purpose is to apply Foley Catheter, but there is no particular regimen available for the exact time of catheter removal in these patients. We have tried to find out the best time to remove Foley catheter after which the repeated Foley catheter is not required or minimized. One hundred and eighty nine patients who have been undergone Colporrhaphy have been selected randomly and divided into three groups' as 1, 2 and 4 days of catheter removal. The number of patients in each group was 62, 63 and 64 respectively. In all three groups, before removing urinary catheter, it was clamped every 4 hrs, for 3 times. After removing of Foley, the patients were guided for urination; the voiding and residual volume was measured. In the patients with an increase of residual volume, the  repeated Foley requirement was increased. However,  5.6 % of the patients with residual volume of ≤ 33 percent and 23.9% of the patients with residual volume between 33 to 68 percent, and finally  64.8% of the patients with residual volume of ≥ 68% had repeated Foley insertion. When considering the number of days, 85, 65 and 35.7 percent of the patients needed repeated Foley after 1, 2, and 4 days of catheter removal respectively. Interestingly, in the third group ( 4 days of the catheter removal with residual volume of ≤ 33% the repeated Foley requirement was nil, with no increase risk of urinary infection. We suggest that the best time to remove the urinary Foley catheter after anterior and posterior Colporrhaphy is the day four.

  3. 46 CFR 108.463 - Foam rate: Protein.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Foam rate: Protein. 108.463 Section 108.463 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.463 Foam rate: Protein. (a) If the outlets of a protein foam extinguishing system are in a space, the foam rate at each outlet must be at...

  4. Systolic ventricular filling.

    Science.gov (United States)

    Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc

    2004-03-01

    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles

  5. Making continuous bubble type polyethylene foam incombustible

    International Nuclear Information System (INIS)

    Kaji, Kanako; Hatada, Motoyoshi; Yoshizawa, Iwao; Komai, Kuniaki; Kohara, Choji.

    1989-01-01

    Since continuous bubble type plastic foam has excellent compression characteristics and sound absorption characteristics, it has been widely used as cushion material, sealing material, sound insulating material and so on. However, the most part of plastic foam is taken by air, therefore at the time of fires, it becomes a very dangerous material. At present, the material used mostly as the seat cushions for airliners, railroad coaches, automobiles and others is polyurethane foam, but since it contains C-N couples in its molecules, it is feared to generate cyanic gas according to the condition of combustion. As the plastic foam that does not generate harmful gas at the time of fires, there is continuous bubble type polyethylene which is excellent in its weathering property and chemical resistance. A reactive, phosphorus-containing oligomer has large molecular weight and two or more double couplings in a molecule, therefore, it does not enter the inside of polyethylene, and polymerizes and crosslinks on the surfaces of bubble walls in the foam, accordingly it is expected that the apparent graft polymerization is carried out, and it is very effective for making polyethylene foam incombustible. The method of making graft foam, the properties of graft foam and so on are reported. When the graft polymerization of this oligomer to continuous bubble type polyethylene foam was tried, highly incombustible polyethylene foam was obtained. (K.I.)

  6. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  7. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  8. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete

    Science.gov (United States)

    Jhatial, Ashfaque Ahmed; Inn, Goh Wan; Mohamad, Noridah; Johnson Alengaram, U.; Mo, Kim Hung; Abdullah, Redzuan

    2017-11-01

    As almost half of the world’s population now lives in the urban areas, the raise in temperature in these areas has necessitated the development of thermal insulating material. Conventional concrete absorbs solar radiation during the daytime while releasing it at night causing raise in temperature in urban areas. The thermal conductivity of 2200 kg/m3 density conventional concrete is 1.6 W/mK. Higher the thermal conductivity value, greater the heat flow through the material. To reduce this heat transfer, the construction industry has turned to lightweight foamed concrete. Foamed concrete, due to its air voids, gives excellent thermal properties and sound absorption apart from fire-resistance and self-leveling properties. But due to limited studies on different densities of foamed concrete, the thermal properties are not understood properly thus limiting its use as thermal insulating material. In this study, thermal conductivity is determined for 1400, 1600 and 1800 kg/m3 densities of foamed concrete. 0.8% of Polypropylene fibres (PP) is used to reinforce the foamed concrete and improve the mechanical properties. Based upon the results, it was found that addition of PP fibres enhances the tensile strength and slightly reduced the thermal conductivity for lower densities, while the reverse affect was noticed in 1800 kg/m3 density.

  9. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    Science.gov (United States)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  10. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  11. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  12. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  13. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir; Arciniega, Roman; El Sayed, Tamer

    2011-01-01

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006

  14. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  15. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  16. Sterilized PP/HMSPP cushion foams for medical and food packaging applications

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Lima, L. Filipe C.P.; Parra, Duclerc F.; Lugao, Ademar B.; Bueno, N.R.; Gasparin, Eleosmar

    2009-01-01

    Treatment with gamma radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in aseptic processing of foods and pharmaceuticals. Packaging materials may be irradiated either prior or after filling; the irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceuticals and medical devices. Cushion foams are used to help protect fragile items during moving transport. Shock, vibration and damage are avoided by the cushioning effect and chances of product damage are reduced. It is easy to use and perforated for easy tearing. Cushion foams are employed to wrap glasses, plates, crockery, lamps, electronics and other breakable items. This paper presents special cushion foams to be used for medical and food packaging applications; so, these foams will be gamma irradiated before getting in contact with these special articles. Foams were previously produced from a 50% blending Polypropylene homopolymer / High Melt Strength Polypropylene (HMSPP) thereof, that presented following results for properties assessed: melt flow index, 230 deg C - 3.67 g/10 minutes; crystallinity = 47%; melt strength, at 200 deg C = 7.3 cN. This admixture was further fed into the barrel of a single-screw extruder, Rheomex 332 p, equipped with 3:1,33 d screw and 19/33 special screw for foaming, with standard controller and monitored panel, temperature controller (2 channels), melt temperature (2 channels) and melt pressure (4 channels). By using a 175/200/210/220/165/25 (deg C) profile temperature, and after attaining a homogeneous melting, a given amount of physical blowing agent (nitrogen) was injected and mixed with the polymer melt stream to produce the foam. Foamed extrudate was subjected to sterilization radiation doses: 25, 50, 75 and 100 kGy and further evaluated as per: appearance (whiteness / yellowness) and temperature dependent oxidative-induction time (TOIT) tests, by comparing

  17. Alignment of galaxy spins in the vicinity of voids

    International Nuclear Information System (INIS)

    Slosar, Anže; White, Martin

    2009-01-01

    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee and Pen to describe the strength of such an alignment, we find that c0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries

  18. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  19. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr

  20. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  1. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-12

    Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The bulk phase of syntactic foams is a three-part epoxy resin formulation that consists of a base resin, a curative (curing agent) and a modifier (diluent and/or accelerator) [12]. These thermoset materials [12] are used frequently for their thermal stability [9], low moisture absorption and high compressive strength [10]. The characteristic feature of a syntactic foam is a network of beads that forms pores within the epoxy matrix [3]. In this review, hollow glass beads (known as glass microballoons) are considered, however, solid beads or microballoons made from materials such as ceramic, polymer or metal can also be used [3M, Peter]. The network of hollow beads forms a closed-cell foam; the term closed-cell comes from the fact that the microspheres used in the resin matrix are completely closed and filled with gas (termed hollow). In contrast, the microspheres used in open-cell foams are either not completely closed or broken so that matrix material can fill the spheres [11]. Although closed foams have been found to possess higher densities than open cell foams, their rigid structures give them superior mechanical properties [12]. Past research has extensively studied the effects that changing the volume fraction of microballoons to epoxy will have on the resulting syntactic foam [3,4,9]. In addition, published literature also explores how the microballoon wall thickness affects the final product [4,9,10]. Findings detail that indeed both the mechanical and some thermal properties of syntactic foams can be tailored to a specific application by varying either the volume fraction or the wall thickness of the microballoons used [10]. The major trends in syntactic foam research show that microballoon volume fraction has an inversely proportionate relationship to dynamic properties, while microballoon wall thickness is proportional to those

  3. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  4. The mechanical behavior of microcellular foams

    Energy Technology Data Exchange (ETDEWEB)

    Ozkul, M.H.; Mark, J.E. (Cincinnati Univ., OH (USA)); Aubert, J.H. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    The mechanical behavior of microcellular open-cell foams prepared by a thermally induced phase separation process are investigated. The foams studied were prepared from isotactic polystyrene, polyacrylonitrile, and poly(4-methyl-1-pentene) (rigid foams), and polyurethane and Lycra (elastomeric foams). Their densities were in the range 0.04--0.27 g/cm3. Conventional polystyrene foams were used for comparison. The moduli and collapse stresses of these foams were measured in compression and compared with the current constitutive laws which relate mechanical properties to densities. A reinforcement technique based on the in-situ precipitation of silica was used to improve the mechanical properties. 13 refs., 4 figs., 3 tabs.

  5. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  7. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  8. Foaming in manure based digesters: Effect of overloading and foam suppression using antifoam agents

    OpenAIRE

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2013-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occur in full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically created either in the main biogas reactor or/and in the pre-storage tank and the entrapped solids in the foam cause severe operational problems, such as blockage of mixing devices and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses ...

  9. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  10. Sorption of heteropoly acids by polyurethane foam

    International Nuclear Information System (INIS)

    Dmitreinko, S.G.; Goncharova, L.V.; Runov, V.K.; Zakharov, V.N.; Aslanova, L.A.

    1997-01-01

    Sorption of oxidized and reduced forms of molybdosilicic, molybdophosphoric and molybdovanadophosphoric acids by polyurethane foam based on ethers and esters is studied. On the basis of sorption dependence on solution pH, polyurethane foam type and spectral characteristics of sorbates the suggestion has been made that in the polyurethane foam phase there are two main types of sorbent-sorbate interaction: electrostatic (ion-ion) and with hydrogen bond formation: and it is impossible to determine the contribution of every interaction

  11. FoAM Kernow Activity Report 2016

    OpenAIRE

    Griffiths, Amber; Griffiths, David

    2016-01-01

    This review shows selected projects from the FoAM Kernow studio in 2016. FoAM is a network of transdisciplinary labs at the intersection of art, science, nature and everyday life. FoAM’s members are generalists - people who work across disparate fields in an entangled, speculative culture. Research and creative projects at FoAM combine elements of futurecrafting, citizen science, prototyping, experience design and process facilitation to re-imagine possible futures, and artistic experime...

  12. FoAM Kernow Activity Report 2017

    OpenAIRE

    Griffiths, Amber; Weatherill, Aidan; Griffiths, David

    2017-01-01

    This review shows selected projects from the FoAM Kernow studio in 2017. FoAM is a network of transdisciplinary labs at the intersection of art, science, nature and everyday life. FoAM’s members are generalists - people who work across disparate fields in an entangled, speculative culture. Research and creative projects at FoAM combine elements of futurecrafting, citizen science, prototyping, experience design and process facilitation to re-imagine possible futures.

  13. B-Plant canyon fire foam supply

    International Nuclear Information System (INIS)

    Gainey, T.

    1995-01-01

    A new raw water supply was installed for the B-Plant fire foam system. This document details tests to be performed which will demonstrate that the system can function as designed. The tests include: Verification of the operation of the automatic valves at the cells; Measurement of water flow and pressure downstream of the proportioner; Production of foam, and measurement of foam concentration. Included as an appendix is a copy of the work package resolution (J4 ampersand J4a)

  14. System Acquires Data On Reactivities Of Foams

    Science.gov (United States)

    Walls, Joe T.

    1994-01-01

    Data-acquisition and -plotting system, called DAPS(TM), developed enabling accurate and objective determination of physical properties related to reactivities of polyurethane and polyisocyanurate foams. Automated, computer-controlled test apparatus that acquires data on rates of rise, rise profiles, exothermic temperatures, and internal pressures of foams prepared from both manual and machine-mixed batches. Data used to determine minute differences between reaction kinetics and exothermic profiles of foam formulations, properties of end products which are statistically undifferentiated.

  15. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    Science.gov (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  16. Dynamic and Thermal Properties of Aluminum Alloy A356/Silicon Carbide Hollow Particle Syntactic Foams

    Directory of Open Access Journals (Sweden)

    James Cox

    2014-12-01

    Full Text Available Aluminum alloy A356 matrix syntactic foams filled with SiC hollow particles (SiCHP are studied in the present work. Two compositions of syntactic foams are studied for quasi-static and high strain rate compression. In addition, dynamic mechanical analysis is conducted to study the temperature dependent energy dissipation and damping capabilities of these materials. The thermal characterization includes study of the coefficient of thermal expansion (CTE. A356/SiCHP syntactic foams are not strain rate sensitive as the compressive strength displayed little variation between the tested strain rates of 0.001–2100 s−1. Microscopic analysis of the high strain rate compression tested specimens showed that the fracture is initiated by the failure of hollow particles at the onset of the plastic deformation region. This is followed by plastic deformation of the matrix material and further crushing of particles. The syntactic foams showed decrease in storage modulus with increasing temperature and the trend was nearly linear up to 500 °C. The alloy shows a similar behavior at low temperature but the decrease in storage modulus increases sharply over 375 °C. The loss modulus is very small for the tested materials because of lack of viscoelasticity in metallic materials. The trend in the loss modulus is opposite, where the matrix alloy has lower loss modulus than syntactic foams at low temperature. However, over 250 °C the matrix loss modulus starts to increase rapidly and attains a peak around 460 °C. Syntactic foams have higher damping parameter at low temperatures than the matrix alloy. Incorporation of SiCHP helps in decreasing CTE. Compared to the CTE of the matrix alloy, 23.4 × 10−6 °C−1, syntactic foams showed CTE values as low as 11.67 × 10−6 °C−1.

  17. Monitoring foam coarsening using a computer optical mouse as a ...

    Indian Academy of Sciences (India)

    Keywords. Aqueous foam; optical flow sensor; dynamic laser speckle; computer optical mouse. ... Aqueous foams are colloidal systems with high concentration of gas bubbles in a liquid matrix. ... and complex behaviour of the foams. However ...

  18. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  19. Effect of foam stirrer design on the catalytic performance of rotating foam stirrer reactions

    NARCIS (Netherlands)

    Leon Matheus, M.A.; Geers, P.; Nijhuis, T.A.; Schaaf, van der J.; Schouten, J.C.

    2012-01-01

    The liquid–solid mass transfer rate in a rotating foam stirrer reactor and in a slurry reactor is studied using the hydrogenation of styrene as a model reaction. The rotating foam stirrer reactor is a novel type of multi-phase reactor where highly open-celled materials, solid foams, are used as a

  20. Role of foam drainage in producing protein aggregates in foam fractionation.

    Science.gov (United States)

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  2. Radionuclide voiding cystography in intrarenal reflux detection

    International Nuclear Information System (INIS)

    Rizzoni, G.; Perale, R.; Bui, F.; Pitter, M.; Pavanello, L.; Boscolo, R.; Passerini Glazel, G.; Macri, C.

    1986-01-01

    In order to evaluate the possibility of detecting intra-renal reflux (IRR) with a more sensitive procedure, 48 children with recurrent urinary tract infections underwent intravenous urography (IVU) and voiding cystourethrogram (VCU) using a solution containing contrast medium and sup(99m)Tc-sulfur colloid particles which are known to persist in the renal parenchyma for a long time. Scintigraphic images were taken at 5 and 20 hours after VCU. 18 children had no vesico-ureteral reflux, 11 showed unilateral and 19 bilateral VUR, which was therefore present in 49 renal units. Among the 49 renal refluxing units (RRUs) IRR was detected radiologically in 8; of these isotopic activity in the renal area was present in all 6 RRUs who were examined at 20 hours. Of the remaining 41 RRUs with no radiologically detectable IRR 24 were evaluated at 20 hours and 5 (21%) showed renal radioactivity. Renal scars were significantly more frequent in kidneys with radioisotopic activity at 20 hours. The results of this study indicate that radionuclide cystography using sup(99m)Tc-sulfur colloid is a reliable procedure for demonstrating IRR, and to this end is more sensitive than X-ray VCU. Radionuclide cystography with sulfur colloid particles should therefore be considered a simple and useful complementary procedure, which is more sensitive than X-ray VCU in the diagnosis and follow-up of IRR

  3. A study of tensile test on open-cell aluminum foam sandwich

    Science.gov (United States)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  4. MICROCT AND PREPARATION OF ß-TCP GRANULAR MATERIAL BY THE POLYURETHANE FOAM METHOD

    Directory of Open Access Journals (Sweden)

    Robert Filmon

    2011-05-01

    Full Text Available Commercial ß-tricalcium phosphate (ß-TCP is commercialy available in granules manufactured by sintering of powders. We have evaluated the different steps of the manufacturing process of ß-TCP ceramics granules prepared from blocks obtained with the polyurethane foam technology. Three types of slurry were prepared with 10, 15 and 25 g of ß-TCP per gram of polyurethane foam. Analysis was done by scanning electron microscopy, EDX, Raman spectroscopy and microcomputed tomography combined with image analysis. A special algorithm was used to identify the internal microporosity (created by the calcination of the foam from the internal macroporosity due to the spatial repartition of the material. The low ß-TCP dosages readily infiltrated the foam and the slurry was deposited along the polymer rods. On the contrary, the highest concentration produced inhomogeneous infiltrated blocks and foam cavities appeared completely filled in some areas. 2D microcomputed sections and reconstructed 3D models evidenced this phenomenon and the frequency distribution of the thickness and separation of material trabeculae confirmed the heterogeneity of the distribution. When crushed, blocks prepared with the 25 g slurry provided the largest and irregular granulates.

  5. Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rao, Rekha Ranjana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hileman, Michael Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, David Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  6. Defect generation during solidification of aluminium foams

    International Nuclear Information System (INIS)

    Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.

    2010-01-01

    The reason for the frequent occurrence of cell wall defects in metal foams was investigated. Aluminium foams often expand during solidification, a process which is referred as solidification expansion (SE). The effect of SE on the structure of aluminium foams was studied in situ by X-ray radioscopy and ex situ by X-ray tomography. A direct correlation between the magnitude of SE and the number of cell wall ruptures during SE and finally the number of defects in the solidified foams was found.

  7. New Spin Foam Models of Quantum Gravity

    Science.gov (United States)

    Miković, A.

    We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

  8. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  9. Foam-like structure of the Universe

    International Nuclear Information System (INIS)

    Kirillov, A.A.; Turaev, D.

    2007-01-01

    On the quantum stage space-time had the foam-like structure. When the Universe cools, the foam structure tempers and does not disappear. We show that effects caused by the foamed structure mimic very well the observed Dark Matter phenomena. Moreover, we show that in a foamed space photons undergo a chaotic scattering and together with every discrete source of radiation we should observe a diffuse halo. We show that the distribution of the diffuse halo of radiation around a point-like source repeats exactly the distribution of dark matter around the same source, i.e., the DM halos are sources of the diffuse radiation

  10. Foam-like structure of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, A.A. [Institute for Applied Mathematics and Cybernetics, 10 Ulyanova str., Nizhny Novgorod 603005 (Russian Federation)], E-mail: ka98@mail.ru; Turaev, D. [Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105 (Israel)

    2007-11-15

    On the quantum stage space-time had the foam-like structure. When the Universe cools, the foam structure tempers and does not disappear. We show that effects caused by the foamed structure mimic very well the observed Dark Matter phenomena. Moreover, we show that in a foamed space photons undergo a chaotic scattering and together with every discrete source of radiation we should observe a diffuse halo. We show that the distribution of the diffuse halo of radiation around a point-like source repeats exactly the distribution of dark matter around the same source, i.e., the DM halos are sources of the diffuse radiation.

  11. Controlling of density uniformity of polyacrylate foams

    International Nuclear Information System (INIS)

    Shan Wenwen; Yuan Baohe; Wang Yanhong; Xu Jiayun; Zhang Lin

    2010-01-01

    The density non-uniformity existing in most low-density foams will affect performance of the foams. The trimethylolpropane trimethacrylate (TMPTA) foam targets were prepared and controlling methods of the foams, density uniformity were explored together with its forming mechanism. It has been found that the UV-light with high intensity can improve the distribution uniformity of the free radicals induced by UV photons in the solvents, thus improve the density uniformity of the foams. In addition, container wall would influence the concentration distribution of the solution, which affects the density uniformity of the foams. Thus, the UV-light with high intensity was chosen together with polytetrafluoroethylene molds instead of glass molds to prepare the foams with the density non-uniformity less than 10%. β-ray detection technology was used to measure the density uniformity of the TMPTA foams with the density in the range of 10 to 100 mg · cm -3 , and the results show that the lower the foam density is, the worse the density uniformity is. (authors)

  12. Faraday instability at foam-water interface.

    Science.gov (United States)

    Bronfort, A; Caps, H

    2012-12-01

    A nearly two-dimensional foam is generated inside a Hele-shaw cell and left at rest on its liquid bath. The system is then vertically shaken and, above a well-defined acceleration threshold, surface waves appear at the foam-liquid interface. Those waves are shown to be subharmonic. The acceleration threshold is studied and compared to the common liquid-gas case, emphasizing the energy dissipation inside the foam. An empirical model is proposed for this energy loss, accounting for the foam characteristics such as the bubble size but also the excitation parameter, namely the linear velocity.

  13. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  14. Benign gastric filling defect

    International Nuclear Information System (INIS)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y.

    1979-01-01

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  15. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  16. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Lee, Y H; Cho, O K; Park, C Y [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  17. Partial discharges within two spherical voids in an epoxy resin

    International Nuclear Information System (INIS)

    Illias, H A; Mokhlis, H; Tunio, M A; Chen, G; Bakar, A H A

    2013-01-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions. (paper)

  18. The association of age of toilet training and dysfunctional voiding

    Directory of Open Access Journals (Sweden)

    Hodges SJ

    2014-10-01

    Full Text Available Steve J Hodges, Kyle A Richards, Ilya Gorbachinsky, L Spencer KraneDepartment of Urology, Wake Forest University, Winston-Salem, NC, USAObjective: To determine whether age of toilet training is associated with dysfunctional voiding in children.Materials and methods: We compared patients referred to the urologic clinics for voiding dysfunction with age-matched controls without urinary complaints. Characteristics including age and reason for toilet training, method of training, and encopresis or constipation were compared between both groups.Results: Initiation of toilet training prior to 24 months and later than 36 months of age were associated with dysfunctional voiding. However, dysfunctional voiding due to late toilet training was also associated with constipation.Conclusion: Dysfunctional voiding may be due to delayed emptying of the bowel and bladder by children. The symptoms of dysfunctional voiding are more common when toilet training early, as immature children may be less likely to empty in a timely manner, or when training late due to (or in association with constipation.Keywords: voiding dysfunction, constipation

  19. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  20. Local, zero-power void coefficient measurements in the ACPR

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, J B; Thome, F V [Sandia Laboratories (United States)

    1974-07-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from {approx}6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  1. On nonlinear excitation of voids in dusty plasmas

    International Nuclear Information System (INIS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-01-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment

  2. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  3. Local, zero-power void coefficient measurements in the ACPR

    International Nuclear Information System (INIS)

    Rivard, J.B.; Thome, F.V.

    1974-01-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from ∼6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  4. State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective

    Science.gov (United States)

    Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija

    2018-06-01

    Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.

  5. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  6. Computational and experimental studies of microvascular void features for passive-adaptation of structural panel dynamic properties

    Science.gov (United States)

    Sears, Nicholas C.; Harne, Ryan L.

    2018-01-01

    The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.

  7. Magnetic resonance voiding cystography in the diagnosis of vesicoureteral reflux: comparative study with voiding cystourethrography.

    Science.gov (United States)

    Lee, Sang Kwon; Chang, Yongmin; Park, Noh Hyuck; Kim, Young Hwan; Woo, Seongku

    2005-04-01

    To evaluate the feasibility of magnetic resonance voiding cystography (MRVC) compared with voiding cystourethrography (VCUG) for detecting and grading vesicoureteral reflux (VUR). MRVC was performed upon 20 children referred for investigation of reflux. Either coronal T1-weighted spin-echo (SE) or gradient-echo (GE) (fast multiplanar spoiled gradient-echo (FMPSPGR) or turbo fast low-angle-shot (FLASH)) images were obtained before and after transurethral administration of gadolinium solution, and immediately after voiding. The findings of MRVC were compared with those of VCUG and technetium-99m ((99m)Tc) dimercaptosuccinic acid (DMSA) single-photon emission computed tomography (SPECT) performed within 6 months of MRVC. VUR was detected in 23 ureterorenal units (16 VURs by both methods, 5 VURs by VCUG, and 2 VURs by MRVC). With VCUG as the standard of reference, the sensitivity of MRVC was 76.2%; the specificity, 90.0%; the positive predictive value, 88.9%; and the negative predictive value, 78.3%. There was concordance between two methods regarding the grade of reflux in all 16 ureterorenal units with VUR detected by both methods. Of 40 kidneys, MRVC detected findings of renal damage or reflux nephropathy in 13 kidneys, and (99m)Tc DMSA renal SPECT detected findings of reflux nephropathy in 17 kidneys. Although MRVC is shown to have less sensitivity for VUR than VCUG, MRVC may represent a method of choice offering a safer nonradiation test that can additionally evaluate the kidneys for changes related to reflux nephropathy. Copyright 2005 Wiley-Liss, Inc.

  8. Void-Free Lid for Food Packaging

    Science.gov (United States)

    Watson, C. D.; Farris, W. P.

    1986-01-01

    Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.

  9. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  10. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  11. Numerical simulation of void growth under dynamic loading

    International Nuclear Information System (INIS)

    Iqbal, A.

    1996-01-01

    Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)

  12. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  13. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  14. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    Guignot, S.; Faure, S.

    2008-01-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  15. Impact of convenience void in a bladder diary with urinary perception grade to assess overactive bladder symptoms: a community-based study.

    Science.gov (United States)

    Honjo, Hisashi; Kawauchi, Akihiro; Nakao, Masahiro; Ukimura, Osamu; Kitakoji, Hiroshi; Miki, Tsuneharu

    2010-09-01

    Bladder diaries including bladder perception grade were analyzed to assess convenience void (CV) in community-dwelling women 40 years of age or older. A total of 310 women completed a 3-day bladder diary with a grade for bladder perception. The grade was defined on scores 0-5 as follows: 0 = No bladder sensation, 1 = Sensation of bladder filling without desire to void, 2 = Desire to void, 3 = Strong desire to void, 4 = Urgency without urge urinary incontinence (UUI), and 5 = Urge incontinence episode. CV was defined as void without desire to void: when the grade was 0, CV in a narrow sense, and when 0 or 1, CV in a broad sense. The incidence of CV in the broad sense significantly decreased with age. Of the 310 women, 48 (15.5%) had overactive bladder (OAB) symptoms on the medical interview, including 37 (11.9%) without UUI (OAB-Dry) and 11 (3.5%) with UUI (OAB-Wet). Of the remaining 262 women, 111 (35.8%), who had urgency but a urinary frequency of 7 or less, and another 141 (48.7%) were classified into the Normal with Urgency and Normal without Urgency groups, respectively. The incidence of CV in a broad sense in the Normal without Urgency group was significantly greater than that in the Normal with Urgency and OAB-Wet groups. The mean voided volumes of CV in the broad sense in the OAB-Wet group were significantly smaller than those in the other three groups. The evaluation of CV may be a new tool in assessing storage condition and voiding dysfunction. © 2010 Wiley-Liss, Inc.

  16. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    This study deals with simulation model of Foam Assisted Water Alternating Gas (FAWAG) method that had been implemented to two Norwegian Reservoirs. Being studied on number of pilot projects, the method proved successful, but Field Scale simulation was never understood properly. New phenomenological...... of the simulation contributes to more precise planning of the schedule of water and gas injection, prediction of the injection results and evaluation of the method efficiency. The testing of the surfactant properties allows making grounded choice of surfactant to use. The analysis of the history match gives insight...

  17. Void consolidation during open-die forging for ultralarge rotor shafts. (1. Formulation of void-closing behavior)

    International Nuclear Information System (INIS)

    Ono, Shin-ichi; Minami, Katsuyuki; Ochiai, Tomoyuki; Iwadate, Tadao; Nakata, Shin-ichi.

    1995-01-01

    Open-die forging experiments using different die geometries under hot isothermal conditions and three-dimensional simulations using rigid-plastic finite-element method were performed to formulate a void-closing behavior using only two factors; the integral of hydrostatic stress and the equivalent strain. First, upsetting, side-upsetting and V-shape die cogging of several cylinders with a spherical void at the center are carried out and the information on the void volume reduction is obtained. Seconds, the same forgings, but without voids is treated numerically and the development of stress and strain at the location of voids is investigated. Then, by combining these results, and using regression analysis, it is found that the void volume reduction is expressed as a polynomial function of the two factors. When the polynomial function is used, various forging methods can be evaluated quantitatively in terms of void-closing behavior. Therefore it is beneficial to optimize the forging process for a large rotor shaft. (author)

  18. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  19. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    Science.gov (United States)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  20. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  1. A Method to Produce Foam Glasses

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a production process of foam glass from a mixture of glass cullet or slag or fly ash with a foaming agent and an oxidizing agent and heating to below 1100 C under low oxygen atmosphere. The invention relates more particularly to a process wherein pure carbon or a ...

  2. Anti-foam System design description

    International Nuclear Information System (INIS)

    White, M.A.

    1994-01-01

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment

  3. Application of Auxetic Foam in Sports Helmets

    Directory of Open Access Journals (Sweden)

    Leon Foster

    2018-03-01

    Full Text Available This investigation explored the viability of using open cell polyurethane auxetic foams to augment the conformable layer in a sports helmet and improve its linear impact acceleration attenuation. Foam types were compared by examining the impact severity on an instrumented anthropomorphic headform within a helmet consisting of three layers: a rigid shell, a stiff closed cell foam, and an open cell foam as a conformable layer. Auxetic and conventional foams were interchanged to act as the helmet’s conformable component. Attenuation of linear acceleration was examined by dropping the combined helmet and headform on the front and the side. The helmet with auxetic foam reduced peak linear accelerations (p < 0.05 relative to its conventional counterpart at the highest impact energy in both orientations. Gadd Severity Index reduced by 11% for frontal impacts (38.9 J and 44% for side impacts (24.3 J. The conformable layer within a helmet can influence the overall impact attenuating properties. The helmet fitted with auxetic foam can attenuate impact severity more than when fitted with conventional foam, and warrants further investigation for its potential to reduce the risk of traumatic brain injuries in sport specific impacts.

  4. Foam is a decon waste minimization tool

    International Nuclear Information System (INIS)

    Peterson, K.D.; McGlynn, J.F.; Rankin, W.N.

    1991-01-01

    The use of foam in decontamination operations offers significant reductions in waste generation. Initial use has confirmed its effectiveness. Issues being resolved at Savannah River Site (SRS) include compatibility of foam generating solutions with decontamination solutions, waste disposal, and operational safety

  5. Damping of liquid sloshing by foams

    Science.gov (United States)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  6. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  7. Void formation in ODS EUROFER produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Ortega, Y.; Monge, M.A.; Castro, V. de; Munoz, A.; Leguey, T.; Pareja, R.

    2009-01-01

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  8. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  9. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  10. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  11. Foam generator and viscometer apparatus and process

    Science.gov (United States)

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  12. Oxidation behaviour of metallic glass foams

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, B.R. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States)], E-mail: bbarnard@utk.edu; Liaw, P.K. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States); Demetriou, M.D.; Johnson, W.L. [Department of Materials Science, Keck Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-08-15

    In this study, the effects of porosity on the oxidation behaviour of bulk-metallic glasses were investigated. Porous Pd- and Fe-based bulk-metallic glass (BMG) foams and Metglas ribbons were studied. Oxidizing experiments were conducted at 70 deg. C, and around 80 deg. C below glass-transition temperatures, (T{sub g}s). Scanning-electron microscopy/energy-dispersive spectroscopy (SEM/EDS) studies revealed little evidence of oxidation at 70 deg. C. Specimens exhibited greater oxidation at T{sub g} - 80 deg. C. Oxides were copper-based for Pd-based foams, Fe-, Cr-, and Mo-based for Fe-based foams, and Co-based with borosilicates likely for the Metglas. Pd-based foams demonstrated the best oxidation resistance, followed by Metglas ribbons, followed by Fe-based foams.

  13. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  14. Uroflowmetry in neurologically normal children with voiding disorders

    DEFF Research Database (Denmark)

    Jensen, K M; Nielsen, K.K.; Kristensen, E S

    1985-01-01

    of neurological deficits underwent a complete diagnostic program including intravenous urography, voiding cystography and cystoscopy as well as spontaneous uroflowmetry, cystometry-emg and pressure-flow-emg study. The incidence of dyssynergia was 22%. However, neither the flow curve pattern nor single flow...... variables were able to identify children with dyssynergia. Consequently uroflowmetry seems inefficient in the screening for dyssynergia in neurological normal children with voiding disorders in the absence of anatomical bladder outlet obstruction....

  15. A Preliminary Experimental Study on Vibration Responses of Foamed Concrete Composite Slabs

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Ghaffar, N. H. Abd; Rahman, N. Abd

    2017-11-01

    In recent years, composite slab has received utmost demand as a floor system in the construction industry. The composite slab is an economical type of structure and able to accelerate the construction process. Basically, the composite slab can be casting by using a combination of corrugated steel deck and normal concrete in which selfweight represents a very large proportion of the total action. Therefore, foamed concrete become an attractive alternative to be utilized as a replacement of normal concrete. However, foamed concrete has high flexibility due to the presence of large amount of air-void and low modulus elasticity. It may result in vibration responses being greater. Hence, this experimental study investigates the vibration responses of composite slab made of corrugated steel deck and foamed concrete. The specimens were prepared with dimension of 750mm width, 1600mm length and 125mm thickness. The hammer-impact test was conducted to obtain the acceleration-time history. The analysis revealed that the first natural frequency is around 27.97 Hz to 40.94 Hz, while the maximum acceleration reaches 1.31 m/s2 to 1.88 m/s2. The first mode shape depicts normal pattern and favourable agreement of deformation.

  16. Proportioning of Lightweight Concrete by the Inclusions of Expanded Polystyrene Beads (EPS and Foam Agent

    Directory of Open Access Journals (Sweden)

    Eethar Thanon Dawood

    2016-10-01

    Full Text Available This paper illustrates the performance of lightweight concrete using various amounts of expanded polystyrene beads (EPS and different amounts of foam agent to produce lightweight concrete. The objective of this paper is to produce lightweight concrete with good workability and strength, by different mix proportion of foam agent (0.4, 0.6, 0.8, 1, 1.2 kg/m3 and varying water cement ratio (w/c depending on the flow. Besides, various proportions using different percentages of EPS in order of volume fractions are used. The flow range used in the study is 110-130%. Each mix proportion is tested for compressive strength, modulus of rupture, density and voids ratio. The results gives acceptable ranges of strength for lightweight concrete produced by the inclusions of EPS beads and foam concrete. Therefore, the lightweight concrete produced in this work can be used for structural applications like multistory building frames, floors, bridges and prestressed or precast elements. 

  17. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  18. Experimental investigation of void distribution in Suppression Pool during the initial blowdown period of a Loss of Coolant Accident using air–water two-phase mixture

    International Nuclear Information System (INIS)

    Rassame, Somboon; Griffiths, Matthew; Yang, Jun; Lee, Doo Yong; Ju, Peng; Choi, Sung Won; Hibiki, Takashi; Ishii, Mamoru

    2014-01-01

    Highlights: • Basic understanding of the venting phenomena in the SP during a LOCA was obtained. • A series of experiment is carried out using the PUMA-E test facility. • Two phases of experiments, namely, an initial and a quasi-steady phase were observed. • The maximum void penetration depth was experienced during the initial phase. - Abstract: During the initial blowdown period of a Loss of Coolant Accident (LOCA), the non-condensable gas initially contained in the BWR containment is discharged to the pressure suppression chamber through the blowdown pipes. The performance of Emergency Core Cooling System (ECCS) can be degraded due to the released gas ingestion into the suction intakes of the ECCS pumps. The understanding of the relevant phenomena in the pressure suppression chamber is important in analyzing potential gas intrusion into the suction intakes of ECCS pumps. To obtain the basic understanding of the relevant phenomena and the generic data of void distribution in the pressure suppression chamber during the initial blowdown period of a LOCA, tests with various blowdown conditions were conducted using the existing Suppression Pool (SP) tank of the integral test facility, called Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility, a scaled downcomer pipe installed in the PUMA-E SP, and air discharge pipe system. Two different diameter sizes of air injection pipe (0.076 and 0.102 m), a range of air volumetric flux (7.9–24.7 m/s), initial void conditions in an air injection pipe (fully void, partially void, and fully filled with water) and different air velocity ramp rates (1.0, 1.5, and 2.0 s) are used to investigate the impact of the blowdown conditions to the void distribution in the SP. Two distinct phases of experiments, namely, an initial and a quasi-steady phase were observed. The maximum void penetration depth was experienced during the initial phase. The quasi-steady phase provided less void

  19. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  20. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    Science.gov (United States)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  1. Measurement of local void fraction in a ribbed annulus

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  2. Influence of the void fraction in the linear reactivity model

    International Nuclear Information System (INIS)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G.

    2003-01-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  3. Water-Blown Polyurethane Foams Showing a Reversible Shape-Memory Effect

    Directory of Open Access Journals (Sweden)

    Elena Zharinova

    2016-11-01

    Full Text Available Water-blown polyurethane (PU foams are of enormous technological interest as they are widely applied in various fields, i.e., consumer goods, medicine, automotive or aerospace industries. The discovery of the one-way shape-memory effect in PU foams provided a fresh impetus for extensive investigations on porous polymeric actuators over the past decades. High expansion ratios during the shape-recovery are of special interest when big volume changes are required, for example to fill an aneurysm during micro-invasive surgery or save space during transportation. However, the need to program the foams before each operation cycle could be a drawback impeding the entry of shape-memory polymeric (SMP foams to our daily life. Here, we showed that a reversible shape-memory effect (rSME is achievable for polyurethane water-blown semicrystalline foams. We selected commercially available crystallizable poly(ε-caprolactone-diols of different molecular weight for foams synthesis, followed by investigations of morphology, thermal, thermomechanical and shape-memory properties of obtained compositions. Densities of synthesized foams varied from 110 to 180 kg∙m−3, while peak melting temperatures were composition-dependent and changed from 36 to 47 °C, while the melting temperature interval was around 15 K. All semicrystalline foams exhibited excellent one-way SME with shape-fixity ratios slightly above 100% and shape-recovery ratios from the second cycle of 99%. The composition with broad distribution of molecular weights of poly(ε-caprolactone-diols exhibited an rSME of about 12% upon cyclic heating and cooling from Tlow = 10 °C and Thigh = 47 °C. We anticipate that our experimental study opens a field of systematic investigation of rSMEs in porous polymeric materials on macro and micro scale and extend the application of water-blown polyurethane foams to, e.g., protective covers with zero thermal expansion or even cushions adjustable to a certain body

  4. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  5. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    Science.gov (United States)

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  6. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  7. Foam stabilization by solid particle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Pitois, O. [UniversiteParis-Est Marne-La-Valle, Lab. Physique des Materiaux Divises et des Interfaces (LPMDI), 77 - Marne la Vallee (France)

    2008-07-01

    During the dismantling of nuclear facilities, radioactive deposits on exposed areas are removed and solubilized by successive rinses of reactive liquid. Using this liquid in a foam state reduces the amount of resulting wastes. During the required decontamination time (1 to 5 hours) the foam has to be sufficiently wet (1). In the Laboratory of Advanced Processes for Decontamination, new formulations are currently studied to slow down the drainage kinetics of these foams, by adding colloidal particles of hydrophilic fumed silica into the classical mixtures of well-defined non ionic foaming surfactants previously used (2). The objective of our study is to shed light on the foam surprising stability induced by these particles. The study focuses on drainage of foams generated by air sparging through a suspension lying on a porous glass. The foaming suspensions contain between 0 and 70 g.L-1 of a fumed silica (Aerosil 380) which is well-known to form gels for concentrations above 200 g.L{sup -1}. In the studied solutions this silica builds up into aggregates of dozens of microns, whose volume-averaged mean diameter after sonication is centred around 300 nm. Under gentle stirring, they display no sign of re-aggregation during 24 h. On a free drainage configuration, a foam that contains particles keeps a significant amount of its initial liquid: up to 60 % during up to 5 hours, in contrast to classical foams that drain out all of their liquid in about 20 minutes. From a rheological point of view, the most concentrated suspensions display a yield stress behaviour. This evidences the structuring of the aggregates into a coherent network that might explain the incomplete drainage of the solutions. For the lowest concentrated solutions, such rheological properties have not been observed although the corresponding foams can retain large amount of solution. This suggests that local concentrations of aggregates can rise owing to their retention by foam channels, until they form

  8. The intact capture of hypervelocity dust particles using underdense foams

    Science.gov (United States)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the

  9. Handbook of plastic foams: types, properties, manufacture, and applications

    National Research Council Canada - National Science Library

    Landrock, Arthur H

    1995-01-01

    ... is an introduction and also covers the subject of foam formation. The chapter includes a discussion of the Montreal Protocol mandating the development of foams with substantially reduced CFC content by 1995. Chapter 2 is a comprehensive discussion of thermosetting foams of all types, with the emphasis on urethane and phenolic foams. The authors, K Ashida and K Iwa...

  10. In situ determination of rheological properties and void fraction in Hanford Waste Tank 241-SY-101

    International Nuclear Information System (INIS)

    Stewart, C.W.; Shepard, C.L.; Alzheimer, J.M.; Stokes, T.I.; Terrones, G.

    1995-08-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-101, which contains approximately one million gallons of radioactive waste. These instruments provided the first direct assay of the waste condition in the tank after more than a year of mixer pump operation. The two instruments were deployed in the tank in late 1994 and early 1995 to gather much-needed data on the effect prolonged mixer pump operation has on gas retention in the waste. The information supplied by these instruments has filled a great gap in the quantitative knowledge of the waste condition. The results show that the solids are well-mixed by the current mixer pump to within less than a meter of the tank bottom. Undisturbed sludge remains only on the lowest 10--30 cm and contains 10--12% void. The mixed slurry above contains less than 1% void and has no measurable yield strength and a shear-thinning viscosity of approximately 6 Poise at 1 sec -1 . Estimating the gas volumes in each of the four layers based on VFI data yields a total of 221 ± 57 m 3 (7,800 ± 2,000 SCF) of gas at 1 atmosphere. Given the current waste level of 10.2 m (400 inches), the degassed waste level would be 9.8 m (386 inches). These results confirm that the mixer pump in Tank 241-SY-101 has performed the job it was installed to do--thoroughly mix the waste to release stored gas and prevent gas accumulation

  11. USING BIOPOLYMERS TO STABILIZE THE PROTEIN OXYGEN FOAM

    Directory of Open Access Journals (Sweden)

    N. V. Nepovinnyh

    2013-01-01

    Full Text Available The cottage cheese whey as an oxygen cocktail foaming base and natural juices as a flavoring ingredient are analyzed. The lifetime of foam generated by the serum proteins is not long: foam falls off rapidly; because from the foam liquid is released (syneresis. The effects of plant polysaccharides on the stabilization of the protein foam oxygen cocktail is studied. It was shown that the use of plant polysaccharides (guar gum, high methoxyl citrus pectin, locust been gum prolong the life of the foam up to 20 times, compared with conventional blowing agents. It was found that oxygen foam properties depend on the molecular weight of guar gum.

  12. Urinary tract infection after voiding cystourethrogram.

    Science.gov (United States)

    Johnson, E K; Malhotra, N R; Shannon, R; Jacobson, D L; Green, J; Rigsby, C K; Holl, J L; Cheng, E Y

    2017-08-01

    Reported rates of post-procedural urinary tract infection (ppUTI) after voiding cystourethrogram (VCUG) are highly variable (0-42%). This study aimed to determine the risk of ppUTI after cystogram, and evaluate predictors of ppUTI. A retrospective cohort study of children undergoing VCUG or radionuclide cystogram (henceforth 'cystogram') was conducted. Children with neurogenic bladder who underwent cystogram in the operating room and without follow-up at the study institution were excluded. Incidence of symptomatic ppUTI within 7 days after cystogram was recorded. Predictors of ppUTI were evaluated using univariate statistics. A total of 1108 children (54% female, median age 1.1 years) underwent 1203 cystograms: 51% were on periprocedural antibiotics, 75% had a pre-existing urologic diagnosis (i.e., vesicoureteral reflux (VUR) or hydronephrosis; not UTI alone), and 18% had a clinical UTI within 30 days before cystogram. Of the cystograms, 41% had an abnormal cystogram and findings included VUR (82%), ureterocele (6%), and diverticula (6%). Twelve children had a ppUTI (1.0%; four girls, five uncircumcised boys, three circumcised boys; median age 0.9 years). Factors significantly associated with diagnosis of a ppUTI (Summary fig.) included: pre-existing urologic diagnosis prior to cystogram (12/12, 100% of patients with ppUTI), abnormal cystogram results (11/12, 92%), and use of periprocedural antibiotics (11/12, 92%). All 11 children with an abnormal cystogram had VUR ≥ Grade III. However, among all children with VUR ≥ Grade III, 4% (11/254) had a ppUTI. This is the largest study to date that has examined incidence and risk factors for ppUTI after cystogram. The retrospective nature of the study limited capture of some clinical details. This study demonstrated that the risk of ppUTI after a cystogram is very low (1.0% in this cohort). Having a pre-existing urologic diagnosis such as VUR or hydronephrosis was associated with ppUTI; therefore, children with

  13. Blast wave protection of aqueous foams

    Energy Technology Data Exchange (ETDEWEB)

    Britan, Alexander; Ben-Dor, M. Liverts G. [Shock tube Laboratory of Protective Technologies R and D Center, Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben Gurion University, Beer-Sheva (Israel)

    2011-07-01

    The primary intention of the present study is to present new contribution of shock tube tests to the problem of particle related stabilization and enhanced mitigation action of the wet particulate foams. The experiments reported were designed to examine (i) the reflection of a shock wave from an air/foam face, (ii) the transmission of the shock wave through the air/foam face and (iii) propagation and dispersion of the transmitted shock wave inside the foam column. Because wet aqueous foam of desired specification is difficult to reproduce, handle and quantitatively characterize the fact that experiments on all the above aspects were conducted in a single facility is a potentially important consideration. Moreover vertical position of shock tube simplified the issues since the gradient of the liquid fraction in draining foam coincides with the shock wave propagation. Under these, much simplified test conditions resulted flows could be treated as one-dimensional and the shock wave mitigation depends on three parameters: the intensity of the incident shock wave, s M , the duration of the foam decay, ∆t and on the particle concentration, n.

  14. Tensile and fracture behavior of polymer foams

    International Nuclear Information System (INIS)

    Kabir, Md. E.; Saha, M.C.; Jeelani, S.

    2006-01-01

    Tensile and mode-I fracture behavior of cross-linked polyvinyl chloride (PVC) and rigid polyurethane (PUR) foams are examined. Tension tests are performed using prismatic bar specimens and mode-I fracture tests are performed using single edge notched bend (SENB) specimens under three-point bending. Test specimens are prepared from PVC foams with three densities and two different levels of cross-linking, and PUR foam with one density. Tension and quasi-static fracture tests are performed using a Zwick/Rowell test machine. Dynamic fracture tests are performed using a DYNATUP model 8210 instrumented drop-tower test set up at three different impact energy levels. Various parameters such as specimen size, loading rate, foam density, cross-linking, crack length, cell orientation (flow and rise-direction) and solid polymer material are studied. It is found that foam density and solid polymer material have a significant effect on tensile strength, modulus, and fracture toughness of polymer foams. Level of polymer cross-linking is also found to have a significant effect on fracture toughness. The presence of cracks in the rise- and flow direction as well as loading rate has minimal effect. Dynamic fracture behavior is found to be different as compared to quasi-static fracture behavior. Dynamic fracture toughness (K d ) increases with impact energy. Examination of fracture surfaces reveals that the fracture occurs in fairly brittle manner for all foam materials

  15. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  16. Mechanical Characterization of Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Marcin Kozłowski

    2018-01-01

    Full Text Available Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.

  17. Microstructure of high-strength foam concrete

    International Nuclear Information System (INIS)

    Just, A.; Middendorf, B.

    2009-01-01

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  18. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  19. Tooling Foam for Structural Composite Applications

    Science.gov (United States)

    DeLay, Tom; Smith, Brett H.; Ely, Kevin; MacArthur, Doug

    1998-01-01

    Tooling technology applications for composite structures fabrication have been expanded at MSFC's Productivity Enhancement Complex (PEC). Engineers from NASA/MSFC and Lockheed Martin Corporation have developed a tooling foam for use in composite materials processing and manufacturing that exhibits superior thermal and mechanical properties in comparison with other tooling foam materials. This tooling foam is also compatible with most preimpregnated composite resins such as epoxy, bismaleimide, phenolic and their associated cure cycles. MARCORE tooling foam has excellent processability for applications requiring either integral or removable tooling. It can also be tailored to meet the requirements for composite processing of parts with unlimited cross sectional area. A shelf life of at least six months is easily maintained when components are stored between 50F - 70F. The MARCORE tooling foam system is a two component urethane-modified polyisocyanurate, high density rigid foam with zero ozone depletion potential. This readily machineable, lightweight tooling foam is ideal for composite structures fabrication and is dimensionally stable at temperatures up to 350F and pressures of 100 psi.

  20. DRY MIX FOR OBTAINING FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available Composition of a dry mix has been developed for production of non-autoclaved foam concrete with natural curing. The mix has been created on the basis of Portland cement, UFAPORE foaming agent, mineral additives (RSAM sulfoaluminate additive, MK-85 micro-silica and basalt fiber, plasticizing and accelerating “Citrate-T” additive and   redispersible Vinnapas-8034 H powder. It has been established that foam concrete with  density of 400–800 kg/m3, durability of 1,1–3,4 MPa, low water absorption (40–50 %, without shrinkable cracks has been formed while adding water of Water/Solid = 0.4–0.6 in the dry mix,  subsequent mechanical swelling and curing of foam mass.Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and  time reduction of its drying and curing. An investigation on microstructure of foam-concrete chipping surface carried out with the help of a scanning electron microscope has shown that the introduction of  basalt fiber and redispersible Vinnapas-8034 H powder into the composition of the dry mix promotes formation of more finely-divided crystalline hydrates. Such approach makes it possible to change purposefully morphology of crystalline hydrates and gives the possibility to operate foam concrete structurization process.

  1. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  2. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  3. One-group Perturbation Theory Applied to Substitution Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, R

    1962-06-15

    Formulas suitable for evaluating substitution measurements or single-rod experiments by means of one-group perturbation theory are derived. The diffusion coefficient may depend on direction and position. By using the buckling concept the expressions derived are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0.263 {+-} 0.015/m{sup 2} and 0.274 {+-} 0.005 /m{sup 2} resp. The differences between diffusion coefficients are also determined, {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018.

  4. Reliability Impact of Stockpile Aging: Stress Voiding; TOPICAL

    International Nuclear Information System (INIS)

    ROBINSON, DAVID G.

    1999-01-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution

  5. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    Science.gov (United States)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  6. Influence of the glass-calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2014-01-01

    We prepared foam glasses from cathode-ray-tube panel glass and CaCO3 as a foaming agent. We investigated the influences of powder preparation, CaCO3 concentration and foaming temperature and time on the density, porosity and homogeneity of the foam glasses. The results show that the decomposition...

  7. Breaking the vicious circle: Onabotulinum toxin A in children with therapy-refractory dysfunctional voiding

    NARCIS (Netherlands)

    L.A. 't Hoen (Lisette); J. van den Hoek (Joop); K.P. Wolffenbuttel (Katja); F. van der Toorn; J.R. Scheepe (Jeroen)

    2015-01-01

    textabstractIntroduction An increased activity of the external urethral sphincter or pelvic floor muscles during voluntary voiding leads to dysfunctional voiding. Frequently reported symptoms are urinary incontinence, urinary tract infections and high post-void residuals. Dysfunctional voiding is a

  8. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    Science.gov (United States)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  9. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  10. Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties

    Science.gov (United States)

    Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying

    2018-03-01

    In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.

  11. FOAM3D: A numerical simulator for mechanistic prediciton of foam displacement in multidimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Radke, C.J. [Univ. of California, Berkeley, CA (United States)

    1995-03-01

    Field application of foam is a technically viable enhanced oil recovery process (EOR) as demonstrated by recent steam-foam field studies. Traditional gas-displacement processes, such as steam drive, are improved substantially by controlling gas mobility and thereby improving volumetric displacement efficiency. For instance, Patzek and Koinis showed major oil-recovery response after about two years of foam injection in two different pilot studies at the Kern River field. They report increased production of 5.5 to 14% of the original oil in place over a five year period. Because reservoir-scale simulation is a vital component of the engineering and economic evaluation of any EOR project, efficient application of foam as a displacement fluid requires a predictive numerical model of foam displacement. A mechanistic model would also expedite scale-up of the process from the laboratory to the field scale. No general, mechanistic, field-scale model for foam displacement is currently in use.

  12. Rigid Polyurethane Foam Reinforced Coconut Coir Fiber Properties

    OpenAIRE

    Mohd Azham Azmi

    2012-01-01

    This research work studied the properties of composite foam panels. Coconut coir fibers were used as reinforcement in polyurethane (PU) foam in order to increase the properties of foam. This composite foam panels were fabricated by using polyurethane molded method. The polyurethane foam panels reinforced from 5 to 20wt% coconut coir were produced to investigate the physical and mechanical test via density test and three point bending test respectively. It was found that the density test resul...

  13. Foam droplet separation for nanoparticle synthesis

    International Nuclear Information System (INIS)

    Tyree, Corey A.; Allen, Jonathan O.

    2008-01-01

    A novel approach to nanoparticle synthesis was developed whereby foam bubble bursting produced aerosol droplets, an approach patterned after the marine foam aerosol cycle. The droplets were dried to remove solvent, leaving nanometer-sized particles composed of precursor material. Nanoparticles composed of sodium chloride (mean diameter, D-bar p ∼ 100 nm), phosphotungstic acid (D-bar p ∼ 55 nm), and bovine insulin (D p ∼ 5-30 nm) were synthesized. Foam droplet separation can be carried out at ambient temperature and pressure. The 'soft' nature of the process makes it compatible with a wide range of materials

  14. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  15. Auxetic foam for snowsport safety devices

    OpenAIRE

    Allen, Tom; Duncan, Olly; Foster, Leon; Senior, Terry; Zampieri, Davide; Edeh, Victor; Alderson, Andrew

    2017-01-01

    Skiing and snowboarding are popular snow-sports with inherent risk of injury. There is potential to reduce the prevalence of injuries by improving and implementing snow-sport safety devices with the application of advanced materials. This paper investigates the application of auxetic foam to snow-sport safety devices. Composite pads - consisting of foam covered with a semi-rigid shell - were investigated as a simple model of body armour and a large 70 x 355 x 355 mm auxetic foam sample was fa...

  16. Foam process for application of decontamination agents

    International Nuclear Information System (INIS)

    Harris, J.M.; Miller, J.R.; Frazier, R.S.; Walter, J.H.

    1982-01-01

    This paper presents the results and observations of a study performed by the authors to parametrically evaluate the performance characteristics of a foam process for application of decontamination agents. The initial tests were established to assess foam quality. Subsequent tests determined the ability of the foam as a carrier of chemical systems, and established system operating parameters. The technique was then applied in an actual decontamination task to verify effectiveness of these established parameters and to determine decontamination reduction factors. 4 figures, 5 tables

  17. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  18. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  19. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  20. Effect of voids-controlled vacancy supersaturations on B diffusion

    International Nuclear Information System (INIS)

    Marcelot, O.; Claverie, A.; Cristiano, F.; Cayrel, F.; Alquier, D.; Lerch, W.; Paul, S.; Rubin, L.; Jaouen, H.; Armand, C.

    2007-01-01

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs

  1. Effect of voids-controlled vacancy supersaturations on B diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcelot, O. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France)]. E-mail: marcelot@cemes.fr; Claverie, A. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Cristiano, F. [LAAS/CNRS, 7 av. du Col. Roche, 31077 Toulouse (France); Cayrel, F. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Alquier, D. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Lerch, W. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Paul, S. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Rubin, L. [Axcelis Technologies, 108 Cherry Hill Drive, Beverly MA 01915 (United States); Jaouen, H. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Armand, C. [LNMO/INSA, Service analyseur ionique, 135 av. de Rangueil, 31077 Toulouse (France)

    2007-04-15

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs.

  2. Controlling Interfacial Separation in Porous Structures by Void Patterning

    Science.gov (United States)

    Ghareeb, Ahmed; Elbanna, Ahmed

    Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

  3. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    Science.gov (United States)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction

  4. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    Science.gov (United States)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  5. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    International Nuclear Information System (INIS)

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun

    2016-01-01

    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  6. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Science.gov (United States)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  7. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H.L. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Liu, X.Y.; Zhong, F.C. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Li, X.Y. [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Wang, L. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Ju, X., E-mail: jux@ustb.edu.cn [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-07-15

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors’ influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si–CH{sub 3}. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  8. An Investigation into the Nature of Non-Voiding Contractions Resulting from Detrusor Hyperreflexia in Neurogenic Bladders Following Spinal Cord Injury

    Science.gov (United States)

    2015-06-01

    occasioned by numerous, rhythmic high pressure non-voiding contractions (NVC) during normal bladder filling. These NVC are responsible for incontinence...month experiment period) 2c. Final data analysis (data analysis will be ongoing throughout, this will represent the finalization of data period, 0.25...Sub-Tasks 2a and 2b. As of 9/2/14, we have completed much of the data analysis (Sub-Task 2c; see below for results). Analysis of abdominal

  9. UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Josset, Sebastien; Hajiesmaili, Shabnam; Begin, Dominique; Edouard, David; Pham-Huu, Cuong [Laboratoire des Materiaux, Surfaces et Procedes pour la Catalyse (LMSPC), European Laboratory for Catalysis and Surface Sciences (ELCASS), CNRS, Strasbourg University, 25 rue Becquerel 67087 Strasbourg (France); Lett, Marie-Claire [Laboratoire de Genetique Moleculaire, Genomique, Microbiologie, CNRS, Strasbourg University, 28, rue Goethe 67083 Strasbourg Cedex (France); Keller, Nicolas, E-mail: nkeller@chimie.u-strasbg.fr [Laboratoire des Materiaux, Surfaces et Procedes pour la Catalyse (LMSPC), European Laboratory for Catalysis and Surface Sciences (ELCASS), CNRS, Strasbourg University, 25 rue Becquerel 67087 Strasbourg (France); Keller, Valerie [Laboratoire des Materiaux, Surfaces et Procedes pour la Catalyse (LMSPC), European Laboratory for Catalysis and Surface Sciences (ELCASS), CNRS, Strasbourg University, 25 rue Becquerel 67087 Strasbourg (France)

    2010-03-15

    A 3D-structured photocatalytic media was designed for allowing a tubular reactor to work in a traversing-flow mode at low pressure drops with a strong increase in the surface area-to-volume ratio inside the reactor. A protective polysiloxane coating was performed for protecting a structured polyurethane foam and anchoring the active TiO{sub 2} particles. Filled with the 3D-structured solid foam supporting TiO{sub 2} photocatalyst, the reactor could thus take advantages from the static mixer effect and from the low pressure drop resulting from the reticulated foam support. Very efficient decontamination levels towards airborne Legionella pneumophila bacteria were reached in a single-pass test mode.

  10. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  11. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  12. Grandstand view of phenolic foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Stadium Insulation Ltd, manufacture pipe sections, tank and vessel insulation products in Lowphen, polyisocyanurate, polyurethane foams and expanded polystyrene, though for certain specialist applications, cork is still employed in small quantities. Currently the emphasis is very much on Lowphen, the company's range of pipe sections based on phenolic foam. The company's manufacturing and marketing effort reflects the increasing market trend towards the use of insulating material capable of withstanding higher temperatures, and phenolic foam neatly satisfies the demand since it is capable of use at temperatures up to 140/sup 0/C. Moreover, phenolic foam has the lowest K value at 0.02W/m/sup 0/C of any of the currently available range of insulating materials, and while the product is slightly more expensive than alternatives such as polyisocyanurate and polyurethane, its high performance offsets that premium.

  13. Prediction of pool void fraction by new drift flux correlation

    International Nuclear Information System (INIS)

    Kataoka, I.; Ishii, M.

    1986-06-01

    A void fraction for a bubbling or boiling pool system is one of the important parameters in analyzing heat and mass transfer processes. Using the drift flux formulation, correlations for the pool void fraction have been developed in collaboration with a large number of experimental data. It has been found that the drift velocity in a pool system depends upon vessel diameter, system pressure, gas flux and fluid physical properties. The results show that the relative velocity and void fraction can be quite different from those predicted by conventional correlations. In terms of the rise velocity, four different regimes are identified. These are bubbly, churn-turbulent, slug and cap bubble regimes. The present correlations are shown to agree with the experimental data over wide ranges of parameters such as vessel diameter, system pressure, gas flux and physical properties. 39 refs., 41 figs

  14. Nucleation from a cluster of inclusions, leading to void coalescense

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2017-01-01

    A cell model analysis is used to study the nucleation and subsequent growth of voids from a non-uniform distribution of inclusions in a ductile material. Nucleation is modeled as either stress controlled or strain controlled. The special clusters considered consist of a number of uniformly spaced...... inclusions located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the inclusions are parallel cylinders perpendicular to the plane. Clusters with different numbers of inclusions are compared with the nucleation and growth from a single...... inclusion, such that the total initial volume of the inclusions is the same for the clusters and the single inclusion. After nucleation, local void coalescence inside the clusters is accounted for, since this makes it possible to compare the rate of growth of the single larger void that results from...

  15. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  16. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  17. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  18. Void distributions in liquid BiBr{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K [Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Endo, H [Faculty of Science, Kyoto University, Kyoto 606-8224 (Japan); Hoshino, H [Faculty of Education, Hirosaki University, Hirosaki 036-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kohara, S; Itou, M [Japan Synchrotron Radiation Research Institute(JASRI), Sayo-cho 679-5198 (Japan)

    2008-02-15

    The X-ray diffraction experiments and the reverse Monte Carlo analysis for liquid BiBr{sub 3} have been performed to clarify the distribution of Bi and Br ions around voids, comparing with previous results derived in the neutron diffraction experiments. The hexagonal cages involving voids are formed by the corner-sharing of the trigonal pyramidal BiBr{sub 3} blocks. The neighboring cages are linked together in highly correlated fashion. The observed pre-peak in S(Q) at 1.3A{sup -1} is related to the pre-peak of the void-based S'{sub CC} (Q) due to an intermediate chemical order in the structure. The pre-peak intensity increases with increasing temperature. This characteristic change for the pre-peak intensity is discussed by considering the modifications of the topology and stacking in the hexagonal cages.

  19. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  20. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data