WorldWideScience

Sample records for foam hybrid insulation

  1. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  2. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  3. A comparison of the thermal resistance of a foam neoprene wetsuit to a wetsuit fabricated from aerogel-syntactic foam hybrid insulation

    Energy Technology Data Exchange (ETDEWEB)

    Bardy, Erik [Department of Mechanical and Aerospace Engineering State University of New York at Buffalo 318 Jarvis Hall, Buffalo, NY 14260-4400 (United States); Mollendorf, Joseph [Department of Mechanical and Aerospace Engineering State University of New York at Buffalo 318 Jarvis Hall, Buffalo, NY 14260-4400 (United States); Pendergast, David [Department of Mechanical and Aerospace Engineering State University of New York at Buffalo 318 Jarvis Hall, Buffalo, NY 14260-4400 (United States)

    2006-09-21

    The purpose of this study was to compare the thermal resistance of a wetsuit fabricated from aerogel-syntactic foam hybrid insulation developed by Bardy et al [1] to a foam neoprene wetsuit. The thermal resistance of the hybrid wetsuit and a foam neoprene wetsuit was measured on a human test subject in water at 0.25 MPa (15.25 msw) of hyperbaric pressure. Measurements showed that although certain body regions of the hybrid wetsuit had a higher thermal resistance than foam neoprene, the overall thermal resistance of the hybrid wetsuit was 41% less than a foam neoprene wetsuit, and 51-88% less than predicted values. This was postulated, based on sample testing in water, to be due, in part, to increased heat flow through the hybrid insulation from water filled surface depressions at higher pressures. Other factors may have included water flow over the skin and the presence of thermal bridges in the insulation. Due to a smooth surface and tighter fit, the measured thermal resistance of the foam neoprene wetsuit was within 2-23% of the values predicted using data from Bardy et al [2]. It was concluded that unless the surface depressions can be eliminated, and alternative methods for a tighter fit achieved, foam neoprene provides more thermal protection.

  4. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  5. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  6. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  7. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  8. Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I STTR program is to adapt NanoSonic's HybridSil™ nanocomposite technology for the creation of next generation highly flexible, fire...

  9. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  10. Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat

    Directory of Open Access Journals (Sweden)

    Kirpluks Mikelis

    2014-12-01

    Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.

  11. Attenuation of fluorocarbons released from foam insulation in landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Dote, Yukata; Fredenslund, Anders Michael

    2007-01-01

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project...... in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate...

  12. Optimal Design of Functionally Graded Metallic Foam Insulations

    Science.gov (United States)

    Haftka, Raphael T.; Sankar, Bhavani; Venkataraman, Satchi; Zhu, Huadong

    2002-01-01

    The focus of our work has been on developing an insight into the physics that govern the optimum design of thermal insulation for use in thermal protection systems of launch vehicle. Of particular interest was to obtain optimality criteria for designing foam insulations that have density (or porosity) distributions through the thickness for optimum thermal performance. We investigate the optimum design of functionally graded thermal insulation for steady state heat transfer through the foam. We showed that the heat transfer in the foam has competing modes, of radiation and conduction. The problem assumed a fixed inside temperature of 400 K and varied the aerodynamic surface heating on the outside surface from 0.2 to 1.0 MW/sq m. The thermal insulation develops a high temperature gradient through the thickness. Investigation of the model developed for heat conduction in foams showed that at high temperatures (as on outside wall) intracellular radiation dominates the heat transfer in the foam. Minimizing radiation requires reducing the pore size, which increases the density of the foam. At low temperatures (as on the inside wall), intracellular conduction (of the metal and air) dominates the heat transfer. Minimizing conduction requires increasing the pore size. This indicated that for every temperature there was an optimum value of density that minimized the heat transfer coefficient. Two optimization studies were performed. One was to minimize the heat transmitted though a fixed thickness insulation by varying density profiles. The second was to obtain the minimum mass insulation for specified thickness. Analytical optimality criteria were derived for the cases considered. The optimality condition for minimum heat transfer required that at each temperature we find the density that minimizes the heat transfer coefficient. Once a relationship between the optimum heat transfer coefficient and the temperature was found, the design problem reduced to the solution of a

  13. Fire performance of LNG carriers insulated with polystyrene foam.

    Science.gov (United States)

    Havens, Jerry; Venart, James

    2008-10-30

    Analysis of the response of a liquid-full Moss Sphere LNG tank insulated with polystyrene foam to an engulfing LNG fire indicates that current regulatory requirements for pressure relief capacity sufficient to prevent tank rupture are inadequate. The inadequacy of the current requirements stems primarily from two factors. Firstly, the area of the Moss Sphere protruding above what would be the nominal deck on a conventional carrier, which is protected only by a steel weather cover from exposure to heat from a tank-engulfing fire, is being underestimated. Secondly, aluminum foil-covered polystyrene foam insulation applied to the exterior of the LNG tank is protected above the deck only by the steel weather cover under which the insulation could begin to melt in as little as 1-3 min, and could completely liquefy in as few as 10 min. U.S. and International Regulations require that the insulations on the above-deck portion of tanks have approved fire proofing and stability under fire exposure. Polystyrene foam, as currently installed on LNG carriers, does not appear to meet these criteria. As a result of these findings, but giving no consideration to the significant potential for further damage if the polystyrene should burn, the boil-off rate is predicted to be an order-of-magnitude higher than provided for by current PRV sizing requirements.

  14. 24 CFR 200.947 - Building product standards and certification program for polystyrene foam insulation board.

    Science.gov (United States)

    2010-04-01

    ... certification program for polystyrene foam insulation board. 200.947 Section 200.947 Housing and Urban... program for polystyrene foam insulation board. (a) Applicable standards. (1) All polystyrene foam... Testing and Materials (ASTM) standard C-578-92, Standard Specification for Rigid, Cellular...

  15. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Desjarlais, Andre Omer [ORNL; SmithPhD, Douglas [NanoPore, Inc.; LettsPhD, John [Firestone Building Products; YaoPhD, Jennifer [Firestone Building Products

    2016-01-01

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Building energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.

  16. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    Science.gov (United States)

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  17. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    Science.gov (United States)

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  18. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  19. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  20. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, A.; Baker, R.; Prahl, D.

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  1. Corrosion testing of urea-formaldehyde foam insulating material

    Energy Technology Data Exchange (ETDEWEB)

    Weil, R.; Graviano, A.; Sheppard, K.

    1980-09-01

    Two tests of the corrosiveness of urea-formaldehyde (UF) foam insulating materials were compared. One test, the Timm test, had test coupons foamed in place. In the second, the Canadian test, blocks of foam already set were placed in contact with test coupons. The Timm test uses 10 gage thick coupons, while the Canadian test specifies 3 mil thick ones. Two samples of UF foam were tested by the Timm and the Canadian tests. The electrical-resistance probes showed that the corrosion rate against steel was initially quite high, of the order of 12 to 20 mpy (mils per year). After about 20 days, the rate was almost zero. In the Timm test, the corrosion rates of steel coupons were of the order to 0.5 to 2 mpy when averaged over the 28 or 56 day test period. The greater corrosion rate of the thick coupons in the Canadian test as well as poor reproducibility of the corrosion rates was attributed primarily to variations in the contact areas between the sample and the UF foam. The corrosion rates of galvanized steel coupons in the Canadian test in several cases exceeded the failure value. In the Timm test, the corrosion rates averaged over the whole test period were quite low. The corrosion rates of copper and aluminum in both tests were quite low. On the basis of the results of this study the following recommendations for a corrosion-test procedure for UF foam were made: two corrosion tests should be conducted, one for foam while curing and one after it has stabilized; the Timm test for corrosiveness while curing should be used, but for only 1 to 2 days; the test for corrosiveness after stabilizing should be of the accelerated type such as the Canadian one. To insure a constant-contact area, thicker coupons should be used; and the coupons for both tests should have a controlled part of the area not in contact with the foam to simulate field conditions.

  2. 7 CFR 2902.17 - Plastic insulating foam for residential and commercial construction.

    Science.gov (United States)

    2010-01-01

    ... BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.17 Plastic insulating foam for... preference for qualifying biobased plastic insulating foam for residential and commercial construction. By... items to be procured shall ensure that the relevant specifications require the use of biobased...

  3. Construction method of foam glass thermal insulation material in sloping roof

    Science.gov (United States)

    Hu, Longwei; Bu, Fangming; Guo, Fenglu; Zhang, Zimeng

    2017-04-01

    Foam glass thermal insulation board has the characteristics of fireproof, waterproof, corrosion resistant, noncombustible, mothproof, non-toxic, non-aging, non-radioactive, high mechanical strength and good dimensional stability. Foam glass thermal insulation material in sloping roof construction method is an effective solution to large angle sloping roof construction operation difficulties.

  4. Thermal insulation of pipelines by foamed glass-ceramic

    Science.gov (United States)

    Apkaryan, A. S.; Kudyakov, A. I.

    2015-01-01

    Based on broken glass, clay and organic additives granular insulating glass crystalline material and technology of its receipt are developed. The regularities of the effect of composition and firing temperature on the properties of the granules are specified. The resulting granular thermally insulating material is produced with a bulk density of 260-280 kg/m3 pellet strength - 1.74 MPa, thermal conductivity - 0.075 W/m °C, water absorption - 2.6 % by weight. The effect of the basic physical characteristics of the components of the charge on the process of pore formation is studied. According to the research results, basic parameters affecting the sustainability of the swelling glass are specified. Rational charge composition, thermal and gas synthesis mode are chosen so that the partial pressure of gases is below the surface tension of the melt. This enables the formation of granules with small closed pores and vitrified surface. The article is the result of studies on the application of materials for pipe insulation of heating mains with foamed glass ceramics.

  5. A sticky situation: management of spray polyurethane foam insulation in body orifices.

    Science.gov (United States)

    Sowerby, Robert J; Sowerby, Leigh J; Vinden, Chris

    2011-11-01

    Spray polyurethane foam insulation is commonly used in the construction industry to fill gaps, seal, and insulate. We present three cases of intentional spray foam insertion in body orifices and discuss the management of such situations in the emergency department. This series includes a case of oral foam insertion used in a suicide attempt by suffocation and two cases of rectal insertion. All of these cases had potential long-term consequences; one was life-threatening. To our knowledge, this is the first published report on the medical management and removal of foam insulation from body orifices. In all three cases, the foam insulation material was successfully removed after allowing the material to harden.

  6. Carbon nanotube based hybrid nanocarbon foam

    Science.gov (United States)

    Shahrizan Jamal, M.; Zhang, Mei

    2017-03-01

    Carbon nanotube (CNT) based nanocarbon foams (NFs) and the hybrid nanocarbon foams (HNFs) are fabricated in this work. The NFs are formed by using poly(methyl methacrylate) microspheres as a template to create micro-scaled pores. The cell walls are made of CNT networks with nano-scaled pores. The interconnections among CNTs are secured using graphene and nanographite generated via carbonization of polyacrylonitrile. The resulting NFs are ultra-lightweight, highly elastic, electrically and thermally conductive, and robust in structure. The HNFs are made by infiltrating thermoplastic polymer into the NFs in a controllable procedure. Compared to NFs, the HNFs have much higher strength, same electrical conductivity, and limited increase in density. The compressive strength of the HNF increased more than 50 times while the density was changed less than 10 times due to the polymer infiltration. It is found that the deformed HNFs can recover in both structure and property when they are heated over the glass transition temperature of the infiltrated polymer. Such remarkable healing capability could broaden the applications of the HNFs.

  7. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  8. Infrared Thermography As Quality Control For Foamed In-Place Insulation

    Science.gov (United States)

    Schwartz, Joel A.

    1989-03-01

    Since November of 1985, FOAM-TECH, INC. has been utilizing an I.S.I. Model 91 Videotherm Camera to quality control the installation of foamed in-place polyurethane and polyisocyanurate insulation. Monitoring the injection of foam into the walls and roofs of new construction and during the the retrofitting of older buildings has become an integral and routine step in daily operations. The Videotherm is also used to monitor the injection of foam into hot water tanks, trailer bodies for refrigeration trucks, and pontoons and buoys for flotation. The camera is also used for the detection of heat loss and air infiltration for conventionally insulated buildings. Appendix A are thermograms of foamed in-place insulation.

  9. Damage to thermal insulation foams in low-slope roof systems caused by simulated foot traffic

    National Research Council Canada - National Science Library

    Liu, Karen K; Booth, R. J

    1999-01-01

    The results indicated that common.ly used foam plastic roof insulations will be damaged if exposed to foot traffic, and that their protection with fibrous overlay boards as recommended by roofing contractor associations continues...

  10. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  11. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  12. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam and Aluminum Foam Filled Structures

    Directory of Open Access Journals (Sweden)

    Joerg Weise

    2012-06-01

    Full Text Available The aim of this work is to evaluate the effect of different densities of hybrid aluminum polymer foam on the frequency behavior of a foam filled steel structure with different ratios between steel and foam masses. The foam filled structure is composed of three steel tubes with a welded flange at both ends bolted together to form a portal grounded by its free ends. Structure, internal and ground constraints have been designed and manufactured in order to minimize nonlinear effects and to guarantee optimal constraint conditions. Mode shapes and frequencies were verified with finite elements models (FEM to be in the range of experimental modal analysis, considering the frequency measurement range limits for instrumented hammer and accelerometer. Selected modes have been identified with suitable modal parameters extraction techniques. Each structure has been tested before and after filling, in order to compute the percentage variation of modal parameters. Two different densities of hybrid aluminum polymer foam have been tested and compared with structures filled with aluminum foams produced using the powder compact melting technique. All the foam fillings were able to suppress high frequency membrane modes which results in a reduction of environmental noise and an increase in performance of the components. Low frequency modes show an increase in damping ratio only when small thickness steel frames are filled with either Hybrid APM or Alulight foam.

  13. Emission of volatiles from spray polyurethane foam (SPF) insulated crawl spaces

    NARCIS (Netherlands)

    Havermans, J.B.G.A.

    2014-01-01

    The emission of (di)isocyantes, polyols and blowing agents from curing Spray Polyurethane Foam (SPF) was studied in a house having its crawl space recently insulated. Before insulation a blank measurement was made and he emission was followed up to 144 hours after the insolation application. The

  14. Emission of volatiles from spray polyurethane foam (SPF) insulated crawl spaces

    NARCIS (Netherlands)

    Havermans, J.B.G.A.

    2014-01-01

    The emission of (di)isocyantes, polyols and blowing agents from curing Spray Polyurethane Foam (SPF) was studied in a house having its crawl space recently insulated. Before insulation a blank measurement was made and he emission was followed up to 144 hours after the insolation application. The emi

  15. Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013)

    Science.gov (United States)

    2014-06-01

    Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a

  16. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...

  17. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  18. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  19. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  20. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  1. Cryogenic testing of a foam-multilayer insulation concept in a simulated prelaunch environment

    Science.gov (United States)

    Martin, James J.

    1992-07-01

    NASA-Marshall has devised an upper-stage vehicle-applicable reusable cryogenic insulation thermal-control system which employs spray-on foam insulation (SOFI) that is attached to the cryotank wall and covered by 17-sheet multilayer insulation composed of double-aluminized mylar and Dacron scrim. Four prelaunch test simulations have been conducted for the case of LH2 with gaseous N2 purge gas. Test results indicate that the SOFI surface temperature was sufficiently high to preclude atmospheric oxygen and nitrogen liquefaction.

  2. Nanocellular polymer foams as promising high performance thermal insulation materials

    NARCIS (Netherlands)

    Liu, S.; Duvigneau, J.; Vancso, G.J.

    2015-01-01

    Low density, nanocellular polymer nanocomposite foams are considered as a promising new class of materials with many promising applications, for example to passively enhance the energy efficiency of buildings. This paper discusses recent developments in this field of polymer materials science. Parti

  3. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    Science.gov (United States)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  4. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Global warming can be defined as a gradual increase in the overall temperature of the earth’s atmosphere. A lot of research work has been carried out to reduce that heat inside the residence such as the used of low density products which can reduce the self-weight, foundation size and construction costs. Foamed concrete it possesses high flow ability, low self-weight, minimal consumption of aggregate, controlled low strength and excellent thermal insulation properties. This study investigate the characteristics of lightweight foamed concrete where Portland cement (OPC was replaced by hollow glass microsphere (HGMs at 0%, 3%, 6%, 9% by weight. The density of wet concrete is 1000 kg/m3 were tested with a ratio of 0.55 for all water binder mixture. Lightweight foamed concrete hollow glass microsphere (HGMs produced were cured by air curing and water curing in tank for 7, 14 and 28 days. A total of 52 concrete cubes of size 100mm × 100mm × 100mm and 215mm × 102.5mm × 65mm were produced. Furthermore, Scanning Electron Microscope (SEM and X-ray fluorescence (XRF were carried out to study the chemical composition and physical properties of crystalline materials in hollow glass microspheres. The experiments involved in this study are compression strength, water absorption test, density and thermal insulation test. The results show that the compressive strength of foamed concrete has reached the highest in 3% of hollow glass microsphere with less water absorption and less of thermal insulation. As a conclusion, the quantity of hollow glass microsphere plays an important role in determining the strength and water absorption and also thermal insulation in foamed concrete and 3% hollow glass microspheres as a replacement for Portland cement (OPC showed an optimum value in this study as it presents a significant effect than other percentage.

  5. Introduction to the adhesive bonding session. [foam system for attaching thermal insulation on space shuttle

    Science.gov (United States)

    Mccarty, J. E.

    1972-01-01

    Space shuttle unique requirements call for the development of a specific adhesive system to reliable attach reusable surface insulation. A low density foam system has been developed that provides strain isolation from the support structure and remains structurally stable in space shuttle thermal environment. Surface preparation and its stabilization by an adhesive primer system are the most important factors in preventing corrosion from reducing the reliability and durability of the adhesive bonding component.

  6. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  7. Recovery Act. Advanced Building Insulation by the CO2 Foaming Process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science and Technology Network, Inc., Lancaster, PA (United States)

    2013-12-30

    In this project, ISTN proposed to develop a new "3rd" generation of insulation technology. The focus was a cost-effective foaming process that could be used to manufacture XPS and other extruded polymer foams using environmentally clean blowing agents, and ultimately achieve higher R-values than existing products while maintaining the same level of cost-efficiency. In the U.S., state-of-the-art products are primarily manufactured by two companies: Dow and Owens Corning. These products (i.e., STYROFOAM and FOAMULAR) have a starting thermal resistance of R-5.0/inch, which declines over the life of the product as the HFC blowing agents essential to high R-value exchange with air in the environment. In the existing technologies, the substitution of CO2 for HFCs as the primary foaming agent results in a much lower starting R-value, as evidenced in CO2-foamed varieties of XPS in Europe with R-4.2/inch insulation value. The major overarching achievement from this project was ISTN's development of a new process that uses CO2 as a clean blowing agent to achieve up to R-5.2/inch at the manufacturing scale, with a production cost on a per unit basis that is less than the cost of Dow and Owens Corning XPS products.

  8. Sound absorption and insulation property of closed-cell aluminum foam

    Institute of Scientific and Technical Information of China (English)

    YU Hai-jun; LI Bing; YAO Guang-chun; WANG Xiao-lin; LUO Hong-jie; LIU Yi-han

    2006-01-01

    The closed-cell aluminum foams (specimen p=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimen p=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for sound insulation testing) were prepared by the method of molten body transitional foaming process. Its sound absorption property under frequency of 160-2 000 Hz and the sound insulation property under frequency of 100-4 000 Hz were tested. The sound absorption results show that the sound absorption property is much better under middle frequencies than that under low and high frequencies. The sound absorption coefficient climbs when frequency increases from 160 Hz to 800 Hz and then drops when frequency is increased from 800 Hz to 2 000 Hz. The function of the sound absorption mainly depends on the Helmholtz resonator, the microphone as well as cracks of closed-cell aluminum foam. The sound insulation experiments show that the sound reduction index (R) is small under low frequencies, and large under high frequencies; the weighted sound reduction index (Rw) and the highest sound reduction index (R)can reach around 30.8 dB and 43 dB, respectively.

  9. Nanoclay reinforced thermoplastic toughened epoxy hybrid syntactic foam: Surface morphology, mechanical and thermo mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Asif, A. [Propellants and Special Chemicals Group, Propellants Polymers Chemicals and Materials Entity, Vikram Sarabhai Space Centre, Trivandrum 695022 (India); Rao, V. Lakshmana, E-mail: rao_vl@yahoo.co.in [Propellants and Special Chemicals Group, Propellants Polymers Chemicals and Materials Entity, Vikram Sarabhai Space Centre, Trivandrum 695022 (India); Ninan, K.N. [Propellants and Special Chemicals Group, Propellants Polymers Chemicals and Materials Entity, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2010-09-15

    Epoxy hybrid syntactic foams were prepared with diglycidyl ether of bisphenol A (DGEBA) epoxy resin, diamino diphenyl sulfone (DDS), hydroxyl terminated polyether ether ketone having pendant methyl group (PEEKMOH), microballoon and nanoclay. The density of the foam was maintained between 0.6 and 0.72 g/cc for all compositions. Fracture toughness, tensile, flexural and compressive properties of the foam were evaluated with respect to clay and PEEKMOH concentrations. Morphology by X-ray diffraction revealed that the clay particles within the epoxy resin were intercalated for all the compositions of the syntactic foam. Fracture toughness and mechanical properties of the syntactic foam were significantly improved by the addition of nanoclay. A further enhancement in fracture toughness and mechanical properties was observed by the addition of PEEKMOH. The hybrid epoxy syntactic foam thus prepared exhibited 58%, 77% and 38% improvement in compressive strength, percentage elongation and fracture toughness, respectively, compared to the neat epoxy syntactic foam. The specific mechanical properties were found to be higher for the epoxy hybrid syntactic foam containing 3 wt% nanoclay and 3 wt% of PEEKMOH combination. The storage and loss modulus of the syntactic foam were also increased by the addition of nanoclay and PEEKMOH. A marginal improvement in T{sub g} was observed with clay incorporated syntactic foam. SEM analysis revealed that increased microcracking, crack path deflection, matrix deformation, plastic deformation, rupture of microballoons and debonded microspheres influencing on fracture toughness and mechanical properties of epoxy hybrid syntactic foam.

  10. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams.

  11. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  12. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids

    NARCIS (Netherlands)

    Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Altmannshofer, S.; Weiler, M.; Huebl, H.; Gesprägs, S.; Opel, M.; Gross, R.; Meier, D.; Klewe, C.; Kuschel, T.; Schmalhorst, J.M.; Reiss, G.; Shen, L.; Gupta, A.; Chen, Y.T.; Bauer, G.E.W.; Saitoh, E.; Goennenwein, S.T.B.

    2013-01-01

    We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or ma

  13. Energy consumption and commercial applications of liquid foam insulation technology for greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, J. [Environnement-MJ, Quebec City, PQ (Canada); De Halleux, D. [Laval Univ., Quebec City, PQ (Canada). Dept. des Sols et de Genie Agroalimentaire; Aberkani, K. [Laval Univ., Quebec City, PQ (Canada). Centre de Recherche en Horticulture; Vineberg, S. [Sunarc of Canada, Montreal, PQ (Canada)

    2010-07-01

    Sunarc of Canada has developed an energy saving system for commercial greenhouse growers. Large amounts of energy are needed to operate commercial greenhouses in northern latitudes, and as energy prices fluctuate, it is important to enable growers to control their microclimate. Sunarc's liquid foam insulating system was installed in 2007 at 2 sites in Ontario. The first site had an area of 14,700 ft{sup 2} while the other site had an area of 43,000 ft{sup 2}. Both facilities were monitored for energy use during the winter period. Night-time energy savings ranged from above 60 per cent to below 10 per cent depending on outdoor temperatures. The greater savings occurred during colder outdoor temperatures. Monthly average night-time energy savings from February, March and April were 46.6, 42, and 32.3 per cent respectively. After initial commercial testing, the liquid foam system was re-engineered to optimize operations, reduce fill time, and improve liquid foam formulas. The new system was installed at a third site in Quebec as a demonstration unit. The company is currently negotiating international distribution rights with several partners.

  14. Thermally insulating materials. Foamed concretes and wood-wool slabs; Materiaux thermiquement isolants. Beton mousse Panneaux en laine de bois

    Energy Technology Data Exchange (ETDEWEB)

    Aastrand, J.; Bessadi, L.; Johansson, Erik; Laid, S.; Teggour, H.; Toumi, N.

    1994-10-01

    The importance of thermal insulation, and the feasibility of introducing new thermal insulation materials to the Algerian market, were studied in a research cooperation between the National Centre for Building Research and Studies, Algeria, and the Department of Building Materials and Lund Centre for Habitat Studies, Lund University, Sweden. The project took place during 1991 - 1993. Computer calculations were done for a typical building in Ghardaia, northern Sahara. For an indoor temperature between 18-28 C, annual energy consumption can be reduced by 20% through insulation the roof. If one further insulates the walls and fits double-glazed windows, annual energy consumption is reduced by 40%. The aim of the project was to prepare for the introduction of new thermal insulation materials to the Algerian market. The materials studied were foamed concrete and wood-wool slabs. A swedish formula for foamed concrete was tested with local cement in a locally produced mixer in Algeria. Pilot production of wood-wool was done with two local types of eucalyptus. A great advantage of both foamed concrete and wood-wool slabs is that they are simple to integrate in traditional Algerian buildings. The report suggests applications for both materials, primarily as roof insulation. 54 refs., 50 figs., 11 tabs

  15. Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jiaan Liu

    2017-01-01

    Full Text Available Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS and X-ray diffraction (XRD, respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation.

  16. Final Report: Research Study on Development of Environmental Friendly Spray-on Foam Insulation (SOFI) for the External Tank (ET)

    Science.gov (United States)

    Stuckey, James M.

    1996-01-01

    The selection and quantification of four foams using a more environmentally friendly HCFC-141b blowing agent replacing foams that used the CFC-11 blowing agent for the external tank (ET) LWT has been addressed along with problems and solutions that were encountered during verification. The effort on two lower density spray foams for the ET SLWT are presented, but predicted weight savings were not encouraging. Suggestions for possible problem solving are included along with a new approach for selecting foams for qualification as back-up foams for the foams used on the ET LWT. We investigated three resins for use as thermally sprayed coatings for corrosion prevention on metal. The best coating was obtained with a thermoplastic polyimide resin. This coating has a good chance of meeting ET requirements. Possible third generation blowing agents have been shown usable in polyurethane spray and pour foams, and solubility in isocyannate foam components are acceptable. We considered aerogels as insulation materials on space vehicles, and suggested a liner for a liquid oxygen (LOX) composite tank.

  17. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part IV. Relevance of materials standards to problems associated with the use of urea-formaldehyde foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    Long, K.R.; Schutte, W.C.

    1981-02-01

    The insulation industry is essentially self-regulated; therefore, the question arises as to whether or not increased public regulation would be effective in controlling problems associated with the use of urea-formaldehyde foam as residential insulation. The relevancy of public regulation to controlling problems such as off-gassing of formaldehyde associated with the use of the products through the introduction of materials standards and quality assurance of manufacture and installation is discussed. The use of urea-formaldehyde insulation may be divided into three phases-manufacture, installation, and behavioral phases. The relevance of materials standards and quality assurance for each phase is discussed.

  18. Development, testing and application of extruded polystyrene foam (XPS) insulation with improved thermal properties; Polystyrol-Extruderschaum mit verbesserten waermetechnischen Eigenschaften - Entwicklung, Pruefung und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, Friedhelm [Forschung und Entwicklung Dow Building Solutions, Horgen (Switzerland); Merkel, Holger [Anwendungstechnik Dow Building Solutions, Schwalbach (Germany)

    2011-02-15

    Improved extruded polystyrene foam (XPS) insulation with lower thermal conductivity has been developed. This enables meeting the increased requirements for sustainable building insulation with better material efficiency. The proven mechanical and hygro-thermal properties of XPS insulation are maintained. This first product generation has been developed primarily for external perimeter insulation of basement walls and floors as well as for the insulation of cavity walls. The CO{sub 2} foaming technology meets the sustainability requirements for building products. (Copyright copyright 2011 Ernst and Sohn Verlag fuer Architektur und technische Wissenschaften GmbH and Co. KG, Berlin)

  19. Evaluation and Optimization Study on a Hybrid EOR Technique Named as Chemical-Alternating-Foam Floods

    Directory of Open Access Journals (Sweden)

    Xu Xingguang

    2017-01-01

    Full Text Available This work presents a novel Enhanced Oil Recovery (EOR method called Chemical-Alternating-Foam (CAF floods in order to overcome the drawbacks of the conventional foam flooding such as insufficient amount of in-situ foams, severe foam collapse and surfactant retention. The first part of this research focused on the comparison of conventional foam floods and CAF floods both of which had the same amount of gas and chemicals. It showed that: (1 CAF floods possessed the much greater Residual Resistance Factor (RRF at elevated temperature; (2 the accumulative oil recovery of the CAF floods was 10%-15% higher than that of the conventional foam flooding. After 1.8 Pore Volume (PV injection, the oil recovery reached the plateau for both methods; (3 CAF floods yielded the most amount of incremental oil at the 98% water cut (water content in the effluent, while the continuous foam floods achieved the best performance at 60% water cut. The second part of this work determined the optimal foam quality (gas/liquid ratio or the volume percent gas within foam, chemical/foam slug size ratio, cycle number and injection sequence for the CAF floods. It was found that the CAF was endowed with the peak performance if the foam quality, chemical/foam slug size ratio, cycle number was fixed at 80%, 1:1 and 3 respectively with the chemical slug being introduced ahead of the foam slug. Through systematic and thorough research, the proposed hybrid process has been approved to be a viable and effective method significantly strengthening the conventional foam flooding.

  20. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)

    2015-03-15

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.

  1. Thermal, Morphological and Rheological Properties of Rigid Polyurethane Foams as Thermal Insulating Materials

    Science.gov (United States)

    Kim, Ji Mun; Han, Mi Sun; Kim, Youn Hee; Kim, Woo Nyon

    2008-07-01

    The polyurethane foams (PUFs) were prepared by polyether polyols, polymeric 4,4'-diphenylmethane diisocyanate (PMDI), silicone surfactants, amine catalysts and cyclopentane as a blowing agent. Solid and liquid type fillers were used as a nucleating agent to decrease a cell size of the PUFs as well as improve the thermal insulating properties of the PUFs. The PUFs were prepared by adding solid and liquid type fillers in the range of 1 to 3 wt%. For the liquid type fillers, the cell size of the PUFs showed minimum and found to decrease compared the PUF without adding fillers. Also, thermal conductivity of the PUFs with adding fillers showed minimum. For the solid type fillers, cell size and thermal conductivity of the PUFs were observed to decrease with the filler content up to 3 wt%. From these results, it is suggested that the thermal insulating property of the PUFs can be improved by adding fillers as a nucleating agent. Also, storage and loss modulus of the PUFs will be presented to study gelling points of the PUFs.

  2. Ventilation Guidance To Promote the Safe Use of Spray Polyurethane Foam (SPF) Insulation, Incluyendo la Versión de Español

    Science.gov (United States)

    This guidance describes basic ventilation principles and strategies to help protect workers and building occupants and promote the safe use of spray polyurethane foam (SPF) insulation. Guia para la ventilacion sobre la application del aerosol de espuma.

  3. Organic-inorganic hybrid foams with diatomite addition: Effect on functional properties

    Science.gov (United States)

    Verdolotti, L.; D'Auria, M.; Lavorgna, M.; Vollaro, P.; Iannace, S.; Capasso, I.; Galzerano, B.; Caputo, D.; Liguori, B.

    2016-05-01

    Organic-inorganic hybrid foams were prepared by using metakaolin, diatomite as a partial (or total) replacement of metakaolin, as matrix, silicon and whipped protein as pore forming. The foamed systems were hardened at defined temperature and time and then characterized by mechanical point of view through compression tests and by functional point of view through fire reaction and acoustic tests. The experimental findings highlighted that the replacement of diatomite in the formulation affected the morphological structure of the foams and consequently their mechanical properties. In particular, the consolidation mechanism in the diatomite based-hybrid foams changed from geopolymerization to a silicate polycondensation mechanism. Therefore, mechanical performances enhanced with increasing of the diatomite content. Fire reaction tests, such as non-combustibility and cone calorimeter tests, showed positive thermal inertia of samples regardless of the content of diatomite.

  4. Experimental and analytical studies on a foam insulated rigid type transfer line for use with liquid nitrogen

    Science.gov (United States)

    Patidar, Jyotish; Sumanth, R. A.; Behera, Upendra; Kasthurirengan, Srinivasan

    2017-02-01

    The transfer line is one of the important components of any cryogenic system needed to transport the cryogenic fluid from one location to another. Towards our efforts to develop a long rigid-type transfer line for liquid nitrogen (LN2) to transfer this fluid from a 5000 litre capacity vertical storage tank to the Helium liquefier (Linde Model 1610) located at a distance of nearly 50 m, we designed and fabricated several units of straight section transfer lines of length ≈ 6.5 m and they were integrated to make the long length transfer line. Each unit was fabricated with 0.5 inch dia. copper inner tube supported by spacers within 2 inch dia. PVC outer tube. Each section was foam insulated after the necessary instrumentation for temperature measurements. The individual sub units were integrated together with a small bellow section in between to take care of thermal contraction during use. We present here the analytical and experimental studies of the cool down and mass flow characteristics of a single foam insulated unit. These experimental studies are representative results of the performances of the long length rigid foam insulated transfer line.

  5. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    Science.gov (United States)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  6. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Bozhilov, Krassimir N; Yan, Dong; Ozkan, Mihrimah; Ozkan, Cengiz S

    2013-11-11

    Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte.

  7. Comparison of energy consumption for a wood frame building using batt insulation and a foil backed EPS foam board

    Energy Technology Data Exchange (ETDEWEB)

    Dick, K.J.; Fedirchuk, K. [Department of Biosystems Engineering, University of Manitoba (Canada)

    2011-07-01

    With the depletion of energy resources and the rising concerns about the environment, increasing the energy performance of buildings in Canada, which are heavy energy consumers, is a high priority. Several different insulation options are available on the market and a new one, consisting of a one-inch thick sheet of expanded polystyrene (EPS) foam with a metallic foil covering, has been developed and claims to provide better performance than a wood frame structural with 5.5 inches of fiberglass batting; the aim of this study is to verify if that claim is valid. Two buildings were designed, each with one of the two insulation systems, at the University of Manitoba and their energy performances were compared. Results showed that to maintain a temperature, the foil-backed building needed twice the amount of energy that the fiberglass building did. Further tests will be performed once a reconfiguration of the insulation application has been done.

  8. Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding.

    Science.gov (United States)

    Ma, Jingjing; Zhan, Maosheng; Wang, Kai

    2015-01-14

    Ultralightweight silver nanowires (AgNWs) hybrid polyimide (PI) composite foams with microcellular structure and low density of 0.014-0.022 g/cm(3) have been fabricated by a facile and effective one-pot liquid foaming process. The tension flow generated during the cell growth induced the uniform dispersion of AgNWs throughout the cell walls. The interconnected AgNWs network in the cell walls combined with the large 3D AgNWs network caused by 3D structure of foams provided fast electron transport channels inside foams. The electromagnetic interference (EMI) shielding effectiveness (SE) of these foams increased with increasing AgNWs loading as well as the nanowire aspect ratio due to the increasing connections of the conduction AgNWs network. Appropriate surface treatment like etching or spraying facilitated the construction of the seamlessly interconnected 2D AgNWs network on the surface, which could effectively reflect electromagnetic waves. Maximum specific EMI SE of values of 1210 dB·g(-1)·cm(3) at 200 MHz, 957 dB·g(-1)·cm(3) at 600 MHz, and 772 dB·g(-1)·cm(3) at 800-1500 MHz were achieved in sprayed composite foams containing composite materials. The reflections of interconnected AgNWs networks on the surface and inside foams combined with the multiple reflections at interfaces contributed to the shielding effect.

  9. REMOVE AND RELEASE OF NUTRIENTS AFTER HYBRID PRE-TREATMENT OF ACTIVATED SLUDGE FOAM

    Directory of Open Access Journals (Sweden)

    Alicja Machnicka

    2017-02-01

    Full Text Available One of the problems in wastewater treatment technologies is the formation of foam/scum on the surface of bioreactors. The foam elimination/destruction can be carried out by various methods among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation of the foam microorganisms results in phosphates, ammonium nitrogen, magnesium and potassium transferred from the foam solids into the liquid phase. Application of both methods as a hybrid pre-treatment process caused in an increased concentration of phosphates of about 677 mg PO43- L-1, ammonium nitrogen about 41 mg N-NH4+ L-1. The concentration of Mg2+ and K+ in the solution increased from 6.2 to 31.1 mg Mg2+ L-1 and from 22.4 to 102.0 mg K+ L-1, respectively. The confirmation of physicochemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration was IR analysis. It was demonstrated that the disintegration of foam permits removal of a part of nutrients in the form of struvite.

  10. Nanoporous gold on three-dimensional nickel foam: An efficient hybrid electrode for hydrogen peroxide electroreduction in acid media

    Science.gov (United States)

    Ke, Xi; Xu, Yantong; Yu, Changchun; Zhao, Jie; Cui, Guofeng; Higgins, Drew; Li, Qing; Wu, Gang

    2014-12-01

    A hybrid structure of nanoporous gold (NPG) on three-dimensional (3D) macroporous Ni foam has been synthesized by electrodeposition of Au-Sn alloy film followed by a facile chemical dealloying process under free corrosion conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to characterize the morphology and structure of the NPG/Ni foam hybrids. It is shown that the Ni foam skeletons are uniformly wrapped by the NPG film which is composed of bicontinuous nanostructures consisting of interconnected ligaments and nanopores. Electroreduction of H2O2 on the NPG/Ni foam hybrid electrode in acid media is investigated by linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy. It is found that such hierarchical porous electrode displays superior activity, durability and mass transport property for H2O2 electroreduction. These results demonstrate the potential of the NPG/Ni foam hybrid electrodes for the applications in fuel cell technology.

  11. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  12. Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams.

    Science.gov (United States)

    Takigami, Hidetaka; Watanabe, Mafumi; Kajiwara, Natsuko

    2014-12-01

    Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of HBCDs and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of HBCDs contained in the EPS- and XPS-added RDFs, were 140 and 1100 mg kg(-1), respectively. In which γ-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and α-HBCD accounted for 73% of the total HBCDs in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840 °C and 900 °C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30 min and three seconds, respectively. HBCDs were steadily degraded in the combustion chambers and α-, β-, and γ-HBCD behaved similarly. Concentration levels of the total HBCDs in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ngmN(-3), respectively. HBCDs were also not detected (polystyrene is increased in the input wastes just to make sure of formation prevention and emission control of PBDD/DFs. The concentrations and congener patterns of PCDD/DFs and dl-PCBs in the samples during the three experiments were not affected by an addition of HBCDs.

  13. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  14. OBTAINMENT AND PHYSICO-MECHANICAL PROPERTIES OF THE FOAMED HEAT-INSULATING MATERIAL BASED ON ALKALI SILICATE COMPOSITION AND SHUNGITE

    Directory of Open Access Journals (Sweden)

    V. A. Lomonosov

    2015-01-01

    Full Text Available Physical and mechanical properties of foamed heat-insulating material based on alkali silicate composition and shungite were investigated. The studies determined the ratio of the components of the charge with which it is possible to obtain the optimal ratio of mechanical properties/thermal conductivity. Found that composite materials obtained from shungite filler, have a more porous structure (up to 76% of the volume of the material and are more uniform distribution of pore size (from 0.11 to 0.2 mm

  15. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate

    Institute of Scientific and Technical Information of China (English)

    Wu Zhang; Yao Hui Qu; Li Jun Gao

    2012-01-01

    PbO2/activated carbon (AC) hybrid supercapacitor in H2SO4 with a carbon foam current collector is studied.The PbO2/AC hybrid is designed with electrodeposited PbO2 thin film as positive electrode to match with AC negative electrode.The discharge curve shows capacitive characteristics between 1.88 V and 0.65 V.The hybrid system exhibits excellent energy and powe performance,with specific energy of 43.6 Wh/kg at a power density of 654.2 W/kg.The use of carbon foam current collecto ensures stability of the PbO2 electrode in H2SO4 environment.After 2600 deep cycles at 15 C high rate of charge/discharge,the capacity remains nearly unchanged from its initial value.

  16. The Use of Biodiesel Residues for Heat Insulating Biobased Polyurethane Foams

    Directory of Open Access Journals (Sweden)

    Nihan Özveren

    2017-01-01

    Full Text Available The commercial and biobased polyurethane foams (PUF were produced and characterized in this study. Commercial polyether polyol, crude glycerol, methanol-free crude glycerol, and pure glycerol were used as polyols. Crude glycerol is byproduct of the biodiesel production, and it is a kind of biofuel residue. Polyol blends were prepared by mixing the glycerol types and the commercial polyol with different amounts, 10 wt%, 30 wt%, 50 wt%, and 80 wt%. All types of polyol blends were reacted with polymeric diphenyl methane diisocyanates (PMDI for the production of rigid foams. Thermal properties of polyurethane foams are examined by thermogravimetric analysis (TGA and thermal conductivity tests. The structures of polyurethane foams were examined by Fourier Transformed Infrared Spectroscopy (FTIR. Changes in morphology of foams were investigated by Scanning Electron Microscopy (SEM. Mechanical properties of polyurethane foams were determined by compression tests. This study identifies the critical aspects of polyurethane foam formation by the use of various polyols and furthermore offers new uses of crude glycerol and methanol-free crude glycerol which are byproducts of biodiesel industry.

  17. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete

    OpenAIRE

    Zhang, Z.; Provis, J.L.; A. Reid; Wang, H.

    2015-01-01

    This study reports the synthesis and characterization of geopolymer foam concrete (GFC). A Class F fly ash with partial slag substitution was used for GFC synthesis by mechanical mixing of preformed foam. The GFCs exhibited 28 d compressive strengths ranging from 3 to 48 MPa with demolded densities from 720 to 1600 kg/m3 (105 °C oven-dried densities from 585 to 1370 kg/m3), with the different densities achieved through alteration of the foam content. The thermal conductivity of GFCs was in th...

  18. Biodiesel production by using lipase immobilized onto novel silica-based hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nicolas [Centre de Recherche Paul Pascal, Pessac (France); Institut des Sciences Moleculaires, Talence (France); Garcia, Annick Babeau; Oestreicher, Victor; Durand, Fabien; Backov, Renal [Centre de Recherche Paul Pascal, Pessac (France); Deleuze, Herve [Institut des Sciences Moleculaires, Talence (France); Laurent, Guillaume; Sanchez, Clement [Laboratoire de Chimie de la Matiere Condensee, Paris (France)

    2010-07-01

    The covalent immobilization of crude lipases within silica-based macroporous frameworks have been performed by combining sol-gel process, concentrated direct emulsion, lyotropic mesophase and post-synthesis functionalizations. The assynthesized open cell hybrid monoliths exhibit high macroscopic porosity, around 90%, providing interconnected scaffold while reducing the diffusion low kinetic issue. The entrapment of enzymes in such foams deals with a high stability over esterification of fatty acids, hydrolysis of triglycerides (not shown herein) and biodiesel production by transesterification. (orig.)

  19. Discussion on the Heat Insulation Technology of Rigid Polyurethane Foam External Wall%聚氨酯硬泡外墙隔热保温技术的探讨

    Institute of Scientific and Technical Information of China (English)

    董飞翔

    2014-01-01

    目前,聚氨酯硬泡外墙隔热保温技术是一种主要应用的保温技术。本文重点对聚氨酯硬泡外墙隔热保温技术进行了探讨。%At present, the polyurethane rigid foam exterior wal insulation technology is a major thermal insulation tech- nology. This paper focuses on the rigid polyurethane foam wal insulation technology.

  20. Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication...

  1. Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication...

  2. Methodology for characterization of corrosive agents of thermal insulating foams; Desenvolvimento de metodologia para caracterizacao de agentes corrosivos de espumas de isolamento termico

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Flavio V. Vasques de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Fundacao Coordenacao de Projetos, Pesquisas e Estudos Tecnologicos - COPPETEC; Mattos, Oscar R.; Mota, Rafael O. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Margarit-Mattos, Isabel C.P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Quintela, Joaquim P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Vieira, Magda M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Warming up oil and derivatives is a required procedure to make their transportation more efficient due to the increase in fluidity. Therefore, the use of thermally insulated pipeline becomes essential. The commonly practice has been the use of pipelines covered with an optional anticorrosive coating, followed by a polyurethane foam layer, as thermal insulator, and a polyethylene top coating for mechanical protection. During the life time of the pipeline, local ruptures of the polyethylene coating frequently occur, allowing the water permeation throughout the thermal insulator. This water may cause foam leaching that would release corrosive agents on the external wall pipe. The objective of the present work was to investigate the effects of the blowing agents, the addition of flame retardant to the foam as well as operating temperatures on the generation of corrosive solutions on the external wall of thermally insulated pipes. In this sense, polyurethane foams expanded with HCFC-141b, CFC-11 and CO{sub 2}, with and without flame retardant, were evaluated at the temperatures of 80 and 120 deg C. (author)

  3. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur; Domszy, Roman; Yang, Jeff

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  4. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Hariharan [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Klocke, Steve [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  5. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  6. Investigation of the effectiveness of nutrient release from sludge foam after hybrid pretreatment processes by IR analysis and EDX Quantification.

    Science.gov (United States)

    Machnicka, Alicja; Grübel, Klaudiusz

    2016-12-01

    One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.

  7. Application of foam concrete in thermal insulation roof engineering%泡沫混凝土在屋面保温工程中的应用

    Institute of Scientific and Technical Information of China (English)

    张英; 杨小芳; 赵芊; 于水军

    2011-01-01

    With lightweight,heat insulation,sound insulation,nonflammable and other characteristics,foam concrete is widely applied in building insulation, underground backfilling artificial landscape construction and other engineering. This article describes the application of foam concrete in thermal insulation roof engineering. Practice shows that foam concrete roof thermal insulation material has advantages of flexible design, easy construction,good integrity,good combination between the grass-roots and surface,long life and low cost, etc.%泡沫混凝土具有轻质、保温、隔声、不燃等特点,在建筑保温、地下工程回填、人造景观建设等工程中得到广泛应用.介绍了泡沫混凝土在屋面保温工程中的应用,实践表明,泡沫混凝土屋面保温材料具有设计灵活,施工方便,整体性好,与基层和面层结合牢固,使用寿命长,成本低廉等优点.

  8. Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment

    Science.gov (United States)

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Zhang, Zhengguo; Sun, Luyi

    2017-03-01

    Millions of tons of wastewater containing both inorganic and organic pollutants are generated every day, leading to significant social, environmental, and economic issues. Herein, we designed a graphene foam/TiO2 nanosheet hybrid, which is able to effectively remove both chromium (VI) cations and organic pollutants simultaneously. This graphene foam/TiO2 nanosheet hybrid was synthesized via a facile single-step one-pot hydrothermal method. The structure of the hybrid was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hybrid was evaluated for both chromium (VI) and organic pollutants (using methyl blue (MB) as an example) removal, and the removal mechanism was also investigated. During water treatment, graphene and TiO2 nanosheets function complimentarily, leading to a significant synergy. The hybrid exhibited outstanding chromium (VI) and MB removal capacity, much superior to the performance of the individual pure TiO2 sheets or pure graphene foam. The hybrid could also be easily separated after water treatment, and exhibited excellent recycle stability. Considering the very facile synthesis of this graphene foam/TiO2 nanosheet hybrid, and its excellent water treatment performance and recycle stability, such a hybrid is promising for large scale production for practical applications where both chromium (VI) cations and organic dyes are the main pollutants.

  9. Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment

    Science.gov (United States)

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Zhang, Zhengguo; Sun, Luyi

    2017-01-01

    Millions of tons of wastewater containing both inorganic and organic pollutants are generated every day, leading to significant social, environmental, and economic issues. Herein, we designed a graphene foam/TiO2 nanosheet hybrid, which is able to effectively remove both chromium (VI) cations and organic pollutants simultaneously. This graphene foam/TiO2 nanosheet hybrid was synthesized via a facile single-step one-pot hydrothermal method. The structure of the hybrid was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hybrid was evaluated for both chromium (VI) and organic pollutants (using methyl blue (MB) as an example) removal, and the removal mechanism was also investigated. During water treatment, graphene and TiO2 nanosheets function complimentarily, leading to a significant synergy. The hybrid exhibited outstanding chromium (VI) and MB removal capacity, much superior to the performance of the individual pure TiO2 sheets or pure graphene foam. The hybrid could also be easily separated after water treatment, and exhibited excellent recycle stability. Considering the very facile synthesis of this graphene foam/TiO2 nanosheet hybrid, and its excellent water treatment performance and recycle stability, such a hybrid is promising for large scale production for practical applications where both chromium (VI) cations and organic dyes are the main pollutants. PMID:28251998

  10. Development of method to characterize emissions from spray polyurethane foam insulation

    Science.gov (United States)

    This presentation updates symposium participants re EPA progress towards development of SPF insulation emissions characterization methods. The presentation highlights evaluation of experiments investigating emissions after application of SPF to substrates in micro chambers and i...

  11. Development of method to characterize emissions from spray polyurethane foam insulation

    Science.gov (United States)

    This presentation updates symposium participants re EPA progress towards development of SPF insulation emissions characterization methods. The presentation highlights evaluation of experiments investigating emissions after application of SPF to substrates in micro chambers and i...

  12. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Univ. of California, Riverside, CA (United States); Guo, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, I. [Univ. of California, Riverside, CA (United States); Ahmed, K. [Univ. of California, Riverside, CA (United States); Zhong, J. [Univ. of California, Riverside, CA (United States); Favors, Z. [Univ. of California, Riverside, CA (United States); Zaera, F. [Univ. of California, Riverside, CA (United States); Ozkan, M. [Univ. of California, Riverside, CA (United States); Ozkan, C. S [Univ. of California, Riverside, CA (United States)

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  13. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g(-1), areal capacitance: 1.11 F cm(-2)) which leads to an exceptionally high energy density of 39.28 Wh kg(-1) and power density of 128.01 kW kg(-1). The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  14. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    Science.gov (United States)

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  15. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    Science.gov (United States)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  16. HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-05-01

    Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.

  17. Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Isao; Ikami, Toshiichi.

    1990-09-17

    The insulating properties of transmission line insulators are reduced when the insulator becomes contaminated. Such contamination is promoted by the adherence of rainwater including dusts and/or absorbing of dusts and gas when the insulated surface is wetted with rainwater. It is known to treat insulators with water repellent compounds to avoid this problem, but known treatments have certain disadvantages such as loss of water repellency in a short time. An object of this invention is to overcome these disadvantages and to provide an insulator having a high usefulness and excellent water repellency which can be easily treated and maintained over a long period of time. It has been found that if a glass layer itself forming the surface of the insulator has water repellent properties, the water repellency of the insulator surface is not lost. According to the invention, the glassy surface is treated with silane or silazane to provide a surface layer of the proper water repellency. The insulator surface may be preferably treated in such a manner that the insulator is immersed in a bath of silane or silazane. Experiments are described to illustrate the performance of insulators treated according to the invention in comparison to non-treated insulators. 1 fig., 1 tab.

  18. Thermal conductivity and compressive strain of foam neoprene insulation under hydrostatic pressure

    Science.gov (United States)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2005-10-01

    The purpose of this study was to show that the thermal properties of foam neoprene under hydrostatic pressure cannot be predicted by theoretical means, and that uni-axial pressure cannot simulate hydrostatic compression. The thermal conductivity and compressive strain of foam neoprene were measured under hydrostatic pressure. In parallel, uni-axial compressive strain data were collected. The experimental set-up and data were put into perspective with past published studies. It was shown that uni-axial compression yielded strains 20-25% greater than did hydrostatic compression. This suggests the need for direct hydrostatic pressure measurement. For comparison to hydrostatic experimental data, a series of thermal conductivity theories of two phase composites based on particulate phase geometry were utilized. Due to their dependence on the porosity and constituent thermal conductivities, a model to predict porosity under hydrostatic pressure was used and an empirical correlation was derived to calculate the thermal conductivity of pure neoprene rubber from experimental data. It was shown that, although some agreement between experimental data and thermal conductivity theories was present, no particular theory can be used because they all fail to model the complex structure of the pores. It was therefore concluded that an experimental programme, such as reported here, is necessary for direct measurement.

  19. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  20. Recovery of waste and side products of apatite-nepheline and eudialyte ores processing in manufacture of heat-insulating foam glassy-crystalline materials

    Directory of Open Access Journals (Sweden)

    Suvorova O. V.

    2017-03-01

    Full Text Available Overburden and dressing tailings accumulated in the Murmansk region in impressive volumes represent serious challenges of both economic and ecological character. Maintenance of overburden dumps and dressing tailings involves considerable capital and material expenses. Therefore reprocessing of mining waste and manufacture of building materials, including heat-insulating foam-glass materials, is a promising trend. The work discusses the feasibility of recovering silica-containing waste and ore processing byproducts on the Kola Peninsula. Compositions and techniques for producing blocks and pellets from foam-glass crystalline materials have been developed. The effect of modifying agents on the foam-silicate materials' mechanical properties has been investigated. The production conditions for high-quality foam-silicate blocks have been identified. The foam silicates obtained under optimal conditions have featured a relatively low viscosity (0.3–0.5 g/cm³, high strength (up to 5 MPa and heat conductivity (0.09–0.107 Wt/m·K. Methods of improving the operating characteristics of foam silicates based on structure perfecting have been proposed. It has been found that as a result of shorttime baking of grainy samples the product has a grain strength of 5–6 MPa, density of 0.25–0.35 g/cm3 and a resistance to crushing in cylinder of 2.2–3 MPa, which is 2–3 times higher than that of a material subjected to one-stage thermal treatment. The water absorption of the material is 5–6 %, which is by a half lower compared to a one-stage treated material. The thermal conduction coefficient is 0.091–0.096 Wt/m·K. The obtained materials are recommended for use as heat-insulating surfacing and filling material for garrets, floors and roofs in construction and renovation of industrial and civic buildings

  1. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  2. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  3. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  4. F-15B in on ramp with close-up of test panels covered with advanced spray-on foam insulation materia

    Science.gov (United States)

    1999-01-01

    Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.

  5. Preparation and properties of cement-based foamed insulation material%水泥基泡沫保温材料的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    李小龙; 李国忠

    2013-01-01

      试验采用物理发泡工艺,制备纤维增强泡沫水泥保温材料。研究不同水灰比、泡沫掺量和聚丙烯纤维掺量对泡沫水泥保温材料性能的影响,确定纤维增强泡沫水泥保温材料的最佳配合比。试验结果表明,当水灰比为0.39、泡沫掺量为2.0 ml/g、纤维掺量为0.9%、稳泡剂掺量为0.3%、生石灰掺量为1.5%时,泡沫水泥保温材料的干密度为324 kg/m3,3 d抗压强度为1.051 MPa,3 d抗折强度为0.611 MPa,导热系数为0.069 W/(m·K),各性能均优于JG/T 266-2011《泡沫混凝土》的要求。利用扫描电子显微镜对泡沫水泥保温材料的微观结构进行观察与分析,探讨聚丙烯纤维的作用机理。%A kind of fiber reinforced foamed cement is prepared by physical foaming process, the paper describes the effects of different water cement ratio, and the additives of foam volume and polypropylene fiber on properties of foamed cement insulating material, and determines the best proportioning of fiber reinforced foamed cement.

  6. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining.

    Science.gov (United States)

    Oerther, D B; de los Reyes, F L; de los Reyes, M F; Raskin, L

    2001-10-01

    Quantitative oligonucleotide probe hybridizations, immunostaining, and a simple foaming potential test were used to follow an incident of seasonal filamentous foaming at the Urbana-Champaign Sanitary District, Northeast Wastewater Treatment Plant. A positive correlation was observed between an increase in foaming potential and the appearance of foam on the surfaces of aeration basins and secondary clarifiers. In addition, during the occurrence of foaming, the mass and activity of Gordonia spp. increased as measured by fluorescence in situ hybridization, antibody staining, and quantitative membrane hybridization of RNA extracts. An increase in Gordonia spp. rRNA levels from 0.25 to 1.4% of total rRNA was observed using quantitative membrane hybridizations, whereas during the same period, the fraction of mixed liquor volatile suspended solids attributed to Gordonia spp. increased from 4% to more than 32% of the total mixed liquor volatile suspended solids. These results indicate that both the activity and biomass level of Gordonia spp. in activated sludge increased relative to the activity aid the biomass level of the complete microbial community during a seasonal occurrence of filamentous foaming. Thus, Gordonia spp. may represent a numerically dominant but metabolically limited fraction of the total biomass, and the role of Gordonia spp. in filamentous foaming may be linked more tightly to the physical presence of filamentous microorganisms than to the metabolic activity of the cells.

  7. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries.

    Science.gov (United States)

    Hu, Guangjian; Xu, Chuan; Sun, Zhenhua; Wang, Shaogang; Cheng, Hui-Ming; Li, Feng; Ren, Wencai

    2016-02-24

    A 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical network is synthesized to achieve high sulfur loading and content simultaneously, which solves the "double low" issues of Li-S batteries. The obtained Li-S cathodes show a high areal capacity two times larger than that of commercial lithium-ion batteries, and a good cycling performance comparable to those at low sulfur loading.

  8. Design and Optimization of OpenFOAM-based CFD Applications for Modern Hybrid and Heterogeneous HPC Platforms

    KAUST Repository

    AlOnazi, Amani A.

    2014-02-01

    The progress of high performance computing platforms is dramatic, and most of the simulations carried out on these platforms result in improvements on one level, yet expose shortcomings of current CFD packages. Therefore, hardware-aware design and optimizations are crucial towards exploiting modern computing resources. This thesis proposes optimizations aimed at accelerating numerical simulations, which are illus- trated in OpenFOAM solvers. A hybrid MPI and GPGPU parallel conjugate gradient linear solver has been designed and implemented to solve the sparse linear algebraic kernel that derives from two CFD solver: icoFoam, which is an incompressible flow solver, and laplacianFoam, which solves the Poisson equation, for e.g., thermal dif- fusion. A load-balancing step is applied using heterogeneous decomposition, which decomposes the computations taking into account the performance of each comput- ing device and seeking to minimize communication. In addition, we implemented the recently developed pipeline conjugate gradient as an algorithmic improvement, and parallelized it using MPI, GPGPU, and a hybrid technique. While many questions of ultimately attainable per node performance and multi-node scaling remain, the ex- perimental results show that the hybrid implementation of both solvers significantly outperforms state-of-the-art implementations of a widely used open source package.

  9. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part I. The effects of temperature and humidity on formaldehyde release from urea-formaldehyde foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    Long, K.R.; Pierson, D.A.; Brennan, S.T.; Frank, C.W.; Hahne, R.A.

    1979-09-01

    The study is concerned primarily with those properties related to formaldehyde and its application as an ingredient in urea-formaldehyde resins. In particular the effects of temperature and humidity on urea-formaldehyde foam are discussed.

  10. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    Science.gov (United States)

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-03-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems.

  11. (H)-FCKW foamed insulating materials in the building industry in Germany. Estimation of the potential emissions up to the year 2010; (H)-FCKW-geschaeumte Daemmstoffe im Bauwesen in Deutschland. Schaetzung der potentiellen Emissionen bis zum Jahr 2010

    Energy Technology Data Exchange (ETDEWEB)

    Obernosterer, Richard [Ressourcen Management Agentur GmbH, Villach (Austria)

    2012-09-15

    CFCs and HCFCs are controlled substances under European Regulation (EC) No. 1005/2009. Article 22 of that Regulation provides that controlled substances contained in certain products (e.g. insulating materials) must be recovered, if technically and economically feasible, or be destroyed without prior recovery. Annex VII lists specific technologies for destruction, recycling or reclamation. In Germany, the use of (H)CFCs in insulating materials has been prohibited since 1995 (R 11 and R 12) and 2000 (R 22). At European level, use of HCFCs (141b and 142b) has been banned since 2002 mainly in the production of extruded polystyrene rigid foam and since 2003 in the production of polyurethane foams. Few data have become available to date on the amounts of (H)CFCs produced and banked up to the time the prohibitions went into effect. The present report therefore provides details on the amounts of (H)CFC-containing insulating materials installed in Germany and estimates the quantities of (H)CFCs still present in them. The study focuses on rigid XPS foam and rigid PU foam used in the construction sector, due to the original objective of the study and the quantitative significance of these foams. XPS insulating foams: XPS panels were assumed to have an average density of 33 kg/m3. Based on annual foam use (volume), density, the market shares of the blowing agents, and blowing agent content in the foam, the annual increase in banked amounts of blowing agents was estimated. Annual fugitive losses were deducted from those banks, specific to the relevant products and blowing agents. As result a bank of approximately 43.7 kt or 15 000 t-ODP was estimated for Germany in 2009. PU insulating foams: Based on annual foam use (volume), density (assumed to be 41 kg/m3 for PU sandwich panels and 33 kg/m3 for other PU products), the market shares of the blowing agents, and blowing agent content in the foam, the annual increase in banked amounts of blowing agents was estimated. Annual

  12. Technology Solutions Case Study: Insulating Concrete Forms

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  13. Final Report: Use of Graphite Foam as a Thermal Performance Enhancement of Heavy Hybrid Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James William [ORNL; Conklin, Jim [ORNL

    2011-06-01

    Oak Ridge National Laboratory's graphite foam has the potential to be used as a heat exchanger for the Army's Future Combat System Manned Ground Vehicle and thus has the potential to improve its thermal performance. The computational fluid dynamics (CFD) program FLOW3D was used to develop a new CFD model for the graphite foam to be used in the development of a proper heat exchanger. The program was calibrated by first measuring the properties of the solid foams and determining the parameters to be used in the CFD model. Then the model was used to predict within 5% error the performance of finned foam heat sinks. In addition, the f factors and j factors commonly used to predict pressure drop and heat transfer were calculated for both the solid and finned structures. There was some evidence that corrugating the foams would yield higher j/f ratios than state of the art heat exchangers, confirming previously measured data. Because the results show that the CFD model was validated, it is recommended that the funding for Phases 2 through 5 be approved for the design of both the finned heat exchanger using tubes and round fin structures and the solid foam design using corrugated foams. It was found that the new CFD model using FLOW3D can predict both solid foam heat transfer and finned foam heat transfer with the validated model parameters. In addition, it was found that the finned foam structures exhibited j/f ratios that indicate that significant heat transfer is occurring within the fin structures due to aerodynamically induced flow, which is not present in solid aluminum fin structures. It is possible that the foam surfaces can act as turbulators that increase heat transfer without affecting pressure drop, like the vortex generators seen in state of the art heat exchangers. These numbers indicate that the foam can be engineered into an excellent heat exchanger. It was also found that corrugating the solid foams would increase the j/f ratio dramatically

  14. Materials Assessment of Insulating Foam in the 9977 Shipping Package for Long-Term Storage - Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-01

    The 9977 shipping package is being evaluated for long-term storage applications in the K-Area Complex (KAC) with specific focus on the packaging foam material. A rigid closed cell polyurethane foam, LAST-A-FOAM® FR-3716, produced by General Plastics Manufacturing Company is sprayed and expands to fill the void between the inner container and the outer shell of the package. The foam is sealed in this annular space and is not accessible. During shipping and storage, the foam experiences higher than ambient temperatures from the heat generated by nuclear material within the package creating the potential for degradation of the foam. A series of experiments is underway to determine the extent of foam degradation. Foam samples of three densities have been aging at elevated temperatures 160 °F, 160 °F + 50% relative humidity (RH), 185 °F, 215 °F, and 250 °F since 2014. Samples were periodically removed and tested. After approximately 80 weeks, samples conditioned at 160 °F, 160 °F + 50% RH, and 185 °F have retained initial property values while samples conditioned at 215 °F have reduced intumescence. Samples conditioned at 250 °F have shown the most degradation, loss of volume, mass, absorbed energy under compression, intumescence, and increased flammability. Based on the initial data, temperatures up to 185 °F have not yet shown an adverse effect on the foam properties and it is recommended that exposure of FR-3716 foam to temperatures in excess of 250 °F be avoided or minimized. Testing will continue beyond the 96 week mark. This will provide additional data to help define the long-term behavior for the lower temperature conditions. Additional testing will be pursued in an attempt to identify transition points (threshold times and temperatures) at the higher temperatures of interest, as well as possible benefits of aging within the relatively oxygen-free environment the foam experiences inside the 9977 shipping package.

  15. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  16. Center for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.

    Science.gov (United States)

    Wood, Richard D

    2017-09-01

    Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.

  17. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    Science.gov (United States)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  18. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  19. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    Science.gov (United States)

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

  20. Modification of waterproof property for foamed polystyrene grain and foaming gypsum thermal insulation material%聚苯颗粒/发泡石膏保温材料的防水性能改性

    Institute of Scientific and Technical Information of China (English)

    潘红; 高子栋

    2015-01-01

    采用掺加自制憎水性能优异的SFA防水剂和外喷甲基硅酸钠防水剂两种方式对聚苯颗粒/发泡石膏保温材料进行复合防水改性,研究了不同掺量SFA防水剂对保温材料吸水率、软化系数、密度、导热系数和绝干抗折抗压强度的影响,以及SFA防水剂最优掺量下外喷不同次数甲基硅酸钠防水剂对保温材料吸水率、软化系数的影响,并分析了其作用机理。结果表明:当SFA防水剂的掺量为16%并外喷三次甲基硅酸钠防水剂时,保温材料的各项性能明显改善,其中2h、24h吸水率分别降至40.30%、40.36%,软化系数升高至0.61。%The waterproof property of foamed polystyrene grain and foaming gypsum thermal insulation material is modified by SFA waterproof agent with good hydrophobic property and spraying methyl-sodium. The influences of SFA waterproof agent on the absorption rate, softening coefficient, density, coefficient of thermal conductivity and dry flexural, compressive strength of insulation material are investigated. Based on doping the optimum amount of SFA waterproof agent, the effects of different spraying times of methyl-sodium on the absorption rate and softening coefficient are studied, and their mechanism is also analyzed. The experimental results show that the properties of the thermal insulation material are improved obviously with doping of 16%of SFA waterproof agent and spraying methyl-sodium 3 times. The absorption rates for 2h and 24h reduce to 40.30%and 40.36%respectively and the softening coefficient rises to 0.61.

  1. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading

    Science.gov (United States)

    Fíla, T.; Jiroušek, O.; Jung, A.; Kumpová, I.

    2016-11-01

    Hybrid foams are materials formed by a core from a standard open cell metal foam that is during the process of electrodeposition coated by a thin layer of different nanocrystalline metals. The material properties of the base metal foam are in this way modified resulting in higher plateau stress and, more importantly, by introduction of strain-rate dependence to its deformation response. In this paper, we used time-lapse X-ray micro-tomography for the mechanical characterization of Ni/Al hybrid foams (aluminium open cell foams with nickel coating layer). To fully understand the effects of the coating layer on the material's effective properties, we compared the compressive response of the base uncoated foam to the response of the material with coating thickness of 50 and 75 μm. Digital volume correlation (DVC) was applied to obtain volumetric strain fields of the deforming micro-structure up to the densification region of the deforming cellular structure. The analysis was performed as a compressive mechanical test with simultaneous observation using X-ray radiography and tomography. A custom design experimental device was used for compression of the foam specimens in several deformation states directly in the X-ray setup. Planar X-ray images were taken during the loading phases and a X-ray tomography was performed at the end of each loading phase (up to engineering strain 22%). The samples were irradiated using micro-focus reflection type X-ray tube and images were taken using a large area flat panel detector. Tomography reconstructions were used for an identification of a strain distribution in the foam using digital volumetric correlation. A comparison of the deformation response of the coated and the uncoated foam in uniaxial quasi-static compression is summarized in the paper.

  2. Kinetic features of foaming thermosetting polymers in the preparation of thermal insulation materials in the presence of a mineral filler

    Directory of Open Access Journals (Sweden)

    A.E. Burdonov

    2014-05-01

    Full Text Available This article presents the research of dependencies with a filler in the form of fly ash, the mixture temperature and other factors influencing the kinetic characteristics of composite foaming based on the mixture of thermosetting resin (phenol-formaldehyde resins of different brands, fly ash and special modifiers. The article shows the duration and multiplicity of foaming, as well as the induction period of the composition depending on the amount of the filler used and other process parameters. It was found out that to obtain a homogeneous composite, the minimum thickness of the upper layer in the wooden form (S = 1m2 should be not less than 4 mm. The reaction with fly ash Thermal Power Station-9 (Open joint-stock company “Irkutskenergo”, Angarsk starts by 27% earlier than the use of fly ash in Ust-Ilimsk Hydroelectric Power Station. Using the obtained data, we developed mathematical models, expressed by regression equations.

  3. Silica Foams for Fire Prevention and Firefighting.

    Science.gov (United States)

    Vinogradov, Alexander V; Kuprin, D S; Abduragimov, I M; Kuprin, G N; Serebriyakov, Evgeniy; Vinogradov, Vladimir V

    2016-01-13

    We report the new development of fire-extinguishing agents employing the latest technology of fighting and preventing fires. The in situ technology of fighting fires and explosions involves using large-scale ultrafast-gelated foams, which possess new properties and unique characteristics, in particular, exceptional thermal stability, mechanical durability, and full biocompatibility. We provide a detailed description of the physicochemical processes of silica foam formation at the molecular level and functional comparison with current fire-extinguishing and fire-fighting agents. The new method allows to produce controllable gelation silica hybrid foams in the range from 2 to 30 s up to 100 Pa·s viscosity. Chemical structure and hierarchical morphology obtained by scanning electron microscopy and transmission electron microscopy images develop thermal insulation capabilities of the foams, reaching a specific heat value of more than 2.5 kJ/(kg·°C). The produced foam consists of organized silica nanoparticles as determined by X-ray photoelectron spectroscopy and X-ray diffraction analysis with a narrow particle size distribution of ∼10-20 nm. As a result of fire-extinguishing tests, it is shown that the extinguishing efficiency exhibited by silica-based sol-gel foams is almost 50 times higher than that for ordinary water and 15 times better than that for state-of-the-art firefighting agent aqueous film forming foam. The biodegradation index determined by the time of the induction period was only 3 d, while even for conventional foaming agents this index is several times higher.

  4. Exotic surface states in hybrid structures of topological insulators and Weyl semimetals

    Science.gov (United States)

    Juergens, Stefan; Trauzettel, Björn

    2017-02-01

    Topological insulators (TIs) and Weyl semimetals (WSMs) are two realizations of topological matter usually appearing separately in nature. However, they are directly related to each other via a topological phase transition. In this paper, we investigate the question whether these two topological phases can exist together at the same time, with a combined, hybrid surface state at the joint boundaries. We analyze effective models of a three-dimensional TI and an inversion symmetric WSM and couple them in a way that certain symmetries, like inversion, are preserved. A tunnel coupling approach enables us to obtain the hybrid surface state Hamiltonian analytically. This offers the possibility of a detailed study of its dispersion relation depending on the investigated couplings. For spin-symmetric coupling, we find that two Dirac nodes can emerge out of the combination of a single Dirac node and a Fermi arc. For spin-asymmetric coupling, the dispersion relation is gapped and the former Dirac node gets spin-polarized. We propose different experimental realization of the hybrid system, including compressively strained HgTe as well as heterostructures of TI and WSM materials.

  5. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... microscope above maximum foaming temperature gives a suitable foaming temperature for the remaining samples. We show that the foaming kinetics depend on the type of gas and the pressure. A critical pressure of around 20 MPa is found to give the largest expansion for all gasses. Samples are obtained with 100...

  6. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants.

    Science.gov (United States)

    Davenport, R J; Curtis, T P; Goodfellow, M; Stainsby, F M; Bingley, M

    2000-03-01

    The formation of viscous foams on aeration basins and secondary clarifiers of activated sludge plants is a common and widespread problem. Foam formation is often attributed to the presence of mycolic acid-containing actinomycetes (mycolata). In order to examine the relationship between the number of mycolata and foam, we developed a group-specific probe targeting the 16S rRNA of the mycolata, a protocol to permeabilize mycolata, and a statistically robust quantification method. Statistical analyses showed that a lipase-based permeabilization method was quantitatively superior to previously described methods (P < 0.05). When mixed liquor and foam samples were examined, most of the mycolata present were rods or cocci, although filamentous mycolata were also observed. A nested analysis of variance showed that virtually all of the measured variance occurred between fields of view and not between samples. On this basis we determined that as few as five fields of view could be used to give a statistically meaningful sample. Quantitative fluorescent in situ hybridization (FISH) was used to examine the relationship between foaming and the concentration of mycolata in a 20-m(3) completely mixed activated sludge plant. Foaming occurred when the number of mycolata exceeded a certain threshold value. Baffling of the plant affected foaming without affecting the number of mycolata. We tentatively estimated that the threshold foaming concentration of mycolata was about 2 x 10(6) cells ml(-1) or 4 x 10(12) cells m(-2). We concluded that quantitative use of FISH is feasible and that quantification is a prerequisite for rational investigation of foaming in activated sludge.

  7. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  8. 发泡混凝土和保温板在地暖系统中的应用效果对比%Foamed Concrete and Insulation Board in Floor Heating System

    Institute of Scientific and Technical Information of China (English)

    宁方军

    2013-01-01

    Through the system debugging and temperature testing examples, the foamed concrete and insulation board are analyzed on their utilization in floor heating system, providing references for choosing thermal insulation layer of the future engineering projects.%  通过系统调试、温度测试实例,对比说明发泡混凝土和保温板在地板采暖系统中应用效果,为以后工程项目选择发泡混凝土还是保温板作为保温层提供参考。

  9. The application of ceramic foam exterior insulation materials in construction%谈泡沫陶瓷外墙外保温材料在施工中的应用

    Institute of Scientific and Technical Information of China (English)

    宋磊

    2014-01-01

    介绍了泡沫陶瓷外墙外保温材料防火性能优异、环保节能、安装快捷等优点,从基层处理、弹控制线、锚固件安装等方面论述了泡沫陶瓷外墙保温系统的施工重点,为该材料在建筑行业的推广应用提供了技术支撑。%This paper introduced the exterior fire fighting performance,environmental protection and energy saving,quick installation and other advantages of ceramic foam exterior insulation materials,discussed the construction key points of ceramic foam exterior insulation system from primary processing,playing control line,anchor installation and other aspects,provided technical support for the popularization and application of the material in construction industry.

  10. 轻质砂浆复合聚氨酯板外墙外保温系统施工技术∗%Construction Technology of External Thermal Insulation System Based on Lightweight Mortar Composite with Rigid Polyurethane Foam Board

    Institute of Scientific and Technical Information of China (English)

    孙桂芳; 王永魁; 罗淑湘; 邱军付

    2014-01-01

    硬泡聚氨酯复合板是近两年发展形成的一种新型保温板材,该板材采用薄抹灰外墙外保温系统,许多工程应用后出现了板框可见、板缝裂缝等质量问题,轻质砂浆复合聚氨酯板外墙外保温系统能有效解决该问题。详细介绍了系统构造、组成材料的性能、工艺流程及施工要点,并对系统技术优势进行了分析,通过工程验证表明:轻质砂浆复合聚氨酯板外墙外保温系统是一项值得推广应用的外墙外保温技术。%Rigid polyurethane composite foam board is a new external thermal board. After application of the thin plastering external thermal insulation with rigid polyurethane foam board, some buildings appear the quality problems of visible board frames and cracking gaps of rigid polyurethane foam board. The external thermal insulation system based on lightweight mortar composite with rigid polyurethane foam board can successfully solve these problems. Technical structure, the performance of the composite materials, construction process and key points are introduced in detail,and the technical advantages in the system are analyzed. The engineering application result shows that external thermal insulation system based on lightweight mortar composite with rigid polyurethane foam board is worth popularizing and applying.

  11. Electrostatic fields in hybrid heterojunctions: Field-effect transistor, topological insulator, & thermoelectronic application

    Science.gov (United States)

    Ireland, Robert Matthew

    Organic semiconductors (OSC) are still surging in popularity for sustainable electronic devices, especially since they can perform as well as amorphous and polycrystalline silicon materials. Although OSCs have processing advantages that give rise to novel opportunities compared to inorganic semiconductors (ISCs), devices usually require inorganic materials for highly conductive connections or other functionality. Significantly, OSCs can be used to tune or modify the behavior of inorganic semiconductors (ISCs) by exploiting the junction between two semiconductors (a heterojunction). The possible creation of stable interfaces between ISCs and OSCs provides a practically limitless range of functionalities. Broadly, my goal is to study interfaces between OSCs and ISCs (hybrid heterojunctions) by testing devices of different configurations and altering the internal fields systematically, as well as with the aid of electron- and force-microscopy, and photoelectron spectroscopy. This thesis contains three major sections based around nascent, relevant applications: field-effect transistors, topological insulators, and thermoelectrics. First I study the effects of combining tellurium thin-films with OSC layers in field-effect transistors, where the organic acts both as a substrate modification layer and electrostatic gate. Secondly, I use electron withdrawing OSCs as gating materials for modifying Bi2Se3 in order to realize fundamental topological insulator behavior. Thirdly, I develop polymer-particle composites, including doping of the polymers and stabilization of inorganic particles with an electronic density of states that supports good thermoelectric behavior. We show that OSCs can undeniably be used to significantly modify properties of ISCs, namely tellurium, bismuth selenide, and organometallic compounds. I will first discuss the interfacial fields intrinsic to each heterojunction or device structure. Then I implement an additional electrostatic gate as part of the

  12. Modified Technology of Phenolic Foam Insulation Fire-Prevention Board%酚醛泡沫保温防火板改良技术的研究与应用

    Institute of Scientific and Technical Information of China (English)

    彭定忠

    2015-01-01

    The traditional phenolic foam insulation materials with light weight, small coefficient of thermal conductivity and good flame retardancy, as the preferred material, could substitute EPS and XPS board for thin plastering exterior insulation heat preservation system in building energy conservation engi-neering, but its faults such as brittle, poor toughness and low intensity and easy dregs, also restricts its ap-plication in building energy conservation project. Aimed at the shortcoming of traditional phenolic foam board, the performance of phenolic foam insulation materials is improved through experiment of adjusting ingredients, providing reference for the research and application of phenolic foam insulation materials from the experiment results analysis on the performance and characteristics.%传统的酚醛泡沫保温材料具有自重轻、导热系数小、阻燃性好的特点,成为取替EPS板或XPS板用于建筑节能工程外墙外保温薄抹灰保温体系中的首选材料,但是其质脆、韧性差、强度低、易掉渣的缺点也制约着其在建筑节能工程中的应用。针对传统酚醛泡沫板的缺点展开研究,通过实验调整酚醛泡沫保温材料的配料,来改进其各项性能。从实验检测结果分析其性能和特点,为研究和应用酚醛泡沫保温材料提供借鉴。

  13. Construction technology of waterproofing and insulation in spraying rigid polyurethane foam on external wall%外墙喷涂聚氨酯硬泡体防水保温一体化施工技术

    Institute of Scientific and Technical Information of China (English)

    付国永

    2012-01-01

      Rigid polyurethane foam is a new type of building material. Rigid polyurethane foam external wall insulation system is a thermal insulation system with excellent properties, which can achieve 65 % of energy conservation. This article describes characteristics, structure, construction process and construction technology of rigid polyurethane foam external thermal insulation system.%  聚氨酯硬泡体是一种新型建筑材料。聚氨酯硬泡体外墙外保温系统是技术先进、性能优良的保温体系,其应用和推广对于实现65%的节能目标具有重要意义。针对喷涂法介绍聚氨酯硬泡体外墙防水保温一体化系统的特点、构造、施工流程和施工工艺等。

  14. Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls.

    Science.gov (United States)

    Dai, Daoxin; Zhang, Ming

    2015-12-14

    The mode property and light propagation in a tapered silicon-on-insulator (SOI) nanowire with angled sidewalls is analyzed. Mode hybridization is observed and mode conversion between the TM fundamental mode and higher-order TE modes happens when light propagates in a waveguide taper which is used very often in the design of photonic integrated devices. This mode conversion ratio is possible to be very high (even close to 100%) when the taper is long enough to be adiabatic, which might be useful for some applications of multimode photonics. When the mode conversion is undesired to avoid any excess loss as well as crosstalk for photonic integrated circuits, one can depress the mode conversion by compensating the vertical asymmetry in the way of reducing the sidewall angle or introducing an optimal refractive index for the upper-cladding. It is also possible to eliminate the undesired mode conversion almost and improve the desired mode conversion greatly by introducing an abrupt junction connecting two sections with different widths to jump over the mode hybridization region.

  15. Calculation and Verification of Sound Insulation of Foam Aluminum Louver Sound-barrier%泡沫铝百叶窗声屏障隔声计算及验证

    Institute of Scientific and Technical Information of China (English)

    周强; 何宾; 伏蓉; 张春岩; 肖新标

    2015-01-01

    A 3D finite element model (FEM) of a louver sound barrier for sound insulation analysis was established. This model was verified by comparing the computation output with the result of testing. Considering that the louver was made of foamed aluminum. The influences of the flow resistance and the noise reduction coefficient of the foamed aluminum on the sound insulation of the louver sound barrier were investigated. The results show that the weighted sound insulation and the aluminum foam flow resistance have a linear relationship approximately. And small flow resistance of the aluminum foam can yield good sound insulation effect. The weighted sound insulation and the noise reduction coefficient have an exponential relationship. When the noise reduction coefficient exceeds 0.55, further increasing of the noise reduction coefficient has small influence on the weighted sound insulation only.%基于3D有限元法和隔声计算理论,将百叶窗叶片考虑成多孔吸声材料,建立开孔声屏障声学有限元隔声计算模型,并基于此模型分析泡沫铝材料属性对百叶窗声屏障隔声性能的影响。隔声计算模型通过现有理论与试验结果对比验证,理论验证不考虑泡沫铝材料,试验对比验证考虑泡沫铝材料。基于验证后的有限元隔声计算模型,调查泡沫铝材料流阻率和降噪系数对百叶窗声屏障隔声性能的影响。结果表明,声屏障计权隔声量与泡沫铝流阻率近似为线性关系,并且泡沫铝材料流阻率越小越好;声屏障计权隔声量与泡沫铝降噪系数呈指数关系,当降噪系数大于0.55时,进一步提高吸声材料的降噪系数对百叶窗声屏障隔声量影响较小。

  16. In-situ spectroscopy and nanoscale electronics in superconductor-topological insulator hybrid devices: a combined thin film growth and quantum transport study

    NARCIS (Netherlands)

    Ngabonziza, Prosper

    2016-01-01

    In this dissertation, we presented a combined thin film growth and quantum transport study on superconductor topological insulator hybrid devices. Understanding of the electronic properties of topological insulators (TIs), their preparation in high quality thin film form and their interaction with o

  17. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film.

    Science.gov (United States)

    Liu, Jilei; Chen, Minghua; Zhang, Lili; Jiang, Jian; Yan, Jiaxu; Huang, Yizhong; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2014-12-10

    The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.

  18. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  19. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  20. Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    NorthernSTAR

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  1. 皱纹外导体泡沫PE绝缘RF同轴电缆的衰减特性%The Attenuation Characteristic of Corrugated Outer Conductor and Foamed PE Insulated RF Coaxial Cable

    Institute of Scientific and Technical Information of China (English)

    李庆和

    2011-01-01

    Attenuation is the most important transmission characteristic of RF coaxial cables. The corrugation depth of the outer conductor and the tg δ of foamed PE are the main factors affecting the attenuation of thc coaxial cable with corrugated outer conductor and foamed PE insulation. Shallow corrugation and the cleaning of dielectric material are the effective approaches to reduce the attenuation of such kind of coaxial cables.%衰减是射频(RF)同轴电缆最重要的传输特性.外导体皱纹深度及泡沫聚乙烯(PE)的介质损耗角正切tg δ是影响皱纹外导体泡沫PE绝缘同轴电缆衰减的主要因素.浅皱纹结构及净化介质材料是降低该电缆衰减值的有效途径.

  2. Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams

    Directory of Open Access Journals (Sweden)

    Agda Aline Rocha de Oliveira

    2009-06-01

    Full Text Available Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of these glasses with the flexibility of polymers. In this work it was evaluated the effect of increasing the PVA content of the on structural characteristics and mechanical properties of hybrid. The hybrids were prepared with 70 wt. (% SiO2-30 wt. (% CaO and PVA fractions of 20 to 60 wt. (% by the sol-gel method. The structural and mechanical characterization was done by FTIR, SEM and compression tests. To reduce the acidic character of the hybrids due to the catalysts added, different neutralization solutions were tested. The calcium acetate alcoholic solution was the best neutralizing method, resulting in foams with final pH of about 7.0 and small sample contraction. The foams presented porosity of 60-85 wt. (% and pore diameters of 100-500 μm with interconnected structure. An increase of PVA fraction in the hybrids improved their mechanical properties. The scaffolds produced provided a good environment for the adhesion and proliferation of osteoblasts.

  3. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    OpenAIRE

    de los Reyes, F L; Ritter, W; Raskin, L.

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacteri...

  4. Open-celled polyurethane foam

    Science.gov (United States)

    Russell, L. W.

    1970-01-01

    Open-celled polyurethane foam has a density of 8.3 pounds per cubic foot and a compressive strength of 295 to 325 psi. It is useful as a porous spacer in layered insulation and as an insulation material in vacuum tight systems.

  5. New Flexible FR Polyurethane Foams for Energy Absorption Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of new polyurethane (PU) insulation foams through a non-toxic environmentally friendly composite approach. Target FR foams will exhibit high heat flow...

  6. New Flexible FR Polyurethane Foams for Energy Absorption Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Project involves development of new flexible FR polyurethane (PU)insulation foams through a non-toxic environmentally friendly composite approach. Foams have...

  7. PE闭孔泡沫塑料板、聚苯乙烯泡沫保温板在渠道防渗工程中的应用%Application of PE Closed-ceU Foam Board and Polystyrene Foam Insulation Board in Canal Seepage Control Engineering

    Institute of Scientific and Technical Information of China (English)

    王兴国

    2012-01-01

    Applying PE closed-cell foam board and polystyrene foam insulation board in canal seepage control engineering achieve certain success, and the impervious engineering quality, construction management and construction standards were greatly improved. Characteristics and application of PE closed-cell foam board were introduced, and application characteristic and the method of design and construction of PE closed-cell foam board in concrete lining of canal seepage control were elaborated.%在渠道防渗工程中的应用PE闭孔泡沫塑料板、聚苯乙烯泡沫保温板取得了一定成效,使防渗工程质量、建设管理和施工水平等方面有了很大提高。介绍了PE闭孔泡沫塑料板的特点和用途,阐述了PE闭孔泡沫塑料板在混凝土衬砌渠道防渗中的应用特点及设计与施工方法。

  8. Using NV centers to probe magnetization dynamics in normal metal/magnetic insulator hybrid system at the nanoscale

    Science.gov (United States)

    Zhang, Huiliang; Ku, Mark J. H.; Han, Minyong; Casola, Francesco; van der Sar, Toeno; Yacoby, Amir; Walsworth, Ronald L.

    2016-05-01

    Understanding magnetization dynamics induced by electric current is of great interest for both fundamental and practical reasons. Great endeavor has been dedicated to spin-orbit torques (SOT) in metallic structures, while quantitative study of analogous phenomena in magnetic insulators remains challenging where transport measurements are not feasible. Recently we have developed techniques using nitrogen vacancy (NV) centers in diamond to probe few-nanometre-scale correlated-electron magnetic excitations (i.e., spin waves). Here we demonstrate how this powerful tool can be implemented to study magnetization dynamics inside ferromagnetic insulator, Yttrium iron garnet (YIG) with spin injection from electrical current through normal metal (Platinum in our case). Particularly our work will focus on NV magnetic detection, imaging, and spectroscopy of coherent auto-oscillations in Pt/YIG microdisc. Magnetic fluctuations and local temperature measurements, both with nearby NV centers, will also be interesting topics relevant to SOT physics in Pt/YIG hybrid system.

  9. On the foamed cement insulation board with A1 level fireproof performance%A1级防火性能的发泡水泥保温板

    Institute of Scientific and Technical Information of China (English)

    陈伟良; 诸涤

    2012-01-01

    The A1 level foamed cement insulation board is a new building exterior insulation material with the highest level of fire prevention and low thermal conductivity coefficient.Its excellent heat preservation,fire prevention,compression and other comprehensive performances fully displays the high performance-to-price ratio.At the same time,the product can satisfy double building requirements of the fire protection and energy conservation.%A1级发泡水泥保温板是具有最高防火等级和低导热系数的新型建筑外保温材料,其优良的保温、防火、抗压性能充分显示了产品的高性价比,且同时满足消防防火和建筑节能双要求。

  10. Technical Status of Foam Insulation Material of External Wall and its Preparation with Sandstone Coal Gangue%外墙泡沫保温材料的技术现状及用砂岩质煤矸石试制

    Institute of Scientific and Technical Information of China (English)

    邢军; 李小庆; 孙晓刚; 邱景平

    2015-01-01

    砂岩质煤矸石和抛光砖泥都是工业固体废弃物,在国家提倡外墙保温材料革新升级和煤矸石资源化利用的背景下,开发煤矸石基外墙泡沫保温材料,既可以实现建筑节能和外墙的安全防火,又可以改善矿区生态环境,减少对宝贵土地资源的占用。在介绍了我国外墙保温材料产业现状和国内关于煤矸石基外墙泡沫保温材料研究现状的基础上,重点分析了试验原料的增塑性和发泡性,并进行了煤矸石基外墙泡沫保温材料的试制。结果表明,以辽宁朝阳矸石山砂岩质煤矸石和辽宁法库某陶瓷厂的抛光砖泥为主要原料,碳化硅和氧化镁为复合造孔剂,硼砂为助熔剂,经陈化—成型—烧结工序,试制出了具有一定外观和性能的煤矸石基外墙泡沫保温材料,说明本试验技术路线是可行的。但要制备满足建筑业要求的、低成本的外墙泡沫保温材料,还需后续进行系统的原料配比和烧结制度优化试验。%Under the background of external wall thermal insulation materials innovation upgrading and coal gangue re-source utilization,as industrial solid wastes,sandstone coal gangue and polishing tile waste are used to develop the external wall insulation foam material,which can achieve construction energy-efficient and fire safety,improve the ecological environment of mining area,and reduce the waste of valuable land resources. Based on the introduction of China's status of external wall insu-lation materials industry and research on coal gangue external wall foam insulation material,the plasticity and foaming of the tested material were analyzed,and the coal gangue exterior wall foam insulation material was prepared. The results show that, coal gangue exterior wall foam insulation material with a certain appearance and property can be produced through the aging, molding,and sintering process, with sandstone coal gangue in Chaoyang City and

  11. 膨胀蛭石/水泥发泡保温材料的性能研究%Research on performance of expanded vermiculite and foamed cement thermal insulation material

    Institute of Scientific and Technical Information of China (English)

    章灿林; 汪婷; 杨光; 余剑英

    2015-01-01

    In order to improve the insulating performance and reduce the high water absorption of foamed cement thermal insulation material, expanded vermiculite is added into the insulation material to improve its performance, and moisture repellent is added to reduce its water absorption. The effect of three moisture repellents on insulation material is analyzed, of which, paraffin emulsion is best.%为了解决水泥发泡保温材料存在的保温性能差和吸水率高的问题,通过添加膨胀蛭石来提高水泥发泡保温隔热性能,添加憎水剂来降低水泥发泡保温材料的吸水率,讨论了三种不同的憎水剂对水泥发泡保温材料吸水率的影响。通过DRXS导热系数测定仪测定发泡保温层的导热系数;用差量法测量其吸水率。结果表明:膨胀蛭石能降低保温材料的导热系数,三种憎水剂能不同程度上降低保温材料的吸水率,其中石蜡乳液的效果更好。

  12. Investigation of the Mechanical Properties of Hybrid Carbon-Hemp Laminated Composites Used as Thermal Insulation for Different Industrial Applications

    Directory of Open Access Journals (Sweden)

    M. L. Scutaru

    2014-04-01

    Full Text Available Carbon-hemp composite laminate provides good thermal properties. For this reason this type of material is presently being used for various applications like insulator for airplanes, spaceships, nuclear reactors, and so forth. Unfortunately their mechanical properties are less studied. These characteristics are very important since they should be guaranteed also for important mechanical stress in addition to the thermal one. The present paper presents a study regarding the impact testing of some hybrid composite laminate panels based on polyester resin reinforced with both carbon and hemp fabric. The effects of different impact speeds on the mechanical behavior of these panels have been analyzed. The paper lays stress on the characterization of this hybrid composite laminate regarding the impact behavior of these panels by dropping a weight with low velocity.

  13. Plasma-Spray Metal Coating On Foam

    Science.gov (United States)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  14. A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.

    Science.gov (United States)

    Kim, Min Kyu; Kim, Dong Won; Shin, Dong Wook; Seo, Sang Joon; Chung, Ho Kyoon; Yoo, Ji Beom

    2015-01-28

    The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.

  15. Les silicates alcalins, matière de base des mousses minérales isolantes. Etude bibliographique Alkaline Silicates, As a Basic Material for Insulating Mineral Foams. Bibliographie Study

    Directory of Open Access Journals (Sweden)

    Lesage J.

    2006-11-01

    using additives, a highly varied range of polysilicate foams can be produced having a wide variety of insulation, solubility and mechanical-resistance properties, and even permeability prperties. This opens up the way to many possible industrial outlets.

  16. Insulation materials. Cellulose fiber and expanded polystyrene insulations

    OpenAIRE

    Viladot Bel, Cèlia

    2017-01-01

    The main role of thermal insulation materials in a building envelope are to prevent heat loss and provide thermal comfort for a building's interior. The factor that characterizes an insulation material's effectiveness is its thermal conductivity λ (measured in W/mK). The lower a material's thermal conductivity, the more effective it is as an insulator. Traditional insulation materials include glass fibre, stone wool, expanded polystyrene, and polyurethane foam. While these materials are effic...

  17. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan, Haifeng; Yuan, Bihe [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Hong, Ningning; Zhan, Jing; Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China)

    2015-08-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam.

  18. Thermal Insulation and Control Performance of Phase Change Heat Storage Graphite Foam-Paraffin Composite%泡沫石墨/石蜡复合相变储热材料的调温隔热性能

    Institute of Scientific and Technical Information of China (English)

    杨晟; 许勇铁; 由英来

    2012-01-01

    Graphite foam-paraffin composite as a phase change material (PCM) was manufactured by melting and perfusing the paraffin into the porous graphite foams, which has high thermal conductivity under vacuum condition. Thermal properties of the composite material were tested by using hot disk and differential scanning calorimeter (DSC). And the results show that paraffin can he uniformly absorbed into the pores network of graphite foams, and the composite exhibits much higher thermal conductivity than pure paraffin due to the heat transfer enhancement induced by graphite foams. Also, an experimental study was carried on the abilities of heat insulation and thermal control with the composite PCM which was applied as the building envelope. Comparing with the normal lightweight wall material, the composite material makes full use of the day and night temperature difference for the heat storage and release, thus represents better heat insulation effect from outdoor to inside. Meanwhile, it can evidently reduce the max temperature and temperature fluctuation in the room, hence greatly increases the indoor comfort level.%采用多次真空灌注方法将石蜡吸附到多孔的泡沫石墨中,制备出了泡沫石墨/石蜡复合相变储热材料。利用Hot Disk热常数分析仪和差示扫描量热分析(DSC)对该复合材料的热性能进行了测试,结果表明,石蜡充分吸附到泡沫石墨的蜂窝状微孔中,泡沫石墨的填充极大地强化了相变材料的导热能力。研究了将该复合材料用作墙体围护结构时的隔热和调温性能,并与普通轻质墙体材料作围护结构进行了对比,结果表明,复合相变储热材料能够有效地利用昼夜温差进行储热放热,有效地阻止了热量进入室内,可明显降低室内温度波动和最大值,提高人体舒适度,具有较好的调温隔热效果。

  19. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    Science.gov (United States)

    Ansari, Farahnaz; Sachse, Sophia; Michalowski, S.; Kavosh, Masoud; Pielichowski, Krzysztof; Njuguna, James

    2014-08-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness.

  20. Periodic Hartree-Fock and hybrid density functional calculations on the metallic and the insulating phase of (EDO-TTF)(2)PF6

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; Loosdrecht , van Paul H.M.; van Duijnen, Piet Th.; Broer, Ria

    2015-01-01

    The insulating and conducting phases of (EDO-TTF)(2)PF6 were studied by all electron, periodic Hartre-Fock and hybrid density functional calculations. Electronic properties, such as the electronic band structure, the density of states and the Fermi surface are discussed in relation to the metal-insu

  1. Preparation of Poly(p-phenylene sulfi de)/Carbon Composites with Enhanced Thermal Conductivity and Electrical Insulativity via Hybrids of Boron Nitride and Carbon Fillers

    Institute of Scientific and Technical Information of China (English)

    WU Jieli; WANG Jinwen; CHEN Feng

    2015-01-01

    The present work enhanced the thermal conductivity of poly(p-phenylene sulfi de)/expanded graphites and poly(p-phenylene sulfi de)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which simultaneously succeeded in raising the electrical conductivity of the systems. A two-step mechanical processing method which includes rotating solid-state premixing and inner mixing was adopted to improve dispersion of the hybrids, contributing to the formation of an interspered thermal conductive network. Similar synergic effect in thermal conductivity enhancement was discovered in the hybrid systems regardless of the dimension difference between the two carbonfi llers. Such is postulated to be the one satisfying advantage generated by the afore-mentioned network; the other is the insulativity of the hybrid systems given by the effective blockage of hexagonal boron nitride as an insulating material in our network.

  2. Field effect transistor with HfO2/Parylene-C bilayer hybrid gate insulator

    Science.gov (United States)

    Kumar, Neeraj; Kito, Ai; Inoue, Isao

    2015-03-01

    We have investigated the electric field control of the carrier density and the mobility at the surface of SrTiO3, a well known transition-metal oxide, in a field effect transistor (FET) geometry. We have used a Parylene-C (8 nm)/HfO2 (20 nm) double-layer gate insulator (GI), which can be a potential candidate for a solid state GI for the future Mott FETs. So far, only examples of the Mott FET used liquid electrolyte or ferroelectric oxides for the GI. However, possible electrochemical reaction at the interface causes damage to the surface of the Mott insulator. Thus, an alternative GI has been highly desired. We observed that even an ultra thin Parylene-C layer is effective for keeping the channel surface clean and free from oxygen vacancies. The 8 nm Parylene-C film has a relatively low resistance and consequentially its capacitance does not dominate the total capacitance of the Parylene-C/HfO2 GI. The breakdown gate voltage at 300 K is usually more than 10 V (~ 3.4 MV/cm). At gate voltage of 3 V the carrier density measured by the Hall effect is about 3 ×1013 cm-2, competent to cause the Mott transition. Moreover, the field effect mobility reaches in the range of 10 cm2/Vs indicating the Parylene-C passivated surface is actually very clean.

  3. Viscous Control of the Foam Glass Process

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    The production of foam glass as heat insulating material is an important industrial process because it enables low-cost recycling of glass waste from a variety of chemical compositions. Optimization of the foaming process of new glass waste compositions is time consuming, since many factors affect...... the foaming process such as temperature, particle size, type and concentration of foaming agent. The foaming temperature is one of the key factors, because even small temperature changes can affect the melt viscosity by several orders of magnitude. Therefore, it is important to establish the viscosity range...... in which the foaming process should take place, particularly when the type of recycled cullet is changed or several types of cullet are mixed in one batch. According to recent glass literature, the foaming process should occur at viscosity 103 to 105 Pa s. However, no systematic studies have hitherto been...

  4. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  5. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming.

    Science.gov (United States)

    Santo, Vítor E; Duarte, Ana Rita C; Popa, Elena G; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-08-20

    A new generation of scaffolds capable of acting not only as support for cells but also as a source of biological cues to promote tissue regeneration is currently a hot topic of in bone Tissue Engineering (TE) research. The inclusion of growth factor (GF) controlled release functionalities in the scaffolds is a possible strategy to achieve such goal. Platelet Lysate (PL) is an autologous source of GFs, providing several bioactive agents known to act on bone regeneration. In this study, chitosan-chondroitin sulfate nanoparticles loaded with PL were included in a poly(D,L-lactic acid) foam produced by supercritical fluid foaming. The tridimensional (3D) structures were then seeded with human adipose-derived stem cells (hASCs) and cultured in vitro under osteogenic stimulus. The osteogenic differentiation of the seeded hASCs was observed earlier for the PL-loaded constructs, as shown by the earlier alkaline phosphatase peak and calcium detection and stronger Runx2 expression at day 7 of culture, in comparison with the control scaffolds. Osteocalcin gene expression was upregulated in presence of PL during all culture period, which indicates an enhanced osteogenic induction. These results suggest the synergistic effect of PL and hASCs in combinatory TE strategies and support the potential of PL to increase the multifunctionality of the 3D hybrid construct for bone TE applications.

  6. Technology sandwich panels with mineral wool insulation

    OpenAIRE

    Tyulenev M.; Burtzeva M.; Mednikova E.

    2016-01-01

    Sandwich panel — self–supporting structure consisting of metal cladding and thermal insulation core. As a heat–insulating core used mineral wool, foamed plastics. Production of sandwich panels with insulation mineral wool performed on modular lines for the production of aggregate or conveyer scheme. Sandwich panels are used as load–bearing elements of the facades, as well as a roof covering.

  7. Property of GPES Rigid Foam Composite Plastic Insulation Board%GPES硬质泡沫复合塑料保温板性能研究

    Institute of Scientific and Technical Information of China (English)

    孙洪明; 韩菲菲; 许红升; 曹杨

    2016-01-01

    A new type of heat insulation board named GPES was prepared by several polymer and modified nano graphite particles, injecting high-pressure supercritical CO2 . Compared with the traditional thermal insulation material, GPES insulation board has higher roundness bubble and thinner bubble wall. Repeatability and reproducibility tests show that melting knot, dimensional stability, strength and other physical properties are significantly better than traditional organic heat insulation materials. Especially the lower and more stable thermal conductivity of GPES can significantly reduce thermal insulation layer thickness. Obviously GPES is the first choice of insulation materials with the implement of 75% and higher energy efficiency standard.%通过采用多种高分子聚合物,掺加改性纳米石墨颗粒进行混炼,高压注入超临界CO2流体,研发出一种新型的GPES硬质泡沫复合塑料保温板。与传统保温材料相比,该保温板的气泡圆度更高、泡壁更薄。重复性和再现性试验表明,其熔结性、尺寸稳定性、强度等物理性能指标均显著优于传统有机保温材料,尤其导热系数低且稳定,能够显著降低墙体保温层厚度,是节能75%及更高节能标准要求的首选保温材料之一。

  8. NON-AUTOCLAVE FOAM CONCRETE WITH MINERAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    Екатерина Анатольевна Бартеньева

    2017-02-01

    Full Text Available The influence of mineral additives on the properties of technical foam and its physical and mechanical parameters of non-autoclave foam concrete. It is determined that the introduction in its composition of 1% wollastonite and diopside to reduce the density of finished products, to increase their strength. Thus, there is improvement in the foam stability coefficient in the cement paste, increases its multiplicity. This highly dispersed mineral additives can be used as foam and plastics foam concrete stabilizers. The injection of researched additives allows to obtain the insulating foam with a stable space-frame structure.

  9. Foaming volume and foam stability

    Science.gov (United States)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  10. Microsphere Insulation Panels

    Science.gov (United States)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  11. Parameters affect foaming and foam stability during foam drilling

    Institute of Scientific and Technical Information of China (English)

    Hazaea Mohammed; Youhong SUN; Ould El Houssein Yarbana

    2007-01-01

    The authors presented indoor practice experiments of parameters affect on foaming and foam stability. Experiments were carried out and special equipments were used to determine foaming and foam stability; tests were tabulated and charted. The effects of chemical and physical parameters on foaming and foam stability have been conducted.

  12. Metal-insulator transition at the LaAlO3/SrTiO3 interface revisited: A hybrid functional study

    KAUST Repository

    Cossu, Fabrizio

    2013-07-17

    We investigate the electronic properties of the LaAlO3/SrTiO3 interface using density functional theory. In contrast to previous studies, which relied on (semi-)local functionals and the GGA+U method, we here use a recently developed hybrid functional to determine the electronic structure. This approach offers the distinct advantage of accessing both the metallic and insulating multilayers on a parameter-free equal footing. As compared to calculations based on semilocal GGA functionals, our hybrid functional calculations lead to a considerably increased band gap for the insulating systems. The details of the electronic structure show substantial deviations from those obtained by GGA calculations. This casts severe doubts on all previous results based on semilocal functionals. In particular, corrections using rigid band shifts (“scissors operator”) cannot lead to valid results.

  13. EXTRUDED POLYSTYRENE FOAM IN FLAT ROOFS

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-09-01

    Full Text Available In our article we prove the necessity of applying thermal insulation with low water absorption and resistance and preserving mechanical and thermophysical properties in corrosive environment in flat roofs, where there is always a danger of penetrating condensed moisture into the structure. As such material we offered extruded polystyrene foam - heat-insulating polymer material with uniformly distributed closed cells. The products are used in the form of slab insulation and special items - for forming slopes and venting.

  14. Foaming properties of guar foaming albumin

    OpenAIRE

    細見, 典子; Hosomi, Noriko; 原田, 麻子; Harada, Asako; 下山, 亜美; Shimoyama, Ami; 土居, 幸雄; Doi, Yukio

    2009-01-01

    From guar meal we recently isolated an albumin fraction with a high foaming ability, named guar foaming albumin (GFA) . Here, we further characterized the foaming activity, foam stability and surface tension of GFA solutions. Foaming activity and foam stability were estimated by measuring the conductivity of foam using a glass column with a conductivity cell. Surface tension was measured by the drop weight method using a stalagmometer. GFA showed higher foaming activity than casein at any pro...

  15. 功能性乳液界面剂在酚醛泡沫外墙保温系统中的应用%Study on the application of emulsion interface agent in phenolic foam panel for external thermal insulation system

    Institute of Scientific and Technical Information of China (English)

    沈志明; 李晴; 张美音

    2013-01-01

    通过自由基乳液聚合,合成具有核壳结构的苯丙乳液,以此乳液作为酚醛树脂泡沫材料的界面剂,考察了此种界面剂对酚醛树脂泡沫材料应用性能的影响.试验结果表明,用合成的苯丙乳液界面剂处理酚醛泡沫材料,可以有效地解决酚醛泡沫材料强度低、吸水率大、酸性强等方面的缺点,使得酚醛泡沫材料在建筑外墙保温系统中得到更广泛的应用.%Styrene-acnlic emulsions with core-shell structure had been prepared by the polymerization of free-base emulsion, and applied as interface agent on phenolic foam panel. The effects of this kind of interface agent on phenolic foam panel for external thermal insulation system were investigated. The results show that phenolic foam strength, water absorption (by mass) and pH value were improved by this emulsion interface agent,and made phenolic foams have a wide range of applications on external thermal insulation system.

  16. Light Flame Retardant Insulation Foam Materials Preparation Modified with Lignin and Old Polyurethane%木质素废旧聚氨酯制备轻型阻燃保温材料试验

    Institute of Scientific and Technical Information of China (English)

    庞久寅; 姜贵全; 罗来朋; 陈浩

    2015-01-01

    According to the ratio of phenolic resin,flame retardant agent,foaming agent,emulsifier,alkali lignin, lignin liquefaction of waste polyurethane, the waste polyurethane was prepared. The results show that:with the increase of curing agent, the shortening of curing time, the increase of apparent density, the enhancement of compressive strength, foam quality is better;adding flame retardant aluminum hypophosphite and diethyl aluminum hypophosphite can significantly improve the retardancy of phenolic resin;the effect are the best adding 5g aluminum phosphate and two ethyl aluminum hypophosphite. The light flame retardant insulation material has advantages of phenolic resin foam, improves the flame retardancy due to the addition of lignin, and using polyurethane as additive can greatly reduce the cost of production, protect environment, improve the utilization rate of resources.%按配比加入酚醛树脂、阻燃剂、发泡剂、乳化剂、碱木质素、液化废旧聚氨酯,制成木质素废旧聚氨酯。试验结果表明:随着固化剂的增加,固化时间缩短,表观密度增加,抗压强度增强,泡沫质量较好;加入次磷酸铝和二乙基次磷酸铝能明显改善酚醛树脂的阻燃性,加入5g次磷酸铝和二乙基次磷酸铝时效果最好。这种轻型阻燃保温材料具有酚醛树脂泡沫的优点,同时由于添加了木质素提高了阻燃性。采用废旧聚氨酯作为添加成分,可以大大减少生产成本,保护环境,提高了资源的利用率。

  17. Hybridization and crystal-field effects in Kondo insulators studied by means of core-level spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Fabio

    2015-04-13

    This thesis is mainly focused on the class of Kondo insulators, which also comprises Kondo semiconductors and semimetals. When the right conditions are met - i.e. for a certain number of electrons per unit cell and for certain symmetries of the electronic structure - the interaction between the conduction and f electrons opens a narrow hybridization gap close to the Fermi level. Here we investigate the Kondo semiconductor CeNiSn, as well as the CeM{sub 2}Al{sub 10} compound family with M=Ru, Os and Fe. Many explanations for the low-temperature behavior have been suggested, all of which stress the significance of the 4f crystalline-electric-field (CEF) ground state, which is investigated in the framework of this thesis. We determine the CEF wave functions in this compound family and quantify the degree of c-f hybridization in order to address speculations about the impact of hybridization on the magnetic order. In addition, on the search for parameters which correlate with ground-state properties in heavy-fermion compounds, we investigate the CEF ground states of the intermetallic substitution series CeRh{sub 1-x}Ir{sub x}In{sub 5} since its phase diagram covers all phases of interest, from antiferromagnetic to superconducting as well as regions of phase coexistence. To shed light on the issues above, namely the CEF ground state and the hybridization strength, respectively, two new experimental approaches are used: polarization-dependent X-ray absorption spectroscopy (XAS) and hard X-ray photoelectron spectroscopy (HAXPES). Recently, linearly polarized XAS at the Ce M{sub 4,5} edge has been proven to be highly useful when it comes to the determination of the 4f ground-state wave function in tetragonal rare earth systems. In the present thesis the same technique is applied to the above-mentioned materials, demonstrating that linearly polarized XAS can be employed to obtain an unambiguous and reliable picture of the CEF ground state even in Kondo-insulating systems

  18. DEVELOPMENT OF A NEW ENVIRONMENT-FRIENDLY INSULATION MATERIAL WITH SUGAR MUD AS FOAMING AGENT%糖滤泥作成孔剂研制环保型保温材料

    Institute of Scientific and Technical Information of China (English)

    焦宏涛; 高文元; 李长敏; 张玉苍

    2011-01-01

    In modem industry, large numbers of solid wastes not only pollute environment but also occupy a great quantity of land. In order to change the waste material into things of value and utilize resources in a reasonable way, experiments were done to prepare a new environment-friendly building insulation material with fly ash, waste glass and clay as raw materials,and sugar mud as foaming agent, through smashing, ball milling, drying, molding and sintering. The results show that the building insulation material whose volume density, flexural strength and porosity are 1.265 g/cm3, 14MPa and 35%,respectively, is prepared with the mixture of 25wt% fly ash, 28wt% sugar mud, 14wt% waste glass and 33wt% clay under the forming pressure of 20MPa and sintered at 1060℃ for 30 min.%以粉煤灰、废玻璃以及粘土为主要原料,糖滤泥为成孔剂,经粉碎、球磨、干燥、成形、烧成研制新型环保型保温材料.试验研究表明:以粉煤灰25wt%,糖滤泥28 wt%,废玻璃14 wt%,水曲柳33wt%,在成型压力为20MPa,烧成温度1060℃,保温时间30min下,可制备出体积密度为1.265g/cm3,抗折强度14 MPa,孔隙率达到35%的环保型保温材料.

  19. Spin foams

    CERN Document Server

    Engle, Jonathan

    2013-01-01

    The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.

  20. Preparation and Properties of Perlite Filling Rigid Polyurethane Foam Insulation Board%珍珠岩填充硬质聚氨酯泡沫保温板的制备与性能

    Institute of Scientific and Technical Information of China (English)

    张志敏; 张爱清; 刘书正; 雷鑫彬

    2012-01-01

    以珍珠岩为填料制备了聚醚型硬质聚氨酯泡沫材料(RPUF),研究了珍珠岩的填充量,珍珠岩粒径对RPUF板材的机械性能及导热性能的影响,确定了最佳的填料比例,珍珠岩的最佳填充量可达40%。通过加入阻燃剂TCPP和DMMP等,提高了珍珠岩填充RPUF保温板的阻燃性能,材料的最佳氧指数可达到34.1。%Flame-retardant rigid polyurethane foam insulation board was prepared by using perlite as filler.The effects of filling coefficient and particle size of perlite on the composites properties,such as mechanical and thermal conductivity,were investigated.The best filling coefficient of perlite was 40%.To further improve the flame resistant performance of the composites,TCPP and DMMP were used as the additional flame retardants,and the best limiting oxygen index(LOI) was 34.1.

  1. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  2. Macroporous polymer foams by hydrocarbon templating

    OpenAIRE

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control ov...

  3. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode

    Science.gov (United States)

    Zhang, Luojiang; Hui, Kwun Nam; San Hui, Kwan; Lee, Haiwon

    2016-06-01

    The synthesis of layered double hydroxide (LDH) as electroactive material has been well reported; however, fabricating an LDH electrode with excellent electrochemical performance at high current density remains a challenge. In this paper, we report a 3D hierarchical porous flower-like NiAl-LDH grown on nickel foam (NF) through a liquid-phase deposition method as a high-performance binder-free electrode for energy storage. With large ion-accessible surface area as well as efficient electron and ion transport pathways, the prepared LDH-NF electrode achieves high specific capacity (1250 C g-1 at 2 A g-1 and 401 C g-1 at 50 A g-1) after 5000 cycles of activation at 20 A g-1 and high cycling stability (76.7% retention after another 5000 cycles at 50 A g-1), which is higher than those of most previously reported NiAl-LDH-based materials. Moreover, a hybrid supercapacitor with LDH-NF as the positive electrode and porous graphene nanosheet coated on NF (GNS-NF) as the negative electrode, delivers high energy density (30.2 Wh kg-1 at a power density of 800 W kg-1) and long cycle life, which outperforms the other devices reported in the literature. This study shows that the prepared LDH-NF electrode offers great potential in energy storage device applications.

  4. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  5. Quantitative Use of Fluorescent In Situ Hybridization To Examine Relationships between Mycolic Acid-Containing Actinomycetes and Foaming in Activated Sludge Plants

    OpenAIRE

    Davenport, Russell J.; Curtis, Thomas P; GOODFELLOW, Michael; Stainsby, Fiona M.; Bingley, Marc

    2000-01-01

    The formation of viscous foams on aeration basins and secondary clarifiers of activated sludge plants is a common and widespread problem. Foam formation is often attributed to the presence of mycolic acid-containing actinomycetes (mycolata). In order to examine the relationship between the number of mycolata and foam, we developed a group-specific probe targeting the 16S rRNA of the mycolata, a protocol to permeabilize mycolata, and a statistically robust quantification method. Statistical an...

  6. Foam Microrheology

    Energy Technology Data Exchange (ETDEWEB)

    KRAYNIK,ANDREW M.; LOEWENBERG,MICHAEL; REINELT,DOUGLAS A.

    1999-09-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.

  7. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire; Sagnes, Isabelle; Raj, Rama [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Lenglé, Kevin; Gay, Mathilde; Bramerie, Laurent [Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes (France); CNRS-Foton Laboratory (UMR 6082), Enssat, BP 80518, 22305 Lannion Cedex (France); Braive, Rémy; Raineri, Fabrice, E-mail: fabrice.raineri@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Université Paris Diderot, Sorbonne Paris Cité, 75207 Paris Cedex 13 (France)

    2014-01-06

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  8. C-Streams. Material and energy flows of non-energy use throughout the life cycle, and CO{sub 2} abatement by products of the chemical industry - Current situation and perspectives. Vol. 2. The use of plastic foams for thermal insulation of buildings and the resulting effects on energy demand and carbon dioxide emission; C-STROeME. Material- und Energiestroeme des nichtenergetischen Verbrauchs ueber den Lebenszyklus und CO{sub 2}-Minderung durch Produkte der Chemischen Industrie - Stand und Perspektiven. Bd. 2. Einfluss des Einsatzes von Kunststoffen auf den Energiebedarf und die energiebedingten CO{sub 2}-Emissionen im Bereich der Waermedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Marscheider-Weidemann, F.; Reichert, J.

    1999-06-01

    The aim of this study is to analyse the net balances with regard to energy and CO{sub 2} for plastic foams used in thermal insulation. To this end, the energy demand required to produce the foams is determined first of all, and a calculation is then made of the amount of energy saved through the reduction in heat demand. By calculating the difference between these two totals the net balance is established. By analogy, the net CO{sub 2} emissions are also determined. All calculations are based on the total annual sales volumes in Germany of polyurethane foam (PUR), expanded polystyrene foam (EPS) and polystyrene extruder foam (XPS). Data published by the Association of Plastics Manufacturers in Europe (APME) are used to calculate the energy needed to manufacture these foams. To determine the amount of energy saved by using these insulating materials, the sales volumes in cubic metres (m{sup 3}) are first of all converted to square metres (m{sup 2}) based on the average insulation thicknesses as published in the literature. Subsequently, the various insulation materials are allocated first of all to different types of buildings and then to a specific application, i.e. walls, roof or cellar. By using average values for heat conduction (both with and without insulation) a calculation is finally made of the energy saving and reduction in emissions of CO{sub 2} that have been achieved from applying the foams. Because of their historical relevance in environmental policy, the use of CFCs as foaming agents has also been taken into account in this study. (orig.)

  9. The Environmental Impacts of Fire-Fighting Foams

    Science.gov (United States)

    Tureková, Ivana; Balog, Karol

    2010-01-01

    Extinguishing foams are commonly used for extinguishing the fire of flammable liquids, whereby their insulating, choking and quenching effects are exploited. The purpose of the paper is to consider and compare the foams currently used in fire departments, regarding mainly their high extinguishing effect (capability of faster aborted burning on the large surface at low foam consumption), but also their impact on the environment in each stage of their life cycle.

  10. RESEARCHES OF WORKING LIFE OF FOAM POLYSTYRENE OF BUILDING APPOINTMENT

    Directory of Open Access Journals (Sweden)

    Guyumdzhjan Perch Pogosovich

    2012-09-01

    Full Text Available Results of experimental researches of physicomechanical properties of foam polystyrene thermal insulation materials are presented in article. The operational resource was defined on materials subject to ageing, action of liquid excited environments and atmospheric impacts. The destructive processes leading to destruction of foam polystyrene are revealed.

  11. Foam Micromechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    Foam evokes many different images: waves breaking at the seashore, the head on a pint of Guinness, an elegant dessert, shaving, the comfortable cushion on which you may be seated... From the mundane to the high tech, foams, emulsions, and cellular solids encompass a broad range of materials and applications. Soap suds, mayonnaise, and foamed polymers provide practical motivation and only hint at the variety of materials at issue. Typical of mukiphase materiaIs, the rheoIogy or mechanical behavior of foams is more complicated than that of the constituent phases alone, which may be gas, liquid, or solid. For example, a soap froth exhibits a static shear modulus-a hallmark of an elastic solid-even though it is composed primarily of two Newtonian fluids (water and air), which have no shear modulus. This apparent paradox is easily resolved. Soap froth contains a small amount of surfactant that stabilizes the delicate network of thin liq- uid films against rupture. The soap-film network deforms in response to a macroscopic strain; this increases interracial area and the corresponding sur- face energy, and provides the strain energy of classical elasticity theory [1]. This physical mechanism is easily imagined but very challenging to quantify for a realistic three-dimensional soap froth in view of its complex geome- try. Foam micromechanics addresses the connection between constituent properties, cell-level structure, and macroscopic mechanical behavior. This article is a survey of micromechanics applied to gas-liquid foams, liquid-liquid emulsions, and cellular solids. We will focus on static response where the foam deformation is very slow and rate-dependent phenomena such as viscous flow can be neglected. This includes nonlinear elasticity when deformations are large but reversible. We will also discuss elastic- plastic behavior, which involves yield phenomena. Foam structures based on polyhedra packed to fill space provide a unify- ing geometrical theme. Because a two

  12. Thermal stability analysis of the rigid polyurethane foam for the exterior insulation%聚氨酯硬泡外墙保温材料的热稳定性分析

    Institute of Scientific and Technical Information of China (English)

    亓延军; 崔嵛; 龚伦伦; 程旭东; 张和平

    2012-01-01

    effects of other factors, for example, the decomposition atmosphere, etc. Thus, it can be seen that the present paper can provide useful experimental data for the improvement of classification of the burning behaviors and establishment of the system of the fire prevention codes of the exterior insulation.%在空气和氮气气氛下对聚氨酯硬泡(Rigid Polyurethane Foam,RPUF)进行了热重分析.在空气气氛下将样品分别以10℃/min、20℃/min、40℃/min和50℃/min的升温速率从室温加热至800℃.用Flynn-Wall-Ozawa (FWO)等转化率方法和非线性多参数回归方法(Multivariate Non-linear Regression Method)计算热动力学参数.RPUF在空气和氮气气氛中的热解可认为是2步连续反应.RPUF在空气气氛中的热解过程可由Fn→Fn机理准确描述,在氮气气氛中则可由Fn→D3机理描述.基于可靠的动力学参数和反应机理函数,对RPUF在不同温度下的寿命进行了预测.结果表明,RPUF的寿命对温度变化非常敏感,同时受分解气氛等因素的影响.

  13. Metal–organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors

    DEFF Research Database (Denmark)

    Deng, Xiaoyang; Li, Jiajun; Zhu, Shan

    2017-01-01

    The honeycomb-like porous Co3O4 grown on three dimensional graphene networks/nickel foam (3DGN/NF) has been successfully prepared by a facile solution growth process with subsequent annealing treatment, in which the Co-based metal organic framework (ZIF-67) act as the precursor of the metal oxide....... The Co3O4/three-dimensional graphene networks/Ni foam (Co3O4/3DGN/NF) hybrid as the electrode for supercapacitor can deliver high specific capacitance (321 F g−1 at 1 A g−1) and excellent long-cycling stability (88% of the maximum capacitance after 2000 charge-discharge cycles). Furthermore, the Co3O4...... pseudocapacitance performance and the intimate integration of graphene with the Co3O4 and the Ni foam matrix, which not only enhances the electron conductivity for fast electron and ion transport but also provides high specific surface area and excellent structural stability....

  14. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  15. 砂岩质煤矸石制备外墙泡沫保温材料%Preparation of Thermal Insulation Foam Material for Exterior Wall with Sandstone Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    孙晓刚; 李小庆; 邱景平; 邢军; 赵英良

    2015-01-01

    In order to seek the sources of raw materials for exterior foam insulation material,through optimizing of particle gradation,improving plasticity and adding inorganic plasticizer,techniques for increasing its plasticity and making the qualified product are found out,with the sandstone coal gangue and polishing tile waste as the main raw materials. Analysis is made on the effect of bulk density,compressive strength and thermal conductivity,with different amount of polishing tile waste and addi-tive,to design the orthogonal experiment to determine the suitable additive content. The optimum sintering procedure is con-firmed with orthogonal test of choosing preheating temperature,preheating time,sintering temperature and holding time as four main factors,which has great effect on the sintering procedure. The results provide a new way to produce new building materials for the comprehensive utilization of industrial waste.%为寻求外墙泡沫保温材料的原料来源,以砂岩质煤矸石和抛光砖泥为主要原料,通过优化颗粒级配、陈化增塑、添加无机增塑剂等措施,探索提高原料可塑性、生产合格制品的工艺技术。通过抛光砖泥和添加剂掺量的不同,分析掺入料对制品体积密度、抗压强度、导热系数的影响,设计正交试验确定适宜的添加剂含量;以对烧结制度影响较大的预热温度、预热时间、烧结温度和保温时间为4个因素设计正交试验,确定烧制保温材料的最佳烧结制度。该研究结果为综合利用工业废料制备新型建材提供了新的途径。

  16. Foam Cushioning

    Science.gov (United States)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  17. Improving the mechanical performance of wood fiber reinforced bio-based polyurethane foam

    Science.gov (United States)

    Chang, Li-Chi

    Because of the environmental impact of fossil fuel consumption, soybean-based polyurethane (PU) foam has been developed as an alternative to be used as the core in structural insulated panels (SIPs). Wood fibers can be added to enhance the resistance of foam against bending and buckling in compression. The goal of this work is to study the effect of three modifications: fiber surface treatment, catalyst choice, and mixing method on the compression performance of wood fiber-reinforced PU foam. Foams were made with a free-rising process. The compression performance of the foams was measured and the foams were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray computed tomography (CT). The foam reinforced with alkali-treated fibers had improved compression performance. The foams made with various catalysts shared similar performance. The foam made using a mechanical stirrer contained well-dispersed fibers but the reinforcing capability of the fibers was reduced.

  18. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  19. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  1. Determination of the fraction of blowing agent released from refrigerator/freezer foam after decommissioning the product

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2002-01-01

    Several halocarbons having very high global warming potential have been used as blowing agent for insulation foam in refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam revealed that most...

  2. CHARACTERIZATION AND PROPERTIES OF A LIGNOSULFONATE-BASED PHENOLIC FOAM

    Directory of Open Access Journals (Sweden)

    Lihong Hu,

    2011-11-01

    Full Text Available Phenolated lignosulfonate was introduced into the synthesis of phenolic resol with phenol and formaldehyde in an alkaline condition. The modified resol was successfully applied to prepare phenolic foam using appropriate combinations of flowing agents. N-pentane was found to be suitable as the foaming agent. Sulphuric acid (50% aqueous solution, w/w and Tween-80 were used as catalyst and surfactant, respectively. The obtained foams were characterized by thermogravimetric analysis (TGA, scanning electron microscopy (SEM, friability, and mechanical property tests. The experimental results showed the foam to have lower density, better toughness, and excellent thermal insulation compared to those of foams obtained from conventional resol resin. The properties of phenolated lignosulfonate modified phenolic foam can comply with the required specifications for its practical utilization.

  3. A crumb rubber modified syntactic foam

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoqiang [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States)], E-mail: guoli@me.lsu.edu; John, Manu [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2008-02-15

    In this study, the impact response and residual strength of a crumb rubber modified syntactic foam, which contained up to 20% by volume of crumb rubbers, were investigated. The foam had a hybrid microstructure bridging over several length scales. It was formed by dispersing hollow glass beads and crumb rubber particles into a microfiber and nanoclay filled epoxy matrix. Sandwich beam specimens were prepared using the hybrid foam as core and fiber reinforced epoxy as facings. A low velocity impact test using an instrumented drop tower impact machine was conducted on the sandwich beams and control beams made of the foam only. Four-point bending tests were conducted on the impact damaged specimens and control specimens without impact damage. The effect of the hybrid foam on the low velocity impact response and residual strength was evaluated based on the test results. The stress field interaction was evaluated using a finite element analysis. It was found that the rubberized syntactic foam possessed a higher capacity to dissipate impact energy and to retain bending strength. There was a positive composite action between the hollow glass bead particles and crumb rubber particles by means of stress field interaction and reduction in stress concentration.

  4. Polyisocyanurate systems for insulating and sandwich elements; Polyisocyanurat-Systeme fuer Daemm- und Sandwichelemente

    Energy Technology Data Exchange (ETDEWEB)

    Malotki, P. von [Elastogran GmbH, Lemfoerde (Germany)

    2000-07-01

    PUR rigid foam plates are laminated with flexible Al films, paper or glass non-wovens, or may be processed into sandwich elements with metallic top-layers via coil-coating. Dependence of heat insulation efficiency, dimensional stability and fire behavior of the foam on chemical composition and the blowing agents is considered and compared with polyisocyanurate foams. Recipes for the production of PIR heat insulation elements and sandwich elements are given.

  5. On beer, brewing and better thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Den Herder, P.W.

    1989-01-01

    The art of brewing goes back to very ancient times. Though little has changed in the actual brewing process, the technical equipment has been improved considerably. Cooling the brew, gives also a need for thermal insulation. In the beginning cork has been used as an thermal insulation material, followed by cellular plastic foam and fibrous insulants in the past 30 years. All these materials gradually absorb water, caused by the phenomena that water vapour in the air tends to go into the direction of the cold pipe surface. In practice it appeared to be impossible to make the above insulation materials vapourtight. Water vapour will condensate in the insulation material into water. Water being the greatest enemy of insulation material. Cellular glass insulation, well-known in the petro-chemical industry, has proven to be 100% vapourtight, so an excellent choice for cold piping and equipment. 5 figs.

  6. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  7. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Andrew Y. A. Oyieke

    2016-01-01

    Full Text Available A flat-plate Vacuum Insulated Photovoltaic and Thermal (VIPV/T system has been thermodynamically simulated and experimentally evaluated to assess the thermal and electrical performance as well as energy conversion efficiencies under a subtropical climate. A simulation model made of specified components is developed in Transient Systems (TRNSYS environment into which numerical energy balance equations are implemented. The influence of vacuum insulation on the system’s electrical and thermal yields has been evaluated using temperatures, current, voltage, and power flows over daily and annual cycles under local meteorological conditions. The results from an experiment conducted under steady-state conditions in Durban, South Africa, are compared with the simulation based on the actual daily weather data. The VIPV/T has shown improved overall and thermal efficiencies of 9.5% and 16.8%, respectively, while electrical efficiency marginally reduced by 0.02% compared to the conventional PV/T. The simulated annual overall efficiency of 29% (i.e., 18% thermal and 11% electrical has been realised, in addition to the solar fraction, overall exergy, and primary energy saving efficiencies of 39%, 29%, and 27%, respectively.

  8. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures

    NARCIS (Netherlands)

    Schreier, M.; Kamra, A.; Weiler, M.; Xiao, J.; Bauer, G.E.W.; Gross, R.; Goennenwein, S.T.B.

    2013-01-01

    We calculate the phonon, electron, and magnon temperature profiles in yttrium iron garnet/platinum bilayers by diffusive theory with appropriate boundary conditions, in particular taking into account interfacial thermal resistances. Our calculations show that in thin film hybrids, the interface magn

  9. Sandia-Power Surety Task Force Hawaii foam analysis.

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Annie

    2010-11-01

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  10. EXPERIMENTAL STUDY OF HYBRID HEAT SINK SINTERED WITH METAL FOAMS FILLED WITH PHASE CHANGE MATERIALS%封装有相变材料的金属泡沫复合散热器实验研究

    Institute of Scientific and Technical Information of China (English)

    王杰利; 屈治国; 李文强; 陶文铨; 卢天健

    2011-01-01

    相变材料的固液相变具有较高的相变潜热且相变体积变化小,在间歇性工作的电子器件的温控中得到广泛的应用.本文采用将铜泡沫嵌入相变材料中的方法来强化同液相变的传热性能的方法,提出一种封装有金属泡沫和相变材料的复合式散热器结构,实验研究了该散热器的加热表面的温度与时间的变化关系,分析铜泡沫孔隙率、孔密度以及石蜡物性等各个参数对该复合式热沉散热效果的影响.%Phase change materials (PCM) have high latent heat of fusion with controllable temperature stability and have been used in thermal management for high power electronic device working in intermittent condition. Due to low thermal conductivity of PCM, high porosity open-cell metal foams can be embedded in the PCM to improve the thermal conductivity. In this paper, a hybrid heat sink with hollow substrate in which cooper metal foams filled with paraffin wax are sintered inside the hollow space is proposed. The temperature variations of heater surface are tested experimentally.The influence of metal foam porosity, pore diameter and PCM thermal property on total thermal resistance is experimentally studied.

  11. Applications of Polymer Matrix Syntactic Foams

    Science.gov (United States)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  12. Crack Initiation and Growth in Rigid Polymeric Closed-Cell Foam Cryogenic Applications

    Science.gov (United States)

    Sayyah, Tarek; Steeve, Brian; Wells, Doug

    2006-01-01

    Cryogenic vessels, such as the Space Shuttle External Tank, are often insulated with closed-cell foam because of its low thermal conductivity. The coefficient of thermal expansion mismatch between the foam and metallic substrate places the foam under a biaxial tension gradient through the foam thickness. The total foam thickness affects the slope of the stress gradient and is considered a significant contributor to the initiation of subsurface cracks. Rigid polymeric foams are brittle in nature and any subsurface cracks tend to propagate a finite distance toward the surface. This presentation investigates the relationship between foam thickness and crack initiation and subsequent crack growth, using linear elastic fracture mechanics, in a rigid polymeric closed-cell foam through analysis and comparison with experimental results.

  13. Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-ming; YU Fei; FANG Gui-zhen; YANG Hui-jun

    2009-01-01

    The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.

  14. Electrical conductivity of rigid polyurethane foam at high temperature

    Science.gov (United States)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  15. 中空玻璃微珠改性全水聚氨酯泡沫塑料保温性能影响%The Effect of Thermal Insulation Properties of Hollow Glass Beads Filled All -water Polyurethane Foam

    Institute of Scientific and Technical Information of China (English)

    罗晶; 张兵

    2012-01-01

    The effect of hollow glass beads on all - water polyurethane foam is studied in this work. The results of the experiments show that thermal conductivity of all- water polyurethane foam decrease from 0. 031 to 0. 0289W/( M· K). The effect of KH - 550 on microstructure of the all - water polyurethane foam was investigated with scanning electron microscopy ( SEM). Glass beads modified 1.0% KH - 550 with rigid polyurethane foam matrix has a good compatibility and interface strength.%本文研究了中空玻璃微珠对全水聚氨酯泡沫性能的影响.研究得出,中空玻璃微珠可使全水聚氨酯泡沫的导热系数由0.031 W/(M·K)降低到0.028 9 W/(M·K).通过扫描电镜研究了KH-550对泡孔结构的影响,研究得出1.0%KH-550改性的玻璃微珠与硬质聚氨酯泡沫塑料基体界面结合得最好.

  16. 发泡水泥对日光温室黏土砖墙保温蓄热性能的改善效果%Improving effect of heat insulation performance of brick wall thickened with foam cement in solar greenhouse

    Institute of Scientific and Technical Information of China (English)

    李明; 魏晓明; 周长吉; 郑禾; 李小明

    2014-01-01

    The wall of a Chinese solar greenhouse can absorb heat during daytime and supply heat into the greenhouse during nighttime. It can help the solar greenhouse to maintain high indoor air temperature during winter nighttime with little or no supplemental heating. The brick wall is one of the popular walls. However, after a long period of use, walls have the bad performance on heat insulation and sealing. To solve the problems, we proposed to thicken the brick wall with foam cement to decrease its heat loss and keep the heat in the wall as much as possible. Then, the stored heat that the wall can supply during the nighttime can be increased. In this study, a solar greenhouse with the brick wall, which was composed of 120 mm thick brick, 100 mm thick polystyrene board, and 240 mm thick brick (from indoor to outdoor), was used as the control greenhouse. The test greenhouse had same structure and management with the control greenhouse, but its brick wall was thickened with 200 mm thick foam cement on the outdoor side. This wall was defined as the transformed wall. The heat insulation and supply performances of the two solar greenhouses’ walls were compared based on the data collected in a typical sunny day and a cloudy day. As for the heat insulation performance, the outdoor surface temperatures of the brick wall and the transformed wall were (2.8±0.9) and (0.8±0.2)℃ higher than the outdoor air temperature, respectively, in the nighttime of the sunny day. The maximum heat flux in the foam cement was about 9%of that on the outdoor surface of the brick wall. A similar phenomenon was also observed in the nighttime of the cloudy day. The results indicated that thickening the brick wall with foam cement could decrease the heat loss of the wall and keep more heat in the wall. As for the heat supply performance, the indoor surface temperatures of the brick wall and the transformed wall were (1.5±0.5) and (2.4±0.2)℃higher than the outdoor air temperature, respectively

  17. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  18. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  19. THE WAYS OF INCREASE OF EFFICIENCY OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Sh. G. Jalalov

    2016-01-01

    Full Text Available Aim. The analysis of the using common wall materials for a given heat resistance is presented in the article.Methods. In the result of thermal calculation of multilayer walls is shown that to ensure the required resistance of heat transfer is more effective in thermal insulation is foam.Results. It was found that to obtain a foam concrete with low density is necessary to obtain multiple mixture and increase the duration by mixing the foam concrete mix in the foam concrete mixer. The calculations showed that for providing the required resistance to heat transfer foam is more efficient in certain cases. Experimental studies have shown that using of mechanical activation of the dry mix (cement and local aggregates, expanded perlite can increase the compressive strength of foam concrete. Studies have shown that the use of local raw materials and industrial wastes reduces the cost heat insulation’s products while maintaining the desired properties of the foam.Conclusion. It was experimentally established that the addition of fibres the compressive strength of foam concrete increases by 10,5 %. As a result of researches it was established that increasing the content of superplasticizer C-3 increases the strength characteristics of foam concrete mixed binder.

  20. Biomass derived novel functional foamy materials - BIO-FOAM

    Energy Technology Data Exchange (ETDEWEB)

    Suurnaekki, A.; Boer, H.; Forssell, P. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anna.suurnakki@vtt.fi

    2010-10-15

    BIO-FOAM has aimed at exploiting the potential of biomaterials in replacing synthetic polymers in solid foamy materials. The target applications have been various, including food, packaging, construction and insulation. The project activities during the second project year have focused on characterisation of the solid model foams and on modeling the behaviour of polymers at liquid- liquid interfaces. In the modelling study the intrinsic consistence of the applied thermodynamic approach was confirmed. The experimentally obtained solubility parameters of polymers were in good agreement with the calculated solubility parameters. The polymers were, however, found to posses too little surface activity to alone provide stable foams, but they were able to act as co-surfactants. In the model polymer foam work both expanded polymer foams and wood fibre based foams were prepared. Supercritical CO{sub 2}-gas chamber was found to be a useful tool to prepare expanded polymer foams in small scale. Only partial replacement of synthetic polymers could, however, be obtained with native biomaterials indicating the need of tailoring of biopolymer properties and suitable formulations including surfactants or stabilizing particles. In wood fibre-based foams both nanocellulose and lignin showed potential as additives or reinforcing components.The outcome of the extruded food snacks study was that the processing parameters were related with the equipmentvariables. Furthermore, glycerol was shown to facilitate greatly extrusion processing. In foam concrete work concrete pore structure was shown to correlate with its strength and stability. At optimum concentration wood fibres affected positively the concrete processing performance. (orig.)

  1. Replacements For Ozone-Depleting Foaming Agents

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  2. Theoretical analysis of thermal shock resistance of ceramic foam coatings

    Science.gov (United States)

    Zhang, Y. X.; Wang, B. L.

    2017-01-01

    Ceramic foams have a high resistance to corrosion and wear. They also have a good thermal insulation performance because of their high melting point and low thermal conductivity. The thermal shock resistance of a ceramic foam coating with an edge crack under a sudden temperature variation is investigated. The dynamic thermal stress fields in the ceramic foam coating are obtained. Using the superposition principle, the crack problem of the ceramic foam coating is reduced to the solution of a set of singular integral equations. Propagation of the edge crack is analyzed. Effects of the relative density and thermal properties of the ceramic foam and of crack length on the thermal shock resistance are identified. The results obtained can be useful in designing thermal protective ceramic materials for thermal barrier coatings.

  3. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  4. Experimental Research on Heat Transfer Performance for Self-insulation Foam-concrete Wall%泡沫混凝土自保温墙体传热性能试验研究∗

    Institute of Scientific and Technical Information of China (English)

    王海军; 姚勇; 陈代果; 高伟; 严洁

    2015-01-01

    Foam⁃concrete was a building energy⁃saving material with many excellent performances such as lightweight, thermal insulation, sound insulation, fire, power consumption. Through testing the thermal defect and heat transfer performance of external⁃insulation, internal⁃insulation and self⁃insulation retaining walls, and analyzing these walls ’ heat transfer coefficient, thermal inertia indicator and eigenvalue on technical and economic with the building heat transfer theory, some conclusions are taken that:the external⁃insulation’ s barrier⁃effect for thermal⁃bridges was greater than internal⁃insulation, and foam⁃concrete self⁃insulation wall had the best indoor thermal⁃environment;foam⁃concrete’ s regenerative coefficients were greater than EPS insulation board, self⁃insulation wall had great thermal stability and resistance to external temperature fluctuations; foam⁃concrete self⁃insulation wall had good heat transfer performance, smaller eigenvalue on technical and economic which have a better marketing prospects.%泡沫混凝土是一种建筑节能材料,具有轻质、保温隔热、隔声、防火耗能等优异性能。通过对外保温、内保温和自保温围护墙体的热工缺陷、传热性能等进行测试,用建筑传热理论分析各类墙体的传热系数、热惰性指标和技术经济特征值,得出:外保温对热桥的阻隔作用大于内保温,泡沫混凝土自保温墙体室内热环境最好;泡沫混凝土蓄热系数大于EPS保温板,自保温墙体的热稳定性好,抵抗外部温度波动的能力强;泡沫混凝土自保温墙体传热性能良好,技术经济特征量较小,具有一定的市场应用前景。

  5. Development of lifetime test procedure for powder evacuated panel insulation. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K E; Graves, R S; Childs, K W

    1996-03-01

    This CRADA is between Appliance Research Consortium (ARC) of the Association of Home Appliance Manufacturers (AHAM) and the Lockheed Martin Energy Research Corp. A Powder Evacuated Panel (PEP) is a "super" thermal insulation, having a thermal resistivity (R) substantially above that of existing insulation without the environmental problems of some insulations such as Chlorofluorocarbon (CFC) blown foam.

  6. Endurance of Damping Properties of Foam-Filled Tubes.

    Science.gov (United States)

    Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe

    2015-07-07

    The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

  7. Endurance of Damping Properties of Foam-Filled Tubes

    Directory of Open Access Journals (Sweden)

    Matteo Strano

    2015-07-01

    Full Text Available The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1 square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2 round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

  8. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  9. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  10. Preparation and Characterization of Carbon Foam Derived from Fine Coal and Phenolic Resin

    Directory of Open Access Journals (Sweden)

    Dodi Irwandi

    2016-12-01

    Full Text Available Carbon foam from fine coal and phenolic resin mixture had been prepared by heating in nitrogen atmosphere. The composition of fine coal in a mixture was 30, 35, 40, 45 and 50%. Physical and mechanical characters of carbon foam that were determined from each of these compositions were density, porosity, compressive strength, and oxidation resistance and thermal insulation. Microstructure was observed by scanning electron microscope (SEM. Thermal insulation was tested using an insulation index approach with Styrofoam for comparison. The result showed that the density and compressive strength were proportional to the composition, otherwise, the porosity. Oxidation resistance that was up to 45% composition still showed proportional value. Microstructure observations showed an irregular distribution of pore and uninform diameter. Insulation index of 34 to 50 °C showed almost the same values of all compositions and greater than styrofoam up to 50-150% which mean carbon foam had a better thermal insulation properties than styrofoam.

  11. Thermoforming of foam sheet

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud M.

    1997-01-01

    Thermoforming is a widely used process for the manufacture of foam sheet products. Polystyrene foam food trays for instance can be produced by first heating the thermoplastic foam sheet, causing the gas contained to build up pressure and expand, after which a vacuum pressure can be applied to draw t

  12. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  13. Capillary foams: highly stable bubbles formed by synergistic action of particles and immiscible liquid

    Science.gov (United States)

    Meredith, Carson; Zhang, Yi; Behrens, Sven

    2015-03-01

    Liquid foams are a familiar part of everyday life from beer and frothed milk to bubble baths; they also play important roles in enhanced oil recovery, lightweight packaging, and insulation. We report a new class of foams, obtained by frothing a suspension of colloidal particles in the presence of a small amount of an immiscible secondary liquid. A unique aspect of the new foams, termed capillary foams, is that suspended particles mediate spreading of a minority liquid around gas bubbles. The resulting mixed particle/liquid coating can stabilize bubbles against coalescence even when the particles alone cannot. We demonstrate the generality of capillary foams by forming them from a diverse set of particle/liquid combinations and rationalize the results with a simple free energy model. In addition to many applications as liquid foams, capillary foams can serve as precursors for hierarchically-structured solids with porosity on different length scales and with significant application potential.

  14. CARBONIZED STARCH MICROCELLULAR FOAM-CELLULOSE FIBER COMPOSITE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Andrew R. Rutledge

    2008-11-01

    Full Text Available The production of microporous carbon foams from renewable starch microcellular foam-fiber (SMCF-Fiber composites is described. Carbon foams are used in applications such as thermal insulation, battery electrodes, filters, fuel cells, and medical devices. SMCF-Fiber compos-ites were created from an aquagel. The water in the aquagel was exchanged with ethanol and then dried and carbonized. Higher amylose content starches and fiber contents of up to 4% improved the processability of the foam. The SMCF structure revealed agglomerates of swollen starch granules connected by a web of starch with pores in the 50-200 nanometer range. Heating the SMCF-fiber in a nitrogen atmosphere to temperatures between 350-700˚C produced carbon foams with a three-dimensional closed cell foam structure with cell diameters around 50 microns and pore walls around 1-3 microns. The stress versus strain compression data for carbonized samples displayed a linear elastic region and a plateau indicative of brittle crushing, typical of an elastic-brittle foam. The carbon foam products from these renew-able precursors are promising carbon structures with moderate strength and low density.

  15. Shooting in a foam.

    Science.gov (United States)

    Le Goff, Anne; Quéré, David; Clanet, Christophe

    2014-09-21

    We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.

  16. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  17. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  18. Existing Whole-House Solutions Case Study: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    In this study, IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority (NYSERDA) to research exterior wall insulation solutions for enclosure upgrades. This case study describes the deep energy retrofit of three test homes in the Syracuse, New York area and represent these enclosure strategies: rigid foam insulation; spray foam insulation, and a control house that follows Home Performance with ENERGY STAR (HPwES) guidelines.

  19. Foam process models.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  20. Foam consolidation and drainage.

    Science.gov (United States)

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  1. The role of Jahn-Teller distortion in insulator to semiconductor phase transition in organic-inorganic hybrid compound (p-chloroanilinium)2CuCl4 at high pressure.

    Science.gov (United States)

    Ghalsasi, Pallavi; Garg, Nandini; Deo, M N; Garg, Alka; Mande, Hemant; Ghalsasi, Prasanna; Sharma, Surinder M

    2015-12-28

    (p-Chloroanilinium)2CuCl4(C2H14Cl6CuN2) is from an important family of organic-inorganic layered hybrid compounds which can be a possible candidate for multiferroicity. In situ high pressure FTIR, Raman and resistivity measurements on this compound indicate the weakening of Jahn-Teller distortion and the consequent removal of puckering of the CuCl6(4-) octahedra within the layer. These effects trigger insulator to semiconductor phase transition along with a change in the sample colour from yellow to dark red. This article explains the crucial role of the anisotropic volume reduction of the CuCl6(4-) octahedron (caused due to the quenching of Jahn-Teller distortion) in the observed insulator to semiconductor phase transition.

  2. Release of CFC-11 from disposal of polyurethane foam waste

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Jensen, M.H.

    2001-01-01

    The halocarbon CFC-11 has extensively been used as a blowing agent for polyurethane (PUR) insulation foams in home appliances and for residential and industrial construction. Release of CFCs is an important factor in the depletion of the ozone layer. For CFC-11 the future atmospheric concentrations...

  3. Superplastically foaming method to make closed pores inclusive porous ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Akira; Hayashi, Hidetaka, E-mail: kishim-a@cc.okayama-u.ac.jp [Division of Molecular and Material Science, Graduate School of Natural Science and Technology, Okayama University Okayama (Japan)

    2011-04-15

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  4. Hafnium carbide structural foams synthesized from polymer precursors

    Science.gov (United States)

    Fan, Haibo

    2005-11-01

    A study was conducted to investigate a new low cost approach to produce Hafnium Carbide (HfC) structural foams through the thermolysis and pyrolysis of polymer precursors. Hafnium carbide has a melting point of over 3900 °C, the highest melting point of any known binary alloy. HfC structural foams can be fabricated into high temperature components or used as a thermal insulation material. Current available methods for creating HfC structural foams are time consuming, expensive or the material produced lacks mechanical strength. The objectives of this research were to produce HfC foam through the thermolysis and pyrolysis of Hf containing polymer mixture, optimize the properties of the HfC foam, and develop a knowledge base of acceptable process parameters. With the proposed method, HfC foam was produced by mixing a hafnium containing Macromolecular Metal Complex (MMC) and carbon source polymers, followed by heat treating the mixture under vacuum. XRD analysis showed that the produced foam was largely composed of HfC, with small amounts of hafnium oxide. The foam total porosity was measured to be over 85%. The HfC lattice parameter was found to range from 0.4613 nm to 0.4647 nm. The HfC conversion mechanism was investigated using Residual Gas Analysis, where it was observed that polymer decomposition occurred from 80 through 550 °C and HfC conversion started around 1100 °C. The HfC foam mechanical properties and microstructure were improved by optimizing the process methods and parameters. The initial research yielded an HfC foam with a compression strength of 15.16 +/- 4.66 MPa and evenly distributed foam cells with diameter sizes up to 50 mum. Continued research showed that HfC foams with total porosity of about 85% (density 1.9g/cm 3), and a foam compression strength of 212 +/- 25MPa were achievable. The proposed methodology for synthesizing HfC foam was found to be simple, inexpensive and require less production time. The process can be controlled to produce

  5. Polymer-Reinforced, Nonbrittle, Lightweight Cryogenic Insulation for Reduced Life-Cycle Costs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR project focuses to continue developing cryogenic insulation foams that are flexible, deforming under compression. InnoSense LLC (ISL) demonstrated...

  6. Net Shape Molding of Monolithic Complex-shaped Damage-Tolerant Cryo-Insulators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Passive thermal control of cryogenic systems using foam insulations can help achieve Zero Boil-Off (ZBO). There is as much thermal energy transferred to Cryo tanks...

  7. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Minneapolis Residence

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

  8. Polymer Reinforced, Non-Brittle, Light-Weight Cryogenic Insulation for Reduced Life Cycle Costs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to fabricate a composite aerogel foam. This material is designed to be impact resistant, non-brittle, non-water-retaining and insulating...

  9. Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  10. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  11. The science of foaming.

    Science.gov (United States)

    Drenckhan, Wiebke; Saint-Jalmes, Arnaud

    2015-08-01

    The generation of liquid foams is at the heart of numerous natural, technical or scientific processes. Even though the subject of foam generation has a long-standing history, many recent progresses have been made in an attempt to elucidate the fundamental processes at play. We review the subject by providing an overview of the relevant key mechanisms of bubble generation within a coherent hydrodynamic context; and we discuss different foaming techniques which exploit these mechanisms.

  12. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  13. Destruction of low-temperature insulation under the condition of periodic duty

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2014-01-01

    Full Text Available The numerical investigation of thermal stresses within low-temperature insulation covering cryogenic pipelines and the numerical probability analysis of low-temperature insulation destruction under the condition of periodic duty were carried out. The minimal longevity values for foamed polyurethane and mineral cotton were established. The results of longevity analysis for foamed polyurethane and mineral cotton under the condition of environment temperature variation were obtained.

  14. Shape memory polymer foams

    Science.gov (United States)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  15. Operator Spin Foam Models

    CERN Document Server

    Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...

  16. Research of properties of modern heat-insulation materials

    Directory of Open Access Journals (Sweden)

    A. S. Shcherbak

    2013-04-01

    Full Text Available Purpose. To study the modern heat-insulating materials presented at the market of Ukraine and to estimate the efficiency of their application. Methodology. Research and analysis of heat-insulating materials presented at the market of Ukraine, according to the existing standards. Findings. To ensure the energy efficiency in buildings and constructions it is necessary to apply the domestic heat-insulating material, which possesses the given thermo technical characteristics, reduced indexes of water absorption, flammability and toxicity, as well as durability and relatively low self–cost. Originality. Basic heat-insulating materials, which are most widely used in construction are systematized, the researches of their properties are conducted and the foam glass is chosen as the most effective heat-insulating material. It is characterized by high thermo technical characteristics and possesses the best ecological indexes, as well as the sturdiness for aggressive factors influence. Practical value. Special attention deserves the insulating material foam glass, which is a synthetic silicate material with evenly placed pores (0.1 ... 5.0 mm separated by thin septa with a vitreous substance possesses the necessary properties and by aforesaid may be accepted for studies aimed its improvement (modification. The results of researches can be applied in the foam glass production, which is used for heat-insulation of buildings and constructions, equipment, pipelines etc.

  17. Application of foam concrete in wall and roof insulation engineering%泡沫混凝土现浇墙体与屋面保温层工程应用以及其保温性能的讨论

    Institute of Scientific and Technical Information of China (English)

    袁伟; 丁来彬; 周成

    2014-01-01

    通过分析研究泡沫混凝土应用于墙体与屋面保温层实际工程,并对其建筑物的保温性能及材料的物理力学性能进行了检测和讨论。结合工程实例,总结出泡沫混凝土整浇工艺存在的优势与不足。泡沫混凝土强度和导热系数检测结果均达到产品标准相关技术指标要求,建筑物围护结构热工检测结果达到严寒和寒冷地区居住建筑节能设计标准要求。%By analyzing the application of foam concrete in wall and roof insulation engineering, and thermal performance of buildings and the physical and mechanical properties of materials are discussed.

  18. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  19. Self inflicted death following inhalation and ingestion of Builders Polyurethane expandable foam.

    Science.gov (United States)

    Morgan, D R; Musa, M

    2010-11-01

    Builders Polyurethane (PU) expandable foam is a product used to fill voids and provide insulation in the building industry. It is easily available from DIY and hardware stores. Other uses include pest control. It can produce fumes, while curing, which can be toxic to humans, or induce asthma and there are reports of polyurethane foam being combustible unless a fire retardant is incorporated. Death due to can explosion when heated has occurred. A literature review revealed one definite case of attempted suicide, one possible attempt by ingestion of Builders PU expandable foam and one accidental non fatal injection of such foam into the lower urinary tract. There is one report of accidental non fatal inhalation of foam. To our knowledge this is the first case of fatal inhalation and ingestion of Builders Polyurethane expandable foam.

  20. The impact of added insulation on air leakage

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-01-01

    It is relatively easy to calculate the impact on energy consumption when thermal insulation is added to the building envelope. However, other effects such as air leakage through the exterior wall assembly, and the potential for water condensation also have to be considered. By adding insulation to the exterior wall assembly, the temperature gradient of the wall is changed and the risk of condensation is increased, especially if warm, moist indoor air can flow through the wall. The study by Dominique Derome, Paul Fazio and Guylaine Desmarais for the CMHC Research Division, of which this paper is a summary, examined three types of air leakage paths, i.e. long air exfiltration path; concentrated air exfiltration path; and distributed exfiltration path. Experiments involved placing 38 mm rigid extruded polystyrene insulation on the interior side of three wood studs and fiberglass batt insulation wall assemblies, while four other samples had the same 38 mm rigid extruded polystyrene insulation added on the exterior of the assembly over the fiberboard sheathing. Both, warm and cold side additions of rigid foam insulation to the existing assemblies increased thermal performance by 55 per cent. When blown cellulose fibre was used as insulation instead of fibreglass batting, the increase in thermal performance was 66 per cent. Addition of the rigid foam insulation on the warm side tended to increase the effectiveness. For example, moisture content generally did not rise above 25 per cent, whereas it could climb up to 70 per cent when the insulation was added on the cold side.

  1. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  2. Beer foam physics.

    NARCIS (Netherlands)

    Ronteltap, L.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and coalescence we

  3. Chronicles of foam films.

    Science.gov (United States)

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  4. Metal foams: A survey

    Institute of Scientific and Technical Information of China (English)

    Michael; F.; Ashby; LU; Tianjian(卢天健)

    2003-01-01

    The current state-of-the-art in the development of cellular metal foams is reviewed, with focus on their fabrication, mechanical/thermal/acoustic properties, and potential applications as lightweight panels, energy absorbers, heat exchangers, and acoustic liners. Foam property charts with scaling relations are presented, allowing scoping and selection through the use of material indices.

  5. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  6. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  7. Effect of polypropylene fiber reinforced foam on the mechanics performancecement lightweight insulation wall materials%聚丙烯纤维对发泡水泥轻质保温墙体材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    宋妍; 丁云庆

    2015-01-01

    The paper added in the context of basic formulation of polypropylene fibers, fiber adding ways and con-tents are studied on the mechanical behavior of foamed cement polystyrene particle effects, the best way to fiber add-ing was determined:first doped method, the optimum fiber content was 0.8%. At this point, the sample of the 3 d flexural strength was 0.31 MPa, 3 d of the compressive strength was 0.48 MPa, 28 d compressive strength was 0.53 MPa, 28d flexural strength of was 1.03 MPa.%在基础配方的前提下加入聚丙烯纤维(PP),研究纤维掺加方式及纤维掺量对发泡水泥聚苯颗粒力学性能的影响,确定了最佳纤维掺加方式:先掺法,最佳纤维掺量0.8%.样品3 d的抗折强度和抗压强度分别为0.31 MPa、0.48 MPa,28 d的抗折强度和抗压强度分别为0.53 MPa、1.03 MPa.

  8. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    with open or closed pores. If only open pores exist, air is the dominating medium for the insulating effect. However, closed pores make it possible to trap gases inside the foam. The gas can be introduced either chemically, through foaming agents, or physically, by gas compression-decompression at high...... using helium, nitrogen, or argon. The sintering result in closed-porous body with high pressure bubbles. Subsequent reheating above the glass transition temperature resulted in an expansion of the bubbles. The entrapped gas composition was analysed by gas chromatography. Furthermore, we investigated how...

  9. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  10. Enhanced Magnetic Proximity Effect at Ferromagnetic Insulator / Magnetic Topological Insulator Interface

    Science.gov (United States)

    Li, Mingda; Chang, Cui-Zu; Kirby, Brian; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Zhu, Yimei; Heiman, Don; Li, Ju; Moodera, Jagadeesh; MIT Team; NIST Team; Northeastern University Collaboration; Boston College Collaboration; Brookhaven National Lab Collaboration

    Magnetic proximity effect at magnetic insulator / topological insulator interface provides a promising approach to realize low-dissipation quantum devices. However, the commonly used magnetic insulators have in-plane anisotropy hence cannot magnetize topological insulator. Here we report an enhancement of proximity exchange coupling in ferromagnetic insulator / magnetic topological insulator EuS / Sb2-xVxTe3 hybrid heterostructure, where proximity effect is enhanced by a factor of 3 through the Vanadium doping. Moreover, an artificial antiferromagnetic-like structure is created between two strong ferromagnets, which may account for the proximity effect enhancement. The interplay between the proximity effect and doping in hybrid heterostructure provides insights into the engineering of magnetic ordering.

  11. Toughening of phenolic foam

    Science.gov (United States)

    Shen, Hongbin

    2003-06-01

    Phenolic foam has excellent FST performance with relatively low cost, and thus is an attractive material for many applications. However, it is extremely brittle and fragile, precluding it from load-bearing applications. In order to make it tougher and more viable for structural purposes, an effective approach has been proposed and investigated in this study. Composite phenolic foam with short fiber reinforcements resulted in significant improvement in mechanical performance while retaining FST properties comparable to conventional phenolic foam. For example, composite phenolic foam with aramid fibers exhibited a seven-fold increase in peel resistance together with a five-fold reduction in friability. In shear tests, aramid composite foam endured prolonged loading to high levels of strain, indicating the potential for use in structural applications. On the other hand, glass fiber-reinforced phenolic foam produced substantial improvement in the stiffness and strength relative to the unreinforced counterpart. In particular, the Young's modulus of the glass fiber composite foam was increased by as much as 100% relative to the plain phenolic foam in the foam rise direction. In addition, different mechanical behavior was observed for aramid and glass fiber-reinforced foams. In an attempt to understand the mechanical behavior of composite foam, a novel NDT technique, micro-CT, was used to acquire information on fiber length distribution (FLD) and fiber orientation distribution (FOD). Results from micro-CT measurements were compared with theoretical distribution models, achieving various degrees of agreement. Despite some limitations of current micro-CT technology, the realistic observation and measurement of cellular morphology and fiber distribution within composite foams portend future advances in modeling of reinforced polymer foam. To explain the discrepancy observed in shear stiffness between traditional shear test results and those by the short sandwich beam test, a

  12. Wool insulation

    Energy Technology Data Exchange (ETDEWEB)

    O`Shea, Angus

    1995-05-01

    Wool insulation usually comes in two forms, as loose fill or batts. The reliability of loose fill as an insulator, the thickness of batts and the wool`s vulnerability to insect and moth attack are considered to be problems. The purpose of this research was to create a commercial wool insulation product to overcome these limitations, at the same time withstanding the Australian and international standards for fire resistance. The project also considered the market potential of such a product with a view to commercialization. The loft or thickness problem was resolved by covering the wool with an oven baked adhesive. A fire retardant and anti-insect treatment was incorporated into the spray process to produce a viable product.

  13. Radiation Insulation

    Science.gov (United States)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  14. Novel foaming agent used in preparation process of aluminum foams

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated,and the effects of some factors,such as addition of the foaming agent,foaming temperature on the porosity,and appearance of aluminum foams were also discussed.Experimental results show that the novel foaming agent has a wide decomposition temperature range and a mild decomposed rate; the foaming agent has the ability to enhance the viscosity of aluminum melt,as a result,an extra viscosifier such as Ca or SiCp is unnecessary while using this foaming agent; the bubble-free zone in material decreases and the foaming efficiency increases with the increase of foaming agent; the bubble-free zone disappears and the foaming efficiency is near 100% when the addition of foaming agent is more than 1.4wt% ; the porosity of the aluminum foam increases with the increase of foaming agent when the addition of foaming agent is less than 2.2wt% .

  15. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  16. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K. [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  17. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  18. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. The foaming of lavas

    Science.gov (United States)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  20. Micro flows in foams

    Science.gov (United States)

    Koehler, Stephan; Hilgenfeldt, Sascha; Stone, Howard; Weeks, Eric

    2002-11-01

    Foam drainage, the flow of liquid through foams, has been extensively studied macroscopically, on the scale of many bubbles. We use a confocal microscope to determine the flow-field in a single channel, and find good agreement with a model based upon surface rheology (R. A. Leonard and R. Lemlich, AIChE J. 11, p. 25-29 (1965)). The microscopic measurements show different types of flows depending on the type of surfactant used to stabilize the foam, which has also been observed on the macroscopic level. Surprisingly we find very little mixing in the nodes, the regions where four different channels intersect.

  1. Translucent Insulation

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1998-01-01

    Two new types of translucent materials are presented. One is translucent fiber insulation and the other type is a new type of hony-comb made of Celulose-acetat. Data for the materials and calculations of energy savings when using the materials in building envelopes are presented....

  2. Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams

    Directory of Open Access Journals (Sweden)

    M. Antunes

    2010-01-01

    Full Text Available This work presents the preparation and characterization of compression-moulded montmorillonite and carbon nanofibre-polypropylene foams. The influence of these nanofillers on the foaming behaviour was analyzed in terms of the foaming parameters and final cellular structure and morphology of the foams. Both nanofillers induced the formation of a more isometric-like cellular structure in the foams, mainly observed for the MMT-filled nanocomposite foams. Alongside their crystalline characteristics, the nanocomposite foams were also characterized and compared with the unfilled ones regarding their dynamic-mechanical thermal behaviour. The nanocomposite foams showed higher specific storage moduli due to the reinforcement effect of the nanofillers and higher cell density isometric cellular structure. Particularly, the carbon nanofibre foams showed an increasingly higher electrical conductivity with increasing the amount of nanofibres, thus showing promising results as to produce electrically improved lightweight materials for applications such as electrostatic painting.

  3. In-situ long-term thermal performance of impermeably face polyiso foam boards

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyaya, Phalguni; Normandin, Nicole; Van Reenen, David; Lackey, John [National Research Council Canada, Institute for Reserch in Construction, Ottawa, (Canada); Drouin, Michel [Consultant, Dorion, (Canada)

    2010-07-01

    Closed-cell polyisocyanurate (polyiso) foam insulation products are widely used in building envelope constructions as they have one of the highest R-values per unit thickness among the insulations used in the construction industry. The introduction of impermeable facers on the surface of polyiso rigid board is aimed at enhancing the long-term thermal resistance (LTTR) properties of the foam. This paper evaluated the thermal performance of impermeably faced polyiso boards after more than six years of field exposure. Boards were installed and instrumented at NRC-IRC's field test facility. Field monitoring was performed on a regular basis for six years of exposure until 2008. Then, nine specimens were cut from the boards which were removed from the test hut to evaluate their thermal characteristic using a heat flow meter apparatus. It was found that the impermeably faced polyiso foam insulation boards aged significantly.

  4. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal...... conductivity: + 50% for expanded polystyrene (λ ≈ 30 mW/m.K), + 75% for mineral wools (λ ≈ 35 mW/m.K), etc. Despite its low thermal conductivity, polyurethane foam (PUR) is not much used as insulation material for walls because of its low resistance to fire. The most common PUR boards are classified C-s2-d0...

  5. 现浇泡沫混凝土围护结构自保温体系在寒冷地区应用研究%Application of self-insulation system for cast-in-place foam concrete envelope structure in the cold region

    Institute of Scientific and Technical Information of China (English)

    丁来彬; 袁伟; 刘涛; 张善德

    2016-01-01

    In this paper, according to the design requirements, the dry density rating of cast-in-place foam con⁃crete is calculated and determined to meet the envelope structure thermal performance parameter limits in the cold region A, and conducts test verifies of cast-in-place wall in lab according to the standard of“Thermal insulation, Determination of steady-state thermal transmission properties, Calibrated and guard hot box”(GB/T13475). Final⁃ly, the engineering application practice is taken place in Hotan, Xinjiang, thermal performance of the practical engi⁃neering envelope structure is tested by heat flow meter method and infrared thermal imaging technology, and the re⁃sults are in line with the national standards.%根据设计要求,计算确定满足寒冷A区围护结构热工性能参数限值的现浇泡沫混凝土干密度等级,并在实验室根据《绝热稳态传热性质的测定标定和防护热箱法》(GB/T13475)标准进行现浇墙体检测验证。最终在新疆和田地区进行工程应用实践。通过热流计法及红外热成像技术对实际工程围护结构进行热工性能检测,其热工性能检测结果均符合国家标准要求。

  6. Foaming in stout beers

    OpenAIRE

    Lee, W. T.; M. G. Devereux

    2011-01-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same m...

  7. Ultralight metal foams

    Science.gov (United States)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-01

    Ultralight (acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  8. Assessment of possible control of selected operational properties of metal-ceramic foams

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2010-01-01

    Full Text Available Effective use of metal foams, an increasingly popular group of machine structural materials, often requires that their properties be adjusted to customer needs. The growing popularity of foams is due to their specific properties, i.e. capability of absorbing the impact and explosion energy, increasing the stiffness of structural components such as panels of closed profiles, ability to damp vibrations, relatively good thermal insulation, dispersion of electromagnetic waves, resistance to high temperature and others. One of the operational properties of metal foams that is essential for their use in various structures is the resistance to single-axial static compression.Initial studies aimed at the determination of how metal foam behaves when statically compressed. Foam samples were made by blowing gas into liquid metal. The composition of metal foam (AlSi11 was differentiated by introducing ceramic particles SiC. By changing technological parameters of the foaming process we could affect the size of gaseous bubbles and their homogeneity. By comparing the structure of foams and their properties we found significant differences in the curve x = f(P of foam sample affected by the force (P. It has been proved that one operational property, namely the resistance to compression, can be indirectly controlled, that is its determined specific structure can be obtained by maintaining specific technological parameters.

  9. Evaluation of foam-skin cables for aerial applications

    Science.gov (United States)

    Samuelson, G. R.

    Since the introduction of foam-skin filled cables, there has been considerable discussion within the Industry, both pro and con, regarding the acceptability of foam-skin filled cables for aerial application. This paper reports on results obtained from a study undertaken to evaluate the changes in transmission properties of such cables in a simulated aerial environment. Cable samples produced by six cable manufacturers using conventional, high-temperature drip-resistant filling compounds with a petrolatum base were subjected to temperature cycling from -40 F to 140 F. Transmission parameters were measured at 1, 150 and 772 kHz and compared to initial values. A solid polypropylene insulated filled cable was included for reference. The results show that foam-skin petrolatum based filled cables exhibit stable electrical characteristics when exposed to cycled temperature extremes.

  10. Prediction of Long Term Degradation of Insulating Materials

    Science.gov (United States)

    2015-05-01

    fiberglass, foam, or cellulose insulation in areas where thermal bridges may be formed or used in places where it is not practical to install thicker...ER D C/ CE RL T R- 15 -8 Prediction of Long Term Degradation of Insulating Materials Co ns tr uc tio n En gi ne er in g R es ea rc h...acwc.sdp.sirsi.net/client/default. ERDC/CERL TR-15-8 May 2015 Prediction of Long Term Degradation of Insulating Materials L. D. Stephenson, Andrew

  11. Foaming of CRT panel glass powder using Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    2014-01-01

    to its non-hazardous composition. Here we report on the foaming of CRT panel glass using Na2CO3 as the foaming agent. We explore how heat treatment temperature and concentration of Na2CO3 affect the density and porosity of the foam glasses, and whether Na2O is incorporated in the glass network......The recycling of glass from obsolete cathode ray tubes (CRT) has hitherto only occurred to a very limited extent, but the production of foam glass used as an insulation material component has recently been proposed as a promising recycling method. CRT panel glass has high recycling potential due......% Na2CO3 is added and the heat treatment temperature is 1023 K. Interestingly, the glass transition temperature (Tg) of the final foam glass decreases linearly with increasing [Na2CO3], indicating that the Na2O is incorporated into the glass network....

  12. Mechanical Properties and Energy-saving Effect of Polypropylene Fiber Foam Concrete

    Directory of Open Access Journals (Sweden)

    Deng Fukang

    2013-07-01

    Full Text Available Compared with ordinary concrete, foam concrete possesses advantages such as lightweight, heat insulation, etc., but the internal bubbles have of great influence on its strength. This study examined the impact of polypropylene fibers on mechanical properties of foam concrete using flexural deformation control method and obtained complete load-deformation curve. The results show that, polypropylene fibers significantly affect the compressive property of the foam concrete and improve the carrying capacity after the peak compression load, but have little effect on the compressive strength; polypropylene fibers improve the flexural performance significantly.

  13. Advanced insulations for refrigerator/freezers: The potential for new shell designs incorporating polymer barrier construction

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.T.; Arasteh, D.

    1992-11-01

    The impending phase-out of chlorofluorocarbons (CFCs) used to expand foam insulation, combined with requirements for increased energy efficiency, make the use of non-CFC-based high performance insulation technologies increasingly attractive. The majority of current efforts are directed at using advanced insulations in the form of thin, flat low-conductivity gas-filled or evacuated orthogonal panels, which we refer to as Advanced Insulation Panels (AIPs). AIPs can be used in composite with blown polymer foams to improve insulation performance in refrigerator/freezers (R/Fs) of conventional design and manufacture. This AIP/foam composite approach is appealing because it appears to be a feasible, near-term method for incorporating advanced insulations into R/Fs without substantial redesign or retooling. However, the requirements for adequate flow of foam during the foam-in-place operation impose limitations on the allowable thickness and coverage area of AIPs. This report examines design alternatives which may offer a greater increase in overall thermal resistance than is possible with the use of AIP/foam composites in current R/F design. These design alternatives generally involve a basic redesign of the R/F taking into account the unique requirements of advanced insulations and the importance of minimizing thermal bridging with high thermal resistance insulations. The focus here is on R/F doors because they are relatively simple and independent R/F components and are therefore good candidates for development of alterative designs. R/F doors have significant thermal bridging problems due to the steel outer shell construction. A three dimensional finite difference computer modeling exercise of a R/F door geometry was used to compare the overall levels of thermal resistance (R-value) for various design configurations.

  14. Advanced insulations for refrigerator/freezers: The potential for new shell designs incorporating polymer barrier construction

    Science.gov (United States)

    Griffith, B. T.; Arasteh, D.

    1992-11-01

    The impending phase-out of chlorofluorocarbons (CFC's) used to expand foam insulation, combined with requirements for increased energy efficiency, make the use of non-CFC-based high performance insulation technologies increasingly attractive. The majority of current efforts are directed at using advanced insulations in the form of thin, flat low-conductivity gas-filled or evacuated orthogonal panels, which are referred to as Advanced Insulation Panels (AIP's). AIP's can be used in composite with blown polymer foams to improve insulation performance in refrigerator/freezers (R/F's) of conventional design and manufacture. This AIP/foam composite approach is appealing because it appears to be a feasible, near-term method for incorporating advanced insulations into R/F's without substantial redesign or retooling. However, the requirements for adequate flow of foam during the foam-in-place operation impose limitations on the allowable thickness and coverage area of AIP's. Design alternatives which may offer a greater increase in overall thermal resistance than is possible with the use of AIP/foam composites in current R/F design are examined. These design alternatives generally involve a basic redesign of the R/F taking into account the unique requirements of advanced insulations and the importance of minimizing thermal bridging with high thermal resistance insulations. The focus is on R/F doors because they are relatively simple and independent R/F components and are therefore good candidates for development of alternative designs. R/F doors have significant thermal bridging problems due to the steel outer shell construction. A three dimensional finite difference computer modeling exercise of a R/F door geometry was used to compare the overall levels of thermal resistance (R-value) for various design configurations.

  15. Design Tool for Cryogenic Thermal Insulation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  16. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Gaiser, Peter W.; Anguelova, Magdalena D.

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  17. Towards low energy building using vacuum insulation panels. Advantages and disadvantages

    Directory of Open Access Journals (Sweden)

    Adrian-Alexandru CIOBANU

    2013-12-01

    Full Text Available The increasing interest in building developments with very low energy consumption, energy-positive or passive houses has directed the attention of those involved in this area to high thermal performance insulation materials, like vacuum insulation panels (VIP. Vacuum insulation panels are part of high thermal performance insulations, which attempts to be introduced and used in the construction field. The main interest for these materials is due to their thermal properties, namely to their very low thermal conductivity (of 5 to 8 times compared with traditional thermal insulation materials (mineral wool, extruded/expanded polystyrene. The thermal conductivity of thermal insulation widely used, hence traditional or classical insulation names, as expanded polystyrene (EPS, extruded polystyrene (XPS, mineral wool or polyurethane foam (PUR has typical values between 0.03 and 0.05 W/(mK. Using these types of insulations to fulfill performance envelope elements in terms of energy, leads to the adoption of an increased insulation thickness. Vacuum insulation panels may offer new solution for high performance insulation with a thickness in order of a few centimeters compared to the conventional insulation. Vacuum insulation panels can be used as independently insulation, replacing entirely the conventional ones or as additional insulation.

  18. Experimental investigation of technologie of pipelines thermal protection by monolithiс foam concrete

    OpenAIRE

    I.A. Lundyshev

    2010-01-01

    As the technology of heat insulation with using monolithic foam concrete is relatively new, after preliminary calculations, and before mass use by a group of scientists and engineers, which included the author of articles, under the guidance of Ph. D. V.D. Vasiliev< in 2007-2008 were conducted field experiments. According to the proposed technology, the insulated pipe centralizers are installed on which is mounted a removable or fixed timbering. The ends are sealed, and through technological ...

  19. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

    Science.gov (United States)

    Langevin, Dominique

    2017-01-01

    There are still many open questions and problems in both fundamental research and practical applications of foams. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity allow studying wet foams, such as those obtained early during the foaming process. On Earth, wet foams evolve too quickly due to gravity drainage and only dry foams can be studied. This paper reviews the foam and foam film studies that we have performed in gravity-free conditions. It highlights the importance of surface rheology as well as of confinement effects in foams and foam films behaviour.

  20. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  1. Foaming in stout beers

    CERN Document Server

    Lee, W T

    2011-01-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same mechanism, nucleation by gas pockets trapped in cellulose fibres, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for the scientific investigation of the nucleation of gas bubbles. The equipment needed is very modest, putting such experiments within reach of undergraduate laboratories. Finally we consider the suggestion that a widget could be constructed by coating the inside of a beer...

  2. Correlations in a Band Insulator

    Science.gov (United States)

    Sentef, Michael; Kunes, Jan; Kampf, Arno P.; Werner, Philipp

    2010-03-01

    Using DMFT we find a discontinuous band-to-Mott insulator transition upon an increase in the local Coulomb repulsion in a covalent band insulator [1,2], defined as a band insulator with partially filled local orbitals. The corresponding band gap is a hybridization gap arising from a particular pattern of hopping integrals. Similar characteristics apply to materials such as FeSi, FeSb2 or CoTiSb [3], some of which exhibit temperature dependent magnetic and transport properties reminiscent of Kondo insulators. Both charge and spin gaps in the covalent band insulator shrink with increasing Coulomb repulsion. At moderate interaction strengths the gap renormalization is well described by a renormalization factor analogous to the quasiparticle weight in a Fermi liquid. [4pt] [1] M. Sentef, J. Kunes, P. Werner, and A.P. Kampf, Phys. Rev. B 80, 155116 (2009) [0pt] [2] A.P. Kampf, M. Kollar, J. Kunes, M. Sentef, and D. Vollhardt, arXiv:0910.5126

  3. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  4. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  5. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  6. 基于FE-SEA混合法的汽车镁合金前围板隔声量数值计算%Sound insulation numerical calculation of an automobile magnesium alloy dash based on FE-SEA hybrid method

    Institute of Scientific and Technical Information of China (English)

    毛杰; 郝志勇; 卢兆刚; 陈馨蕊

    2012-01-01

    In order to solve the structure-borne noise in middle frequency range, an advanced method named hybrid finite element-statistical energy analysis (FE-SEA) was introduced to calculate the sound insulation performance of automobile components. This method possesses the advantages of finite element method or boundary element method for low frequency range and statistical energy analysis for high frequency range. According to the FE-SEA theory, a hybrid model of the Chrysler Viper magnesium alloy dash was built to validate whether the hybrid method was feasible to calculate the sound transmission loss of automobile body panel in middle frequency range. Diffuse acoustic field (DAF) was applied to the incident side of hybrid model as the acoustic excitation and semi infinite field (SIF) was applied to the transmitted side as the sound power receptor. The result of numerical calculation agreed well with that of experiment, which validated the feasibility of the hybrid FE-SEA method in solving the mid-frequency acoustic problems of the dash panel. Finally, the application of regional sound package method shows the advantage and convenience to optimize the surface vibration around the frequency of sound transmission loss curve trough (100-500 Hz) in order to get a better sound insulation quality.%为研究中频域的结构噪声,采用有限元-统计能量分析(FE-SEA)混合法对汽车板件的隔声性能进行了研究,该方法具备适用于低频域的有限元或边界元法和适用于高频域的统计能量分析的优点.结合混合法理论,建立克莱斯勒Viper跑车镁合金压铸前围板的混合模型,验证该方法应用于汽车车身薄壁件中低频隔声量计算的可行性.对混合模型的入射侧施加混响声场(DAF)作为声激励,在透射侧施加半自由声场(SIF)作为功率接收器,由数值计算结果得到前围板中低频率范围内的隔声量曲线,与试验结果对比,表明两者结果基本吻合,从而很好地证

  7. Investigation of field temperature in moulds of foamed plaster

    Directory of Open Access Journals (Sweden)

    M. Pawlak

    2007-12-01

    Full Text Available Plaster moulds used in precision foundry are characterized by a very low permeability which, in the case of classic plaster moulds, equals to about 0,01÷0,02 m2/(MPa·s. One of the most effective methods for increasing the permeability is a foaming treatment. Another characteristic feature of plaster is its very good insulating power which has influence on the process of solidification and cooling of a cast and also on a knock-out property. This insulating power is a function of thermophysical properties of plaster which, in turn, depend mainly on the mineralogical composition of the mould material, its bulk density as well as on the temperature of the pouring alloy. In the case of a foamed plaster mould an increase of the degree of foaming increases its porosity which causes a change in its thermophysical properties, thereby increasing susceptibility of the mass to overheating. The susceptibility of the plaster layer surrounding the cast to overheating is favorable because it makes it easier to knock-out of the cast by immersing the hot mould in cold water. Thermal and phase tensions that are created during this process cause fast destruction of plaster. This paper describes our investigations aimed at the determination of the dependence of the mould temperature field on the time of the cast stay in the mould, as recorded in a process of an unsteady heat flow. The determined data were planned to be used for estimation of the technological properties of the plaster mould. The tests were carried out using the plaster α-Supraduro and Alkanol XC (foaming agent. The test mould had a diameter of Ø 120 mm with centrally situated mould cavity of Ø 30 mm. Plaster moulds with a degree of foaming 20; 32,5 and 45% and comparatively from non-foaming plaster were tested and their temperatures were measured at the distance x=2; 9; 21; 25;27; 30 mm from the mould cavity within 25 min. Analysis of the results leads to the conclusion, that the highest

  8. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    Science.gov (United States)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  9. Short- and long-term releases of fluorocarbons from disposal of polyurethane foam waste

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-01-01

    Several halocarbons having very high global warming or ozone depletion potentials have been used as a blowing agent (BA) for insulation foam in home appliances, such as refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in ...

  10. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated.

  11. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  12. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds.We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively. Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3 and two different prostate cancer cell lines (22RV1, DU145 attached to and proliferated on zein foams.We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves. Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  13. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  14. An overview of polyurethane foams in higher specification foam mattresses.

    Science.gov (United States)

    Soppi, Esa; Lehtiö, Juha; Saarinen, Hannu

    2015-02-01

    Soft polyurethane foams exist in thousands of grades and constitute essential components of hospital mattresses. For pressure ulcer prevention, the ability of foams to control the immersion and envelopment of patients is essential. Higher specification foam mattresses (i.e., foam mattresses that relieve pressure via optimum patient immersion and envelopment while enabling patient position changes) are claimed to be more effective for preventing pressure ulcers than standard mattresses. Foam grade evaluations should include resiliency, density, hardness, indentation force/load deflection, progressive hardness, tensile strength, and elongation along with essential criteria for higher specification foam mattresses. Patient-specific requirements may include optimal control of patient immersion and envelopment. Mattress cover characteristics should include breathability, impermeability to fluids, and fire safety and not affect mattress function. Additional determinations such as hardness are assessed according to the guidelines of the American Society for Testing and Materials and the International Organization for Standardization. At this time, no single foam grade provides an optimal combination of the above key requirements, but the literature suggests a combination of at least 2 foams may create an optimal higher specification foam mattress for pressure ulcer prevention. Future research and the development of product specification accuracy standards are needed to help clinicians make evidence-based decisions about mattress use.

  15. Mg Alloy Foam Fabrication via Melt Foaming Method

    Institute of Scientific and Technical Information of China (English)

    Donghui YANC; Changhwan SEO; Bo-Young HUR

    2008-01-01

    For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.

  16. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  17. The properties of foams and lattices.

    Science.gov (United States)

    Ashby, M F

    2006-01-15

    Man and nature both exploit the remarkable properties of cellular solids, by which we mean foams, meshes and microlattices. To the non-scientist, their image is that of soft, compliant, things: cushions, packaging and padding. To the food scientist they are familiar as bread, cake and desserts of the best kind: meringue, mousse and sponge. To those who study nature they are the structural materials of their subject: wood, coral, cancellous bone. And to the engineer they are of vast importance in building lightweight structures, for energy management, for thermal insulation, filtration and much more. When a solid is converted into a material with a foam-like structure, the single-valued properties of the solid are extended. By properties we mean stiffness, strength, thermal conductivity and diffusivity, electrical resistivity and so forth. And the extension is vast-the properties can be changed by a factor of 1000 or more. Perhaps the most important concept in analysing the mechanical behaviour is that of the distinction between a stretch- and a bending-dominated structure. The first is exceptionally stiff and strong for a given mass; the second is compliant and, although not strong, it absorbs energy well when compressed. This paper summarizes a little of the way in which the mechanical properties of cellular solids are analysed and illustrates the range of properties offered by alternative configurations.

  18. Using quartzofeldspathic waste to obtain foamed glass material

    Directory of Open Access Journals (Sweden)

    O.V. Kazmina

    2016-03-01

    Full Text Available The present paper proposes a method for the processing of mine refuse non-ferrous metal ore in the production of foamed glass. The subject of this research is a low-temperature frit synthesis (<900 °C, allowing for the high-temperature glass melting process to be avoided. The technology for the production of frit without complete melting of the batch and without using glass-making units offers a considerable reduction in energy consumption and air pollution. It was found that material samples obtained with a density of up to 250 kg/m3 are of rigidity (up to 1.7 MPa in comparison with the conventional foamed glass (1 MPa. This increased rigidity was due to the presence of crystalline phase particles in its interpore partition of less than 2 µm in size. Material with a density of 300 kg/cm3 is recommended for thermal insulation for the industrial and construction sectors. At densities above 300 kg/cm3 and a strength of 2.5 MPa, the purpose becomes heat-insulating construction material. The proposed method for obtaining a porous material from waste widens our choice of raw materials for foamed glass, whilst saving resources and energy.

  19. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  20. Foaming in manure based digesters

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occurred in the Danish full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically formatted in the main biogas reactor or in the pre-storage tank and the entrapped solids in the foam...... cause severe operational problems, such as blockage of mixing devices, and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses derived from the reduced biogas production, extra labour work and additional maintenance costs....... Moreover, foaming presents adverse environmental impacts owing to the overflowing of the pre-storage or digester tanks. So far, there has never been thoroughly investigation of foaming problem in manure-based digester, which is the main anaerobic digestion applied in Denmark. The purpose of the present...

  1. Shape memory polyurethane foams

    Directory of Open Access Journals (Sweden)

    B. K. Kim

    2012-01-01

    Full Text Available Molded flexible polyurethane (PU foams have been synthesized from polypropylene glycol (PPG with different molecular weights (Mw and functionalities (f, and 2,4/2,6-toluene diisocyanate (TDI-80 with water as blowing agent. It was found that the glassy state properties of the foam mainly depended on the urethane group content while the rubbery state properties on the crosslink density. That is, PPG of low MW and low f (more urethane groups provided superior glass state modulus, strength, density, shape fixity and glass transition temperature (Tg, while that of high Mw and high f (higher crosslink density showed high rubbery modulus and shape recovery. Consequently shape fixity of low Mw PPG decreased from 85 to 72% while shape recovery increased from 52 to 63% as the content of high Mw PPG increased from 0 to 40%.

  2. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  3. Causal spin foams

    CERN Document Server

    Immirzi, Giorgio

    2016-01-01

    I discuss how to impose causality on spin-foam models, separating forward and backward propagation, turning a given triangulation to a 'causal set', and giving asymptotically the exponential of the Regge action, not a cosine. I show the equivalence of the prescriptions which have been proposed to achieve this. Essential to the argument is the closure condition for the 4-simplices, all made of space-like tetrahedra.

  4. Polyurethane Foam Roofing.

    Science.gov (United States)

    1987-04-01

    underfilled a second or third application of foam may be required to completely fill the void . If a second or third application or pour is required, pour(s...often creates other problems such as pinholes, voids (or "holidays") and cracking. Occasionally, small areas of marginal coating coverage may be found on...which can be worked down into small voids , crevices and pinholes. Suitable caulk sealants can also be used to make corrections. Such corrective

  5. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  6. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  7. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.

  8. The use of polyurethane foam to provide a watertight concrete masonry wall and a sealed connection of the wall to the foundation

    Energy Technology Data Exchange (ETDEWEB)

    Janopaul, P. Jr.

    1999-07-01

    This paper outlines a construction procedure used to insure a watertight masonry wall and a sealed connection, of this same wall, to the foundation. This procedure was discovered as the byproduct of using an insulted dual cavity concrete masonry unit that is foamed in the field. This insulated concrete masonry system has been developed in the past 12 years, and has been utilized in almost 100 buildings (in Arizona, California, Nevada, Oregon, and Utah) with climates that range from hot desert to Sierra Nevada snow country to the Pacific Northwest rainfall. The critical elements in perfecting this procedure are the detailing of the base of the wall, with a continuous exterior first course foam side cleanout, then following this detailing in the field construction of the wall, and properly foaming the constructed wall with polyurethane foam. The polyurethane foam must be poured into the foam cavity after the face shells have been replace at the first course cleanout.

  9. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    on a complex geological model for quick feasibility studies, either for onward practical pilot or as justification for more detailed technical study. The simulation showed that Foam model is applicable. The mismatch between history and actual GOR in some periods of injection is due to the complexity...... as quick reference for future general foam pilot simulations at field scale....

  10. Average foam life and foaming intensity of foaming phenomenon originating from decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.; Wang, Y.; Liang, Z.; Liu, X.; Yao, K.; Zhao, J. [Beijing Univ. of Science and Technology, Metallurgy School (China)

    2003-06-01

    The average foam life anti {tau} and foam intensity i have been defined. The expression of anti {tau} and i were given through the relationship between the gas quantity of carbonate decomposition and time, which could be determined by the mass and heat balance. anti {tau} means the effective foaming endurance time. i is a dimensionless number and means the intensity of the foaming process. With these two parameters and the supplement formation and rupture coefficients (K and k), the foaming process originating from decomposition reaction in the melt can be described quantitatively. Through the experiment in the laboratory, the foam height has been measured during the foaming process originating from reaction of the carbonate decomposition in Na{sub 2}B{sub 4}O{sub 7} melt. By means of the experimental results and through the self-developed calculation program, the foam behaviour parameters (K, k, anti {tau} and i) for the foaming process could be determined under different conditions, such as variations of crucible diameter, added carbonate quantity, initial slag height and foaming agent radius and so on. In this way the foam behaviour of the different foaming processes originating from reaction of carbonate decomposition in Na{sub 2}B{sub 4}O{sub 7} melt would be analysed quantitatively. It was shown that the crucible diameter has little effect on rupture coefficient k, average foam life anti {tau} and foam intensity i, just like the foam caused by blowing gas. However, formation coefficient K was affected by the crucible diameter quite a lot. With increased carbonate and initial slag height, anti {tau} and i increase too. In addition anti {tau} and i are influenced by the particle size of the carbonate added to the Na{sub 2}B{sub 4}O{sub 7} melt. The larger the particle, the lower anti {tau} and i. With addition of the two different sizes of particles, both of them were getting larger. The composition of the melt has also an influence on the foaming process

  11. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Dan R. Lipsa; Roberts, Richard C; Laramee, Robert S

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  12. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  13. Transport properties of topological insulators films and nanowires

    Institute of Scientific and Technical Information of China (English)

    Liu Yi; Ma Zheng; Zhao Yan-Fei; Meenakshi Singh; Wang Jian

    2013-01-01

    The last several years have witnessed the rapid developments in the study and understanding of topological insulators.In this review,after a brief summary of the history of topological insulators,we focus on the recent progress made in transport experiments on topological insulator films and nanowires.Some quantum phenomena,including the weak antilocalization,the Aharonov-Bohm effect,and the Shubnikov-de Haas oscillations,observed in these nanostructures are described.In addition,the electronic transport evidence of the superconducting proximity effect as well as an anomalous resistance enhancement in topological insulator/superconductor hybrid structures is included.

  14. Development of advanced materials composites for use as insulations for LH2 tanks

    Science.gov (United States)

    Lemons, C. R.; Salmassy, O. K.

    1973-01-01

    A study of thread-reinforced polyurethane foam and glass fabric liner, serving as internally bonded insulation for space shuttle LH2 tanks, is reported. Emphasis was placed on an insulation system capable of reentry and multiple reuse in the shuttle environment. The optimized manufacturing parameters associated with each element of the composite are established and the results, showing successful completion of subscale system evaluation tests using the shuttle flight environmental requirements, are given.

  15. Hydrolytic ageing of epoxy-amine/glass syntactic foams for thermal insulation under high pressure: degradation mechanisms and water uptake simulation; Vieillissement hydrolytique de mousses syntactiques epoxyde-amine/verre pour l'isolation thermique sous hautes pressions: mecanismes de degradation et simulation de la prise en eau

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Fouque, N.

    2005-11-15

    The syntactic foams studied are made of hollow glass microspheres (diameter 46{mu}m) and of an epoxy/amine thermoset (DGEBA-MCDEA, T{sub g} 174 C). Morphologies of the initial materials (3 volume fractions of microspheres and 2 types of glass) were checked by thermogravimetric analysis (TGA) and 3D-X-ray tomography. Different conditions of aging were studied (20 C, 60 C, 100 C, 120 C in deionized and artificial sea water, with and without pressure, up to 300 bar). The behavior of the foams was analyzed through gravimetry, impedance-metry, TGA, differential calorimetry (DSC), thermal conductivity, uniaxial compression and 3D-X-ray tomography. These complementary techniques have then led to the proposal of a simulation on the water absorption, taking in account the degradation of the foam. (author)

  16. Lost Foam Casting in China

    Institute of Scientific and Technical Information of China (English)

    YE Sheng-ping; WU Zhi-chao

    2006-01-01

    @@ 1. Lost Foam Casting Committee of Foundry Institution of Chinese Mechanical Engineering Society (FICMES) From the beginning of the 1990s, China entered a research and expansion climax in lost foam casting technology realm after the United States, Germany, and Japan etc.

  17. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  18. Investigation of the Dielectric Strength of Syntactic Foam at 77 K under DC Stress

    Science.gov (United States)

    Winkel, D.; Puffer, R.; Schnettler, A.

    2014-05-01

    Liquid nitrogen (LN2) based electrical insulation systems for superconducting equipment of electrical power distribution networks are state of the art. Since LN2 is a cryogenic liquid it has some disadvantages when used as insulation. This paper deals with syntactic foam as an alternative insulation system for superconducting apparatus. Syntactic foam is a composite material consisting of a polymeric matrix and embedded hollow microspheres with diameters of several 10 μp?. As hollow microspheres are gas-filled, using those as filling material features significant reductions of the relative permittivity and of the thermal contraction due to cooling the material to liquid nitrogen temperature (LNT, T = 77 K). In this study both an epoxy resin (ER) and an unsaturated polyester resin (UPR) serve as matrix material. The hollow microspheres used in this investigation are made of untreated and silanized glass. The results of measurements of the dielectric DC strength show, that the dielectric strength of all investigated syntactic foam compositions are significantly higher at LNT compared to ambient temperature (AT). Furthermore, the effect of a higher dielectric strength of syntactic foam with silanized glass spheres at ambient temperature vanishes at LNT. Hence, the dielectric strength at LNT is unaffected by silanization of glass microspheres.

  19. Spin foams without spins

    Science.gov (United States)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  20. Insulation performance data and assessment procedures for steam kiln energy conservation investments

    Energy Technology Data Exchange (ETDEWEB)

    Zaccor, J.V.

    1980-09-01

    For a demonstration project, the costs and benefits of insulating concrete block curing kilns to isolate the kiln thermal mass from the curing cycle are determined. Data were developed on service life of FOAMGLAS insulation, the effect of Johnson burners on the insulation and mounting, performance of an alternative insulation (a rapidly installed, spray-on polyurethane foam), and a simple incentive to promote implementation of industrial energy conservation concepts. Data are tabulated and compared for the FOAMGLAS and CPR 480 polyurethane insulations. Specific studies of insulation that was installed on inside surfaces of kilns to lock the kiln-mass out of the curing cycle are given for Blocklite plant in California, the Ameron pipe plant in California, and the Superlite plant in Phoenix, Arizona. (MCW)

  1. Insulated Fiber Brush.

    Science.gov (United States)

    An insulated-strand fiber brush is provided for a DC motor /generator. The brush is comprised of a plurality of fiber segments which are insulated from one another near the contact surface of a rotor bar. In one embodiment, insulating spacers are fixed to a brush assembly and wear with the fibers, and in another embodiment insulation is provided by a separate shell. (Author)

  2. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    Directory of Open Access Journals (Sweden)

    Peter W. Gaiser

    2012-04-01

    Full Text Available Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam impedance; wavelength variations in foam thickness, roughness of foam layer interfaces with air and seawater; and foam scattering parameters such as size parameter, and refraction index. Using these, we analyze the scattering, absorption, reflection and transmission in foam and gain insights into why volume scattering in foam is weak; why the main absorption losses are confined to the wet portion of the foam; how the foam impedance matching provides the transmission of electromagnetic radiation in foam and maximizes the absorption; and what is the potential for surface scattering at the foam layers boundaries. We put all these elements together and offer a conceptual understanding for the high, black-body-like emissivity of foam floating on the sea surface. We also consider possible scattering regimes in foam.

  3. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  4. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    Science.gov (United States)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  5. Experimental investigation on pore size effect on the linear viscoelastic properties of acoustic foams.

    Science.gov (United States)

    Deverge, Mickaël; Benyahia, Lazhar; Sahraoui, Sohbi

    2009-09-01

    This paper presents linear viscoelastic measurement on a large frequency range (10(-2)-10(8) Hz) for cross-linked polymer open-cell foams of same density and different pore sizes. This large extension of frequency range is obtained by the validation of a frequency-temperature superposition principle, commonly used with polymers. At higher frequencies, the shear moduli are independent of the pore size. In acoustical insulation range (1 Hz-16 kHz), the shear moduli decreases with the foams' pore size.

  6. Mechanical Characterization of Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  7. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  8. Layered composite thermal insulation system for nonvacuum cryogenic applications

    Science.gov (United States)

    Fesmire, J. E.

    2016-03-01

    A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum-jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum-jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal

  9. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B. [Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada M5S 3G8 (Canada); Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  10. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  11. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    Science.gov (United States)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  12. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-12-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  13. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Science.gov (United States)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B.; Pötschke, P.

    2015-05-01

    A combination of high dielectric permittivity (ɛ') and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ɛ' and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ɛ' and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube's arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ɛ'=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ɛ'=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  14. SPRAY FOAM IN ACCESSIBLE SPACES:BEST PRACTICES AND CASE STUDIES FOR RETROFIT IN MIXED-HUMID CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Jeffrey E [ORNL; Gant, Kathy [Oak Ridge National Laboratory (ORNL)

    2013-12-01

    Heating and cooling the house is one of the homeowners major expenses. Reducing these costs, saving energy, and creating a healthier, more comfortable indoor environment are good reasons to consider improving the building thermal envelope. Improvements usually consider increasing the amount of insulation, reducing the infiltration of outside air, and controlling moisture in existing buildings. This report describes the use of spray foam materials to insulate, seal, and control moisture. This discussion is limited to treating areas that are accessible. What is accessible, however, can vary depending on the type of renovation. If the building has been gutted or exterior surfaces removed, there are more options. This report will look at areas to consider for spray foam application and discuss the types of spray foams available and their uses. A number of case studies are presented to show the effectiveness of this retrofit in existing houses based on performance data.

  15. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  16. Spin Foams Without Spins

    CERN Document Server

    Hnybida, Jeff

    2015-01-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  17. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  18. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  19. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  20. Spin Foams and Canonical Quantization

    CERN Document Server

    Alexandrov, Sergei; Noui, Karim

    2011-01-01

    This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization \\`a la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.

  1. Mechanical Property of Foamed Metal

    Institute of Scientific and Technical Information of China (English)

    LIU Pei-sheng; SANG Hai-bo

    2004-01-01

    A comprehensive study on the mechanical behavior of foamed metals was demonstrated. The relationship among their mechanical properties, preparation method, porosity and the structure was briefly studied as well.

  2. Amorphous microcellular polytetrafluoroethylene foam film

    Science.gov (United States)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  3. Composite and Nanocomposite Metal Foams

    Directory of Open Access Journals (Sweden)

    Isabel Duarte

    2016-01-01

    Full Text Available Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  4. Stability of metallic foams studied under microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Wuebben, Th [University of Bremen (Germany); Stanzick, H [Fraunhofer-Institute (IFAM), Bremen (Germany); Banhart, J [Hahn-Meitner-Institute Berlin, (Germany); Odenbach, S [University of Bremen (Germany)

    2003-01-15

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  5. Water Impact of Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Adel Shams

    2017-02-01

    Full Text Available Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid–structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams.

  6. Microcellular foams made from gliadin.

    Science.gov (United States)

    Quester, S; Dahesh, M; Strey, R

    2014-01-01

    We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an atmosphere of carbon dioxide or nitrogen in a high-pressure cell at 250 bar. Subsequent heating to temperatures close to but still below 100 °C followed by sudden expansion and simultaneous cooling resulted in closed-cell microcellular foam. The spherical gliadin templates along with the resulting foam have been analyzed by scanning electron microscope (SEM) pictures. The size distribution of the primary particles shows diameters peaked around 0.54 μm, and the final foam cell size peaks around 1.2 μm, at a porosity of about 80 %. These are the smallest foam cell sizes ever reported for gliadin. Interestingly, the cell walls of these microcellular foams are remarkably thin with thicknesses in the lower nanometer range, thus nourishing the hope to be able to reach gliadin nanofoam.

  7. Study on Blast Pressure Resistance of Foamed Concrete Material

    Directory of Open Access Journals (Sweden)

    A.M. Ahmad Zaidi

    2009-12-01

    Full Text Available Great demand exist for more efficient design to protect personals and critical components against explosion or blast wave, generated both accidentally and deliberately, in various blast scenarios in both civilian and military activities. Concrete is a common material used in protective design of structures. Recently, the demands on producing the lighter concrete material have become interest in concrete research. Foamed concrete is a possible alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. This paper explores the role and development of Blast Pressure Resistant Materials (BPRM’s on foamed concrete. The explosive tests were conducted to determine the blast mitigating properties. The results show that when the foamed concrete density is increases the blast energy absorption capability will be decreases due to reduce of cavity volume. This is suggested that cavity plays an important role to dissipate and absorb the shock energy of the blast.

  8. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Research Triangle Park , NC 27709-2211 Condensed Matter, Topological Phases of Matter REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S...Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials

  9. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    Directory of Open Access Journals (Sweden)

    JunHee Kim

    2015-03-01

    Full Text Available A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs reinforced with grid-type glass-fiber-reinforced polymer (GFRP shear connectors. Two kinds of insulation-expanded polystyrene (EPS and extruded polystyrene (XPS with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  10. Development of Defoamers for Confinenment Foam

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D M; Mitchell, A R

    2005-08-10

    Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor of about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of

  11. Development of drilling foams for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  12. Experimental investigation on the rheology of foams

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, L. F. [Univ. Surcolombiana, Neiva, Huila (Colombia); Shah, S. N. [Oklahoma Univ., Norman, OK (United States)

    2000-07-01

    The rheology of foams was investigated using aqueous and gelled foams and employing a pipe-type viscometer. Surfactant at 0.5 per cent concentration was used as the foaming agent. Results indicated that foam fluid rheology can be adequately characterized by the Herschel-Bulkley model. The experimental data served as the starting point for the development of new empirical correlations to predict foam fluid apparent viscosity. The use of these new correlations is expected to provide more accurate estimates of foam fluid rheological properties. 14 refs., 5 tabs., 14 figs.

  13. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2005-03-16

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  14. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  15. Composite Flexible Blanket Insulation

    Science.gov (United States)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  16. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  17. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  18. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  19. Technology Solutions Case Study: Excavationless: Exterior-Side Foundation Insulation for Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. This project describes an innovative, minimally invasive foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  20. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  1. EFFECTIVENESS OF USING POLYURETHANE FOAM TO REDUCE HEAT LOSS IN THE PREMISES FOR BREEDING

    Directory of Open Access Journals (Sweden)

    Medvedev A.Y.

    2013-10-01

    Full Text Available It is proved that the use of polyurethane foam insulation for the purpose of walling premises for breeding allows them to halve the deficit of heat in winter. Because of this more efficient use of feed, increases the intensity and the level of growth of young comprehensive energp $rocess in the energy of live weight gain of cattle while increasing the profitability of its cultivation for meat.

  2. Analysis of thermal response of phenolic foam specimens in a simulated JP-4 fuel fire

    Energy Technology Data Exchange (ETDEWEB)

    Laswell, J.E.

    1973-12-11

    NAD Crane has investigated various phenolic foam compositions which have excellent insulative thermal properties. Two contracts were let with Avco Systems Division to conduct thermal response tests with their simulated JP-4 fuel fire facility. Specimen densities ranged from 4.24 to 25.8 pounds per cubic foot. Time and temperature measurements were recorded until backface temperatures reached 500-1000. Aircraft fuel.

  3. The effect of heat and mass transfer on the cellular plastic insulation and the long-term aging

    Energy Technology Data Exchange (ETDEWEB)

    Fan Youchen [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1997-12-31

    To produce environmental-friendly products, foamed plastic industries are facing the challenge to replace the traditional blowing agents chlorofluorocarbons (CFCs) with zero ozone depletion potential (ODP) alternatives. After a series of studies were completed, more understandings and new findings have been achieved with respect to the rigid closed-cell cellular plastic insulations or foamed plastic insulations (FPIs). The mechanism of heat transfer within the FPIs was examined. A new formula for calculating the solid polymer matrix thermal conductivity has been deduced based on the law of energy conservation and Fourier equation of heat conduction. All the parameters involved in this formula can be easily measured. By comparing the simulation results with measurements, the Brokaw equation is recommended for the prediction of the thermal conductivity of a cell-gas mixture. The foamed plastic deformation was also discussed. A new model has been established for predicting the elastic modulus of the foamed plastics. In comparison to the published measurements, it was found that the new model gives fairly good results. A diffusion chamber has been designed and constructed for measuring the gaseous transport properties within the FPIs. To overcome the difficulties of the traditional method, a new measurement procedure and post test data treatment have been suggested. The measurement accuracy is equivalent to the traditional method with an exception of much short time being required. The diffusion coefficients of CO{sub 2}, O{sub 2}, and N{sub 2} within five n-pentane/CO{sub 2} based polyurethane (PUR) foams have been obtained from the diffusion chamber tests. Measurements showed that the relationship between the gaseous diffusion coefficients within FPIs and temperature follows the Arrhenius type. No identical relationship between diffusion coefficients and foam density was reached. To predict the long-term aging property of CFC-free foamed plastic insulations, a two

  4. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    Science.gov (United States)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  5. Discrimination of hexabromocyclododecane from new polymeric brominated flame retardant in polystyrene foam by nuclear magnetic resonance.

    Science.gov (United States)

    Jeannerat, Damien; Pupier, Marion; Schweizer, Sébastien; Mitrev, Yavor Nikolaev; Favreau, Philippe; Kohler, Marcel

    2016-02-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant (BFR) and major additive to polystyrene foam thermal insulation that has recently been listed as a persistent organic pollutant by the Stockholm Convention. During a 2013/2014 field analytical survey, we measured HBCDD content ranging from 0.2 to 2.4% by weight in 98 polystyrene samples. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses indicated that expandable (EPS) and extruded (XPS) polystyrene foams significantly differed in the α/γ HBCDD isomer ratio, with a majority of α and γ isomers in XPS and EPS, respectively. Interestingly, this technique indicated that some recent materials did not contain HBCDD, but demonstrated bromine content when analysed with X-ray fluorescence (XRF). Further investigation by Nuclear Magnetic Resonance (NMR) was able to discriminate between the BFRs present. In addition to confirming the absence or presence of HBCDD in polystyrene samples, high-field NMR spectroscopy provided evidence of the use of brominated butadiene styrene (BBS) as copolymer in the production of polystyrene. Use of this alternative flame retardant is expected to cause fewer health and environmental concerns. Our results highlight a trend towards the use of copolymerized BFRs as an alternative to HBCDD in polystyrene foam boards. In addition to providing a rapid NMR method to identify polymeric BFR, our analytical approach is a simple method to discriminate between flame-retardants in polystyrene foam insulating materials.

  6. Research on experiment and calculation of foam bursting device

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This research presents experimental data on mechanical foam bursting device, based on the high speed of air fluid impinging insidethe foam bursting device, foam bubbles disrupted as a consequence of pressures changed very quickly as shear force and their impact forces. Experimental data on foam-bursting capacity have been presented. Designed device can provide effective foam bursting on collapse foam.

  7. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  8. Stability analysis of uniform equilibrium foam states for EOR processes

    NARCIS (Netherlands)

    Ashoori, E.; Marchesin, D.; Rossen, W.R.

    2011-01-01

    The use of foam for mobility control is a promising mean to improve sweep efficiency in EOR. Experimental studies discovered that foam exhibits three different states (weak foam, intermediate foam, and strong foam). The intermediate-foam state is found to be unstable in the lab whereas the weak- and

  9. Foaming of mixtures of pure hydrocarbons

    Science.gov (United States)

    Robinson, J. V.; Woods, W. W.

    1950-01-01

    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  10. Stabilized aqueous foam systems, concentrate for producing a stabilized aqueous foam and method of producing said foam

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams. The stable foams have utility in security systems.

  11. Populations related to Alkanindiges, a novel genus containing obligate alkane degraders, are implicated in biological foaming in activated sludge systems.

    Science.gov (United States)

    Klein, Adam N; Frigon, Dominic; Raskin, Lutgarde

    2007-08-01

    Activated sludge mixed liquor and biological foam samples were collected from five full-scale municipal wastewater treatment plants in Illinois, all of which were exhibiting biological foaming at the time of sampling. Oligonucleotide probe hybridization consistently measured higher levels of Gammaproteobacteria rRNA in the foam as compared with the mixed liquor for all treatment plants analysed. Cloning and sequencing of 16S rRNA gene amplicons led to the identification of populations which were abundant in each of the treatment plants. These populations were related to the Alkanindiges/Acinetobacter cluster within the Gammaproteobacteria. Further analysis of the 16S rRNA sequences indicated that they clustered in three phylogenetic groups outside the main Alkanindiges/Acinetobacter cluster, suggesting that these groups may represent new taxa. Terminal-restriction fragment length polymorphism analysis showed that these populations were enriched in the foam compared with the underlying mixed liquor similar to the enrichment of the Gammaproteobacteria measured by oligonucleotide probe membrane hybridization. The observed enrichment in foam samples is suggestive of a role for these populations in foam formation or stabilization, and their presence in all treatment plants analysed in this study may be indicative of their widespread abundance in foaming plants.

  12. 浅谈聚氨酯硬泡保温材料阻燃技术%Discussion on the Flame Retardant Technology of Polyurethane Thermal Insulation Materials

    Institute of Scientific and Technical Information of China (English)

    王新钢; 李风; 张泽江

    2012-01-01

    Rigid polyurethane foam insulation materials belonged to the organic polymer insulating material,and the thermal conductivity of insulation materials was the lowest of all and had the most superior thermal performance.The combustion process of polyurethane thermal insulation material was introduced,and the flame retardant methods of rigid polyurethane foam insulation materials and its development trend were elaborated.%聚氨酯硬泡保温材料属于有机高分子保温材料,其导热系数为所有保温材料中最低、热工性能最为优越的一类材料。介绍了聚氨酯硬泡保温材料的燃烧过程,阐述了聚氨酯硬泡保温材料的阻燃处理方法及其发展趋势。

  13. The dynamics of foams with mobile interfaces

    Science.gov (United States)

    Gratton, Michael B.; Davis, Stephen H.

    2011-11-01

    Using a novel technique for resolving nearly singular integrals, we investigate the dynamics of two-dimensional foams with mobile interfaces and an incompressible, inviscid gas phase by a boundary integral method. For foams with small liquid fractions (CMMI-0826703.

  14. Some aspects of image processing using foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Freire, M.V.; Tufaile, A.P.B.

    2014-08-28

    We have explored some concepts of chaotic dynamics and wave light transport in foams. Using some experiments, we have obtained the main features of light intensity distribution through foams. We are proposing a model for this phenomenon, based on the combination of two processes: a diffusive process and another one derived from chaotic dynamics. We have presented a short outline of the chaotic dynamics involving light scattering in foams. We also have studied the existence of caustics from scattering of light from foams, with typical patterns observed in the light diffraction in transparent films. The nonlinear geometry of the foam structure was explored in order to create optical elements, such as hyperbolic prisms and filters. - Highlights: • We have obtained the light scattering in foams using experiments. • We model the light transport in foams using a chaotic dynamics and a diffusive process. • An optical filter based on foam is proposed.

  15. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  16. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  17. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  18. Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. [Bulgarian Academy of Science, Sofia (Bulgaria). Inst. of Organic Chemistry

    2010-10-15

    Carbon foams with an anisotropic texture and high mechanical strength were produced using precursors obtained after thermo-oxidation treatment of commercial coal-tar pitch with H{sub 2}SO{sub 4} and HNO{sub 3}. The investigations of the relation between the properties of the precursor and the structure of obtained foam indicate, that the composition and softening point of the pitch precursor significantly affect the foaming process, foam structure and foam mechanical strength. The composition and properties of the modified pitches allow foam formation at relatively low pressure and fast heating rate during the foaming process without a stabilization treatment. The foaming process of pitch-based carbon foams, pretreatment of the precursors, and the properties of resultant foams are discussed in this paper.

  19. THE STRUCTURE CONTROL OF ALUMINUM FOAMS PRODUCED BY POWDER COMPACTED FOAMING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.H. You; F. Wang; L.C. Wang

    2004-01-01

    A new technique, powder compact foaming process for the production of aluminum foams has been studied in this article. According to this method, the aluminum powder is mixed with a powder foaming agent (TiH2). Subsequent to mixing, the powder blend is hot compacted to obtain a dense semi-finished product. Upon heating to temperatures within the range of the melting point, the foaming agent decomposes to evolve gas and the semi-finished product expands into a porous cellular aluminum. Foaming process is the key in this method. Based on experiments, the foaming characteristics were mainly analyzed and discussed. Experiments show that the aluminum-foam with closed pores and a uniform cell structure of high porosity can be obtained using this method by adjusting the foaming parameters: the content of foaming agent and foaming temperature.

  20. Basics of compounding foam dosage forms.

    Science.gov (United States)

    Allen, Loyd V

    2013-01-01

    The purpose of this article is to provide information on the use of foam dosage forms and pharmacists' ability to extemporaneously compound them. The article provides: (1) a discussion on the rationale and advantages of using foams, (2) a differentiation between the various types and structures of foams, (3) a list of the various types of ingredients and examples of each, and (4) a description of the preparation of pharmaceutical foams.

  1. Anaerobic digestion foaming causes – A review

    OpenAIRE

    Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, Elise

    2009-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming proble...

  2. Electrical Conductivity of Aluminium Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    凤仪; 郑海务; 朱震刚; 祖方遒

    2002-01-01

    Closed-cell aluminium alloy foams were produced using the powder metallurgical technique. The effect of porosityand cell diameter on the electrical conductivity of foams was investigated and the results were compared with anumber of models. It was found that the percolation theory can be successfully applied to describe the dependenceof the electrical conductivity of aluminium alloy foams on the relative density. The cell diameter has a negligibleeffect on the electrical conductivity of foams.

  3. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  4. Sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  5. Effect of Foamed Pattern Density on the Lost Foam Process

    OpenAIRE

    T. Pacyniak

    2007-01-01

    The study examines the effect of the foamed polystyrene pattern density on the process of making castings by the lost foam technique with emphasis put on the analysis of simulation tests. The simulation regarded the effect that pattern density is said to have on the mould cavity filling rate, pressure in the gas gap, and size of this gap. For simulation tests of the full mould process, a mathematical model presented in this study was used. For calculations, the author's own algorithm was appl...

  6. Foam vessel for cryogenic fluid storage

    Science.gov (United States)

    Spear, Jonathan D [San Francisco, CA

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  7. Carbon dioxide foaming of glassy polymers

    NARCIS (Netherlands)

    Wessling, M.; Borneman, Z.; Boomgaard, van den Th.; Smolders, C.A.

    1994-01-01

    The mechanism of foaming a glassy polymer using sorbed carbon dioxide is studied in detail. A glassy polymer supersaturated with nitrogen forms a microcellular foam, if the polymer is quickly heated above its glass transition temperature. A glassy polymer supersaturated with CO2 forms this foam-like

  8. Bicontinuous nanoporous polymers by carbon dioxide foaming

    NARCIS (Netherlands)

    Krause, B.; Münüklü, P.; van der Vegt, N.F.A.; Wessling, Matthias; Sijbesma, H.P.

    2001-01-01

    We investigate the physical foaming process of glassy poly(ether imide) and poly(ether sulfone) using carbon dioxide and report temperature-concentration diagrams ("foam diagrams") marking out the foaming envelope in which dense CO2-saturated films expand and microvoids are introduced. Two types of

  9. Various Facets of Spacetime Foam

    CERN Document Server

    Ng, Y Jack

    2011-01-01

    Spacetime foam manifests itself in a variety of ways. It has some attributes of a turbulent fluid. It is the source of the holographic principle. Cosmologically it may play a role in explaining why the energy density has the critical value, why dark energy/matter exists, and why the effective dynamical cosmological constant has the value as observed. Astrophysically the physics of spacetime foam helps to elucidate why the critical acceleration in modified Newtonian dynamics has the observed value; and it provides a possible connection between global physics and local galactic dynamics involving the phenomenon of flat rotation curves of galaxies and the observed Tully-Fisher relation. Spacetime foam physics also sheds light on nonlocal gravitational dynamics.

  10. Quantum magnetotransport properties of ultrathin topological insulator films

    KAUST Repository

    Tahir, M.

    2013-01-30

    We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.

  11. Influence of gravity on foams

    Science.gov (United States)

    Monnereau, C.; Vignes-Adler, M.; Kronberg, B.

    1999-06-01

    The feasibility of experiments on the physics of foams in microgravity environment was investigated during a parabolic flight campaign. Transient foams from surfactant-free organic liquids and stable foams from a soapy solution of a Sodium Dodecyl Sulfate + Dodecanol mixture were investigated. In 0g, the transient foam is stabilized; whatever the liquid the foam bubbles are spherical and their diameter does not change during the flight. When the gravity constant is equal to 1.8 g, the bubbles of the stable foam become polyhedral and numerous topological transformations could be observed. La faisabilité d'expériences permettant d'étudier la physique de la mousse en microgravité a été démontrée au cours de vols paraboliques. Nous avons testé des mousses de liquides organiques sans tensioactif qui sont éphémères dans le champ terrestre, et des mousses à base d'une solution aqueuse d'un mélange de Dodécyl Sulfate de Sodium et de Dodécanol qui sont au contraire très stables. En microgravité, les mousses éphémères sont stabilisées; quel que soit le liquide, les bulles sont sphériques et leur diamètre reste égal à leur valeur initiale. Lorsqu'au cours de la parabole, la gravité devient égale à 1,8 g, les bulles de la mousse stable dont les films sont très rigides prennent une forme polyédrique ; de très nombreuses transformations topologiques de type T1 ont pu alors être observées.

  12. Choice and optimization of ratio of components to develop fast-mounted thermostable heat-insulating constructions

    Science.gov (United States)

    Loginova, N. A.; Grigor'ev, S. V.; Lapin, E. E.; Pogorelov, S. I.; Ryzhenkov, A. V.

    2016-05-01

    Fast-mounted heat-insulating constructions based on foamed synthetic rubbers, polyethylene, and polyurethane are characterized by a thermostability up to 150°C and emit toxic substances when burnt. However, there is a need for heat insulation of surfaces with higher coolant temperatures, such as pipelines, equipment of nuclear and thermal power plants, and heating systems with remote heat sources. One of the most promising types of heat insulation materials for creation of fast-mounted heat insulation constructions is the syntactic foams or thin-film multilayer heat-insulating coatings (TFMHIC), which are created using hollow microspheres and various types of binders. The formation of TFMHIC on the heat-insulating surface is carried out mostly by means of spraying methods that have well proven themselves at coating on flat and cylindrical surfaces of large area, but they turned out ineffective for cylindrical surfaces with a diameter of 300 mm and less, since they are characterized by a large degree of carryover of composite material. This article analyzed the binders and microspheres promising to create the fast-mounted heat-insulating constructions based on TFMHIC with high thermostability. Based on the analysis, a conclusion is drawn that organicsilicon binding and glass microspheres are promising for use in the heat-insulating constructions with thermostability up to 300°C. The results of experimental research are given that point to the possibility of predicting the optimal composition of heat-insulating material characterized by a high degree of filling with microspheres with maintaining the mechanical strength, by means of performing the analysis of rheological characteristics of nonpolymerized liquid compositions of heat-insulation material. The index of tensile strength in bending was the criterion for evaluating the mechanical strength of heat-insulating material. The critical volume concentrations of filling the heat-insulating material with glass

  13. Quasicrystalline three-dimensional foams

    Science.gov (United States)

    Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.

    2017-03-01

    We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.

  14. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  15. Is Quantum Spacetime Foam Unstable?

    CERN Document Server

    Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo

    1993-01-01

    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.

  16. Process for epoxy foam production

    Science.gov (United States)

    Celina, Mathias C [Albuquerque, NM

    2011-08-23

    An epoxy resin mixture with at least one epoxy resin of between approximately 60 wt % and 90 wt %, a maleic anhydride of between approximately 1 wt % and approximately 30 wt %, and an imidazole catalyst of less than approximately 2 wt % where the resin mixture is formed from at least one epoxy resin with a 1-30 wt % maleic anhydride compound and an imidazole catalyst at a temperature sufficient to keep the maleic anhydride compound molten, the resin mixture reacting to form a foaming resin which can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  17. Analysis of Comparison between Unconfined and Confined Condition of Foamed Concrete Under Uni-Axial Compressive Load

    Directory of Open Access Journals (Sweden)

    Mohd Zairul A. Abdul Rahman

    2010-01-01

    Full Text Available Problem statement: Foamed concrete has become most commercial material in construction industry. People in industries were come out with the new mix design of foamed concrete to meet the specification and the requirements needed. Approach: This is because foamed concrete has the possibility as alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. Results: Currently Standard test to measure the compressive strength of foamed concrete is using standard unconfined compressive test. Several research has been conduct but the compressive strength using standard unconfined compressive test not capture true behavior of foamed concrete because it just achieved only low compressive strength and sample under compression failed due to brittle collapse of the sample. This paper was analyses the comparison between standard compressive test and confined compressive test. The confinement test introduced to prevent sample from brittle collapse. Foamed concrete cylindrical sample has been investigated under the standard compressive test for hard concrete (ASTM-C39. Based on the research, samples are produced under unconfined and confined condition. Analysis has been done and the result show that under standard compressive test, the sample failed due to early crack initiation and failed. Confinement condition was increase the compressive strength but this condition influence the result. Conclusion/Recommendations: Standard test is not suitable to capture the true behavior of foamed concrete, and to prevent the sample from brittle collapse during the test, new testing method was introduced to capture the true behavior of foamed concrete which is using Quasi Static Indentation Test. This test can be used to study about the behaviour of foamed concrete before it can be implemented to its final application.

  18. Nanocarbon foam: Fabrication, characterization and application

    Science.gov (United States)

    Liu, Teng

    This thesis is a continuous effort contributed to the field of developing a new type of functional porous materials - Nanocarbon Foam (NCF) by crosslinking multi-walled carbon nanotubes (MWNTs) into networks in three-dimensional (3D). Synthetic routes and characterizations of NCF, and their applications as strain-gauge sensors and electrode materials in lithium-air (Li-air) battery are described. In this research, the first accomplishment is proposing a robust methodology for creating superealstic 3D macroscopic NCF with controlled cellular structure. The key contributions contain: (1) understanding the premise of the design that gives the NCF with desired structure and porosity; (2) designing fabrication protocol for NCFs with controlled densities and macroscopic structure; (3) fabricating varied NCF with tunable porosity and structures, which in turn will endow the NCF with different characteristics. This experimental methodology for systematic and quantitative investigation of the processing-structure relationships provides a means for the fabrication optimization of NCF with desired structures. Though the mechanical, electronic, and thermal properties of CNTs have been extensively studied, for NCF that is a mixture of pristine and functionalized CNTs, it will not only have the collective behavior of the individual tubes, but will also have properties generated from the interactions between the tubes and engineered components. To understand the structure-properties relationship of NCF, the second accomplishment is studying the properties of obtained NCFs. Density, specific surface area, porosity, compressive behavior, mechanical robustness, electrical and electromechanical properties of NCF have been characterized in details. For comparison, properties originated from cellular structures built of other materials, such as polymeric foam, fiber aerogels, etc., are compared with that of NCF. Moreover, some engineering applications of NCF have been discussed. With

  19. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal resistance of R-4.5/inch, which is an improvement of 10% over conventional (white-colored) EPS. EPS, measured by its life cycle, is an alternative to commonly used extruded polystyrene and spray polyurethane foam. It is a closed-cell product made up of 90% air, and it requires about 85% fewer petroleum products for processing than other rigid foams.

  20. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    This study deals with simulation model of Foam Assisted Water Alternating Gas (FAWAG) method that had been implemented to two Norwegian Reservoirs. Being studied on number of pilot projects, the method proved successful, but Field Scale simulation was never understood properly. New phenomenologic...

  1. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  2. Method of making a cyanate ester foam

    Science.gov (United States)

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  3. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  4. Insulation fact sheet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  5. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    Science.gov (United States)

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation.

  6. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  7. Non-Aqueous and Crude Oil Foams

    Directory of Open Access Journals (Sweden)

    Blázquez Christian

    2013-12-01

    Full Text Available Foams produced from non-aqueous media are less common than water-based foams but they play an important role in many industries and engineering processes. The low surface tension of hydrocarbon fluids limits the adsorption of common surface activity substances and different compounds and methods must be considered to generate and stabilize oil-based foam. Likewise, the destruction of unwanted non-aqueous based foam requires specific considerations not found with aqueous systems. Of particular interest are petroleum-based foams, which are highly complex due to the wide variety of compounds and gases that can be found. We provide an overview of the major mechanisms known to be important for non-aqueous foam stability with a spotlight on crude-oil foams.

  8. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after an el...... brushing with fluoride toothpaste....

  9. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  10. Foaming of Ethyl Hydroxyethyl Cellulose

    OpenAIRE

    Carrillo Agilera, Marc

    2015-01-01

    The current depletion of petroleum resources together with environmental issues have led to new approaches in plastic manufacturing. This trend involves using ecofriendly materials coming from renewable resources. Good candidates for this, due to their properties and availability, are the cellulose derivatives. Some of them, such as hydroxypropyl methylcellulose (HPMC), showed in previous studies a promising behavior when making polymeric foams. Unfortunately, the corresponding...

  11. Vacuum forming of thermoplastic foam

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud

    1999-01-01

    The process of thermoforming of foam sheet is analyzed using both finite element modeling and experiments. A simple constitutive model for finite tensile deformations of closed cellular material around its glass transition temperature is proposed, starting from well-known results from Gibson and Ash

  12. Multiscale modelling of evolving foams

    Science.gov (United States)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  13. Proximity-Driven Enhanced Magnetic Order at Ferromagnetic-Insulator-Magnetic-Topological-Insulator Interface

    Science.gov (United States)

    Li, Mingda; Chang, Cui-Zu; Kirby, Brian. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Zhu, Yimei; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.

    2015-08-01

    Magnetic exchange driven proximity effect at a magnetic-insulator-topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. Here we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS /Sb2 -xVx Te3 hybrid heterostructure, where V doping is used to drive the TI (Sb2 Te3 ) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  14. Topological insulators: Engineered heterostructures

    Science.gov (United States)

    Hesjedal, Thorsten; Chen, Yulin

    2017-01-01

    The combination of topological properties and magnetic order can lead to new quantum states and exotic physical phenomena. In particular, the coupling between topological insulators and antiferromagnets enables magnetic and electronic structural engineering.

  15. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  16. Repairing ceramic insulating tiles

    Science.gov (United States)

    Dunn, B. R.; Laymance, E. L.

    1980-01-01

    Fused-silica tiles containing large voids or gauges are repaired without adhesives by plug insertion method. Tiles are useful in conduits for high-temperature gases, in furnaces, and in other applications involving heat insulation.

  17. Spin-polarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads

    OpenAIRE

    Sandschneider, N.; Nolting, W.

    2007-01-01

    Using the Keldysh formalism the tunneling current through a hybrid structure where a confined magnetic insulator (I) is sandwiched between two non-magnetic leads is calculated. The leads can be either normal metals (M) or superconductors (S). Each region is modelled as a single band in tight-binding approximation in order to understand the formation of the tunneling current as clearly as possible. The tunneling process itself is simulated by a hybridization between the lead and insulator cond...

  18. Properties of Starch Based Foams Made by Thermal Pressure Forming

    Directory of Open Access Journals (Sweden)

    J. Štancl

    2008-01-01

    Full Text Available Packaging materials based on expanded polystyrene can be substituted by biodegradable foam, manufactured by direct or indirect electrical heating of a potato starch suspension in a closed mold. This paper deals with an experimental evaluation of selected properties of potato starch and starch foam related to this technology: density, specific heat capacity and specific electrical conductivity of a water suspension of potato starch within the temperature range up to 100 °C, and mass fraction from 5 to 65 %. The electric conductivity and heat capacity changes were observed during direct ohmic heating of a starch suspension between electrodes in a closed cell (feeding voltage 100 V, frequency 50 Hz. Specific electric conductivity increases with temperature, with the exception of the gelatinization region at 60 to 70 °C, and decreases with increasing concentration of starch (the temperature and concentration dependencies were approximated using the Lorentz equation. Direct ohmic heating is restricted by a significant decrease in effective electrical conductivity above a temperature of 100 °C, when evaporated steam worsens the contact with the electrodes. Experiments show that when direct ohmic heating is not combined with indirect contact heating, only 20 % of the water can be evaporated from manufactured samples and the starch foam is not fully formed. This is manifested by only a slight expansion of the heated sample. Only the indirect contact heating from the walls of the mold, with the wall temperature above 180 °C, forms a fixed porous structure (expansion of about 300 % and a crust, ensuring suitable mechanical and thermal insulation properties of the manufactured product. The effective thermal conductivity of the foamed product (sandwich plates with a porous core and a compact crust was determined by the heated wire method, while the porosity of the foam and the thickness of the crust were evaluated by image analysis of colored cross

  19. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)

    2011-05-15

    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  20. 46 CFR 108.463 - Foam rate: Protein.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Foam rate: Protein. 108.463 Section 108.463 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.463 Foam rate: Protein. (a) If the outlets of a protein foam extinguishing system are in a space, the foam rate at each outlet must be at...

  1. Comparative Heat Conduction Model of a Cold Storage with Puf & Eps Insulation Using Taguchi Methodology

    Directory of Open Access Journals (Sweden)

    Dr. N. Mukhopadhyay

    2015-05-01

    Full Text Available In this project work a mathematical heat conduction model of a cold storage (with the help of computer program; and multiple regression analysis has been proposed which can be used for further development of cold storages in the upcoming future. In cold storage refrigeration system brings down the temperature initially during start up but thermal insulation maintains the temperature later on continuously. In this view, the simple methodology is presented to calculate heat transfer by analytical method also attempt has been made to minimize the energy consumption by replacing 150 mm Expanded polystyrene (EPS by 100 mm Poly Urethane foam (PUF insulation. The methodology is validated against actual data obtained from Penguin cold storage situated in Pune, India. Insulation thickness of the side walls (TW, area of the wall (AW, and insulation thickness of the roof (TR have been chosen as predictor variables of the study.

  2. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  3. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  4. Acoustic properties of aluminium foams

    Directory of Open Access Journals (Sweden)

    García, L. E.

    2008-09-01

    Full Text Available The article discusses normal incidence sound absorption by aluminium foam manufactured with powder metallurgy technology. Aluminium foams with different surface morphologies were obtained by varying the type of precursor and adding filler materials during the foaming process. The sound absorption coefficients found for these aluminium foams were compared to the coefficient for commercial foams marketed under the name ALPORAS. The effect of foam thickness on the absorption coefficient was studied for each sample prepared. The combination of good acoustic and mechanical properties makes aluminium foams particularly attractive products. The study included an analysis of the effect of 2-, 5- and 10-cm air gaps on the sound absorption coefficient. The results showed that such gaps, which are routinely used in construction to reduce the reverberation period in indoor premises, raised the low frequency absorption coefficient significantly. This increase was found to depend on aluminium foam density and thickness and the depth of the air gap. In this same line, we have investigated the absorption coefficient of the aluminium foams combined with a mineral fiber panel.Se presenta un estudio del coeficiente de absorción acústica a incidencia normal de espumas de aluminio fabricadas mediante la técnica pulvimetalúrgica. Se fabricaron espumas de aluminio de distinta morfología superficial variando el tipo de precursor y usando materiales de relleno durante el proceso de espumación. Se muestra un estudio comparativo del coeficiente de absorción acústica de las espumas de aluminio fabricadas y las espumas comerciales conocidas como ALPORAS. Para cada muestra fabricada se estudió la influencia del espesor sobre el valor del coeficiente de absorción.El atractivo de las espumas de aluminio radica en que en ellas se combinan interesantes propiedades acústicas y mecánicas. Se analizó el efecto de una cámara de aire de 2, 5 y 10 cm de anchura sobre el

  5. New Insulation Application Process for Wind-And Magnet Fabrication

    Science.gov (United States)

    Kano, K. S.; Stewart, M. W.; Hooker, M. W.

    2008-03-01

    Wind-and-react processes offer a cost-effective means of fabricating large-scale Nb3Sn magnets, while also eliminating the need to manipulate the brittle superconductor after the high-temperature reaction process. Composite Technology Development, Inc. (CTD) has developed a hybrid inorganic/organic insulation system that can be co-processed with the Nb3Sn magnet at elevated temperatures. In this work, a new process was demonstrated for applying a thin, ceramic-based insulation that is compatible with wind-and-react processing. The insulation was applied to Rutherford cables using a continuous manufacturing process, and cable assemblies (i.e., 10-stacks) were fabricated and tested. The results of this work show that the insulation possesses a high strain tolerance, as well as the dielectric strength and fatigue resistance needed for high-field magnet applications.

  6. Effect of Foamed Pattern Density on the Lost Foam Process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2007-07-01

    Full Text Available The study examines the effect of the foamed polystyrene pattern density on the process of making castings by the lost foam technique with emphasis put on the analysis of simulation tests. The simulation regarded the effect that pattern density is said to have on the mould cavity filling rate, pressure in the gas gap, and size of this gap. For simulation tests of the full mould process, a mathematical model presented in this study was used. For calculations, the author's own algorithm was applied. The investigations have proved that with decreasing pattern density the pouring rate increases, while pressure in the gas gap and the size of the gap are decreasing. The increasing pouring rate ensures correct making of castings, even if their shapes are very intricate and the wall cross-sections are very small. Smaller size of the gas gap and lower pressure of gases in this gap reduce the risk of mould damage. The author’s own investigations have proved a very significant effect of the density of foamed polystyrene pattern on the casting process, and specially on the mould pouring rate. The best pouring rate is ensured by patterns of the density comprised in a range of ρ2 =18÷25 kg/m3.

  7. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    Science.gov (United States)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-09-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  8. Structural Analysis of Sandwich Foam Panels

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [ORNL; Huo, X. Sharon [Tennessee Technological University

    2010-04-01

    The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

  9. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of size is ≤33 μm (D50). The foams have a homogeneous pore distribution and a major fraction of the pores are smaller than 0.5 mm. Only when using the smallest particles (13 μm) does the pore size increase to 1......–3 mm due to a faster coalescence process. However, by quenching the sample from the foaming to the annealing temperature the pore size is reduced by a factor of 5–10. The foams with an apparent density of

  10. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The application study of fly ash content light foam concrete%粉煤灰轻质泡沫混凝土的应用研究

    Institute of Scientific and Technical Information of China (English)

    冯辉红; 黄起; 屈少华

    2016-01-01

    Energy saving,environmental protection,light and thermal insulation are the major research di-rection of building insulation materials,development of fly ash content light foam concrete is well adapted to this trend.The combination of industrial waste and insulation material foam concrete made each kinds of materials from each other,and well improved the unity of building insulation materials.Analysis of the composition,characteristics and existing problems of the fly ash content light foam concrete,studied the application prospect of the domestic foam concrete as building insulation materials,and the future applica-tion prospect of fly ash content light foam concrete.%节能、环保、轻质、保温隔热是建筑保温材料的主要研究方向,粉煤灰轻质泡沫混凝土的研制很好地适应了这个课题,集工业废料与保温隔热材料泡沫混凝土相结合,各种材料取长补短,很好地改善了建筑保温材料的单一性.分析了粉煤灰轻质泡沫混凝土的组成、特性以及目前存在的问题,研究了国内泡沫混凝土作为建筑保温材料的应用情况,并展望了粉煤灰轻质泡沫混凝土的未来应用前景.

  12. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  13. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  14. Probing nanodispersions of clays for reactive foaming.

    Science.gov (United States)

    Harikrishnan, G; Lindsay, Chris I; Arunagirinathan, M A; Macosko, Christopher W

    2009-09-01

    Nanodispersions of clays in polyurethane components have been prepared. Nanoclays (both natural and organically modified) of various aspect ratios are used. The fillers are dispersed separately in polyurethane components, viz., polyol and polyisocyanate. The nanodispersions are characterized by the combined use of solution rheology, X-ray scattering, cryo-electron microscopy, and IR spectroscopy. Reactive foaming of these nanodispersions is carried out to make polyurethane nanocomposite foams. The status of the dispersion of fillers in components and in foams has been compared to investigate the effect of the foaming process in exfoliation. Interpretation of the results from different characterization techniques describes the state of the dispersion of fillers in components and in foam. The rheological and physicochemical behaviors of nanodispersions are shown to have a significant influence on the properties of nanocomposite foams.

  15. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  16. Picture analysing method of slag foaming behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Juhart, M.; Peter, M.; Koch, K. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Metallurgy; Lamut, J. [Faculty of Natural Science and Technology, Univ. Ljubljana, Ljubljana (Slovenia)

    2001-03-01

    Hot tests of foaming behaviour of steelmaking slags were conducted on a laboratory scale up to 1760 C using a Tammann furnace. The foaming behaviour of the slags was quantified on the basis of a new measuring method. The volume increase and the progress of the foaming process can be continuously observed and calculated by means of picture analysis. The gas content of foaming slags was compared with the results of the measurements performed in steel plants. The influence of the magnesia content on the foaming behaviour is investigated. The chemical composition of the slag is beside the CO evolution the decisive factor influencing slag foaming behaviour. The highest volume increase values observed lie in the region of 2500% in relation to the initial volume. (orig.)

  17. Application and future of solid foams

    Science.gov (United States)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  18. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  19. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    Science.gov (United States)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  20. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... an electronic search for literature published in English between 2003 and 2014. The included papers were assessed for their risk of bias and the results were narratively synthesized due to study heterogeneity. The quality of evidence was expressed according to GRADE. RESULTS: A total of 19 papers were included...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse...

  1. Models for metallic foam lamellae

    Science.gov (United States)

    Gratton, Michael B.; Davis, Stephen H.

    2010-11-01

    We consider a pure liquid film with two liquid-gas interfaces --- a free film --- in two dimensions. Assuming that the aspect ratio of the film thickness to the arc length of the center-line is small, we develop a set of models using lubrication theory for the evolution of the film including the effects of different gas pressures above and below the liquid as well as strong surface tension. These models show a separation of timescales between center-line relaxation, thickness averaging, and drainage due to an applied pressure gradient along the film. Interpreted in the case of surfactant-free foams, these results show that the lamella separating two bubbles in an unstable foam will quickly assume a center-line that is an arc of a circle. Thereafter, the film will become uniform in thickness and drain due to capillary suction from adjoining Plateau borders.

  2. Synthesis of CO2 Copolymer Based Polyurethane Foams

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    CO2-copolymer based polyurethane foams were synthesized and characterized in this paper. The foams were found to have higher strength and lower heat of combustion than the conventional polyether polyurethane foams. They may find wide applications in many fields.

  3. Hydrophobins, beer foaming and gushing

    OpenAIRE

    Shokribousjein, Zahra; Deckers, Sylvie; Gebruers, Kurt; Lorgouilloux, Yannick; Baggerman, Geert; Verachtert, Hubert; Delcour, Jan; Etienne, Pierre; Rock, Jean-Marie; Michiels, Chris; Derdelinckx, Guy

    2011-01-01

    Hydrophobins belong to the most important proteins produced by filamentous fungi. They are surface active and their foaming potential is due to the presence of particular spatial arrangements of hydrophobic and hydrophilic amino acids. However, their presence eventually leads to overfoaming of beers. In beers and other liquids hydrophobin molecules aggregate around hydrophobic carbon dioxide molecules and form nano-structures, containing entrapped carbon dioxide. By pressure relea...

  4. Microcellular foams made from gliadin

    OpenAIRE

    Quester, S; Dahesh, M.; Strey, R.

    2014-01-01

    We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an ...

  5. B-Plant canyon fire foam supply

    Energy Technology Data Exchange (ETDEWEB)

    Gainey, T.

    1995-01-01

    A new raw water supply was installed for the B-Plant fire foam system. This document details tests to be performed which will demonstrate that the system can function as designed. The tests include: Verification of the operation of the automatic valves at the cells; Measurement of water flow and pressure downstream of the proportioner; Production of foam, and measurement of foam concentration. Included as an appendix is a copy of the work package resolution (J4 & J4a).

  6. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  7. Thermal Affects Of Impact Testing Polymer Foams

    Science.gov (United States)

    Roberts, Charles C.

    1984-03-01

    Impacting polymer foams results in a thermal pattern on the surface of the polymer due to energy dissipation and transmission affects. Five polymer foams were tested using two types of ballistic pendulums as impact devices. The transient thermal pattern was recorded on video tape using an infrared scanner. Differing internal energy dissipation mechanisms were detected depending on the type of foam. Temperature distributions were indicative of pendulum penetration, energy dissipation, shock attenuation and transmittance.

  8. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  9. Shock compression of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Stahl D.B.

    2012-08-01

    Full Text Available Several shock studies have been made on polyurethane materials, both fully dense and distended in the form of foams. However, there is a lack of shock data between the densities of 0.321 and 1.264g/cm3 (fully dense. We present here data obtained from two different types of shock experiments at densities of 0.35, 0.5, 0.68, 0.78, and 0.9g/cm3 in order to fill in the density deficiencies and make it easier to develop an unreacted equation of state (EOS for polyurethane as a function of density. A thermodynamically consistent EOS was developed, based on the Helmholtz free energy, and was used to predict the shock properties of polyurethane materials at densities from 1.264 to 0.348g/cm3. These estimates are compared to the available data. The data match quite close to the predictions and provide a basis for calculating polyurethane foam shock processes. Chemical reaction has been observed at relatively high pressure (21.7 GPa in fully dense polyurethane in an earlier study, and the equation of state presented here is representative of the unreacted polyurethane foam. Lowering the density is expected to drop the shock pressure for chemical reaction, yet there is not enough data to address the low density shock reaction thresholds in this study.

  10. Cells on foam and fiber

    Energy Technology Data Exchange (ETDEWEB)

    Clyde, R. [Clyde Engineering, New Orleans, LA (United States)

    1996-12-31

    Cells grow on high area foam and, when a screen is put around the foam, it is made heavier so it can be fluidized. When foam is rotated in a half full RBC (rotary biological contactor), drops are formed and mass transfer of oxygen to drops is much faster. Most fungi and some mammalian cells need oxygen. Corrugated fibers with holes in the valleys also produce drops. White rot fungus needs oxygen and it degrades many chlorine compounds, azo dyes, PAHs (polycyclic aromatic hydrocarbons), and TNT. Old cardboard boxes are readily available and when buried in soil, oxygen is entrapped. In a lake, the boxes expose high area. Celite entrapped in fibers provides even more area. Fibers have high surface area for immobilizing cells and, when the fibers are rotated, fast reactions occur, converting one chemical to another. Sugar has been fermented to alcohol in 10--15 minutes. Ethanol has high octane and does not need lead. Old cars and trucks still use lead, and high levels have been found in the drinking water of several large cities. Bacteria on fibers can remove lead in a few seconds. When an RBC of plain fiber discs is rotated and a light shone in the tope, the light hits a thin moving film to degrade chlorine compounds and sterilize water. Titania can be fused to the fiberglass discs. Microbes and light remove sulfur from oil. Calcium magnesium acetate is a non-corrosive road deicer. Salt on roads causes millions of dollars damage to bridges and cars.

  11. Microgravity Foam Structure and Rheology

    Science.gov (United States)

    Durian, Douglas J.

    1997-01-01

    To exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest is in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of static shear strain, shear strain rate, and time following a step strain; such data will be analyzed in terms of a yield stress, a static shear modulus, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which these macroscopic non-Newtonian properties presumably arise, will be obtained non-invasively by novel multiple-light scattering diagnostics such as Diffusing-Wave Spectroscopy (DWS). Quantitative trends with materials parameters, such as average bubble size, and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.

  12. In Vivo Evaluation of Hydroxyapatite Foams

    Directory of Open Access Journals (Sweden)

    Sepulveda P.

    2002-01-01

    Full Text Available Porous hydroxyapatite manufactured by foaming of aqueous ceramic suspensions and setting via gelcasting of organic monomers was tested for in vivo biocompatibility in rabbit tibia for a period of 8 weeks. The foams provide tortous frameworks and large interconnected pores that support cell attachment and organisation into 3D arrays to form new tissue. The HA foam implants were progressively filled with mature new bone tissue and osteoid after the implanted period, confirming the high osteoconductive potential and high biocompatibility of HA and the suitability of foam network in providing good osteointegration. No immune or inflammatory reactions were detected.

  13. Characterization of low density rigid urethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, F.N.

    1978-10-01

    The chemical and mechanical properties of a low density, rigid polyurethane foam material taken from a Joint Test Assembly (JTA) after 13 years of storage were measured. Chemical analyses confirmed the composition to be Bendix Rigifoam 6003-1.5, a pentaerythritol/epsilon-caprolactone/tolyene diisocyanate polyurethane foam. Comparison of data from testing thermal and mechanical characteristics with data from a currently manufactured foam of identical composition indicates no degradation of properties had occurred. This information gives added confidence to the stockpile lifetime integrity of the Rigifoam 6003-2 foam system designated for use in other programs.

  14. Heat-regulated foaming in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, M.Y.; Eremina, L.D.; Vlasenko, I.G.

    1984-01-01

    This article examines the mechanism of the foam-inhibiting action resulting from the use of propylene oxide derivatives in solutions both of anionic and of nonionic surfactants. The objective is the creation of a detergent composition with heat-regulated foaming, which would foam well at 30-50/sup 0/ and poorly at 80-90/sup 0/, which is the usual temperature of washing machines. It is demonstrated that foaming can be regulated by the variation of the cloud points of solutions with the aid of additions of polypropylene glycols and their alkyl derivatives or block copolymers in solutions of surfactants. Foaming and foam stability decrease sharply above the cloud points of the solutions due to the foam-inhibiting action of the coacervate phase on the coexisting foam-forming solution. The foam inhibition of polypropylene glycols increases and becomes apparent at lower concentrations with the increase of the average molecular weight of the hydrophobic blocks, the increase of their relative content (in block copolymers with oxyethylene groups), and upon the introduction of alkyl groups.

  15. One-step microwave foaming and curing

    Science.gov (United States)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1981-01-01

    Process that combines microwave foaming and curing of polyimide precursors in single step produces fire-resistant foam slabs of much larger volume than has previously been possible. By adding selected conductive fillers to powder precursors and by using high-power microwave oven, foam slabs with dimensions in excess of 61 by 61 by 7.6 cm are made. Typical foaming and curing and curing time is 35 minutes in microwave oven with additional 1 to 2 hour postcure in conventional oven.

  16. AC induction field heating of graphite foam

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  17. Recent trends in aluminum foam sandwich technology

    Energy Technology Data Exchange (ETDEWEB)

    Banhart, John [TU Berlin, Materials Science and Technology, Hardenbergstr. 36, 10623 Berlin (Germany); Helmholtz-Centre Berlin, Hahn-Meitner-Platz, 14109 Berlin (Germany); Seeliger, Hans-Wolfgang [Pohltec Metalfoam GmbH, Robert-Bosch-Str. 6D, 50769 Koeln (Germany)

    2012-12-15

    We review the status of aluminum foam sandwich (AFS) technology and discuss both recent improvements of foaming technology and current application strategies. It is concluded that the quality of foams has improved in the past years but the costs are still very much the same. This is why applications in which metal foams have more than one function are more likely to be economically viable. The examples presented include electromagnetic shielding, carrier plates for mirrors, cooking equipment, architectural panels, and blast protection. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. TEPIC - A New High Temperature Structural Foam

    Energy Technology Data Exchange (ETDEWEB)

    Whinner, L L; Goods, S H; Tootle, M L; Neuschwanger, C L

    1998-10-01

    The formulation, processing characteristics, microstructure and mechanical properties of a new structural foam, suitable for use at service temperatures up to 200 degrees C, are reported. In each of the respects, the foam is compared to an existing material, called APO-BMI that is currently in use. When these two foams are directly compared, the new foam, called TEPIC, is found to be superior in its mechanical performance. TEPIC is formulated from a non-carcinogenic isocyanate, a di-functional epoxide, and glass microballoons. Compared to APO-BMI processing, TEPIC processing is facile and economical.

  19. Shrinkage Behavior of Polystyrene-based Foam Molded Parts Depending on Volatile Matter Content and Other Factors

    Science.gov (United States)

    Ghafafian, Carineh

    Polymer foam materials play a large role in the modern world. Expanded polystyrene (EPS) bead foam is a lightweight, low density, and good thermal and acoustic insulating material whose properties make it attractive for a number of applications, especially as building insulation. However, EPS also experiences post-molding shrinkage; it shrinks dimensionally from its molded size after processing. This means parts must be stored in warehouses until they are considered stable by the industry standard, DIN EN 1603. This often takes 11--18 weeks and is thus very timely and expensive. This study aims to decrease the post-molding shrinkage time of EPS foam by understanding the mechanisms of shrinkage behavior. Samples were split into two groups based on their amount of initial volatile matter content and storage conditions, then compared to a control group. Based on thermogravimetric analysis and gas chromatography with mass spectrometry, the volatile matter content and composition was found to not be the sole contributor to EPS foam dimensional stability. Residual stress testing was done with the hole drilling method and Raman spectroscopy. As this type of testing has not been done with polymer foams before, the aim was to see if either method could reliably produce residual stress values. Both methods measured residual stress values with unknown accuracy. All samples stored at a higher temperature (60°C) reached dimensional stability by the end of this study. Thus, air diffusion into EPS foam, encouraged by the high temperature storage, was found to play a significant role in post-molding shrinkage.

  20. Transcription Independent Insulation at TFIIIC-Dependent Insulators

    OpenAIRE

    Valenzuela, Lourdes; Dhillon, Namrita; Kamakaka, Rohinton T.

    2009-01-01

    Chromatin insulators separate active from repressed chromatin domains. In yeast the RNA pol III transcription machinery bound to tRNA genes function with histone acetylases and chromatin remodelers to restrict the spread of heterochromatin. Our results collectively demonstrate that binding of TFIIIC is necessary for insulation but binding of TFIIIB along with TFIIIC likely improves the probability of complex formation at an insulator. Insulation by this transcription factor occurs in the abse...

  1. Liquefaction of oak tree bark with different biomass/phenol mass ratios and utilizing bio-based polyols for carbon foam production

    Science.gov (United States)

    Ozbay, N.; Yargic, A. S.

    2017-02-01

    Carbon foam is sponge like carbonaceous material with low density, high conductivity and high strength; which is used in various applications such as catalyst supports, membrane separations, high thermally conductive heat sinks, energy absorption materials, high temperature thermal insulation. Coal or fossil oils are conventionally used to fabricate pitch, phenolic resin and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, oak tree bark was liquefied under mild conditions with different mass ratio of biomass/phenol; and the liquefaction product was used as polyol to produce porous resin foams. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams and activated carbon foams from liquefied oak tree bark was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, bulk density and compressive strength tests.

  2. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) has developed new silicon carbide (SiC) foam-based optics with hybrid skins that are composite, athermal and lightweight (FOCAL) that...

  3. Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams.

    Science.gov (United States)

    Zhang, Haijun; Kuo, Yu-Ying; Gerecke, Andreas C; Wang, Jing

    2012-10-16

    Polystyrene foam is a very important insulation material, and hexabromocyclododecane (HBCD) is frequently used as its flame retardant. HBCD is persistent, bioaccumulative, and toxic, and therefore workplace exposure and environmental emission should be avoided. In this study, we investigated the co-release of HBCD and aerosol particles during the thermal cutting of expanded polystyrene foam (EPS) and extruded polystyrene foam (XPS). The generated particles were simultaneously measured by a fast mobility particle sizer (FMPS) and collected by a cascade impactor (NanoMoudi). In the breathing zone of a cutting worker, the number concentration of aerosol particles was above 1 × 10(12) particles m(-3), and the air concentration of HBCD was more than 50 μg m(-3). Most of the released HBCD was partitioned into particles with an aerodynamic diameter at the nanometer scale. The average concentrations of HBCD in these submicrometer particles generated from the thermal cutting of EPS and XPS were 13 times and 15 times higher than the concentrations in raw foams, respectively. An occupational exposure assessment indicated that more than 60% of HBCD and 70% of particles deposited in the lung of cutting worker would be allocated to the alveolar region. The potential subchronic (or chronic) toxicity jointly caused by the particles and HBCD calls for future studies.

  4. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  5. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties...

  6. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2003-03-31

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. Significant progress was made during this period on all three Tasks. Regarding Task 1, we studied the behavior of foam made without polymer, with low-molecular-weight and high-molecular-weight polyacrylamide, and with xanthan polymer in sandpacks. Results consistently showed that polymer does not stabilize foam in porous media per se. Rather, it destabilizes foam to some extent, but may increase the viscosity of water sufficiently to increase the resistance to flow in spite of the lower intrinsic stability of the foam. This is consistent with the hypothesis the motivated our study. Results also showed that polymer shifts behavior from the high-quality foam-flow regime toward the low-quality regime, consistent with our initial hypothesis. Other aspects of the experimental results were puzzling and are discussed in the text of this report. Research on Task 2 included building an apparatus for gas-phase tracer tests for direct measurement of trapped-gas saturation with foam. We also investigated the nature of the low-quality foam regime, which is thought to be controlled by gas trapping and mobilization. In both the studies of polymers and foam and separate studies of CO{sub 2} foam, we observed behavior that seems to be related to the low-quality regime, but shows unexpected trends: specifically, a decrease in pressure gradient with increasing liquid injection rate, at fixed gas injection rate

  7. New decontamination process using foams containing particles

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France)

    2008-07-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  8. Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer

    Directory of Open Access Journals (Sweden)

    Hájek Matej

    2016-05-01

    Full Text Available Principles of sustainable development create the need to develop new building materials. Foam concrete is a type of lightweight concrete that has many advantages compared to conventional building materials, for example low density and thermal insulation characteristics. With current development level, any negatively influencing material features are constantly eliminated as well. This paper is dealing with substitution of hydraulically bound mixtures by cement foam concrete Poroflow 17-5. The executed assessment is according to the methodology of assessing the existing asphalt pavements in Slovak Republic. The ex post calculation was used to estimate modulus range for Poroflow 17-5 based on the results of static load tests conducted using the Testing Experiment Equipment.

  9. Using different catalysts in the chemical recycling of waste from flexible polyurethane foams

    Directory of Open Access Journals (Sweden)

    Leonardo M. dos Santos

    2013-01-01

    Full Text Available Due to their versatility, polyurethane (PU foams have many different applications, such as sponges, filling materials in furniture, automotive seats and clothes, among others. It is also one of the main refrigerator components serving as a heat insulating material. As PUs find different application niches, they must be largely produced and, consequently, lots of waste are generated. In this work we intend to contribute to the recycle of this waste. The recovery of polyol from flexible polyurethane foams was carried out using the glycolysis process and testing different catalysts. Grounded polyurethane and a solvent, diethyleneglycol (DEG, were kept at 200 ºC and under nitrogen atmosphere during three hours in the presence of a catalyst. All catalysts tested promoted the polyol mixture formation, with Zinc acetate producing the best depolymerization rate. The catalysts efficiency for the depolymerization reaction follows the order: DBTDL< BTO< HBTO< DEA ≈ Ba(Ac2< MEA ≈ KAc< Zn(Ac2.

  10. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  11. Insulated ECG electrodes

    Science.gov (United States)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  12. Transcription independent insulation at TFIIIC-dependent insulators.

    Science.gov (United States)

    Valenzuela, Lourdes; Dhillon, Namrita; Kamakaka, Rohinton T

    2009-09-01

    Chromatin insulators separate active from repressed chromatin domains. In yeast the RNA pol III transcription machinery bound to tRNA genes function with histone acetylases and chromatin remodelers to restrict the spread of heterochromatin. Our results collectively demonstrate that binding of TFIIIC is necessary for insulation but binding of TFIIIB along with TFIIIC likely improves the probability of complex formation at an insulator. Insulation by this transcription factor occurs in the absence of RNA polymerase III or polymerase II but requires specific histone acetylases and chromatin remodelers. This analysis identifies a minimal set of factors required for insulation.

  13. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers.

    Science.gov (United States)

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T

    2015-01-06

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS.

  14. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers

    Science.gov (United States)

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.

    2015-01-01

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS.

  15. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    Energy Technology Data Exchange (ETDEWEB)

    Shang, J.T. [Key laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096 (China)], E-mail: Jshang@seu.edu.cn; Xuming, Chu; Deping, He [School of Materials Science and Engineering, Southeast University, Nanjing 210096 (China)

    2008-06-25

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores.

  16. Foam drilling in natural gas hydrate

    Directory of Open Access Journals (Sweden)

    Wei Na

    2015-01-01

    Full Text Available The key problem of foam drilling in natural gas hydrate is prediction of characteristic parameters of bottom hole. The simulation shows that when the well depth increases, the foam mass number reduces and the pressure increases. At the same depth, pressure in drill string is always higher than annulus. The research findings provide theoretical basis for safety control.

  17. Development of Steel Foam Materials and Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  18. Aqueous foams stabilized by chitin nanocrystals

    NARCIS (Netherlands)

    Tzoumaki, M.; Karefyllakis, D.; Moschakis, T.; Biliaderis, C.G.; Scholten, E.

    2015-01-01

    The aim of the present study was to explore the potential use of chitin nanocrystals, as colloidal rod-like particles, to stabilize aqueous foams. Chitin nanocrystals (ChN) were prepared by acid hydrolysis of crude chitin and foams were generated mainly by sonicating the respective dispersions. The

  19. How carbon nanofibers attach to Ni foam.

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Thakur, D.B.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2008-01-01

    A stable Carbon-Nano-Fiber (CNF) layer was catalytically grown on Ni foam by decomposing ethylene. Scanning electron microscopy of the cross-section of the deposited layer on Ni foam revealed the presence of two distinct carbon layers; an apparently dense layer (‘C-layer’) at the carbon–Ni interface

  20. Method of foaming a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.; Johnson, C.E.

    1980-01-15

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.