WorldWideScience

Sample records for fly ash-sewage sludge

  1. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Science.gov (United States)

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  2. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  3. Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures

    Science.gov (United States)

    Falacinski, Paweł; Szarek, Łukasz

    2016-06-01

    In Poland, in recent years, there has been a rapid accumulation of sewage sludge - a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. This type of hardening slurry with various types of additives, e.g. coal combustion products, is used in the construction of cut-off walls in hydraulic structures. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analysed on the basis of their basic properties, i.e. density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The mandated requirements for slurries employed in the construction of cut-off walls in flood embankments are listed as a usefulness criteria. The article presents the potential uses of fly ash from SSTT in hardening slurry technology. It also suggests directions for further research to fully identify other potential uses of this by-product in this field.

  4. Sealing layer of fly ashes and sewage sludge and vegetation establishment in treatment of mine tailings impoundments; Flygaska och roetslam som taetskikt vid efterbehandling av sandmagasin med vegetationsetablering

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria; Neuschuetz, Clara [Stockholm Univ. (Sweden). Dept. of Botany; Isaksson, Karl-Erik [Boliden Mineral AB (Sweden)

    2006-02-15

    Each year the Swedish mining industry produces 25 Mtonnes of mine tailings that are disposed of in extensive natural impoundments. As this sand, containing more or less sulphide-rich minerals, is penetrated by oxygen and water, it starts weathering resulting in formation of acidic and metal-rich drainage water. To prevent oxygen penetration the mine tailings can be covered with a sealing layer covered with a protective cover that facilitates establishment of vegetation. The aim of this study has been to examine the function of fly ash and sewage sludge in sealing layers at impoundments of pyrite rich mine tailings, and the ability of different plant species, which are suitable for establishment in these areas, to penetrate the sealing layer with their roots and what impact they have on the drainage water. Experiments have been performed in field and greenhouse environment, with sealing layers consisting of fly ash and sewage sludge mixtures, covered with protective covers of sewage sludge or till. Plant establishment has been studied in a survey of naturally established plants at sewage sludge disposal sites close to mining areas, and by sowing and planting of selected plants, for instance fast growing grass species and fibre hemp at the test plots in field and in greenhouse experiments. Large scale application of ashes, sewage sludge and an ash/sludge mixture have been performed in field at three test plots with the size of 0.3-1 ha. Leakage of nutrients and metals from sealing layers has been studied in field and greenhouse tests. In addition, the ability of plant roots to penetrate sealing layers made of different ash/sludge mixtures have been examined in greenhouse experiments. This investigation is a cooperation between Stockholm University and Boliden Mineral AB, and the field experiments have been performed at the mine tailings impoundments at Gillervattnet, Boliden. Other collaborating participants are Skellefteaa Kraft and Munksund, who have produced the

  5. Flyash and sewage sludge as liner material - Preparations for a pilot test with fly-ash stabilised sewage sludge as landfill liner; Linermaterial med aska och roetslam - Underlag foer genomfoerande av pilotfoersoek med stabiliserat avloppsslam som taetskiktsmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, J.; Rogbeck, Y.; Svedberg, B.; Uhlander, O. [Scandiaconsult Sverige AB, Stockholm (Sweden); Mossakowska, A. [Stockholm Vatten AB (Sweden)

    2003-11-01

    The aim of this project was to develop a new liner material based on biofuel fly ash and sewage sludge and to plan for a pilot test with this new liner (FSA) on a landfill. The investigation shows that FSA has potential to fulfil technical and economical requirements as well as requirements of durability. This project constitutes part of a larger one, where the overall aim is to collect information/experience of FSA as a liner for presentation in a handbook. During the conducted laboratory work recipes for mixture proportions for application as landfill liner were controlled according to technical and environmental aspects. A recipe for FSA material has been prepared, which has permeability values lower than 10-9 m/s. This low permeability can assure a low percolation of precipitated water through the landfill liner, < 50 litre/m{sup 2}/year. FSA has sufficient un-drained shear strength and has an estimated slow bio-degradation, which can assure a long duration period. Based on results from tests conducted in this and other projects, where FSA materials were tested, necessary quality verifications has been conducted for the ingredients bio-fly-ash and sewage sludge and for the FSA-mixture. The FSA materials potential as liner increases with darker colour (bordering black). FSA-40 is a mixture of 40 % dry solid (DS) fly ash and 60 % DS sewage sludge, and FSA-60 is a mixture containing 60 % DS fly ash and 40 % DS sewage sludge and so on. Some important parameters of the ingredient materials are DS content (or water content) and pH and CaO content of the fly ash. A liner made of FSA should have surrounding layers of high water containing capacity in order to protect the FSA-liner from drying. The drainage and oxidation protection layers have to transport precipitated water as well as contain sufficient pore water in order to be an oxygen barrier above the liner (FSA). In addition, the investigation shows that a paddle blender should be used in order to guarantee a

  6. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    Science.gov (United States)

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  7. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  8. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  9. Influence of vegetation and sewage sludge on sealing layer of fly ashes in post-treatment of mine tailings impoundments; Inverkan av vegetation och roetslam paa taetskikt av flygaska vid efterbehandling av sandmagasin

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria; Neuschuetz, Clara (Inst. of Bothany, Stockholm Univ., Stockholm (Sweden)); Isaksson, Karl-Erik (Boliden Mineral AB, Stockholm (Sweden))

    2009-03-15

    Mining industry produces 25 Mton mine tailings yearly that are deposited in impoundments in the nature. When this sand, containing sulphur rich minerals, reacts with oxygen and water it starts to weather and acidic metal rich water is formed. To prevent this, the sand can be covered with a sealing layer and a protective cover layer with vegetation. As sealing and cover materials fly ashes and sewage sludge can be used. The aim of this investigation was to find out: 1) how sealing layer of fly ashes with and without sewage sludge, and a cover with sewage sludge can be placed practically on mine tailings in a cold climate. 2) how such a cover should be constructed to minimize the risk of root penetration and leakage of nutrients and metals 3) which vegetation that is most suitable This was investigated in field- and greenhouse tests with a sealing layer of fly ash and/or sewage sludge with a cover layer of sewage sludge in which different plant species were established. The practical application was performed in 0.3-1 ha plots at a mine tailings impoundments at Boliden. The ability of plant roots to penetrate a sealing layer was investigated, as well as the effect of simulated root exudates on the penetration resistance in hardened ash. Leakage of nutrients and metals from cover layer of sewage sludge, in some cases with sealing layers beneath, was investigated in field and greenhouse lysimeters. Various plant species were compared on their ability to affect metal and nutrient leakage as well as root penetration and shattering of the hardened ashes. The project was a cooperation between Stockholm University and Boliden Mineral AB, and the field tests were performed at the impoundment Gillervattnet in Boliden and in Garpenberg. Cooperating were also Iggesund Paperboard, Skellefteaa Kraft, Stora Enso Fors, Umeaa Energi and Vattenfall, all producers of ashes that were used, as well as Stockholm Vatten AB, which produced the sewage sludge. The most important conclusions

  10. ZEOLITIZATION OF SEWAGE SLUDGE ASH WITH A FUSION METHOD

    Directory of Open Access Journals (Sweden)

    Jolanta Latosińska

    2016-11-01

    Full Text Available The study shows the results of zeolitization of municipal sewage sludge ash with the indirect fusion method followed by a hydrothermal method. The zeolitization of sewage sludge ash was conducted at the melting temperature of 550°C and the melting time of 60 minutes, crystallization temperatures of 60°C and 90°C, crystallization time of 6 hours and the SSA:NaOH ratio of 1:1.8; 1:1.4. The research of modified sewage sludge ashes included the observation of changes of ash particles surface and the identification of crystalized phases. The zeolitization of sewage sludge ash at the ratio of SSA:NaOH 1.0:1.4 did not cause the formation of zeolite phases. On the other hand, the zeolitization at the ratio of SSA:NaOH 1.0:1.8 resulted in the formation of desired zeolite phases such as zeolite Y (faujasite and hydroxysodalite. The presented method of sewage sludge ash zeolitization allows to obtain highly usable material. Synthesized zeolites may be used as adsorbents and ion exchangers. They can be potentially used to remove heavy metals as well as ammonia from water and wastewater.

  11. Soil microbial population and nitrogen fixation in peanut under fly ash and sewage sludge

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Surface disposal of municipal sludge and industrial wastes is an old practice that recently has been attracting concerns due to associated soil, air and water pollution. Wise utilization and recycling of these wastes in agricultural land brings in the much-needed organic and mineral matter to the soil. However, the assimilative capacity of the soil with respect to its physical, chemical and biological properties and the performance of crop grown, needs thorough investigation. Industrial wastes like fly ash (FA) from Thermal Power Plant and Sewage Sludge from municipal and city activities (untreated and treated CW) are some such important organic based waste resources having a potentiality for recycling in the agricultural land. The characteristics of these wastes with respect to their pH, plant nutrient and heavy metals content differs. Fly ash, being a burnt residue of coal, is rich in essential mineral elements and also has capacity in neutralizing soil acidity and supplying the nutrients to the plants (Molliner and Street, 1982). Sewage sludge application also has a significant influence on the physical, chemical and biological properties of soil. The soil biological systems can be altered by new energy input for the organisms, which is reflected by changes in the micro and macrobiological populations, in turn influencing the synthesis and decomposition of soil organic substances, nutrient availability, interactions with soil inorganic components and other exchanges with physical and chemical properties (Clapp et al, 1986). So far, much information is known regarding changes in physico-chemical properties of soil and performance of crop due to applications of such wastes. However, long term studies are needed to improve our understanding of the effects of land application of such wastes on soil biological systems (McGrath et al. 1995). It is known that native soil microbial population is responsible for decomposition of organic matter and recycling of nutrients

  12. Pilot study with fly ash stabilised sewage sludge as hydraulic barrier layer; Pilotfoersoek med flygaskastabiliserat avloppsslam (FSA) som taetskikt

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Maurice, Christian; Mossakowska, Agnes; Eklund, Caroline

    2005-10-01

    A lot of landfills will be closed and finally covered during the next five to ten years. The design and construction of final closure caps, especially the landfill liner, are carried out to reduce the amount of water percolating through the landfill as to minimize the effect on the surrounding environment for a long time span. Earlier studies has indicated that sewage sludge stabilized with fly ash, resulting in a product called FSA, has a good potential to be used as landfill liner. In this project a large field test with FSA was carried out at a landfill under closure. The objective of the project was to study the following in depth: Manufacturing and construction regarding mainly technical and economical aspects; Permeability, stability and settlement as well as leachability; Durability, a key aspect. Environmental authorities advice that a closure cap shall guarantee function for several hundreds of years. The field tests were conducted at the landfill Dragmossen which is located south of Aelvkarleby in Sweden. During the field test approximately 1,500 tonnes FSA was manufactured. The FSA liner was installed on an area of 2,400 m{sup 2} with a thickness of 0,55 m. Parallel to the ongoing investigations at the landfill, laboratory studies were carried out to study the rate of biological decomposition of the liner. The results show that the manufactured FSA can be used as landfill liner in a large scale. The homogeneous quality, strength and low permeability of FSA is even better than the set criteria. The demands on the contained materials, fly ash and sewage sludge, are high and have to fulfil certain quality requirements for example regarding the water and dry solid content. The field test also showed that it is feasible to store fly ash and sewage sludge during at least two weeks to enable manufacturing in a larger scale. Mixing fly ash and sewage sludge will result in an odour due to bad smell and exit of ammonium gases. The odour fades away quickly after

  13. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  14. Stabilization of Fly Ash Deposits through Selected Cereal Crops

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2012-10-01

    Full Text Available Fly ash, a waste product from burning coal in power plants, occupies important spaces and is a major harm forenvironment: water, air, soil and associated ecosystems. New deposits do not have available nutrients for plantgrowth. The study presents a process of stimulating growth of oats in deposits of fly ash, which eliminates listed.Phytostabilization of new deposit is fast after fertilization with sewage sludge-based compost in the presence/absence of native or modified volcanic tuff with grain species, Avena sativa L., and variety Lovrin 1. Experimentalstudies have shown the species adaptability to climatic conditions and a growth rate until the maturity correlated withtype of treatment of upper layers of fly ash deposit. Fly ash with sewage sludge compost treatment 50 t/hadetermined the growth with 75% of the amount of grains vs. the amount of grains harvested from untreated fly ash.Fly ash with sewage sludge compost mixed with modified indigenous volcanic tuff 2.5 t/ha treatment determined thegrowth with 80% vs. the amount of grains harvested from untreated fly ash. If oat straw harvested from fertilizedvariant without modified indigenous volcanic tuff increases in weight are 30% and for fertilized variant in thepresence of tuff increases in weight are 39.8% vs. quantities harvested from untreated fly ash.

  15. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  16. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.

    Science.gov (United States)

    Pai, Tzu-Yi; Lin, Kae-Long; Shie, Je-Lung; Chang, Tien-Chin; Chen, Bor-Yann

    2011-03-01

    A grey model (GM) and an artificial neural network (ANN) were employed to predict co-melting temperature of municipal solid waste incinerator (MSWI) fly ash and sewage sludge ash (SSA) during formation of modified slag. The results indicated that in the aspect of model prediction, the mean absolute percentage error (MAPEs) were between 1.69 and 13.20% when adopting seven different GM (1, N) models. The MAPE were 1.59 and 1.31% when GM (1, 1) and rolling grey model (RGM (1, 1)) were adopted. The MAPEs fell within the range of 0.04 and 0.50% using different types of ANN. In GMs, the MAPE of 1.31% was found to be the lowest when using RGM (1, 1) to predict co-melting temperature. This value was higher than those of ANN2-1 to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14 and 0.81%, respectively. GM only required a small amount of data (at least four data). Therefore, GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available. It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.

  17. Composition and reactivity of ash from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M; Pedersen, B; Jorgensen, S S

    1976-01-01

    Sewage sludge and sludge ash produced at 450 to 1050/sup 0/C in the laboratory or in a multiple hearth incinerator were analyzed by chemical and X-ray diffraction methods. Among the ash components were 23 to 32 percent calcium and magnesium phosphates and the following percentages of heavy metals: Zn 0.9, Cu 0.2, Pb 0.1, Cr 0.07, Ni 0.02, and Cd 0.006. As shown by EDTA-extraction, the reactivity of heavy metals was higher in ash produced at 450/sup 0/C than in dry sludge, but lower in ash produced above 800/sup 0/C. Phosphate in the 800 to 900/sup 0/C samples was dissolved in citric acid but not in citrate.

  18. Sewage sludge ash — A promising secondary phosphorus source for fertilizer production

    Energy Technology Data Exchange (ETDEWEB)

    Herzel, Hannes, E-mail: hannes.herzel@bam.de [BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11, 12489 Berlin (Germany); Krüger, Oliver [BAM Federal Institute of Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Hermann, Ludwig [Outotec GmbH & Co KG, Ludwig-Erhard-Straße 21, 61440 Oberursel (Germany); Adam, Christian [BAM Federal Institute of Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2016-01-15

    Sewage sludge incineration is extensively practiced in some European countries such as the Netherlands, Switzerland, Austria and Germany. A survey of German sewage sludge ash showed that the recovery potential is high, approx. 19,000 t of phosphorus per year. However, the survey also discovered that the bioavailability of phosphorus in the sewage sludge ash is poor and that more than half of the ashes cannot be used as fertilizers due to high heavy metal content. A new thermochemical process for sewage sludge ash treatment was developed that transforms the ash into marketable fertilizer products. Sewage sludge ash was thermochemically treated with sodium and potassium additives under reducing conditions, whereby the phosphate-bearing mineral phases were transformed into plant available phosphates. High P-bioavailability was achieved with a molar Na/P ratio > 1.75 in the starting materials. Sodium sulfate, carbonate and hydroxide performed comparably as additives for this calcination process. Potassium carbonate and -hydroxide have to be added in a molar K/P ratio > 2.5 to achieve comparable P-solubility. The findings of the laboratory scale investigations were confirmed by an industrial demonstration trial for an ash treatment with sodium sulfate. Simultaneously, the volatile transition metal arsenic (61% removal) as well as volatile heavy metals such as cadmium (80%), mercury (68%), lead (39%) and zinc (9%) were removed via the off-gas treatment system. The product of the demonstration trial is characterized by high bioavailability and a toxic trace element mass fraction below the limit values of the German fertilizer ordinance, thus fulfilling the quality parameters for a P-fertilizer. - Highlights: • Direct use of sewage sludge ashes (SSA) as fertilizer often not possible • New approach of SSA treatment aiming at P-fertilizers with high P-bioavailability • Comparison of different Na- and K-bearing additives for the thermochemical process • Evaporation of

  19. Sewage sludge ash — A promising secondary phosphorus source for fertilizer production

    International Nuclear Information System (INIS)

    Herzel, Hannes; Krüger, Oliver; Hermann, Ludwig; Adam, Christian

    2016-01-01

    Sewage sludge incineration is extensively practiced in some European countries such as the Netherlands, Switzerland, Austria and Germany. A survey of German sewage sludge ash showed that the recovery potential is high, approx. 19,000 t of phosphorus per year. However, the survey also discovered that the bioavailability of phosphorus in the sewage sludge ash is poor and that more than half of the ashes cannot be used as fertilizers due to high heavy metal content. A new thermochemical process for sewage sludge ash treatment was developed that transforms the ash into marketable fertilizer products. Sewage sludge ash was thermochemically treated with sodium and potassium additives under reducing conditions, whereby the phosphate-bearing mineral phases were transformed into plant available phosphates. High P-bioavailability was achieved with a molar Na/P ratio > 1.75 in the starting materials. Sodium sulfate, carbonate and hydroxide performed comparably as additives for this calcination process. Potassium carbonate and -hydroxide have to be added in a molar K/P ratio > 2.5 to achieve comparable P-solubility. The findings of the laboratory scale investigations were confirmed by an industrial demonstration trial for an ash treatment with sodium sulfate. Simultaneously, the volatile transition metal arsenic (61% removal) as well as volatile heavy metals such as cadmium (80%), mercury (68%), lead (39%) and zinc (9%) were removed via the off-gas treatment system. The product of the demonstration trial is characterized by high bioavailability and a toxic trace element mass fraction below the limit values of the German fertilizer ordinance, thus fulfilling the quality parameters for a P-fertilizer. - Highlights: • Direct use of sewage sludge ashes (SSA) as fertilizer often not possible • New approach of SSA treatment aiming at P-fertilizers with high P-bioavailability • Comparison of different Na- and K-bearing additives for the thermochemical process • Evaporation of

  20. Investigation of Catalytic effect sewage sludge combustion ash in the formation of HAPs

    Energy Technology Data Exchange (ETDEWEB)

    Fullana, A.; Sidhu, S.; Font, R.; Conesa, A.

    2002-07-01

    Incineration is a very important technique in the treatment of sewage sludge. In 1998 approximately 1,5 million and 2,5 million dry tons of sewage sludge were incinerated in the United States and European Union (EU), respectively. In 1985, only 10% of EU sludge was incinerated, but by 2005 approximately 40% of EU sludge is expected to be incinerated. Use of sewage sludge as agricultural fertilizer was considered the best application for sludge until it was discovered that the presence of heavy metals in sludge could contaminate farmland. The limitations facing landfills and recycling plants and the planned ban on sea disposal has led to the expectation that the role of incineration will increase in the future. The expected increase in sludge incineration has also led to increased scrutiny of the main drawback to the incineration of sewage sludge: the formation of hazard air pollutants (HAP). Sewage sludge incineration has been identified as a very important source of HAPs such as chloro benzenes, chloro phenols, and PCDD/Fs. One of the more important characteristics of sewage sludge incineration is the formation of large amounts of ash, which is rich in known HAP formation catalysts such as Cu and Fe. Thus, the sludge incineration ash is expected to play an important role in the formation of HAPs in the post-combustion zone of a sludge incinerator. in this paper, we present results of our investigation of the catalytic effect of sewage sludge ash on the formation of chloro benzenes and chloro phenols. In this study, pyrolytic gas from sewage sludge was used as reaction gas instead of the synthetic organic mix that has been used in most previous HAPs formation studies. (Author) 4 refs.

  1. Preparation of lightweight concretes with sewage sludge ash and their properties

    International Nuclear Information System (INIS)

    Lee, Hwa Young

    2010-01-01

    Sewage sludge results from the accumulation of solids from the unit processes of chemical coagulation, flocculation and sedimentation during wastewater treatment. Rapid urbanization in many areas of the world has resulted in a drastic increase of sewage sludge. More than two million tons of sewage sludge resulted from the treatment of urban sewage is produced annually in Korea. The majority of sewage sludge is disposed of conventionally by the landfill or ocean disposal method, both of which create severe environmental pollution. However, increasingly stringent environmental regulations and scarcity of landfill sites have posed disposal problems of sludge. Incineration is a viable alternative providing a means of sludge stabilization resulting in a reduced volume of sterile, odorless and practically inert residue. Accordingly, the development of environment friendly treatment technique of SSA (sewage sludge ash) inevitably produced during incineration of sewage sludge may be urgently required. For this aim, an attempt to manufacture the lightweight concrete has been made using sewage sludge ash and the physical properties have been determined in terms of specific gravity, compressive strength and thermal conductivity. As a result, the density of specimen prepared with SSA was ranged from 0.6 to 1.4g/ cm 3 and the compressive strength was ranged from 20 to 40kg/ cm 2 . As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to 0.6 W/ mK depending on material composition which was far less than that of concrete. It was concluded that the lightweight concretes prepared with SSA could be applicable to building or construction materials such as insulation board and sound absorption material. (author)

  2. Sewage sludge ash (SSA in high performance concrete: characterization and application

    Directory of Open Access Journals (Sweden)

    C. M. A. Fontes

    Full Text Available ABSTRACT Sewage sludge originated from the process of treatment of wastewater has become an environmental issue for three main reasons: contains pathogens, heavy metals and organic compounds that are harmful to the environmental and human health; high volumes are daily generated; and shortage of landfill sites for proper disposal. This research deals with the viability study of sewage sludge utilization, after calcination process, as mineral admixture in the production of concrete. High-performance concretes were produced with replacement content of 5% and 10% by weight of Portland cement with sewage sludge ash (SSA. The influence of this ash was analyzed through physical and mechanical tests. Analysis showed that the mixtures containing SSA have lower values of compressive strength than the reference. The results of absorptivity, porosity and accelerated penetration of chloride ions, presents that mixtures containing ash showed reductions compared to the reference. This indicates that SSA provided refinement of the pore structure, which was confirmed by mercury intrusion porosimetry test.

  3. Properties of ash generated during sewage sludge combustion: A multifaceted analysis

    International Nuclear Information System (INIS)

    Magdziarz, Aneta; Wilk, Małgorzata; Gajek, Marcin; Nowak-Woźny, Dorota; Kopia, Agnieszka; Kalemba-Rec, Izabela; Koziński, Janusz A.

    2016-01-01

    This paper presents chemical properties of sewage sludge ashes required for determining their thermal characteristics. A novel approach, linking selected advanced analytical techniques with FactSage modelling, was developed and applied to obtain new information on deposit formation mechanisms that contribute to fouling and slagging. The mineral matter and fusion temperatures were investigated using a variety of analytical techniques including XRF, ICP-MS, XRD, SEM-EDX and AFT. The slagging and fouling indices were calculated and the sintering properties were predicted. The studied ashes were rich in P_2O_5, CaO, SiO_2 and Fe_2O_3, but their concentrations slightly differed. Phase analyses suggested the existence of calcium and phosphorus as main phases. Thermal behaviour of ashes was studied focusing on the mass loss, temperature peaks and thermic effects with the increasing of temperature up to 1200 °C under air atmosphere. The changes in concentration of ash compounds contributed to differences in ash fusion temperatures. FactSage thermochemical equilibrium calculations were used to predict the amount of liquid slag and solid phases, giving information about slagging properties of ashes. The general conclusion based on experimental studies is that sewage sludge ashes cause the slagging and fouling hazard while they reveal low corrosive effect. - Highlights: • Characterisation of sewage sludge ashes were given. • Transformation of inorganic components was determined using XRD and FTIR. • The ash fusion behaviour of ashes was studied experimentally. • Empirical indices were calculated indicating slagging and fouling propensities. • Thermodynamic equilibrium calculation was used.

  4. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  5. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  6. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  7. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching

  8. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end....

  9. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Viader, Raimon Parés; Erland Jensen, Pernille; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end...

  10. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.K.; Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    Electroosmotic dewatering has been tested in laboratory cells for 4 different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagrande's coefficients for the three materials where determined at different water contents. In the electroosmotic experiments shown in this work chalk can be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM. The process was not optimised indicating that higher dry matter contents could be achieved. (orig.)

  11. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor.

    Science.gov (United States)

    Lapa, N; Barbosa, R; Lopes, M H; Mendes, B; Abelha, P; Boavida, D; Gulyurtlu, I; Oliveira, J Santos

    2007-08-17

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type

  12. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, N. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal)]. E-mail: ncsn@fct.unl.pt; Barbosa, R. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal); Lopes, M.H. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Mendes, B. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal); Abelha, P. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Gulyurtlu, I. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Santos Oliveira, J. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal)

    2007-08-17

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  13. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    International Nuclear Information System (INIS)

    Lapa, N.; Barbosa, R.; Lopes, M.H.; Mendes, B.; Abelha, P.; Gulyurtlu, I.; Santos Oliveira, J.

    2007-01-01

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  14. The Effect of Using Sewage Sludge Ash with and without Nano Silica Particles on Properties of Self-compacting Cement Based Materials

    Directory of Open Access Journals (Sweden)

    Amin Khoshravesh

    2014-10-01

    Full Text Available Nowadays using pozzolanic materials is crucial as a replacement of needed cement, improving properties of cement based materials and saving costs. On the other hand sewage sludge is harmful to the environment and human health. So in this research the sewage sludge ash has been used as an artificial pozzolan to produce self compacting cement based materials which could be evaluated as a revolution in the concrete industry. The objective of this research was to accelerate the performance of sewage sludge ash by utilizing nano silica particles. This research includes 10 mix designs for self compacting mortar and concrete made up of binary and ternary cementitious blends of sewage sludge ash (0%,5%,10%,15%,20% and nano silica (0%,1%. The results showed that by adding the sewage sludge ash, rheological and mechanical properties of the samples were reduced and for small percentages of sewage sludge ash, the durability characteristics were improved. The results also showed that adding nano silica improved the mechanical and durability properties of self compacting mortar and concrete. Finally in presence of nano silica, the reactivity of the sewage sludge ash was increased and its performance was improved.

  15. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  16. Phosphorus bioavailability in straw and sewage sludge ashes from low-temperature biomass gasification

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jakobsen, Iver; Grønlund, Mette

    2017-01-01

    to their P bioavailability. A set of pot experiments with spring barley was carried out to compare the ash P fertiliser value with mineral P fertiliser and the sewage sludge feedstock. An indirect radioactive labelling approach with 33P was used to determine the amount of P taken up from the fertiliser....... In contrast, low- temperature gasification of Fe-rich sewage sludge reduced its P fertiliser value to practically zero. The results suggest that ashes from low-temperature gasification could be developed into alternative P fertilisers, however since their P bioavailability varies strongly depending...

  17. Evaluation of robustness of fly ash stabilized sewage sludge (FSS) as liner - Durability, percolation and drainage water quality; Bedoemning av laangtidsegenskaper hos taetskikt bestaaende av flygaskastabiliserat avloppsslam, FSA - Bestaendighet, taethet och ytutlakning

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Laendell, Maerta; Haakansson, Karsten

    2012-02-15

    This project shows that fly ash stabilized sewage sludge (FSS) is watertight and resistant as liner in landfills. The presented results can lead to that more landfills will use FSS as liner, and landfills already using FSS together with geomembrane, can leave out the latter without risking contamination of the drainage water collected by the closure construction

  18. Utilisation of Electrodialytically Treated Sewage Sludge Ash in Mortar

    DEFF Research Database (Denmark)

    Kappel, Annemette; Pares Viader, Raimon; Kowalski, Krzysztof Piotr

    2018-01-01

    Phosphorous is a scarce resource and there is a need to develop methods for recovery of this irreplaceable nutrient from secondary resources, e.g. from sewage sludge ash (SSA). Today SSA is most often disposed of and the resource is lost. In the present study, about 90% phosphorous was recovered...

  19. Leaching of Cs and Sr from sewage sludge ash buried in a landfill site

    International Nuclear Information System (INIS)

    Ishikawa, Nao; Umita, Teruyuki; Ito, Ayumi

    2014-01-01

    Radionuclide contamination from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant has been found in sewage sludge ash produced in eastern Japan. When such contaminated waste contains less than 8,000 Bq/kg radiocesium, it is being disposed in controlled landfill sites. In order to assess the possible spread of the radionuclides by their leaching from the landfill sites, it is important to know the leaching behavior of the radionuclides from the sewage sludge ash and factors influencing the leaching behavior. In this study, leaching experiments using stable Cs and Sr were conducted for sewage sludge ash under several conditions to investigate effects of chemical composition of leachate, pH, and solid/liquid ratio on Cs and Sr leaching behaviors. In the pH range from 6 to 12, the leaching ratio of Cs or Sr was less than 5.2 or 0.21%, respectively. Additionally, the leaching ratio of Sr decreased with increasing pH of the leachate. In contrast, the higher the pH in the leachate was, the higher the leaching ratio of Cs was. Finally, possible radionuclide leaching from contaminated sewage sludge ash and then radionuclide concentrations in an actual landfill leachate were assessed. It could be suggested that 90 Sr leaching from the landfill site had the least effect on the environment, whereas 134+137 Cs leaching needed to be taken into account for spreading radioactive materials from the landfill site to the environment. (author)

  20. Sewage sludge additive

    Science.gov (United States)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  1. The Use of Fly Ash and Lime Sludge as Partial Replacement of Cement in Mortar

    Directory of Open Access Journals (Sweden)

    Vaishali Sahu

    2014-01-01

    Full Text Available The increased demand of drinking water and power has led huge generation of water treatment plant residue i.e. sludge and the thermal power plant by-product such as fly ash. Large quantities of sludge and fly ash are produced in India and disposed off by landfilling or dumping in and around sites. In this study fly ash and water softening sludge (lime sludge has been utilized in mortar. Two types of mortar (type I and II with four binder combinations have been tried. Binder I consists of 70% fly ash (FA and 30% lime sludge (LS , 0 % gypsum (G, binder II is 70% FA, 30% LS and 1% G, binder III is 50% FA, 30% LS and 20% cement and the binder IV is 40% FA, 40% LS with 20% cement. The effect of various combinations on strength has been discussed here. This paper outlines the composition of the composite material, method of preparation of mortar specimen, testing procedure and salient results thereof.

  2. The importance of ash for the favourable properties of sewage sludge in co-firing; Askans betydelse foer roetslams goda samfoerbraenningsegenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, K.; Jones, F.; Niklasson, F.; Ryde, D. [SP Sveriges Tekniska Forskningsinstitut, Boraas, (Sweden); Gustafsson, G. [Boraas Energi och Miljoe, Boraas (Sweden); Herstad Svaerd, S. [WSP Kraft and Vaerme, Goeteborg (Sweden)

    2012-11-01

    Sewage sludge has been shown to have positive properties during cofiring with difficult fuels. The sludge mitigates deposition and corrosion which occur because of the fuels content of chlorine and alkali. The reason for the positive properties of sludge are its content of sulphur, phosphorus and aluminium silicates. Its high content of ash has also been discussed because the fly ash would constitute a large surface for alkali chlorides to condensate on and thereby avoid condensation on e.g. superheater surfaces. The ash could also blast the surface and thereby keeping them clean. The present project aims at testing the hypothesis that the ash in the sludge mitigates the deposition. Tests have been performed with synthetically produced waste pellets of which some were doped with inert particles in form of aluminium oxide. The tests were done in a lab-scale bubbling fluidised bed. Deposit probes collected deposits during the combustion of doped and un-doped waste pellets, and the deposits were chemically analysed. The result shows that the inert particles do not have any effect on the amount of hard attached deposits. The particles ended up on the lee side of the probe where they deposited because of gravitation, but they could be easily removed. The remaining deposit was analysed and the effect of inert particles was a small decrease of the content of chlorine. Tests were also performed with pellets doped with sludge. In this case the amount of deposit and its content of chlorine decreased significantly. Different sewage sludges have different properties. The present results show that sludge for cofiring should not be chosen for its amount of ash but rather for its content of sulphur, phosphorous and aluminium.

  3. The importance of ash for the favourable properties of sewage sludge in co-firing; Askans betydelse foer roetslams goda samfoerbraenningsegenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, K.; Jones, F.; Niklasson, F.; Ryde, D. [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden); Gustafsson, G. [Boraas Energi och Miljoe, Boraas (Sweden); Herstad Svaerd, S. [WSP Kraft and Vaerme, Stockholm (Sweden)

    2012-07-01

    Sewage sludge has been shown to have positive properties during cofiring with difficult fuels. The sludge mitigates deposition and corrosion which occur because of the fuels content of chlorine and alkali. The reason for the positive properties of sludge are its content of sulphur, phosphorus and aluminium silicates. Its high content of ash has also been discussed because the fly ash would constitute a large surface for alkali chlorides to condensate on and thereby avoid condensation on e.g. superheater surfaces. The ash could also blast the surface and thereby keeping them clean. The present project aims at testing the hypothesis that the ash in the sludge mitigates the deposition. Tests have been performed with synthetically produced waste pellets of which some were doped with inert particles in form of aluminium oxide. The tests were done in a lab-scale bubbling fluidised bed. Deposit probes collected deposits during the combustion of doped and un-doped waste pellets, and the deposits were chemically analysed. The result shows that the inert particles do not have any effect on the amount of hard attached deposits. The particles ended up on the lee side of the probe where they deposited because of gravitation, but they could be easily removed. The remaining deposit was analysed and the effect of inert particles was a small decrease of the content of chlorine. Tests were also performed with pellets doped with sludge. In this case the amount of deposit and its content of chlorine decreased significantly. Different sewage sludges have different properties. The present results show that sludge for cofiring should not be chosen for its amount of ash but rather for its content of sulphur, phosphorous and aluminium.

  4. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  5. Recycling by the brick making industry of ashes from sewage sludge incineration; Verwertung von Aschen der Klaerschlammverbrennung in der Ziegelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Wiebusch, B.; Seyfried, C.F. [Hannover Univ. (Germany). ISAH Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1998-09-01

    The present project focuses on the recycling of sewage sludge ashes by the brick making industry. The following aspects are dealt with in detail: Overview of the state of the art of sewage sludge combustion in Germany; influence of wastewater and sludge treatment on ash quality (determination of the seasonal course of chemical sewage sludge composition); use of sewage sludge ashes in as loading material in fluidised-bed furnaces or as clay substitute in brick manufacture; semi-technical trials in ceramic laboratories; assessment of the environmental impact of bricks containing sewage sludge ash; performance of leaching experiments; and examination of the mineralogical binding of heavy metals into the ceramic matrix. [Deutsch] Das Projekt konzentriert sich dabei auf eine Verwertung von Klaerschlammaschen in der Ziegelindustrie, wobei die im folgenden genannten Aspekte im Einzelnen bearbeitet werden: - Ueberblick ueber den Stand der Technik bei der Klaerschlammverbrennung in Deutschland - Einfluss der Abwasser- und Schlammbehandlung auf die Aschequalitaet (Ermittlung von Jahresganglinien der chemischen Zusammensetzung von Klaerschlammaschen) - Einsatz von Klaerschlammaschen aus Wirbelschichtoefen als Zuschlagstoff bzw. Tonersatz bei der Ziegelproduktion - halbtechnische Versuche im keramischen Labor - Abschaetzung der Umweltvertraeglichkeit von Ziegeln mit Klaerschlammaschezusatz: Durchfuehrung von Auslangversuchen, Untersuchung einer mineralogischen Einbindung von Schwermetallen in die keramische Matrix. (orig./SR)

  6. Instruction manual: Fly ash stabilised sludge (FSS) as liner material; Vaegledning: Flygaskastabiliserat avloppsslam (FSA) som taetskikt

    Energy Technology Data Exchange (ETDEWEB)

    Carling, Maria; Haakansson, Karsten; Macsik, Josef; Mossakowska, Agnes; Rogbeck, Yvonne

    2007-06-15

    Several old waste sites are on the verge to be closed up during the next ten years. The function of a liner is to limit the amount of water that is infiltrated to the waste. This leads to high demand on a liner's permeability, shear strength and durability. Several pilot studies have been followed up where fly ash stabilised sewage sludge (FSS) was used as liner. The results show that FSS has low hydraulic conductivity (low permeability) and that it meets the demands put on a liner for non-hazardous wastes. Closure with FSS as liner puts special demands on the materials, the mixing action and during installation. The aim of this instruction manual is that it will work as an aid to manufacture and install liner, based on fly ash and sewage sludge, which fulfils functional demands. The manual contains a description of geotechnical and environmental demands to accomplish. This includes the following; manufacturing, storing, installation and follow up/control. This instruction manual is aimed for those who are planning closures of a landfill with FSS and need guidance to plan, carry out and control the liner construction. The manual can also be used by environmental agencies in order to control that the closure is done appropriately. Sewage sludge and fly ash from different producers can have varying properties. The quality of the used materials can change the FSS mixture's material properties and thereby also its permeability and durability. Both raw materials and mixtures should thereby be investigated according to material parameters. The mixtures dry solid content is a critical parameter as both shear strength and handling properties will be effected. In order to acquire sufficient amount of raw material storing is often required. Several aspects must then be counted on, as the properties of the raw materials can be altered. Manufacturing FSS must be done with the same material properties that have been investigated and evaluated in laboratory. Different

  7. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    Science.gov (United States)

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  8. Electrodialytic treatment of sewage sludge ash for the recovery of phosphorous and separation of heavy metals

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2012-01-01

    Mobilization and extraction of both phosphorus (P) and heavy metals (HM) from sewage sludge ash through means of acidification has been studied extensively. However, separation of both P and HM after mobilization to provide reusable materials has proven to be challenging. This study presents...... a combination of acidification and electrodialytic separation (EDS) to mobilize and separate P and HM from sewage sludge ash (SSA). The EDS experimental setup consists of three compartments, separated by ion exchange membranes which are located at either side of the stirred ash suspension. Through application...... of a direct current to electrodes in the outer compartments, ionic complexes migrate and concentrate in the electrode compartments in accordance to their charge. Application of both EDS and acidification of the ash resulted in an increased release of phosphorus from the ash, but did not always result...

  9. Pemanfaatan limbah abu terbang (fly ash) , abu dasar (bottom ash) batubara dan limbah padat (sludge) industri karet sebagai bahan campuran pada pembuatan batako

    OpenAIRE

    Faisal, Hendri

    2012-01-01

    Brick-making research has been conducted from a mixture of fly ash as a cement mixed with aggregate materials based bottom ash and sludge, and sand, where fly ash and cement used as an adhesive matrix. The percentage addition of fly ash is 10%, 20%, 30%, 40% and 50% of initial weight of cement. The percentage addition of bottom ash and sludge as an aggregate is 5%, 10%, 15%, 20% and 25% of initial weight of sand with the time of hardening for 28 days. Parameter tests performed include: metals...

  10. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives.

    Science.gov (United States)

    Hu, Yuyan; Yang, Fan; Chen, Fangfang; Feng, Yuheng; Chen, Dezhen; Dai, Xiaohu

    2018-05-01

    Co-pyrolysis with sewage sludge was proved to be an efficient pre-treatment for sanitary landfill of municipal solid waste incineration (MSWI) fly ash (FA). In this study, to improve the stabilization effect of heavy metals, mixed ferrous/ferric sulfate was added into the FA/SS mixture before pyrolysis. To examine the feasibility of the landfill of co-pyrolysis char, toxicity characteristic leaching procedure (HJ/T300) was conducted. In addition, physio-chemical characteristics of char were also tested to explain the stability of heavy metals, including the speciation, mineralogical composition and the morphological features of them. The results indicated that within the range that the obtained char could meet the standard for landfill (GB16889-2008), the appropriate addition of mixed ferrous/ferric sulfates benefit to raising the FA ratio in the FA/SS mixture. The maximum ratio of 67 wt% is achieved when the additive was 1.5 wt% of dried SS (based on iron element) and the pyrolysis temperature was 500 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A comparative study on different burning method of sewage sludge ash in mortar brick with eggshell powder as additive

    Science.gov (United States)

    Ing, Doh Shu; Azed, Muhammad Aizat; Chin, Siew Choo

    2017-11-01

    Population growth that increase every year has led to the increasing amount of waste generated annually. The content of heavy metal Cadmium (Cd), Lead (Pb) and Zinc (Zn) represent the biggest concentrations of heavy metals in sewage sludge waste which can be the source of pollution. Furthermore, the excessive disposal of eggshells waste to landfills may attract rats and worms due to the organic protein matrix that may pose health problem to the public. In the last decade, the demand on cement mortar brick has increased has resulted in higher cement production. However, cement plant is one of the major contributors of carbon dioxide emission. Hence, this research focuses on the production of environmental friendly cement with sewage sludge since there is occurrence of pozolonic material in Sewage Sludge Ash (SSA). From the initial finding, the major components of SSA are Silicon Dioxide (SiO2), Calcium oxide (CaO), Aluminium Oxide (Al2O3), Iron (III) Oxide (Fe2O3), Sodium Oxide (Na2O), Potassium oxide (K2O), Magnesium Oxide (MgO) and Iron (II) Oxide (FeO). Sewage sludge needed to be incinerated to remove the heavy metal before it can be used as cement replacement in mortar brick production. The sewage sludge were treated using two methods namely incineration and microwave. Both types of sewage sludge were then added with eggshell powder as additive. Eggshell powder act as additive in this research due to its high content of calcium carbonate and has nearly same composition of limestone used in the production of cement. Different percentages of Eggshell Powder (ESP) (0%, 5%, 10%, 15%) and 10% fixed of Microwaved Sewage Sludge Ash (MSSA) and Incinerated Sewage Sludge Ash (ISSA) as optimum dosage partially replacing the cement used to test the brick mortar properties in term of compressive strength, flexural strength and also water absorption. Result showed that ISSA with 5% of ESP is the most optimum brick with highest compressive strength and flexural strength

  12. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media

    International Nuclear Information System (INIS)

    Han Shuxin; Yue Qinyan; Yue Min; Gao Baoyu; Li Qian; Yu Hui; Zhao Yaqin; Qi Yuanfeng

    2009-01-01

    Novel filter media-sludge-fly ash ceramic particles (SFCP) were prepared using dewatered sludge, fly ash and clay with a mass ratio of 1:1:1. Compared with commercial ceramic particles (CCP), SFCP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that SFCP were safe for wastewater treatment. A lab-scale upflow anaerobic bioreactor was employed to ascertain the application of SFCP in denitrification process using acetate as carbon source. The results showed that SFCP reactor brought a relative superiority to CCP reactor in terms of total nitrogen (TN) removal at the optimum C/N ratio of 4.03 when volumetric loading rates (VLR) ranged from 0.33 to 3.69 kg TN (m 3 d) -1 . Therefore, SFCP application, as a novel process of treating wastes with wastes, provided a promising way in sludge and fly ash utilization.

  13. The content of chromium and copper in plants and soil fertilized with sewage sludge with addition of various amounts of CaO and lignite ash

    Directory of Open Access Journals (Sweden)

    Wysokiński Andrzej

    2016-09-01

    Full Text Available The influence of fertilization with fresh sewage sludge with the addition of calcium oxide and lignite ash in the proportions dry mass 6:1, 4:1, 3:1 and 2:1 on the content of chromium and copper in plants and soil and uptake of these elements was investigated in pot experiment. Sewage sludge were taken from Siedlce (sludge after methane fermentation and Łuków (sludge stabilized in oxygenic conditions, eastern Poland. The chromium content in the biomass of the test plants (maize, sunflower and oat was higher following the application of mixtures of sewage sludge with ash than of the mixtures with CaO. The copper content in plants most often did not significantly depend on the type of additives to the sludge. Various amounts of additives to the sewage sludge did not have a significant effect on the contents of either of the studied trace elements in plants. The contents of chromium and copper in soil after 3 years of cultivation of plants were higher than before the experiment, but these amounts were not significantly differentiated depending on the type and the amount of the used additive (i.e. CaO vs. ash to sewage sludge.

  14. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    Science.gov (United States)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.H.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I. [INETI, Lisbon (Portugal)

    2003-07-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC with the aim of characterizating the ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

  16. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed.

    Science.gov (United States)

    Helena Lopes, M; Abelha, P; Lapa, N; Oliveira, J S; Cabrita, I; Gulyurtlu, I

    2003-01-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

  17. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    International Nuclear Information System (INIS)

    Helena Lopes, M.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I.

    2003-01-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials

  18. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  19. Characteristic of wet method of phosphorus recovery from polish sewage sludge ash with nitric acid

    Directory of Open Access Journals (Sweden)

    Gorazda Katarzyna

    2016-01-01

    Full Text Available Sewage Sludge Ash (SSA is a concentrated source of phosphorus and can be successfully recycled via a number of different routes. This paper presents research results on phosphorus recovery from differently combusted sewage sludge with the use of nitric acid extraction. Different SSA forms from Polish thermal utilization stations were compared. It was revealed that sewage treatment technology as well as combustion technology influence many physical and chemical parameters of ashes that are crucial for further phosphorus recovery from such waste according to the proposed method. Presented research defines extraction efficiency, characterized extracts composition and verifies the possibility of using SSA as cheaper and alternative sources of phosphorus compounds. Gdynia, Kielce and Kraków SSA have the best properties for the proposed technology of phosphorus recovery with high extraction efficiency greater than 86%. Unsuitable results were obtained for Bydgoszcz, Szczecin Slag and Warszawa SSA. Extraction process for Łódź and Szczecin Dust SSA need to be improved for a higher phosphorus extraction efficiency greater than 80%.

  20. Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2017-01-01

    This paper reports a study of the colour, compressive strength and workability of mortar when cement is partly replaced by sewage sludge ash (SSA). In the study, an iron rich SSA was dry milled into six different fractions. The results showed that the colour, compressive strength and workability...

  1. Environmental considerations on the FBC combustion of dry sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI/DEECA, Lisboa (Portugal)

    2001-07-01

    This paper presents results of on-going research on the incineration of pre-dried granular sewage sludges using a FBC system. Co-combustion is compared with mono-combustion of sludges leads to minor emissions and higher retention of Cd, Pb, Cu, and Zn in the bottom ashes, when compared to co-combustion with coal. The leachability of the sludge is reduced through combustion, as none of the metals, Cd, Cr, Ca Ni, Ph, Zn, Co and Mn were leached from the bottom ashes. These findings may contribute to an improvement in the incineration of sewage sludges and to the development of applications for the ashes in civil engineering activities.

  2. Use of lignite fly ash as an additive in alkaline stabilisation and pasteurisation of wastewater sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kocaer, F.O.; Alkan, U.; Baskaya, H.S. [Uludag University, Bursa (Turkey). Faculty of Engineering & Architecture

    2003-10-01

    The possibility of using lignite fly ash in low doses for reducing the pathogen levels in wastewater sludge was investigated. The results showed that using fly ash alone in doses of 40%,80% and 120% (on a dry weight basis), did not produce an alkaline environment for an efficient removal of pathogens. However, using fly ash in conjunction with the minimum amount of quicklime may act as an effective way of fecal coliform removal in both alkaline stabilisation and pasteurisation processes. It was shown that using fly ash in doses of 80% and 120% in alkaline stabilisation and pasteurisation processes prevented the pH decays and regrowth of pathogens during 60 days of storage period. The results of the study confirmed that alkaline pasteurisation process produces a product which is more resistant to pH decays and regrowth of fecal coliforms compared to that of alkaline stabilisation. Consequently, the overall results of this study indicated that the minimum lime and fly ash dosages required to generate a Class B biosolid were 10-15% and 80%, respectively. On the other hand, heating sludge to 50{degree}C prior to the addition of 10-15% quicklime and 80% fly ash followed by further heating to 70{degree}C and then sustaining at this temperature for 30 minutes were sufficient to generate a Class A biosolid.

  3. The behavior of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Helena M.; Abelha, P.; Cabrita, I. [INETI-DEECA, Lisboa (Portugal); Lapa, N.; Oliveira, J.S. [UNL-Ubia, Monte de Caparica (Portugal)

    2003-07-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FRC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their reactor further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out, and the amount of unburned carbon leaving the combustor but captured in the cyclone was large enough to ensure substantial retention of mercury at low temperatures, and, hence, could contribute to an improvement of the mercury release, which still remains an issue of great concern to resolve during combustion of waste materials.

  4. Environmental evaluation of sewage sludge co-combustion in a pilot FBC

    Energy Technology Data Exchange (ETDEWEB)

    M. Helena Lopes; P. Abelha; I. Cabrita; J.F.Santos Oliveira; I. Gulyurtlu [INETI/DEECA, Lisbon (Portugal)

    2003-07-01

    This paper presents a comparison of combustion of coal alone with that of a mixture of coal with sewage sludge with respect to flue gas emissions, the behaviour of heavy metals and potential environmental consequences of disposal of ashes produced. Co-combustion with sludge did not result in greater NOx, SO{sub 2}, HCl and CO emissions and the use of air staging and the addition of limestone proved to be effective to reduce NOx and SO{sub 2}. The mixing of sludge gave rise to an increase in amounts of heavy metals released, especially for Cd, Pb and Hg. However, as they were associated with particles greater than 1 {micro}m, the application of efficient flue gas treatment devices could decrease their emissions to the atmosphere. Metals were essentially retained in ashes captured in the bed and in the cyclones and most of the Hg was adsorbed in fly ashes that contained unburned carbon. The leachability of metals and organic matter present in the sludge decreased with combustion. The evaluation of the acid neutralization capacity (ANC) showed that ashes became more resistant to acidification than the parent sludge. Globally, this study concludes that the implication of the combustion of sludge is that it can reduce the negative impact on the environment compared with the traditional direct use of sludge in soils. 22 refs., 4 figs., 5 tabs.

  5. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-01-01

    Full Text Available Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal and liquid (tar by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid, were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives.

  6. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    Science.gov (United States)

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  8. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Kirkelund, Gunvor M.; Jensen, Pernille E.

    2013-01-01

    Ashes from mono-incineration of sewage sludge (ISSA) generally contain high concentrations of phosphorous (P) and can be regarded as secondary P resources. ISSA has no direct value as fertilizer as P is not plant available. The present paper experimentally compares P extraction in acid from two...... different ISSAs; one rich in Al (67g/kg) and the other in Fe (58g/kg). The difference related to P precipitation at the waste water treatment facilities. Another major difference between the ashes was that flue gas purification products were mixed into the first ash and it contained about 5% activated.......Formation of a high amount of gypsum crystals in both ashes after extraction in H2SO4 was seen by SEM–EDX. H2SO4 is the cheapest mineral ash, but the gypsum formation must be taken into account when either finding possibility for using the remaining ash in e.g. construction materials or if the choice is deposition...

  9. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The existing state of sewage sludge containing radioactive substances

    International Nuclear Information System (INIS)

    Shirasaki, Makoto; Hisaoka, Natsuki

    2012-01-01

    Radioactive substances were discharged over a wide range from the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company. As a result, in sewer system, especially in the combined sewer system that jointly collects rainwater and sewage, radioactive substances accumulated on the surface of urban areas were transferred together with rainwater to sewage plants and accumulated there. In the process of further treatment, radioactive substances were transferred to and concentrated in sewage sludge, and a high concentration of radioactive substances were detected in incineration ash. For this reason, some sewage plants still continuously store dewatered sludge, incinerator ash, etc. This paper introduces the current state of waste treatment from the published data from each local government in Tohoku and Kanto districts. As for the sewer, which is essential as a lifeline, the Ministry of Land, Infrastructure, Transport and Tourism, together with the Japan Sewage Works Association, established 'Investigative Commission on Radioactive Substance Countermeasures in Sewerage System.' This group grasped the damage situation due to radioactive substances, and summarized the measures to be taken by sewage managers, such as the storage method for sewage sludge containing radioactive substances as well as the method for the volume reduction of sewage sludge. (O.A.)

  11. A new model for including the effect of fly ash on biochemical methane potential.

    Science.gov (United States)

    Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-10-01

    The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R 2 ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2003-01-01

    . Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis....... The process was not optimised indicating that higher dry matter contents could be achieved by electroosmosis. It was possible to relate Casagrande's coefficient directly to the electroosmotic coefficient obtained by dewatering experiments....

  13. [Effects of sulphur compounds on the volatile characteristics of heavy metals in fly ash from the MSW and sewage sludge co-combustion plant during the disposal process with higher temperature].

    Science.gov (United States)

    Liu, Jing-Yong; Sun, Shui-Yu

    2012-11-01

    Fly ash sample was collected from a MSW co-combustion with sewage sludge plant and the volatilization of heavy metals Pb, Cd, Cu and Zn was investigated before and after the water washing of fly ash, meanwhile, the influence of adding different sulphur compounds (S, NaS, Na2 SO3, Na2 SO4) on the volatilization of heavy metals was studied. The results showed that the contents of Zn, Pb and Mn were high, the Ni content was low and the Cd content reached 29.4 mg x kg(1). The contents of Pb, Cu, Zn increased, while that of Cd reduced in the fly ash after water washing. TG-DTG curves of fly ash showed highest weight loss in ranges of 579-732 degrees C and 949-1 200 degrees C, with 690 degrees C and 1 154 degrees C as the inflection point temperatures. The volatilization of different heavy metals showed great difference in the volatilization rate, following the order of Pb > Cd > Zn > Cu, in which the volatilization rate of Pb was more than 80% and that of Cu was less than 30%. After water washing, the volatilization of different heavy metals showed great difference in the volatilization rate, with the order of Zn > Pb > Cd > Cu, in which the volatilization rate of Zn was more than 20%. With the pretreatment of adding Na2 SO3 and Na2 SO4, the evaporation rates of heavy metals (Cu, Pb, Zn, Cd) were significantly decreased. After adding S, the evaporation rate of Zn was reduced, whereas the addition of Na2S reduced the evaporation rates of Cd and Zn. The evaporation rates of the four heavy metals were all reduced after adding Na2S in the washed fly ash. The evaporation rates of Cu and Zn were reduced with addition of S and Na2SO3 and the evaporation rate of Cd was reduced by adding the four sulfides. The results can provide a basis for the harmless disposal and maximized resource utilization and recycling of fly ash.

  14. Radionuclides in sewage sludge and problems of use and disposal

    International Nuclear Information System (INIS)

    Schneider, P.; Tiefenbrunner, F.; Dierich, M.P.; Brunner, P.

    1987-01-01

    In a sewage plant with radioactive contaminated sewage an accumulation of radionuclide in the sewage sludge was to be found. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge shows the highest specific activities. These enriched radionuclides seem to be absorbed from the sludge. Yet they can be utilized by plants. This was demonstrated in experiments with Trifolium repens and Secale cereale, where the rate of absorption amounted 15-33% (inCi/kg dry weight plant:nCi/kg dry weight soil X 100) (transfer factors). This is why fertilization with radioactive contaminated sewage sludge seems to cause problems. In further experiments an extraction of radionuclides from ashed sewage sludge was shown. By acidifying the mobile phasis an increase in radioactivity in the eluated fractions was achieved. (orig./HP) [de

  15. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge.

    Science.gov (United States)

    Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei

    2008-08-15

    This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.

  16. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  17. Effect of phosphorous transformation on the reduction of PM{sub 10} formation during Co-combustion of coal and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, J.K.; Dong, M.; Li, G.D.; Li, S.Q.; Song, Q.; Yao, Q. [Tsinghua Univ., Beijing (China). Key Lab. of Thermal Science and Power Engineering; Duan, L. [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering

    2013-07-01

    Co-combustion of Municipal Sewage Sludge with coal will become increasingly widely used, regarded as an important incineration method with the high thermal efficiency, low emissions, low investment and operating costs. However, the presence of phosphorus in fine particle has gained increased attention due to its environmental adverse affection and deactivation of SCR DeNOx catalysts. Therefore, the behavior of phosphorus in fine particles during co-combustion of coal and sewage sludge was investigated in a 25 kW quasi one-dimensional down-fired pulverized coal combustor, where PM{sub 10} was collected from the furnace centerline in the outlet of flue gas cooler by using a two-stage nitrogen-aspirated, water-cooling isokinetic sampling probe followed a 13-stage electric low pressure impactor. Then the formation mechanism of PM{sub 10} was investigated by observing the different fractions of sewage sludge in the coal. Similar to the coal combustion, the particle-size-distributions (PSD) of PM{sub 10} mass concentration by co-combustion of sewage sludge with coal exhibit two distinct modes separated by a fraction of 0.157-0.263 {mu}m, ultrafine mode and intermediate mode. With the sewage sludge blended sludge up to 15% (thermal ratio), the mass concentration of the total fly ash and PM{sub 10+} (Dp > 10 {mu}m) vastly increased from 1,088 and 547 mg/Nm{sup 3} (during coal combustion) to 5,059 and 4,403 mg/Nm{sup 3}. However, the mass concentration of fine particulates, such as PM{sub 1}, PM{sub 2.5} and PM{sub 10} was maintained at the emission level of coal combustion. When the fraction of sewage sludge less than 15%, the mass concentration of fine particle is higher than the emission during coal combustion, while the growth rate is only by the 3.6, 7.9 and 4.8% of the total concentration of fly ash (5% thermal). The change of the PSD of mass concentration during co- combustion of sewage sludge and coal, mainly was caused by the interaction between Si, Al and Ca, Fe

  18. Products based on the mixes of fly ashes and fibre sludge (fibre-ashes) for road construction; Produkter baserade paa blandningar av flygaska och fiberslam (fiberaskor) foer vaegbyggande

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Pentti; Maijala Aino; Macsik, Josef

    2005-03-01

    The project has derived benefits from the earlier Finnish research and development as well as from the experience in the fibre-ash materials for geotechnical applications. The fly ashes used for the project have been taken from the same sources as the fly ashes for the earlier Vaermeforsk project 870: FACE. The project's objective was to develop construction materials based on mixtures of fibre sludge and fly ash for geotechnical applications, and for the final commercialisation of the fibre-ash materials. The mixtures are based on fly ashes from energy production (bark, peat and sludge used for incineration) and on kaolin containing fibre sludge from the paper industry. With help of laboratory tests the project has been searching for fibre ashes with excellent technical characteristics like good frost resistance combined with a good bearing capacity and resilience in geotechnical structures. The project's results has given additional knowledge about alternative road construction materials to construct technically good, sustainable and environmentally friendly roads and other constructions with lower costs than the conventional constructions. The results of laboratory tests have shown that this is possible. However, it has to be verified with help of field tests and pilot constructions. The first tasks of the project were to make choices of the appropriate fibre sludge and fly ashes for the project targets. The laboratory tests have been carried out in the geotechnical laboratory of Ramboll Finland Oy (earlier SCC Viatek Oy, SGT - later in the report SGT). After arrival of all test material in the laboratory the test programme started in order to find out the most optimal fibre-ash mixtures with or without any activator. The most potential mixtures were tested for their geotechnical long-term properties (mainly resistance against climatic load) and for their environmental risk potential. The results comprise of several technically, environmentally and

  19. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  20. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Christian, E-mail: cv.vogel@yahoo.de [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Krüger, Oliver; Herzel, Hannes [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Amidani, Lucia [ESRF—The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Adam, Christian [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-08-05

    Highlights: • Mercury bonded to carbon/organic material was detected in some sewage sludge ashes. • After thermochemcial treatment some mercury remains stabilized in the SSA matrix. • Analysis of the chemical state of mercury and selenium in highly diluted samples. - Abstract: Phosphorus-fertilizers from secondary resources such as sewage sludge ash (SSA) will become more important in the future as they could substitute conventional fertilizers based on the nonrenewable resource phosphate rock. Thermochemical approaches were developed which remove heavy metals from SSA prior to its fertilizer application on farmlands. We analyzed the chemical state of mercury and selenium in SSA before and after thermochemical treatment under different conditions for P-fertilizer production by X-ray absorption near edge structure (XANES) spectroscopy. In some incineration plants the mercury loaded carbon adsorber from off-gas cleaning was collected together with the SSA for waste disposal. SSAs from those plants contained mercury mainly bound to carbon/organic material. The other SSAs contained inorganic mercury compounds which are most probably stabilized in the SSA matrix and were thus not evaporated during incineration. During thermochemical treatment, carbon-bound mercury was removed quantitatively. In contrast, a certain immobile fraction of inorganic mercury compounds remained in thermochemically treated SSA, which were not clearly identified. HgSe might be one of the inorganic compounds, which is supported by results of Se K-edge XANES spectroscopy. Furthermore, the chemical state of selenium in the SSAs was very sensitive to the conditions of the thermochemical treatment.

  2. Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; McNaughton, Don

    2013-09-01

    The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 μm(2) easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm(-1). Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm(-1), respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples.

  3. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  4. Fertilisers production from ashes after sewage sludge combustion - A strategy towards sustainable development.

    Science.gov (United States)

    Gorazda, Katarzyna; Tarko, Barbara; Wzorek, Zbigniew; Kominko, Halyna; Nowak, Anna K; Kulczycka, Joanna; Henclik, Anna; Smol, Marzena

    2017-04-01

    Sustainable development and circular economy rules force the global fertilizer industry to develop new phosphorous recovery methods from alternative sources. In this paper a phosphorus recovery technology from Polish industrial Sewage Sludge Ashes was investigated (PolFerAsh - Polish Fertilizers form Ash). A wet method with the use of mineral acid and neutralization was proposed. Detailed characteristic of SSA from largest mono-combustion plans were given and compared to raw materials used on the market. The technological factors associated with such materials were discussed. The composition of the extracts was compared to typical industrial phosphoric acid and standard values characterizing suspension fertilizers. The most favorable conditions for selective precipitation of phosphorus compounds were revealed. The fertilizers obtained also meet EU regulations in the case of the newly discussed Cd content. The process was scaled up and a flow mass diagram was defined. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Elemental transport and distribution in soils amended with incinerated sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H

    2003-05-01

    Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.

  6. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    Science.gov (United States)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.

    Science.gov (United States)

    Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing

    2014-05-06

    Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of

  8. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  9. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.

    to supply P for the next ca. 80 years. Additionaly, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Sewage sludge (SS) and sewage sludge ash (SSA) from...... waste water treatment plants (WWTP) may contain contaminants or unwanted elements regarding specific applications, but they also contain secondary resources of high value. Using these ash as a P resource, while removing the contaminants, seems a sustainable option. The electrokinetic (EK) process can....... This communication aims to discuss preliminary results of the feasibility of EK process to recover P from WWTP target wastes....

  10. Radioactive nuclides in sewage sludges and problems associated with their utilisation or dumping

    International Nuclear Information System (INIS)

    Schneider, P.; Brunner, P.; Tiefenbrunner, F.; Dierich, M.P.

    1990-01-01

    In a sewage plant with radioactively contaminated sewage an accumulation of radionuclides was found in the sewage sludge. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge having the highest specific activities. The retained radionuclides seem to be firmly accumulated in the sludge. Nevertheless, they are in a form which can be utilised by plants. This was demonstrated in experiments with Trifolium Repens and Secale Cereale where the rate of absorption was 15-33% (in Ci/kg dry weight per plant: nCi/kg dry weight soil x 100). Thus there are problems associated with using radioactively contaminated sewage sludge as a fertiliser. In further experiments to extract radioactive nuclides from ashed sewage sludge it was shown that acidifying the aqueous phase results in an increase in the level of radioactivity in the eluated fractions. (author)

  11. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  12. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  13. Sequential electrodialytic recovery of phosphorus from low-temperature gasification ashes of chemically precipitated sewage sludge

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    the P solubilisation from aluminium and ferric phosphates. In addition, P was separated from most metals as they became insoluble under the prevailing chemical environment. The obtained ratio of Al, Fe, Mg and most heavy metals to P was comparable to wet process phosphoric acid. Therefore......Phosphorus recycling from secondary materials like sewage sludge ashes offers an alternative to mining of phosphates from primary resources and a mean to counteract the current phosphorous rock depletion concern. A separation of P from the bulk ash is normally required, due to its low plant......, this sequential process was found to be suitable to recycle P and potentially use it in the production of common fertilizers like diammonium phosphate. ...

  14. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  15. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  16. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  17. Production of lightweight aggregates from washing aggregate sludge and fly ash

    Science.gov (United States)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    manufactured with 75%:25% and 50%:50% proportions of washing aggregate sludge:fly ash, heated at different temperatures and dwell times, were expanded LWAs (BI > 0). They showed the lowest loose bulk density, the lowest dry and apparent particle density, the lowest water absorption and the highest compressive strength. The possible applications of sintered pellets, taking into consideration compressive strength and water absorption values, could be similar to those of Arlita G3 (insulation, geotechnical applications, gardening and/or horticulture) and/or Arlita F3 (prefabricated lightweight structures and insulation lightweight concretes), two varieties of the most widely marketed LWAs in Spain. References - Benbow, J., September 1987. Mineral in fire protection construction support market. Industrial Minerals, 61-73. - Bethanis, S., Cheeseman, C.R., Sollars, C.J., 2004. Effect of sintering temperature on the properties and leaching of incinerator bottom ash. Waste Management and Research 22 (4), 255-264. - De' Gennaro, R., Cappelletti, P., Cerri, G., De' Gennaro, M., Dondi, M., Langella, A., 2004. Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science 25 (1-2), 71-81. - Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., López-Galindo, A., Setti, M.,Kooli, F., Zargouni, F., Jamoussi, F., 2007. Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science 35, 228-237. - UNE-EN-13055-1, 2003. Lightweight aggregates - lightweight aggregates for concrete, mortar and grout. - Yasuda, Y., 1991. Sewage-sludge utilization in Tokyo. Water Science and Technology 23 (10-12), 1743-1752.

  18. ISCORS ASSESSMENT OF RADIOACTIVITY IN SEWAGE SLUDGE: MODELING TO ASSESS RADIATION DOSES

    Science.gov (United States)

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tran...

  19. Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2016-01-01

    Sewage sludge ashes (SSA), although a waste, contain elements with socio-economic and environmental potential that can be recovered. This is the case of phosphorus (P). SSA from two Danish incinerators were collected during two years and characterized. The sampling was done immediately after...... incineration (fresh SSA) or from an outdoor deposit (deposited SSA). Although morphology and mineral composition were similar, physico-chemical and metal concentration differences were found between incinerator plants and sampling periods. No differences were observed between deposited and fresh SSA, except...... for the parameters directly influenced by disposal conditions (e.g. moisture content). All the SSAs had high concentrations of P (up to 16 wt%), but they all exceeded Danish EPA Cd and Ni thresholds for direct application at agricultural soil.Fresh and deposited SSA were acid washed aiming P extraction, achieving 50...

  20. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB......). Both samples were ED treated as stirred suspensions in sulphuric acid for 3,7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented...... a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy...

  1. A study on torrefaction of sewage sludge to enhance solid fuel qualities

    International Nuclear Information System (INIS)

    Poudel, Jeeban; Ohm, Tae-In; Lee, Sang-Hoon; Oh, Sea Cheon

    2015-01-01

    Highlights: • The physio chemical variation of sewage sludge during torrefaction was studied. • Compounds with oxygen were emitted at a temperature lower than that for C x H y . • Sewage sludge torrefaction range was defined between 300 and 350 °C. - Abstract: Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400 °C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300–350 °C were the optimum torrefaction temperatures for sewage sludge

  2. A study on torrefaction of sewage sludge to enhance solid fuel qualities

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Jeeban [Department of Mechanical Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 330-717 (Korea, Republic of); Ohm, Tae-In [Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-Daero, Yuseong, Daejeon, 330-717 (Korea, Republic of); Lee, Sang-Hoon [Korea Institute of Energy Technology Evaluation and Planning, 135-502 Teheran-ro 114gil 14, Gangnam-gu, Seoul (Korea, Republic of); Oh, Sea Cheon, E-mail: ohsec@kongju.ac.kr [Department of Environmental Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 330-717 (Korea, Republic of)

    2015-06-15

    Highlights: • The physio chemical variation of sewage sludge during torrefaction was studied. • Compounds with oxygen were emitted at a temperature lower than that for C{sub x}H{sub y}. • Sewage sludge torrefaction range was defined between 300 and 350 °C. - Abstract: Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400 °C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300–350 °C were the optimum torrefaction temperatures for sewage sludge.

  3. Comparative Study on the Leaching Characteristics of Industrial Sludge and Fly Ash using KSLP and TCLP Techniques

    International Nuclear Information System (INIS)

    Lee, B.K.; Hwang, H.W.

    2010-01-01

    Leaching characteristics of industrial sludge and fly ash using Korean Standard Leaching Procedure (KSLP) and Toxicity Characteristics Leaching Procedure (TCLP) were studied. Possibilities of re-adsorption of heavy metal ions on the surface of sludge and ash during the course of leaching were also investigated. KSLP looked relatively more aggressive than the TCLP in leaching heavy metal ions. Concentrations of metal ions leached in both the methods, however, were found very low in comparison to the concentration of ions present in the original samples. In case of sludge, heavy metal ions showed relatively high rate of leaching at fourth and fifth stages of sequential extraction while ash showed high rate of leaching at the first three stages of extraction. Some of the concentrations of heavy metal ions leached out in the tests also found to be adsorbed on the surface of sludge and ash. Heavy metal ions present in high concentrations in the sample showed lower rate of adsorption than their leaching rate. No distinct difference in the results of KSLP and TCLP was observed. However, variations in the leaching results could be due to the different nature of hazardous waste and leaching conditions. More information like kinetics of leaching, mineralogical characteristics of waste and site characteristics of landfill were required to predict more accurate leaching behavior of ions in natural conditions. (author)

  4. Development of bricks with incorporation of coal ash and sludge from water treatment plant

    International Nuclear Information System (INIS)

    Silva, Mauro Valerio da

    2011-01-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  5. The bioaccumulation of heavy metals in barley (Hordeum vulgare L cultivated on fly ash dump mixed with compost and natural zeolite materials

    Directory of Open Access Journals (Sweden)

    Smaranda Mâșu

    2012-10-01

    Full Text Available The physic-chemical characteristics of the upper layers of fly ash dumps are very important when phytostabilizationplant selection is carried out. Plants with topsoil well developed roots, like cereals are used to stabilize fly ash dumpsin order to eliminate the deflation, erosion, etc. These plant species could be used in thephytostabilization/phytoextraction variant taking into account their metal hyper accumulation capacity, and also inphytostabilization variant by adequate topsoil treatments when a decrease mobility of metals from soil to plants isachieved and thus a less toxic crop is obtained. This study presents a comparative analysis of the metalbioaccumulation degree in plant tissues (grain and straw of barley cultivated on fly ash variants treated withdifferent quantities of compost in the absence/presence of natural zeolite materials, indigenous volcanic tuff. Theaddition of plant debris and sewage sludge compost mixed with natural zeolite materials has lowered thebioaccumulation of Cr with 49%, of Cu with 29%, Fe with more than 77.5%, in grains and straw when compared tountreated fly ash. Barley plants does not allow for Pb and Ni transfer from the fly ash in the aerial part of tissue.

  6. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  7. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Xiaomin [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Hu, Yuyan; Feng, Yuheng [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Dai, Xiaohu [National Engineering Research Centre for Urban Pollution Control, Tongji University, Shanghai 200092 (China); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-01-05

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  8. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    International Nuclear Information System (INIS)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-01

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  9. Heavy metals behavior during monocombustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.H.; Abelha, P.; Oliveira, J.F.S.; Cabrita, I.; Gulyurtlu, I. [DEECA, INETI, Lisbon (Portugal)

    2005-04-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of monocombustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants, and heavy metals behavior. It was found that the mineral matter of sludge was essentially retained as bottom ash. The production of fine ash was small during the monocombustion but was high during co-combustion due to the tendency of coal to produce fine ash, which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in monocombustion; however, most of the metals were retained in the ash and their emissions were found to be below the regulated levels. Hg was completely volatilized. However, during combustion trials involving coal, Hg was captured in the cyclone ash at temperatures below 300{sup o}C. During sludge monocombustion the retention of Hg in cyclone ash containing low loss on ignition (LOI) was not enough to decrease emissions below the EU regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ash were also compared with the new regulatory limits for landfill disposal in the European Union (EU).

  10. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    Science.gov (United States)

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S. [INETI, Lisbon (Portugal)

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  12. Co-Combustion of Municipal Sewage Sludge and Hard Coal on Fluidized Bed Boiler WF-6

    Directory of Open Access Journals (Sweden)

    Rajczyk Rafał

    2014-12-01

    Full Text Available According to data of the Central Statistical Office, the amount of sludge produced in municipal wastewater treatment plants in 2010 amounted to 526000 Mg d.m. The forecast of municipal sewage sludge amount in 2015 according to KPGO2014 will reach 642400 Mg d.m. and is expected to increase in subsequent years. Significant amounts of sludge will create problems due to its utilization. In order to solve this problem the use of thermal methods for sludge utilization is expected. According to the National Waste Management Plan nearly 30% of sewage sludge mass should be thermally utilized by 2022. The article presents the results of co-combustion of coal and municipal sewage sludge in a bubbling fluidized bed boiler made by SEFAKO and located in the Municipal Heating Company in Morag. Four tests of hard coal and sewage sludge co-combustion have been conducted. Boiler performance, emissions and ash quality were investigated.

  13. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  14. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application

    International Nuclear Information System (INIS)

    Cincinelli, Alessandra; Martellini, Tania; Misuri, Lorenza; Lanciotti, Eudes; Sweetman, Andy; Laschi, Serena; Palchetti, Ilaria

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in sewage sludge samples collected from eight Italian wastewater treatment plants (WWTPs) between June 2009 and March 2010. Total PBDE concentrations ranged from 158.3 to 9427 ng g −1 dw, while deca-BDE (BDE-209) (concentrations ranging from 130.6 to 9411 ng g −1 dw) dominated the congener profile in all the samples, contributing between 77% and 99.8% of total PBDE. The suitability of using a magnetic particle enzyme-linked immunoassay (ELISA) to analyse PBDEs in sewage sludge was also tested. The ELISA results, expressed as BDE-47 equivalents, were well correlated with those obtained by GC–NCI–MS, with correlation coefficients (r 2 ) of 0.899 and 0.959, depending on the extraction procedure adopted. The risk assessment of PBDEs in sewage sludge addressed to land application was calculated. PEC soil values compared to the relative PNEC soil for penta and deca-BDE suggests that there is a low risk to the soil environment. - Highlights: ► PBDEs in sewage sludge were determined in eight Italian WWTPs for the first time. ► PBDEs concentrations showed differences between the eight investigated WWTPs. ► Deca-BDE (BDE-209) was the dominant congener in all samples. ► The suitability of using ELISA method to analyse PBDEs in sewage sludge was tested. ► The risk assessment of using sewage sludge for land application was evaluated. - Determination of PBDEs in sewage sludge by GC–NCI–MS and ELISA test and risk assessment when sewage sludge is used for land application.

  15. POTENTIAL AND PROPERTIES OF THE GRANULAR SEWAGE SLUDGE AS A RENEWABLE ENERGY SOURCE

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-10-01

    Full Text Available The predominant method of the sewage sludge management in Poland is land disposal. However, since 01/01/2013, this method will be prohibited. Therefore, there is a strong need for development of thermal methods of sludge disposal. In the Polish legal system sewage sludge may be named as a biomass or waste. For purposes of determining the obligations of environmental regulations definition of the Minister of Environment should be used. When disposing of sewage sludge in an amount up to 1% by weight of fuel, emission standards for fuel do not change. At the disposal of sewage in quantities of more than 1%, should be conducted continuous measurement of emissions, including HCl, HF, and continuous measurements of flue gas parameters (as for the installation of waste disposal. For purposes of settlement of the share of energy from renewable sources we use the definition of Minister of Economy. In this case, in accordance with applicable law sewage sludge shall be considered as pure biomass is CO2 neutral. The use of sewage sludge as a fuel requires the determination of fundamental combustible properties. These properties should be in accordance with the requirements put fuels as an energy source. The paper presents results of a detailed physico-chemical analysis of dried sewage sludge produced in the two Polish wastewater treatment plants. The results were compared with five representatives of biomass fuels: straw of wheat, straw of rape, willow, pine and oak sawdust. Ultimate and proximate analysis includes a detailed analysis of fuel and ash. The results clearly indicate that the sludge is a very valuable fuel similar to “traditional” biomass.

  16. Co-combustion of sewage sludge and energy-rich waste fuels or forest fuels; Sameldning av roetslam och energirika avfallsbraenslen eller skogsbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Kristina [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-10-01

    In this report literature on incineration of sewage sludge is summarises. In Sweden there is a yearly production of about 0,24 million-ton dry sewage sludge of which 50% is deposited. Recent changes in legislation will restrict and later prohibit the dumping of sewage sludge. Alternative methods for handling the material have not yet been found. In other parts of Europe the problem has been solved by incineration. Sludge incineration can be performed in several ways depending of the pretreatment. The sludge can be raw or digested, dewatered or dried. The sludge can be burnt as single fuel or in mixtures with other fuels. Focus in this work has been on co-combustion with biofuel or waste, as it will make use of existing plants. Digested sludge is also of major interest as 70% of the Swedish sludge is digested. The report describes the situation both in Sweden and in the rest of Europe. Sludge has a varying quality depending on origin and treatment, which affects the combustion properties. Ash and moisture contents differ from other fuels. The heating value of sewage sludge is approximately 20 MJ/kg per dry combustible matter and the amount of organic is around 70%. Compared to forest residue and demolition wood, sludge contains high levels of nitrogen and sulphur, which will cause emissions. The nitrogen level is about 10 times higher and the sulphur level 25 to 50 times higher. Sulphur, in combination with alkali metals, can cause deposit problems in boilers. However, sludge contains low levels of alkali. In the experimental investigation leaching of digested sludge showed low values on water conductivity which indicates a low concentration of sintering ash species in the sludge. A comparison of the aerodynamic properties of dried digested sludge and wood chips from energy coppice showed that sludge has a lower fraction of fines. This indicates that the sewage sludge is not likely to be carried over in the furnace but rather to stay in the fuel and ash bed on the

  17. Researches Regarding the Adaptation Process of the Species Miscanthus Giganteus under the Conditions of Fly Ash Deposit from Utvin, Timis County

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2013-05-01

    Full Text Available Miscanthus giganteus is a large, perennial (up to 20 years grass hybrid of M. sinensis and M. sacchariflorus native to Japan. Is a C4 carbon fixation plant, and thus exhibits greater photosynthetic efficiency and lower water use requirements than other kinds of plants. It has very low nutritional requirements – it has high nitrogen use efficiency and therefore is capable of growing well on barren land without the aid of heavy fertilization. M. giganteus is a sterile hybrid, therefore propagates vegetative through its rhizomes and that it is a completely non-invasive species. In this paper are presented the results of this grass species growing on fly ash deposit Utvin after the first year from the planting. Order to stimulate the process of vegetative from the first year, have used three different fertilizing: with sewage sludge, with cattle manure and mineral supplement such as N.P.K. We have also provided an adequate irrigation during dry periods of the summer. The best germination percentage was obtained in variants fertilized with sewage sludge and manure of cattle. Further the same variations recorded a good growth rate and higher biomass production. However, good production of biomass produced in the first year of all variants show a good adaptability of the species M. giganteus to arid biotope conditions of the fly ash dump.

  18. Ash transformation and deposition behavior during co-firing biomass with sewage sludge

    DEFF Research Database (Denmark)

    Wang, Liang; Wu, Hao; Jensen, Peter Arendt

    combustion wheat straw, fine fly ash particles smaller than 2.5 μm are mainly formed due to vaporization, nucleation and condensation of K, Cl, S and P species. Large fly ash particles consist of condensed potassium chloride crystals and molten/partial molten spherical particles rich in Ksilicates and K...

  19. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion

    DEFF Research Database (Denmark)

    Pazos, Marta; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2010-01-01

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative to ...

  20. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  1. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  2. Sewage sludge irradiation with electrons

    International Nuclear Information System (INIS)

    Tauber, M.

    1976-01-01

    The disinfection of sewage sludge by irradiation has been discussed very intensively in the last few months. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. AEG-Telefunken is building an irradiation plant with a 1.5 MeV, 25 mA electron accelerator, to study the main features of electron irradiation of sewage sludge. (author)

  3. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  4. Integral study of sewage sludges

    International Nuclear Information System (INIS)

    1994-01-01

    Sewage sludges are the by-product generated during the treatment process of waste water, and they are conformed by a solid phase which origin is the accumulation of pollutant materials which has been added to water during natural and anthropogenic activities. Its handling is one of the most serious problems faced by water treatment plants which involve the production, gathering, transportation, re utilization and final disposal of sewage sludges. The main purpose of this project is to perform a technical evaluation of the process of sewage sludge irradiation for its possible application as a choice for treatment and final disposal. Irradiation with gammas from Cobalt-60 shows effectiveness in disinfestation of sewage sludges, since they reduce six times the microbial population with a 7 KGy dose. In like manners with doses of 10 KGy is possible to bring down in 70 % the concentration of organic compounds, as well as to eliminate the presence of 6 to 22 organic compounds on samples of sewage sludges. The whole content of this work is presented in six sections: Introduction, Antecedents, Methodology, Conclusions, Suggestions and Bibliography. (Author)

  5. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  6. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  8. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  9. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  10. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    Science.gov (United States)

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  11. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  12. Is the biochar produced from sewage sludge a good quality solid fuel?

    Directory of Open Access Journals (Sweden)

    Pulka Jakub

    2016-12-01

    Full Text Available The influence of sewage sludge torrefaction temperature on fuel properties was investigated. Non-lignocellulosic waste thermal treatment experiment was conducted within 1 h residence time, under the following temperatures: 200, 220, 240, 260, 280 and 300°C. Sawdust was used as lignocellulosic reference material. The following parameters of biochar have been measured: moisture, higher heating value, ash content, volatile compounds and sulfur content. Sawdust biochar has been confirmed to be a good quality solid fuel. High ash and sulfur content may be an obstacle for biochar energy reuse. The best temperature profile for sawdust torrefaction and fuel production for 1 h residence time was 220°C. At this temperature the product contained 84% of initial energy while decreased the mass by 25%. The best temperature profile for sewage sludge was 240°C. The energy residue was 91% and the mass residue was 85%. Higher temperatures in both cases caused excessive mass and energy losses.

  13. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge.

    Science.gov (United States)

    Gu, Tingyue; Rastegar, Seyed Omid; Mousavi, Seyyed Mohammad; Li, Ming; Zhou, Minghua

    2018-08-01

    Bioleaching has been successfully used in commercial metal mining for decades. It uses microbes to biosolubilize metal-containing inorganic compounds such as metal oxides and sulfides. There is a growing interest in using bioleaching for bioremediation of solid wastes by removing heavy metals from ash and sewage sludge. This review presents the state of the art in bioleaching research for recovery of metals and bioremediation of solid wastes. Various process parameters such as reaction time, pH, temperature, mass transfer rate, nutrient requirement, pulp density and particle size are discussed. Selections of more effective microbes are assessed. Pretreatment methods that enhance bioleaching are also discussed. Critical issues in bioreactor scale-up are analyzed. The potential impact of advances in biofilm and microbiome is explained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    Science.gov (United States)

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  15. Odorants and malodors associated with land application of biosolids stabilized with lime and coal fly ash.

    Science.gov (United States)

    Laor, Yael; Naor, Moshe; Ravid, Uzi; Fine, Pinchas; Halachmi, Ilan; Chen, Yona; Baybikov, Rima

    2011-01-01

    Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil.

    Science.gov (United States)

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-11-01

    Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox ® ), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of C free PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of C free PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, C free PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  18. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper

    2017-01-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the o......Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed...... and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant...... processes and 10–15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized...

  19. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  20. Where to dispose of the sewage sludge?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2001-01-01

    The 'proper' course for the disposal of sewage sludge is a topic that has continually sparked intense discussion for years. New legal regulations have developed which have significantly changed the disposal structure. Nevertheless, the consumer market of agriculture products has an increasing influence on sewage sludge recycling possibilities. In this report, the changes in sewage sludge disposal within the last ten years and the expected development is pointed out. On account of legal guidelines and of political market influences, the thermal recycling of sewage sludge is considered as the future solution, which should, however, be adapted according to marginal situations. (author)

  1. Vancomycin resistant enterococci (VRE in Swedish sewage sludge

    Directory of Open Access Journals (Sweden)

    Aspan Anna

    2009-05-01

    Full Text Available Abstract Background Antimicrobial resistance is a serious threat in veterinary medicine and human healthcare. Resistance genes can spread from animals, through the food-chain, and back to humans. Sewage sludge may act as the link back from humans to animals. The main aims of this study were to investigate the occurrence of vancomycin resistant enterococci (VRE in treated sewage sludge, in a Swedish waste water treatment plant (WWTP, and to compare VRE isolates from sewage sludge with isolates from humans and chickens. Methods During a four month long study, sewage sludge was collected weekly and cultured for VRE. The VRE isolates from sewage sludge were analysed and compared to each other and to human and chicken VRE isolates by biochemical typing (PhenePlate, PFGE and antibiograms. Results Biochemical typing (PhenePlate-FS and pulsed field gel electrophoresis (PFGE revealed prevalence of specific VRE strains in sewage sludge for up to 16 weeks. No connection was found between the VRE strains isolated from sludge, chickens and humans, indicating that human VRE did not originate from Swedish chicken. Conclusion This study demonstrated widespread occurrence of VRE in sewage sludge in the studied WWTP. This implies a risk of antimicrobial resistance being spread to new farms and to the society via the environment if the sewage sludge is used on arable land.

  2. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  3. Fate of heavy metals including mercury in a sewage sludge incineration process

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Cho, Sung-Jin

    2010-01-01

    Thermal treatment technology for sewage sludge incineration has several advantages. However, emission of heavy metals including mercury, into the environment from such technology utilization has been a major concern. In this paper heavy metals including mercury emission and distribution behavior within the different streams of a fluidized bed sewage sludge incineration process is presented. Emission of heavy metals and mercury at the inlet and outlet of APCDs and each incoming and outgoing streams were sampled and analyzed. Mercury and its speciation in flue gas were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by US EPA method 7470A and 7471A, respectively. Heavy metals were sampled by US EPA method and analyzed by inductively coupled plasma-mass spectrometry. At the inlet of APCDs Cr, Ni and Pb were mainly enriched in coarse particles whereas, As was enriched in fine particles. Hg emission concentration in flue gas, on average was 326.73 μg/ Sm 3 and 4.44 μg/ Sm 3 at inlet APCDs and the stack emission, overall removal efficiency of APCDs was 98.6%. More than 83.3% of Hg was speciated into oxidized form at the inlet of APCD. Oxidized Hg was removed in wet APCDs leaving behind elemental Hg as dominant species in stack emission. Hg was mainly distributed in waste water (57.5%), other effluent and sludge (27.6%), waste water from spray dry reactor (12.3%), fly ash in hopper (2.5%). Further, detailed investigations would give more reliable mass distribution data and insight to control mercury from such sources. (author)

  4. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  5. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  6. Synthesis of Hydroxysodalite From Paper Sludge Ash Using NaOH-LiOH Mixtures

    Directory of Open Access Journals (Sweden)

    Takaaki Wajima

    2017-06-01

    Full Text Available Hydroxysodalite zeolite was synthesized at 90 oC from paper sludge ash, which is industrial wastes in paper manufacturing, using NaOH-LiOH mixed solution. Paper sludge ash was discharged from paper making plant as industrial wastes, and the amount is increasing annually. The new utilization of paper sludge ash is desired. Hydroxysodalite can be used to remove HCl gas at high temperature, and there are papers for hydroxysodalite synthesis from various ashes, for example, coal fly ash. In my previous study, hydroxysodalite can be synthesized from paper sludge ash. However, little information can be available on the synthesis of hydroxysodalite from paper sludge ash. Therefore, we attempted to examine the synthesis of hydroxysodalite from paper sludge ash using NaOH-LiOH mixtures. Hydroxysodalite [Na6Al6Si6O24‧8H2O] was obtained in the mixed solution with Li / (Li + Na ratios smaller than 0.25, while katoite [Ca3Al2(SiO4(OH8] was formed in the mixed solutions with the other molar ratios, due to the dissolution of gehlenite [Ca2Al2SiO7]. The observed concentrations of Si and Al in the solution during the reaction explain the synthesis of reaction products, which depends on alkali species.

  7. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  8. Experience with a pilot plant for the irradiation of sewage sludge: Results on the effect of differently treated sewage sludge on plants and soil

    International Nuclear Information System (INIS)

    Suess, A.; Rosopulo, A.; Borchert, H.; Beck, Th.; Bauchhenss, J.; Schurmann, G.

    1975-01-01

    Since hygienization of sewage sludge will be important for an agricultural application it is necessary to study the effect of differently treated sewage sludge on plants and soil. In bean and maize experiments in 1973 and 1974 it was found that the treatment of sewage sludge is less important than soil properties and water capacity. Analysis on the efficiency of nutrients, minor elements and heavy metals from differently treated sewage sludge to plants were performed. Microbiological greenhouse studies indicated that there is a distinct tendency for different reactions, that irradiated sewage sludge gives a slightly better effect than untreated sludge, while the heat-treated sewage sludge indicates always a decrease, especially with the increase of applied amounts (respiration, protease and nitrification). In the field experiments there were almost no differences between untreated and irradiated sewage sludge, whereas there was always a smaller microbial activity after application of heat-treated sewage sludge. Studies on soil fauna (especially on Collemboles and Oribatidae) in the field trials indicate the influences of abiotic factors on the different locations. Besides these influences there was a decrease in the number of Collemboles and mites (in comparison with a normal fertilized plot) on the plots with 800 m 3 /ha treated sewage sludge. There was a remarkably large decrease in the plots with irradiated sewage sludge after an application of 800 m 3 /ha. Depending on the soil type, physical and chemical studies indicated an increase in the effective field capacity after the application of sewage sludge, and sometimes the best effects occurred with irradiated sewage sludge. Relative high aggregate values were observed (6-2, 6-5 mm diameter) in the plots with irradiated sewage sludge. (author)

  9. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  10. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  11. Sewage sludge - What can be done with it?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2002-01-01

    This article presents a review of the state-of-the-art in the disposal of the sewage sludge that is left over after treatment of wastewater. Also, developments over the past ten years both in market structures and in legislation are discussed and future developments are reviewed. On account of legislation and political influences on the market, the thermal exploitation of sewage sludge is looked at in depth. The ecological and economic aspects of sewage sludge disposal are examined and the costs of different methods of sewage sludge treatment are compared. Various methods of disposal including dumping, composting, incineration in cement ovens, coal-fired power stations and waste incineration facilities are discussed, as is burning in special sludge incineration plant. A prognosis is made on the development of sewage sludge quantities for Germany, Switzerland and Austria over the next years

  12. THE POSSIBILITIES OF NATURAL DEVELOPMENT OF ASH-SLUDGE BLENDS

    Directory of Open Access Journals (Sweden)

    Justyna Kiper

    2017-06-01

    Full Text Available Treatment of sewage results in creation of by-products such as screenings, fats, sand and the primary and secondary sludges – the most disposed elements in the technological process. Disposal of hazardous wastes is one of the most important issues in waste management. Regulation of the Minister of Economy dated 1 January 2016 (Dz.U. 2015 item 1277 – Journal of Laws which disallows the storage of sewage sludges, influenced the search for new solutions of their utilization. Forecasted increase in the amount of produced sludges and regulations in effect resulted in the increased interest in methods of utilization and studies on waste management. The study shows environmental possibilities of utilization of municipal sewage. The physicochemical and environmental properties of studied materials were determined. The studies were performed on sewer sludge obtained from mechanical biological municipal treatment plant “Pomorzany” in Szczecin. By-products of incineration biomass were used to prepare the sludge-ash mixes. Physicochemical properties were determined using reference methods according to current Standards and Instructions. To determine the environmental properties of sludge and mixes phytotoxicity test was used. The influence of soil’s toxicity on the plants was determined based on a method provided by the Regulation of the Minister of Environment dated 13 May 2004 on conditions in which it is assumed that waste is not hazardous (Dz.U. 2004 no. 128, item 1347 – Journal of Laws, “Determination of cytotoxic activity in garden cress”. Performed physicochemical tests and phytotoxicity test proved the applicability of prepared mixes in agriculture, remediation of anthropogenic soils and shutting down and revegetation of old landfills.

  13. Investigations on chemical-physical conditioning of ashes from the incineration of sewage sludge to deposit on surface landfill site; Untersuchungen zur Chemisch-Physikalischen Behandlung von Klaerschlammverbrennungsasche zur Ablagerung auf oberirdischen Deponien

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, O.; Becker, A. [Technische Univ. Kaiserslautern (Germany). Fachgebiet Bodenmechanik und Grundbau; Scherer, G. [TERRAG Service und Vertrieb GmbH, Homburg (Germany)

    2007-06-15

    Depositing of ashes from the incineration of sewage sludge on landfill is possible after conditioning or within appropriate boxes. The partial high content of chromate- and dichromate- (chrome VI) concentration in the eluate of these slags can cause some difficulties. Presently, disposal of such slags is accomplished in underground spaces. Taking into account the provisions of national laws, possibility is limited. Therefore investigations on deposing of conditioned slags on surface landfills are of growing importance. The binders added to condition the incineration slags were chosen to assess the chemical change of hexavalent chrome (chrome VI) to indissoluble chrome (chrome III). Cement, SAV-residues as well as fly ash were taken as binders. The investigations presented refer to results on mechanical behaviour of conditioned slags. Emphasis is placed on the time-dependent behaviour of strength as well as on water permeability. Several cylindrical samples made by different compounds were tested within a period of about 112 days. Requirements with respect to strength were met within a few days. Demands on the eluate-criteria need additional investigations. (orig.)

  14. Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2016-01-01

    was suspended in water in the anolyte, which was separated from the catholyte by a cation exchange membrane. Electrolysis at the anode acidified the SSA suspension, and hereby P, Cu, Pb, Cd and Zn were extracted. The heavy metal ions electromigrated into the catholyte and were thus separated from the filtrate......Phosphorus (P) is indispensable for all forms of life on Earth and as P is a finite resource, it is highly important to increase recovery of P from secondary resources. This investigation is focused on P recovery from sewage sludge ash (SSA) by a two-compartment electrodialytic separation (EDS......) technique. Two SSAs are included in the investigation and they contained slightly less P than phosphate rock used in commercial fertilizer production and more heavy metals. The two-compartment electrodialytic technique enabled simultaneous recovery of P and separation of heavy metals. During EDS the SSA...

  15. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  16. Upgrading and recovery of fertilizer value of ash from PYRONEER gasification

    DEFF Research Database (Denmark)

    Pares Viader, Raimon; Haugaard-Nielsen, Henrik

     leaching in the two ashes from gasification of sewage sludge with chemically precipitated P. In contrast, a considerable lower proportion of Al/Fe(III)-phosphates were found for the incineration sewage sludge ashes, whereas Ca was found to control P solubility at low pH for the ash with biologically precipitated P....... Using a 2-compartment electrodialytic cell, in which the ash suspension was acidified, over 80% of P could be recovered from both the Pyroneer ashes with biologically precipitated P and the incineration sewage sludge ashes. However, P recovery was limited to a 40% for the other two ashes using the same...

  17. Hydraulic conductivity and soil-sewage sludge interactions

    Directory of Open Access Journals (Sweden)

    Silvio Romero de Melo Ferreira

    2011-10-01

    Full Text Available One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

  18. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  19. Virological investigations on inadiated sewage sludge

    International Nuclear Information System (INIS)

    Epp, C.

    1980-08-01

    The virusinactivating activity of a Co 60 -irradiation pilot plant at Geiselbullach/Munich was to be examined. We investigated 16 impure sewage water, 15 purified sewage water, 32 raw sladge samples, 62 digested sludge samples before irradiation, 52 digested sludge samples after irradiation and 9 raw sludge samples after irradiation. We completed these investigations by adding poliovaccinevirus type 1 to the digested sludge before irradiation and by adding suspensions of pure virus in MEM + 2% FBS packed in synthetic capsules and mixtures of virus and sludge packed in synthetic capsules to the digested sludge. After the irradiation we collected the capsules and determined the virustiter. The testviruses were poliovaccinevirus type 1, poliowildvirus type 1, echovirus type 6, coxsackie-B-virus type 5, coxsackie-A-virus type 9 and adenovirus type 1. In the field trial the irradiation results were like the laboratory results assuming that the sewage sludge was homogenized enough by digestion and the solid particle concentration was not more than 3%. The D-value was 300-400 krad for enteroviruses and 700 krad for adenovirus. (orig.) [de

  20. The effect of bioleaching on sewage sludge pyrolysis.

    Science.gov (United States)

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Heating value characteristics of sewage sludge: a comparative study of different sludge types

    International Nuclear Information System (INIS)

    Kim, Young-JU.; Kang, Hae-Ok.; Qureshi, T.I.

    2005-01-01

    Heating value characteristics of three different types of sludge, i.e. domestic sewage sludge, industrial sludge, and industrial + domestic sewage sludge were investigated. Industrial + domestic sewage sludge (thickened) showed the highest heating value (5040 kcal/kg) than other sludge types. This may be due to increased amount of organic matter presents in thickened sludge than de-watered sludge. A gradual increase in organic matter of the sludge was observed with the increase of the moisture contents. Heating value of the sludge having 60% moisture contents was found in the range between 924-1656 kcal/kg and this amount was higher than the minimum heating value (800 kcal/kg) required sustaining auto thermal combustion in sludge incineration process. Energy consumption requirement for pre drying sludge operations revealed that industrial sludge (de-watered) required the minimum cost (13 $/ton of sludge) to make it a sludge of fuel grade (60% W), while mixed sludge cost the highest amount for its pre-drying operations. (author)

  2. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    Swinwood, J.F.; Kotler, J.

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  3. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swinwood, J.F.; Kotler, J. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author).

  4. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    Science.gov (United States)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  5. Elementary analysis and energetic potential of the municipal sewage sludges from the Gdańsk and Kościerzyna WWTPs

    Science.gov (United States)

    Ostojski, Arkadiusz

    2018-01-01

    This paper aims to present municipal sewage sludge (MSS) elementary analysis and energetic potential based on measurement of heat of combustion (higher heating value HHV) and calculation of calorific values (lower heating value LHV). The analysis takes into the consideration water content in sewage sludge, at different utilization stages, in wastewater treatment plants in Gdańsk Wschód and Kościerzyna - Pomeranian Voivodeship. The study yielded the following results (in % dry matter): ash 19÷31 %, C - 31÷36 %, H - 5÷6 %, N - 4÷6 %, O - 28÷32 %, S - 1 %. Calorific value of stabilized sludges in Gdańsk was on average 13.8÷15 MJ/kg. In case of sludges not undergoing digestion from Kościerzyna WWTP, the calorific value was at the level of 17.5 MJ/kg. Thus, sewage sludges are good energy carriers. High water content though is the problem, as it lowers the useful effect of heat. There is no alternative for thermal sewage sludge neutralization, which is in conformity with valid Polish National Waste Management Plan (KPGO 2022).

  6. Preparing sewage sludge for land application or surface disposal: A guide for preparers of sewage sludge on the monitoring, record keeping, and reporting requirements of the federal standards for the use of disposal of sewage sludge, 40 CFR part 503

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The document focuses on the monitoring, recordkeeping, and reporting requirements that apply to persons who prepare sewage sludge or a material derived from sewage sludge. It defines persons who prepare sewage sludge and then summarizes their general responsibilities. USEPA promulgated at 40 CFR Part 503 Phase 1 of the risk-based regulations that govern the final use or disposal of sewage sludge. The intent of the Federal program is to ensure that the use or disposal of sewage sludge occurs in a way that protects both human health and the environment. The Part 503 regulation establishes general requirements, pollutant limits, operational standards, and management practices, as well as monitoring, recordkeeping, and reporting requirements. These requirements apply to sewage sludge that is land applied, placed on a surface disposal site, or incinerated in a sewage sludge-only incinerator.

  7. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  8. Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char

    International Nuclear Information System (INIS)

    Gil-Lalaguna, N.; Sánchez, J.L.; Murillo, M.B.; Atienza-Martínez, M.; Gea, G.

    2014-01-01

    Thermo-chemical treatment of sewage sludge is an interesting option for recovering energy and/or valuable products from this waste. This work presents an energetic assessment of pyrolysis and gasification of sewage sludge, also considering the prior sewage sludge thermal drying and the gasification of the char derived from the pyrolysis stage. Experimental data obtained from pyrolysis of sewage sludge, gasification of sewage sludge and gasification of char (all of these performed in a lab-scale fluidized reactor) were used for the energetic calculations. The results show that the energy contained in the product gases from pyrolysis and char gasification is not enough to cover the high energy consumption for thermal drying of sewage sludge. Additional energy could be obtained from the calorific value of the pyrolysis liquid, but some of its properties must be improved facing towards its use as fuel. On the other hand, the energy contained in the product gas of sewage sludge gasification is enough to cover the energy demand for both the sewage sludge thermal drying and the gasification process itself. Furthermore, a theoretical study included in this work shows that the gasification efficiency is improved when the chemical equilibrium is reached in the process. - Highlights: • 4 MJ kg −1 for thermal drying of sewage sludge (SS) from 65 to 6.5 wt.% of moisture. • 0.15 MJ kg −1 for thermal decomposition of sewage sludge during fast pyrolysis. • Not enough energy in gases from SS pyrolysis and char gasification for thermal drying. • Enough energy in SS gasification gas for thermal drying and gasification process. • Gasification efficiency improves when equilibrium is reached in the process

  9. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Suess, A.; Rosopulo, A.; Borchert, H.; Beck, T.; Bauchhenss, J.; Schurmann, G.

    1975-01-01

    Since hygienization of sewage sludge will be important for an agricultural application, it is necessary to study the effect of differently treated sewage sludge to plants and soil. In bean- and maize experiments in 1973 and 1974 it was found that treatment of sewage sludge is less important than soil properties and water capacity. Analysis on the efficiency of nutrients, minor elements and heavy metals from differently treated sewage sludge to plants were performed. Microbiological greenhouse studies indicated that there is a distinct tendency for different reactions that irradiated sewage sludge gives a slightly better effect than untreated one. In the field experiments there were nearly no differences between untreated and irradiated sewage sludge. Studies on soil fauna in the performed field trials indicate influences of abiotic factors on the different locations. Besides these influences there is a decrease of the number of Collemboles and Mites on the plots with 800 m 3 /ha treated sewage sludge. There is a remarkable high decrease in the plots with irradiated sewage sludge after an application of 800 m 3 /ha. Physical and chemical studies indicated, depending on the soil type, an increase in the effective field capacity after the application of sewage sludge, while there were sometimes the best effects with irradiated sewage sludge. Relative high aggregate values were observed in the plots with irradiated sewage sludge. (orig./MG) [de

  10. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    Science.gov (United States)

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Use of sewage sludge for agriculture in Japan

    International Nuclear Information System (INIS)

    Kumazawa, K.

    1997-01-01

    In Japan, the use of sewage sludge and composted sewage sludge is gradually increasing. They are applied not only to agricultural land, but also to golf courses, parks, etc. The presence of heavy metals and pathogens poses a major problem for such utilization of sludge. Composting is a traditional method of sewage treatment. Laws have been introduced and guidelines prepared for proper and safe use of these materials by farmers. Public acceptance plays a crucial role. At a time when environmental preservation is a major issue in almost every aspect of life, greater emphasis will have to be placed on making sludge and compost hygienically acceptable with minimum contamination from pathogenic organisms and heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. This paper reviews studies conducted on the use of sewage sludge in agriculture in japan. (author)

  12. 40 CFR 503.7 - Requirement for a person who prepares sewage sludge.

    Science.gov (United States)

    2010-07-01

    ... sewage sludge. 503.7 Section 503.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.7 Requirement for a person who prepares sewage sludge. Any person who prepares sewage sludge shall ensure that the...

  13. Assessment of total coliform removal and leaching of metal ions from ...

    African Journals Online (AJOL)

    universal

    2012-05-17

    May 17, 2012 ... INTRODUCTION. Sewage sludge ... sewage sludge compost is harmful both for the plant ... sewage sludge grooming and maintenance and being a waste ... crop productivity depending on the nature of both soil and fly ash.

  14. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  15. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene.

    Science.gov (United States)

    Zielińska, Anna; Oleszczuk, Patryk

    2015-09-01

    The present study investigated the sorption of phenanthrene (PHE) and pyrene (PYR) by sewage sludges and sewage sludge-derived biochars. The organic carbon normalized distribution coefficient (log K(OC) for C(w) = 0.01 S(w)) for the sewage sludges ranged from 5.62 L kg(-1) to 5.64 L kg(-1) for PHE and from 5.72 L kg(-1) to 5.75 L kg(-1) for PYR. The conversion of sewage sludges into biochar significantly increased their sorption capacity. The value of log K(OC) for the biochars ranged from 5.54 L kg(-1) to 6.23 L kg(-1) for PHE and from 5.95 L kg(-1) to 6.52 L kg(-1) for PYR depending on temperature of pyrolysis. The dominant process was monolayer adsorption in the micropores and/or multilayer surface adsorption (in the mesopores), which was indicated by the significant correlations between log K(OC) and surface properties of biochars. PYR was sorbed better on the tested materials than PHE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Chang, A.C.

    1997-01-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  17. Land application of sewage sludge: Pathogen issues

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A C [Department of Soil and Environmental Sciences, Univ. of California at Riverside, Riverside, CA (United States)

    1997-10-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author). 8 refs, 3 tabs.

  18. Supercritical water gasification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Yamaguchi, D. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Supercritical water gasification (SCWG) is an attractive technology for producing fuels from biomass and waste materials. As a result of greenhouse gas emissions and issues related to local air pollutants, hydrogen production from these renewable energy resources has been gaining in popularity. Disposal of sewage sludge is another environmental problem that have led to severe regulations. Incineration has been one of the most commonly used means of sewage sludge disposal. Thermal gasification produces gaseous fuel, making it a better option over incineration. However, due to its high moisture content, this process is not feasible to make use of sewage sludge directly. In order to analyze SCWG of sewage sludge, it has been determined that equilibrium analysis is most suitable since the maximum achievable amount of hydrogen in a given reacting condition can be estimated. The equilibrium model can be divided into two types of models, namely stoichiometric and non-stoichiometric. This paper presented the results of a study that used a computer program to develop a nonstoichiometric model with the direct Gibbs free energy minimization technique. In addition, various biomass were simulated for comparisons in order to identify if sewage sludge is a potential feedstock for hydrogen production. Last, the effects of reaction pressure and temperature on product distribution were also examined. It was shown that the proposed model is capable of estimating the product distribution at equilibrium. 33 refs., 4 tabs., 6 figs.

  19. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... of 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db...

  20. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    Science.gov (United States)

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  1. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  2. Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor

    International Nuclear Information System (INIS)

    Wang, Xuebin; Deng, Shuanghui; Tan, Houzhang; Adeosun, Adewale; Vujanović, Milan; Yang, Fuxin; Duić, Neven

    2016-01-01

    Highlights: • The synergetic effect of sewage sludge and wheat straw co-pyrolysis was studied. • The mass balance measurement of gas, tar, and char was performed. • The synergetic effect shows strongest under a certain biomass addition ratio around 60%. • The required heat of co-pyrolysis is significantly reduced. - Abstract: Much attention has been given to the valuable products from the pyrolysis of sewage sludge. In this study, the pyrolysis of sewage sludge, biomass (wheat straw) and their mixtures in different proportions were carried out in a thermogravimetric analyzer (TGA) and fixed-bed reactor. The effects of pyrolysis temperature and percentage of wheat straw in wheat straw–sewage sludge mixtures on product distributions in terms of gas, liquid and char and the gas composition were investigated. Results indicate that there is a significantly synergetic effect during the co-pyrolysis processes of sewage sludge and wheat straw, accelerating the pyrolysis reactions. The synergetic effect resulted in an increase in gas and liquid yields but a decrease in char yield. The gas composition and the synergetic effect degree are strongly affected by the wheat straw proportions, and the strongest synergetic effect of sewage sludge and wheat straw co-pyrolysis appears at the biomass proportion of 60 wt.%. With an increase of temperature, the gas yield from the pyrolysis of sewage sludge increased but the liquid and char yields decreased. Moreover, the required heat of co-pyrolysis is significantly reduced compared with the pyrolysis of sewage sludge and wheat straw pyrolysis alone, because of the exothermic reactions between the ash components in two fuel samples.

  3. Elementary analysis and energetic potential of the municipal sewage sludges from the Gdańsk and Kościerzyna WWTPs

    Directory of Open Access Journals (Sweden)

    Ostojski Arkadiusz

    2018-01-01

    Full Text Available This paper aims to present municipal sewage sludge (MSS elementary analysis and energetic potential based on measurement of heat of combustion (higher heating value HHV and calculation of calorific values (lower heating value LHV. The analysis takes into the consideration water content in sewage sludge, at different utilization stages, in wastewater treatment plants in Gdańsk Wschód and Kościerzyna – Pomeranian Voivodeship. The study yielded the following results (in % dry matter: ash 19÷31 %, C - 31÷36 %, H - 5÷6 %, N - 4÷6 %, O - 28÷32 %, S – 1 %. Calorific value of stabilized sludges in Gdańsk was on average 13.8÷15 MJ/kg. In case of sludges not undergoing digestion from Kościerzyna WWTP, the calorific value was at the level of 17.5 MJ/kg. Thus, sewage sludges are good energy carriers. High water content though is the problem, as it lowers the useful effect of heat. There is no alternative for thermal sewage sludge neutralization, which is in conformity with valid Polish National Waste Management Plan (KPGO 2022.

  4. The necessity of recovering soluble phosphorus from sewage sludge ashes before use in concrete based on concrete setting and workability

    DEFF Research Database (Denmark)

    Sigvardsen, Nina Marie; Ottosen, Lisbeth M.

    2016-01-01

    By replacing cement with alternative ashes, such as sewage sludge ashes (SSA) from mono-incineration plants, it is possible to reduce the CO2-emmision from the production of cement. SSA contains a large amount of phosphate which can be extracted before addition in concrete. The Danish Standard DS...... the increased addition of SP and the initial setting time is seen. By comparison with the limit for initial setting time established in DS/EN 450-1 it is possible to establish a limit for SP of 0.54 wt% cement. When studying the workability an objective limit for SP of 0.16 wt% cement can be established. SSA...... from the Danish mono-incineration plant at Spildevandscenter Avedøre is examined. At a pH-value of 13 it is possible to replace 55% and 16% of the cement, based on the set limits, with SSA from Spildevandscenter Avedøre, before it is necessary to extract SP from SSA before adding to the concrete...

  5. Enhancement of biogas production from sewage sludge by addition of grease trap sludge

    International Nuclear Information System (INIS)

    Grosser, A.; Neczaj, E.

    2016-01-01

    Highlights: • Addition of grease trap sludge is interesting option for sewage sludge digestion. • Co-digestion of grease trap sludge and sewage sludge improved efficiency of process. • The anaerobic digestion can be carried out at short hydraulic retention time. • Long chain fatty acids concentration was below the ranges for inhibition of anaerobic digestion. - Abstract: Despite having many benefits, a low degree of volatile solids removal as well as long retention time are the main factors limiting the performance of the anaerobic digestion. Co-digestion of sewage sludge with other organic waste (for example fat rich materials) is one of the few potential ways to enhance the performance of the anaerobic digestion. In this article, the effects of adding fatty rich materials on the performance and stability of semi-continuous anaerobic digestion of sewage sludge were investigated on a 6 l laboratory-scale reactor (working volume equal to 5.5 l). The reactor was operated in a semi-continuous mode with a hydraulic retention time of 10 days. The data presented in this paper relate to the period in which the grease trap sludge accounted for 10, 12, 14, 16 and 18% of the mixture on the volatile solids basis. The results clearly indicate that the addition of fat rich materials like grease trap sludge can lead to a satisfactory increase in biogas yield in digester treating sewage sludge. The results showed that co-digestion can enhance the biogas yield by 28–82% compared to anaerobic digestion of sewage sludge alone (control sample). Moreover, the addition of grease trap sludge to digesters resulted in increased volatile solids removal from 44.38% (control sample) to 57.77% (feedstock with 14% addition of grease trap sludge). It was found that the increase of grease trap sludge in the feedstock had a direct impact on the biogas production and methane yield. This proposal has also been confirmed by statistical analysis such as Pearson correlation coefficients and

  6. Combustion characteristics of biodried sewage sludge.

    Science.gov (United States)

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin

    2018-02-01

    In this study, effects of biodrying on the characteristics of sewage sludge and the subsequent combustion behavior were investigated. 7-Day of biodrying removed 49.78% of water and 23.17% of VS initially contained in the sewage sludge and increased lower heating value (LHV) by 37.87%. Meanwhile, mass contents of C and N decreased from 36.25% and 6.12% to 32.06% and 4.82%, respectively. Surface of the biodried sewage sludge (BDSS) appeared granulated and multi-porous, which was thought to facilitate air transfer during combustion. According to thermogravimetric (TG) analysis coupled with mass spectrometer (MS) with a heating rate of 10 °C/min from 35 °C to 1000 °C, thermally-dried sewage sludge (TDSS) and BDSS lost 74.39% and 67.04% of the initial mass, respectively. In addition, combustibility index (S) of BDSS (8.67 × 10 -8  min -2  K -3 ) was higher than TDSS. TG-MS analyses also showed that less nitrogenous gases were generated from BDSS than TDSS. It was again showed that the average CO and NO concentrations in exit gas from isothermal combustion of BDSS were lower than those from TDSS, especially at low temperatures (≤800 °C). Based on these results, it was concluded that biodrying of sewage sludge was an energy-efficient water-removal method with less emission of air pollutants when BDSS was combusted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Magnavacca, Cecilia; Miranda, E.; Sanchez, M.

    1999-01-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  8. Combustion of Sewage Sludge as Alternative Fuel for Cement Industry

    Institute of Scientific and Technical Information of China (English)

    LI Fuzhou; ZHANG Wei

    2011-01-01

    The combustion of sewage sludge and coal was studied by thermogravimetric analysis.Both differential scanning calorimetric analysis and derivative thermogravimetric profiles showed differences between combustion of sewage sludge and coal, and non-isothermal kinetics analysis method was applied to evaluate the combustion process. Based on Coats-Redfem integral method, some reaction models were tested,the mechanism and kinetics of the combustion reaction were discussed. The results show that the combustion of sewage sludge is mainly in the Iow temperature stage, meanwhile the ignition temperature and Arrhenius activation energy are lower than that of coal. The combustion of sewage sludge has the advantage over coal in some aspects, thus sewage sludge can partly replace coal used as cement industry fuel.

  9. Analysis of sewage sludge and cover soil by neutron activation analysis

    International Nuclear Information System (INIS)

    Moon, J.H.; Lim, J.M.; Kim, S.H.; Chung, Y.S.

    2008-01-01

    The Korean government reported that in 2005, 4395 tons/day of sewage sludge were generated from sewage disposal facilities in Korea and only 11.03% of it was reused. In addition, as a direct landfill of sewage sludge was forbidden from June 2003, research for a relevant disposal technique has been increasing. In this study, the aims were to analyze the collected sewage sludge samples and to evaluate the possibility for their reuse by a comparison of the elemental contents from a sewage sludge and a cover soil. Sludge samples were collected from a sewage disposal plant in Daejeon city and the cover soil was produced by a dilution of a sewage sludge with quicklime. Instrumental neutron activation analysis was employed to determine the elemental contents in the samples. Twenty seven elements were analyzed and their concentrations were compared. (author)

  10. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Rosopulo, A.; Fiedler, I.; Staerk, H.; Suess, A.; Technische Univ. Muenchen

    1975-01-01

    Analyses of mineral nutrients and trace elements in sewage sludge over a one year period showed that there are relatively small differences in the content of inorganic constituents. In relation to sewage sludge treatment we found a change in the ratio of NH 4 -N : total N after a heat treatment; this means that the ammonium content increased in 70% of the analysed samples compared to untreated sludge. After radiation treatment of sewage sludge no change can be observed up to a pH of 8. With an increase of the pH-value (>= 8) losses of NH- 4 N can be observed. During the dewatering process of sewage sludge - which is influenced by sewage sludge treatment -, potassium, sodium and ammonium are enriched in the filtering water. While there is a decrease of these alkali elements in the dewatered sewage sludge, nearly no change in the other components can be observed. Studying the availability of mineral compounds and trace elements to plants, results are presented of inorganic nutrients and essential or toxic trace elements of sewage sludge and plants. (orig.) [de

  11. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  12. Characterization study on secondary sewage sludge for replacement in building materials

    Science.gov (United States)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.

  13. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  14. Processed fly ash for workability: stretching to its limits

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M. [Dirk India Pvt Ltd., Nashik (India)

    2003-07-01

    The paper describes use of fly ash produced by the British Multinational Company called Dirk, in a fire grade, Pozzocreta 63 to improve the workability of concrete used to reline tunnels for the disposal of sewage from Mumbai City, 4 km into the Arabian Sea. It mainly involved rehabilitation of 5.5 km of tunnels from Sion to Banda, 30 m below ground level. 5 figs., 3 tabs.

  15. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  16. Electrodialytic remediation of fly ash from co-combustion of wood and straw

    DEFF Research Database (Denmark)

    Chen, Wan; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    The heavy metal content in fly ash from biomass combustion, such as straw, wood and sludge, often needs reducing before the ash can be used as fertilizer for agricultural land or as a component in the production of construction materials. In this study, fly ash from a boiler fueled with wood chips...... and straw was treated either by electrodialytic remediation (EDR) directly or by a combination of EDR and pre-wash with distilled water to investigate the possibilities of reducing the heavy metal content and reusing nutrients as fertilizer and bulk material in construction materials. Different experimental....../pre-wash-EDR treated ash mainly contained quartz, and the X-ray diffraction (XRD) peaks of K salts had disappeared. This shows that the potassium fertilizer potential was lost in the treated ashes, but the quartz mineral is beneficial in construction materials, such as ceramics. The K fertilizer could be recovered...

  17. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  18. Vitrification as an alternative to landfilling of tannery sewage sludge

    International Nuclear Information System (INIS)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-01-01

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  19. Vitrification as an alternative to landfilling of tannery sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  20. Vitrification as an alternative to landfilling of tannery sewage sludge.

    Science.gov (United States)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  1. Recycling of Treated Sewage Sludge in Sustainable Agriculture

    International Nuclear Information System (INIS)

    Galal, Y.G.M.

    2012-01-01

    Agricultural utilization of organic wastes amendments has been shown to be a sound alternative for both waste recycling and soil fertility improvement. Also, attention had been paid to use the biological agents that most cheap and safe for agricultural application in poor sandy soils. In this respect, irradiated sewage sludge and individual and dual inoculants of Azospirillum, Rhizobium and Arbuscular mycorrhizae fungi were applied for reclamation and development of low fertile sandy soil. The fertilizer value of sewage sludge has been known for a long time, but the concomitant problems of heavy metals in soil, as a result of its continuous applications, have only been recognized recently. Most of the studies were devoted to follow up the effect of high concentrations of metals when sewage sludge was applied, but no attention has been accelerated about its effect on soil microorganisms. Adverse effects of sewage sludge on microbial activity and populations of cyanobacteria, Rhizobium, Mycorrhizae and total microbial biomass have been detected in some cases of Europe. For example, N 2 fixation by free-living heterotrophic bacteria was found to be inhibited at concentrations (mg kg -1 ) of 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr, and 71 Pb. Impact of bio fertilizers combined with irradiated sewage sludge on micro nutrients, e.g. Fe, Zn, Mn, Pb availability to clover and wheat plants, and productivity of both crops was the main objective of this study. In this connection, nuclear technology may offer a safety method against pathogenic effects of sewage sludge applied into agricultural ecosystems. Therefore, irradiated sludge is considered as safely source of organic wastes as well as the benefits on enrichment the low fertile soil with available nutrients, which act as a limiting factor for crop production. The N, P and K nutrients uptake by either shoots or grains of tested crops were positively and significantly affected by application of sewage sludge as well as bio

  2. Radioactive contamination of sewage sludge. Preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C J; Zanders, E; Raphael, T

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required.

  3. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  4. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Fang, Le; Poon, Chi Sun

    2017-06-01

    The improper disposal of incinerated sewage sludge ash (ISSA) and air pollution control residues (APCR) from sewage sludge incinerators has become an environmental concern. The physicochemical, morphological and mineralogical characteristics of ISSA and APCR from Hong Kong, and the leachability and risk of heavy metals, are presented in this paper. The results showed that a low hydraulic and pozzolanic potential was associated with the ISSA and APCR due to the presence of low contents of SiO 2 , Al 2 O 3 and CaO and high contents of P, S and Cl (especially for APCR). Although high concentrations of Zn and Cu (especially for ISSA) followed by Ni, Pb and As, Se were detected, a low leaching rate of these metals (especially at neutral and alkaline pH) rendered them classifiable as non-hazardous according to the U.S. EPA and Chinese national regulatory limits. The leached metals concentrations from ISSA and APCR were mainly pH dependent, and metals solubilization occurred mainly at low pH. Different leaching tests should be adopted based on the simulated different environmental conditions and exposure scenarios for assessing the leachability as contrasting results could be obtained due to the differences in complexing abilities and final pH of the leaching solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Beneficial uses of nuclear byproducts/sewage sludge irradiation project. Progress report, October 1981-March 1982

    International Nuclear Information System (INIS)

    Zak, B.D.

    1982-12-01

    A cooperative agreement was made between Albuquerque and DOE during FY81 for sewage sludge irradiation in upgrading the sewage treatment facilities. Other potential sites for implementation of sludge irradiation technology were also considered. Sludge was irradiated in the SIDSS for agronomy and animal feeding experiments. Sludge was also irradiated for use on turf areas. Cooperative work was also performed on grapefruit irradiation for fruit fly disinfestation, and on irradiation of sugar cane waste (bagasse) for enhanced ruminant digestibility. Preliminary design work began on a shipping cask to accomodate WESF Cs-137 capsules. The shielding performance, steady-state thermal response, and response to specified regulatory accident sequences have been evaluated. Work has been initiated on pathogen survival and post-irradiation pathogen behavior. Agronomy field, greenhouse, and soil chemistry studies continue. Various field experiments are ongoing. The fifth year of a five-year program to evaluate the potential use of a sludge product as a range feed supplement for cows is now in its fifth year. In agricultural economics, a preliminary marketing plan has been prepared for Albuquerque

  6. 40 CFR Appendix A to Part 503 - Procedure To Determine the Annual Whole Sludge Application Rate for a Sewage Sludge

    Science.gov (United States)

    2010-07-01

    ... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Pt... a Sewage Sludge Section 503.13(a)(4)(ii) requires that the product of the concentration for each...

  7. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  8. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  9. Fate of stable strontium in the sewage treatment process as an analog for radiostrontium released by nuclear accidents

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, Nao; Ito, Ayumi; Umita, Teruyuki

    2013-01-01

    Highlights: • 76% of the Sr entering the plant was discharged to receiving water. • 21% of the Sr flowing through the plant was transferred to the sewage sludge. •Almost all of the Sr in the sewage sludge was concentrated in incinerated sewage sludge ash. • Activated sludge had a lower sorption capacity for Sr than metals such as Cd. -- Abstract: Radionuclides were widely released into the environment due to the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. Some of these radionuclides have flowed into municipal sewage treatment plants through sewer systems. We have observed the fate of stable Sr in the sewage treatment process as a means to predict the fate of radiostrontium. Concentrations of stable Sr were determined in sewage influent, effluent, dewatered sludge, and incinerated sewage sludge ash collected from a sewage treatment plant once a month from July to December 2011. In the mass balance of Sr in the sewage treatment plant, 76% of the Sr entering the plant was discharged to the receiving water on average. Additionally, 14% of the Sr flowing through the plant was transferred to the sewage sludge and then concentrated in the sludge ash without being released to the atmosphere. We also investigated Sr sorption by activated sludge in a batch experiment. Measurements at 3 and 6 h after the contact showed Sr was sorbed in the activated sludge; however, the measurements indicated Sr desorption from activated sludge occurred 48 h after the contact

  10. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  11. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  12. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  13. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  14. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  15. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...... system to treat sewage sludge and simultaneously recover energy....

  16. Strength Performance of Blended Ash Based Geopolymer Mortar

    Science.gov (United States)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

  17. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  18. Occurrence of high-tonnage anionic surfactants in Spanish sewage sludge.

    Science.gov (United States)

    Cantarero, Samuel; Prieto, Carlos A; López, Ignacio

    2012-03-01

    Agricultural application has become the most widespread method of sewage sludge disposal, being the most economical outlet for sludge and also recycling beneficial plant nutrients and organic matter to soil for crop production. As a matter of fact, the European Sewage Sludge Directive 86/278/EEC seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. At the present time, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals may be implemented. Linear alkylbenzene sulphonate (LAS), the main synthetic anionic surfactant, has been included in the draft list of chemicals to be limited. The present research work deals with the monitoring of LAS and soap in Spanish sewage sludge. The average concentration of LAS found in anaerobic sewage sludge samples was 8.06 g/kg, higher than the average values for European sludge. Besides, it has been also found that more than 55% of Spanish anaerobic sludge would not fulfil the limit proposed by the 3rd European Working paper on sludge. As a consequence, the implementation of the limit for LAS would make the disposal of most Spanish biosolids for agricultural applications almost impossible. Regarding the mechanisms why anionic surfactants are found in sludge, two surfactants are compared: LAS and soap, both readily biodegraded in aerobic conditions. Irrespective of the anaerobic biodegradability of soap, its concentration found in sludge is higher than LAS (only anaerobically biodegradable under particular conditions). The relevance of anaerobic biodegradation to assure environmental protection is discussed for this case. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  20. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  1. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  2. Disinfection of sewage sludge with gamma radiation

    International Nuclear Information System (INIS)

    1980-01-01

    In the Geiselbullach sewage treatment plant near Munich, sewage irradiation by a 60 Co source is being investigated on a technical scale. 145 m 3 of sewage sludge are irradiated per day and then used as field fertilizer. (orig./HBR) [de

  3. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  4. Co-digestion of pig slaughterhouse waste with sewage sludge.

    Science.gov (United States)

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    2001-01-01

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15 N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15 N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  6. On the rheological characteristics of sewage sludge

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2010-01-01

    Full Text Available The work is focused on characterization of rheological behavior of sewage sludges sampled at different stages of waste water treatment. The main attention was focused on dynamic viscosity dependence on temperature, and shear rate. The sludge samples were examined under temperature ranging from 1 °C to 25 °C and under shear rate ranging from 0.34 s−1 to 68 s−1. Rotary digital viscometer (concentric cylinders geometry was used to perform the reological measurements. The solids content of the sludge samples ranged from 0.43 % to 21.45 % (A and C samples, respectively and ash free dry mass from 56.21 % to 67.80 % (A and B samples, respectively. The tested materials were found to be of non–Newtoninan nature and temperature dependent. Measured data were successfully cha­ra­cte­ri­zed by several mathematical models (Arrhenius, Bingham Plastic, Casson Law, Exponential, Gaussian, and IPC Paste in MATLAB® software with satisfying correlations between experimental and computed results. The best match (R2 = 0.999 was received with use of Gaussian model, in both cases, shear rate and temperature dependence. The results are quite useful e.g. for the purpose of technological equipment design.

  7. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  8. Irradiation treatment of sewage sludge: History and prospects

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Zhou Ruimin; Zhu Jinliang

    1998-01-01

    This paper first reviews the history of irradiation treatment of sewage sludge in the world. The first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 and used 60 Co as irradiation source. Since then, many sludge irradiators were constructed in U.S.A., India, Japan, Canada, Poland, etc., which used 60 Co, 137 Cs or electron beam as irradiation sources. The paper then describes some basic research on irradiation treatment of sewage sludge including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge. Some proposals have been suggested for further development of this technology in the future

  9. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  10. Effect of gamma irradiation and moisture on microbiological load of sewage sludge

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Al-Adawi, M. A.; Shamma, M.

    2002-07-01

    Concentrated municipal sewage sludge, stored for 2, 4, and 6 months, with moisture content of 2, 20, 40, 60, and 80% were exposed to doses of 0, 1, 2, 3, 4, and 5 kGy in a 60 Co package irradiator. Immediately after irradiation, total microbial count, bacterial pathogens in sewage sludge was determined. Techno-economic feasibility of irradiated sewage according to the moisture content in sewage sludge and the needed irradiation dose to eliminate pathogens was evaluated. The results indicated that, all tested sewage sludge sample, bacterial pathogens including Enterobacter sp., Klebsiella sp., Salmonella sp., and e. coli, were detected. Used doses of gamma irradiation reduced the counts of microorganisms. D 1 0 of total count decreased with increasing the moisture level of sewage sludge. The lowest lethal dose for bacterial pathogens including Enterobacter sp., Klebsiella sp., Salmonella sp., and e. coli is over 5 kGy and 1 kGy in air dried and watered sludge with more than 40% sewage sludge respectively, for samples taken at 2, 4 and 6 months of storage. (author)

  11. Bioprocessing of sewage sludge for safe recycling on agricultural land - BIOWASTE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jens Ejbye; Angelidaki, Irini; Christensen, Nina; Batstone, Damien John; Lyberatos, Gerasimos; Stamatelatou, Katerina; Lichtfouse, Eric; Elbisser, Brigitte; Rogers, Kayne; Sappin-Didier, Valerie; Dernaix, Laurence; Caria; Giovanni; Metzger, Laure; Borghi, Veronica; Montcada, Eloi

    2003-07-01

    Disposal and handling of sewage sludge are increasing problems in Europe due to the increasing quantities of the sewage sludge produced. A large amount of the sewage sludge contains small fractions of toxic chemicals, which results in problems with safe use of the sewage sludge on agricultural land. From an ecological and economical point of view, it would be essential to establish methodologies, which could allow sewage sludge to be reused as fertilizers on agricultural land. Energy efficient biotreatment processes of organic waste are, therefore, of crucial importance. BIOWASTE will offer an integrated study of this area. The typical composition of sewage sludge will be characterized with regard to key contaminating compounds. The following compounds will be in focus: Emulsifying agents such as nonylphenols and nonylphenol ethoxylates (NPE), polycyclic aromatic hydrocarbons (PAHs) derived from incomplete combustion processes and phthalates, which are used as additives in plastics and surfactants such as linear alkyl benzene sulfonate (LAS). Analytical techniques suitable for qualitative and quantitative evaluation of the chemical species involved in the processes under investigation will be determined. Bacteria that are able to degrade selected contaminating compounds under anaerobic and aerobic conditions will be isolated, characterized and bioaugmented for decontamination of sewage sludge through bioprocessing. Aerobic, anaerobic and combination of aerobic/anaerobic bioprocessing of sewage sludge will be applied. A mathematical model will be developed to describe the biodegradation processes of the contaminating compounds after establishing the kinetic parameters for degradation of contaminating compounds. The bioprocessed sewage sludge will be used in eco- and plant- toxicology tests to evaluate the impact of the xenobiotics on the environment. Methodologies will be developed and applied to assess the cleanliness of the bioprocessing as a safe method for waste

  12. Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge.

    Science.gov (United States)

    Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian

    2017-03-21

    To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57-1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116-960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs).

  13. Effect of Sewage Sludge on Some Macronutrients Concentration and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Sakine Vaseghi

    2005-03-01

    Full Text Available Sewage sludge as an organic fertilizer has economic benefits. Land application of sewage sludge improves some soil chemical and physical properties. The objective of this study was to evaluate the effect of sewage sludge on soil chemical properties and macronutrient concentration in acid and calcareous soils. The study was carried out in a greenhouse using factorial experiment design as completely randomized with three replications. Treatments included : four levels of 0 or control, 50, and 100, 200 ton ha-1 sludge and one level of chemical fertilizer (F consisting of 250 kg ha-1 diammonium phosphate and 250 kg ha-1 urea, and soil including soils of Langroud, Lahijan, Rasht, and Isfahan. As a major vegetable , crop spinach (Spinacea oleracea was grown in the treated soils. Soils samples were analyzed for their chemical properties after crop narvesting. Application of sewage sludge significantly increased plant available k, P, total N, organic matter, electrical conductivity and cation exchange in the soils. Soils pH significantly decreased as a result sewage sludge application. The effect of sewage sludge on plant yield was significant. Overall, the results indicated that sewage sludge is potentially a valuable fertilizer. However, the sludge effect on soil EC and heavy metals should be taken into consideration before its widespread use on cropland.

  14. Sewage sludge treatment, utilisation and disposal; Schlammbehandlung, -verwertung und -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In view of recent events and the resulting emotional and political decisions, the issue of sewage sludge treatment and disposal in Germany. must be seen in a new light. First, a new concept for sewage sludge management must be developed as recent legislation interferes with the 'classic' strategy of utilisation in agriculture, dumping and combustion. Scientists and sewage plant owners must find new ways to implement the specifications of the Act on Recycling and Waste Management. This ATV-DVWK training course discusses subjects that may be helpful on the new path. Starting from current legislation, problems, decision criteria and cost of sewage sludge treatment are gone into. Dimensioning fundamentals for sewage treatment plants re presented, and new and established treatment methods, operational problems and pollution problems are discussed. Further subjects are recycling of useful materials from sewage sludge, co-treatment of organic materials in fermenters, and disposal concepts for small and medium-sized communities. (orig.)

  15. Reasonable management plan of sludge in sewage disposal plant

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Kyu Jin; Koo, Hyun Jung [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The compost method, which is widely used as a sewage disposal recycling in Korea, is now basically impossible to recycle sludge to compost by the Ministry of Agriculture and Forestry announcement. Therefore, the disposal of sludge will be much harder with reducing the amount of sludge used as compost. The amount of sludge other than using as compost is very small, so the development of various sludge recycling and use will be needed with regulations. This study was implemented to help the establishment of sewage sludge recycling policy in Korea. 30 refs., 17 figs., 58 tabs.

  16. Oil-Sludge Extended Asphalt Mastic Filled with Heavy Oil Fly Ash and Cement Waste for Waterproofing

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2014-12-01

    Full Text Available Recycling as an economic disposal process for many hazardous waste materials has become a popular means of conserving our planet’s scarce and diminishing natural resources. This paper is a study of the influence of oil sludge (OS on the physical behavior and performance of asphalt filled with heavy oil fly ash (HOFA, cement kiln dust (CKD and limestone dust (LMD. Conventional asphalt consistency tests in addition to a new bond strength (BS test were conducted on the modified asphalt mastics. The results were statistically analyzed and assessed in accordance with American Society for Testing and Materials (ASTM D 332 and ASTM D 449 specifications. Too much OS resulted in strength deterioration of the asphalt mastic, which can be compensated for by filling the mastic with HOFA. OS interacts constructively with the fillers to improve their effectiveness in raising the softening point (SP and viscosity of the asphalt, and also in reducing its penetration and ductility. Even though sludge mastics hold promise as suitable composites for damp proofing and waterproofing, the resulting low flash point (FP and SP of some of these mastics make their suitability for roofing applications questionable.

  17. Study of heavy metal in sewage sludge and in Chinese cabbage ...

    African Journals Online (AJOL)

    The study was performed to investigate the heavy metal content and availability for crops in sewage sludge and its accumulation in Chinese cabbage grown in sewage sludge amended soil. We determined the total and chemical fraction of As, Cr, Cd, Pb, Ni, Cu, Zn, Fe, Mg and Mn in sewage sludge and the total content of ...

  18. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, Ibrahim; Lopes, M. Helena; Abelha, Pedro; Cabrita, Isabel; Oliveira, J.F. Santos

    2003-07-01

    The behaviour of Cd, Cr, Cu, Co, Mn, Pb, Zn and Hg during the combustion tests of granular dry sewage sludges on a pilot FBC of about 0,3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals. Heavy metals were collected and analysed from different locations of the installation, which included the stack, the two cyclones and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40 and 80%. It is believed that in this latter case, a slightly higher bed temperature could have enhanced the volatilisation, especially of Cd and Pb. However these metals were then retained in cyclone ashes. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of it was retained in the cyclone and emitted as both fine ash particles and in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted for about 50%, although there was a significant amount unaccounted for. This appeared to have significantly decreased in the case of co-combustion, as only about 15% has been emitted, due to the retention effect of cyclone ashes which presented high quantities of unburned carton and possibly condensed sulphur species.

  19. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    The objective of this study was to investigate sintering and slagging behaviors of biofuels during combustion processes. Biofuels tested are derived from the agricultural sector, wood and furniture industry as well as from municipal sewage sludge. It was also the aim to test and evaluate additives that can prevent and abate biomass ash sintering by conducting laboratory and industrial scale tests. Sintering characteristics of sewage sludge ashes at elevated temperatures were investigated by means of different laboratory methods. Utilizing of phosphorus participation agents Al2(SO4)3 or Fe2(SO4)3 caused substantially high contents of aluminum or iron in the studied sewage sludge ashes, respectively. High initial melting temperatures over 1100 degrees C and low sintering tendencies were observed from the sewage sludge ashes rich in aluminum. It was related to presence and formation of the inert mineral phases such as aluminum oxide, quartz and calcium aluminum silicates in the aluminum rich sewage sludge ashes at elevated temperatures. A low melting temperature, about 994 degree C, was detected from the iron rich sewage sludge ash. Severe sintering of this sewage sludge ash was mainly due to generation of low temperature melting iron silicates, as results of interaction and re-assemblage of hematite (Fe2O3), quartz (SiO2) and alkali feldspars under heating. Fusion behaviors of corn cob ashes under rising temperatures were characterized. The work revealed that chemical compositions of corn cob ashes are dominated by potassium, silicon, chlorine and phosphorus. However, the relative concentrations of these principal elements are considerably different for three studied corn cob ashes, which have major influence on ash transformation reactions and sintering tendencies. Compared with the other two, the chemical composition of the Waimanalo corn cob (WCob) was characterized with the highest K/Cl, Si/(Ca+Mg) and (Si+P+K)/(Ca+Mg) molar ratios, which was favorable for

  20. Use of sewage sludge - nitrogen availability and heavy metal uptake into rape

    International Nuclear Information System (INIS)

    Gerzabek, M. H.; Lombi, E.; Herger, P.

    1998-07-01

    The results of a three years experiment with large pots in the field evaluating the effects of sewage sludge (sterilised by γ-irradiation or not sterilised) on rape growth, heavy metal-and N-uptake, using the 15 N-dilution technique, are presented. Mobile fractions of Cd, Cu and Zn increased significantly in the substrate due to sewage sludge treatments. However heavy metal transfer into rape plants did not respond clearly. Rape growth was clearly enhanced in the first and third year due to sewage sludge applications. The average N-utilization by rape from sewage sludge in a three years period decreased from 7.4 % (first year), 1.8 % (second year) to 1.1 % (third year), resulting in an overall utilization of 10.3 % of sewage sludge - N t by rape plants. Irradiation of sewage sludge did not result in any significant effect on the investigated parameters. (author)

  1. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Hansen, Henrik K.

    2007-01-01

    in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed...... with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrix.......Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration...

  2. Amendment of the EC Sewage Sludge Regulation and the German Sewage Sludge Ordinance; Novellierung der EG-Klaerschlammrichtlinie und der deutschen Klaerschlammverordnung

    Energy Technology Data Exchange (ETDEWEB)

    Bergs, C.G.; Krebsbach, A. [Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Berlin (Germany)

    2001-03-01

    The EC Sewage Sludge Guideline of 12 June 1996 laid down the boundary conditions for sewage sludge utilisation in agriculture. The purpose of the regulation was the standardisation of member states regulations on sewage sludge treatment and the harmonisation of limiting values for pollutant emissions in the EC member states. [German] Mit der 'Richtlinie des Rates vom 12. Juni 1996 ueber den Schutz der Boeden bei der Verwendung von Klaerschlamm in der Landwirtschaft' (86/278/EWG) hat die Europaeische Kommission EU-weite Rahmenvorgaben fuer die landwirtschaftliche Klaerschlammverwertung geschaffen. Ziel der Richtlinie war es, eine Rechtsangleichung der Regelungen ueber die Klaerschlammverwertung und eine Harmonisierung der Schadstoffgrenzwerte in den Mitgliedstaaten zu erreichen. (orig.)

  3. The presence of contaminations in sewage sludge - The current situation.

    Science.gov (United States)

    Fijalkowski, Krzysztof; Rorat, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata J

    2017-12-01

    Sewage sludge/biosolids are by-wastes of municipal and industrial wastewater treatment. As sources of nutrients (C, N, P) they are widely used in intensive farming where large supplementation of organic matter to maintain fertility and enhance crop yields is needed. However, according to the report of European Commission published in 2010, only 39% of produced sewage sludge is recycled into agriculture in the European Union. This situation occurs mainly due to the fact, that the sewage sludge may contain a dangerous volume of different contaminants. For over decades, a great deal of attention has been focused on total concentration of few heavy metals and pathogenic bacteria Salmonella and Escherichia coli. The Sewage Sludge Directive (86/278/EEC) regulates the allowable limits of Zn, Cu, Ni, Pb, Cd, Cr and Hg and pathogens and allows for recovery of sludge on land under defined sanitary and environmentally sound conditions. In this paper, a review on quality of sewage sludge based on the publications after 2010 has been presented. Nowadays there are several papers focusing on new serious threats to human health and ecosystem occurring in sewage sludge - both chemicals (such as toxic trace elements - Se, Ag, Ti; nanoparticles; polyaromatic hydrocarbons; polychlorinated biphenyl; perfluorinated surfactants, polycyclic musks, siloxanes, pesticides, phenols, sweeteners, personal care products, pharmaceuticals, benzotriazoles) and biological traits (Legionella, Yersinia, Escherichia coli O157:H7). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Use of sludge as ceramic materials

    International Nuclear Information System (INIS)

    Morais, L.C.; Vianna, R.S.C.; Campos, V.; Rosa, A.H.; Buechler, P.M.

    2009-01-01

    Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves. (author)

  7. Alkaline coal fly ash amendments are recommended for improving rice-peanut crops

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.K.; Ghosh, B.C. [Agricultural and Food Engineering Department, Indi an Inst. of Technology, Kharagpur, West Bengal (India); Rautaray, S.K. [RRLRRS, Gerua Via-Hajo, Dist-Kamrup, Assam (India)

    2007-05-15

    A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997-98 and 1998-99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg/ha was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N/ha and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg/ha through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t/ha in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.

  8. Response of rice to nitrogenous fertilizer and irradiated sewage sludge

    International Nuclear Information System (INIS)

    Azam, F.; Lodhi, A.; Sajjad, M.H.

    2003-01-01

    A greenhouse pot experiment was conducted to study the effect of Gamma-irradiated sewage sludge, applied alone or along with /sup 15/N-labelled ammonium sulphate (1.0 atom % /sup 15/N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended wit sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg/sub -1/ soil. In other treatments nitrogen was applied at 120 mg kg/sup -1/ as /sup 15/N-labelled ammonium sulphate or 120 mg kg/sub -1/ as /sup 15/NH/sub 4/-N + sludge-N in the ratios of 1:3, 1:1, or 3:1. All the treatments were given before transplanting rice. Three healthy seedlings (4-week old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted pot/sup -1/ and the plants harvested at maturity. Application of sewage sludge caused a significant improvement in rice yield. Grain yield increased by 188% at sludge-N of 120 mg N kg/sup -1/. The yield benefit at similar rate of fertilizer N was 304%, the increase being more at higher rates of application. The increase in rice yield was dependent on uptake of N and sewage sludge significantly improved the availability of N to the plants. The additional plant N in sludge treated soil was partially attributable to enhanced mineralization of soil N and N/sub 2/ fixation by free living microorganisms. Application of inorganic N led to a significant increase in the availability of N to plants from soil organic matter and sewage sludge. Results of combined application suggested that substantial savings of fertilizer N can be made by using sewage sludge on rice-fields. (author)

  9. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    Science.gov (United States)

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  11. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  12. The effects of pelleted sewage sludge on Norway spruce establishment and nitrogen dynamics

    International Nuclear Information System (INIS)

    Johannesson, Anders

    1999-01-01

    In Sweden there is a big resource in unutilised sewage sludge. Studies have shown that application of municipal sewage sludge can improve forest productivity and planting environment. This study is examining the effects of two types of pelleted sewage sludge (pure sludge and a mixture of sludge and domestic wastes compost) on nitrogen turnover. Large differences were found in the fertilisation effect of the different treatments. The pure sewage sludge pellets treatment showed significant increases for NH 4 -accumulation, nitrification and NO 3 -leaching in the top 10 cm of the soil. Uptake of nitrogen was increased in spruce plants and vegetation. The mixed sludge/domestic waste pellets treatment showed indications of a minor initial release of nitrogen. This is seen as a small but significant initial increase in soil nitrification. These results suggest that the pure sewage sludge pellet is an adequate nitrogen fertiliser. The mixed sludge though is inadequate at least in the short run

  13. Cs-137 for irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Lessel, T.

    1986-01-01

    Since 1973, the Geiselbullach sewage treatment works have been continuously operating their first system for gamma irradiation of sewage sludge. Within the framework of a German-American agreement, nine Cs-137 sources with a total activity of 56.000 Ci have been made available to the works free of charge in 1983, in order to test in practice and to demonstrate the applicability of these radiation sources in comparison to the Co-60 sources exclusively used up to then. This first study on the applicability of Cs-137 as a radiation source for sewage sludge treatment revealed no findings or effects speaking against Cs-137 as a radiation source for this purpose. (orig./RB) [de

  14. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA).

    Science.gov (United States)

    Fang, Le; Li, Jiang-Shan; Guo, Ming Zhi; Cheeseman, C R; Tsang, Daniel C W; Donatello, Shane; Poon, Chi Sun

    2018-02-01

    Chemical extraction of phosphorus (P) from incinerated sewage sludge ash (ISSA) is adversely influenced by co-dissolution of metals and metalloids. This study investigated P recovery and leaching of Zn, Cu, Pb, As and Ni from ISSA using inorganic acids (sulphuric acid and nitric acid), organic acids (oxalic acid and citric acid), and chelating agents (ethylenediaminetetraacetic acid (EDTA) and ethylene diamine tetramethylene phosphonate (EDTMP)). The aim of this study was to optimize a leaching process to recover P-leachate with high purity for P fertilizer production. The results show that both organic and inorganic acids extract P-containing phases but organic acids leach more trace elements, particularly Cu, Zn, Pb and As. Sulphuric acid was the most efficient for P recovery and achieved 94% of total extraction under the optimal conditions, which were 2-h reaction with 0.2 mol/L H 2 SO 4 at a liquid-to-solid ratio of 20:1. EDTA extracted only 20% of the available P, but the leachates were contaminated with high levels of trace elements under optimum conditions (3-h reaction with EDTA at 0.02 mol/L, pH 2, and liquid-to-solid ratio of 20:1). Therefore, EDTA was considered an appropriate pre-treatment agent for reducing the total metal/metalloid content in ISSA, which produced negligible changes in the structure of ISSA and reduced contamination during subsequent P extraction using sulphuric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-07-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  16. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    International Nuclear Information System (INIS)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-01-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  17. Sanitizing effects of sewage sludge irradiation treatment

    International Nuclear Information System (INIS)

    Zhao Yongfu

    2005-01-01

    A large quantity of pathogenic organisms were found in sewage sludge. An investigation was carried out on the relationship in the chain of sludge-soil-vegetable between the survival of pathogenic organisms and the irradiation dosage. After irradiation with 5-6 kGy, coliform group reduced 3 log cycles, and ascarid ova were completely eliminated with a dose of 1 kGy, making the water matched the standard quality of irrigating water. In the soil applied with irradiated sewage sludge, the total bacteria and coliforms group count reduced to one tenth, and alive ascarid ova was not detected. The coliform group on the Chinese cabbage was extremely low and reached the standard of fresh eating. (authors)

  18. Development of bricks with incorporation of coal ash and sludge from water treatment plant; Desenvolvimento de tijolos com incorporacao de cinzas de carvao e lodo provenientes de estacao de tratamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro Valerio da

    2011-07-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  19. Fast pyrolysis of lignin, macroalgae and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, N.T.

    2013-04-15

    Non-conventional biomass feedstock may also be applicable for fast pyrolysis processes. Among the forms of non-conventional biomasses, macroalgae, lignin (industrial residue) and sewage sludge may be attractive materials due to their low price, non-competitiveness with food crops and the possible utilization of solid wastes. Besides, a fast pyrolysis process can be used as a process to densify the biomass and produce bioslurry, a mixture of bio-oil and pyrolytic char. The bioslurry is found to be a possible feedstock for pressurized gasification plants. Thus, the aims of this project are to investigate fast pyrolysis properties of lignin, sewage sludge and macroalgae on a lab scale PCR and characterize their bio-oil properties. Bioslurry properties with respect to use as a feedstock for pressurized gasification is also investigated. Lignin and sewage sludge PCR pyrolysis provided bio-oil yields of 47 and 54 wt% daf, and oil energy recovery of 45 and 50 %, respectively. While the macroalgae PCR pyrolysis showed promising results with an organic oil yield of 65 wt% daf and an oil energy recovery of 76 %. The HHV of the lignin, sewage sludge and macroalgae oils were 29.7, 25.7 and 25.5 MJ/kg db respectively, and that are higher than that of typical bioiv oil from conventional biomasses (23-24 MJ/kg db). Almost all metals feedstock contents were contained in the chars at temperatures of 550 - 575 deg. C for lignin, sewage sludge and macroalgae PCR pyrolysis. Due to high feedstock nitrogen and sulfur contents, also a high level of nitrogen and sulfur of macroalgae and sewage sludge oils were observed compared to conventional bio-oil and this may limit their further industrial applications. The lignin char had a high proportion of small size particles, a HHV of 21 MJ/kg db and were almost free of chloride and sulfur, thus it is considered as a promising fuel for gasification or combustion; whereas macroalgae and sewage sludge chars containing high amounts of

  20. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance

    International Nuclear Information System (INIS)

    Cheng, Jun; Ding, Lingkan; Lin, Richen; Yue, Liangchen; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-01-01

    Highlights: • Microanalyses revealed food waste had more gelatinized organics and less mineral ash. • Mixed food waste and sewage sludge at 5 ratios were used for H_2 and CH_4 co-production. • Highest H_2 yield of 174.6 mL/gVS was achieved when food waste:sewage sludge was 3:1. • Co-fermentation enhanced carbon conversion by strengthening hydrolysis of substrates. • Energy yield rose from 1.9 kJ/gVS in H_2 to 11.3 kJ/gVS in H_2 and CH_4 co-production. - Abstract: The accumulation of increasingly generated food waste and sewage sludge is currently a heavy burden on environment in China. In this study, the physiochemical properties of food waste and sewage sludge were identified using scanning electron microscopy and Fourier transform infrared spectroscopy to investigate the effects on the fermentation performance in the co-fermentation of food waste and sewage sludge for biohydrogen production. The high gelatinized organic components in food waste, the enhanced bioaccessibility due to the dilution of mineral compounds in sewage sludge, and the balanced C/N ratio synergistically improved the fermentative biohydrogen production through the co-fermentation of food waste and sewage sludge at a volatile solids (VS) mix ratio of 3:1. The biohydrogen yield of 174.6 mL/gVS was 49.9% higher than the weighted average calculated from mono-fermentation of food waste and sewage sludge. Co-fermentation also strengthened the hydrolysis and acidogenesis of the mixture, resulting in a total carbon conversion efficiency of 63.3% and an energy conversion efficiency of 56.6% during biohydrogen production. After the second-stage anaerobic digestion of hydrogenogenic effluent, the energy yield from the mixed food waste and sewage sludge significantly increased from 1.9 kJ/gVS in the first-stage biohydrogen production to 11.3 kJ/gVS in the two-stage fermentative biohydrogen and biomethane co-production.

  1. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  2. Degradation rate of sludge/fly ash mixture used as landfill liner; Nedbrytningshastigheten foer taetskikt uppbyggda av slam och aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Process AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Technology (Sweden)

    2005-10-01

    In order to be able to use mixtures of ash and sludge as landfill liner an important aspect is to demonstrate that the degradation of organic matter is slow enough. Therefore, the goal of this project has been to find out for how long a landfill liner material of sludge and ash will be stable and keep its function. The degradation of organic material in two different mixtures of sludge and ash has been studied in laboratory experiments. The rate of degradation was then estimated for barriers of sludge and ash, taking into account construction techniques (mixture, compaction, water content), climate conditions (freezing, drying) and biological processes (NaN{sub 3} additive). The effect of the degradation on the permeability has also been quantified. Organic material may disappear for the landfill liner material through 1) initial leaching of soluble organic material, 2) leaching of organic material after chemical reactions or 3) evaporation during biological degradation. Bacterial activity was not found in the sludge/ash mixtures during the experiments. Therefore, the organic material is probably reduced mainly though leaching according to 1) and 2). The leached amount of TOC (total organic carbon) was measured for all samples of sludge/ash in several experimental cycles. The leached amount of TOC was compared to the initial amount of TOC in the material. The results show a small initial reduction of organic material through leaching but the TOC content in the material is then stabilized. In relation to the total weight of the material the leaching of TOC was similar for the mixtures with 80 % ash and 20 % ash. However, this means that a larger amount of TOC was leached out from the mixtures with a high ash content since the initial amount of organic material was smaller. General conclusions about which ash-sludge ratio that is suitable for a landfill liner material could not be drawn from the experiments from a degradation point of view. If the initial

  3. The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) during the restart period: effect of the C/N ratios and filter media.

    Science.gov (United States)

    Yue, Qinyan; Han, Shuxin; Yue, Min; Gao, Baoyu; Li, Qian; Yu, Hui; Zhao, Yaqin; Qi, Yuanfeng

    2009-11-01

    Two lab-scale upflow biological anaerobic filters (BAF) packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) were employed to investigate effects of the C/N ratios and filter media on the BAF performance during the restart period. The results indicated that BAF could be restarted normally after one-month cease. The C/N ratio of 4.0 was the thresholds of nitrate removal and nitrite accumulation. TN removal and phosphate uptake reached the maximum value at the same C/N ratio of 5.5. Ammonia formation was also found and excreted a negative influence on TN removal, especially when higher C/N ratios were applied. Nutrients were mainly degraded within the height of 25 cm from the bottom. In addition, SFCP, as novel filter media manufactured by wastes-dewatered sludge and fly ash, represented a better potential in inhibiting nitrite accumulation, TN removal and phosphate uptake due to their special characteristics in comparison with CCP.

  4. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  5. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification

    International Nuclear Information System (INIS)

    Moon, Jihong; Mun, Tae-Young; Yang, Won; Lee, Uendo; Hwang, Jungho; Jang, Ensuk; Choi, Changsik

    2015-01-01

    Highlights: • Hydrothermal treatment (HT) is energy efficient and increases fuel energy density. • Pyrolysis and steam gasification were performed with sewage sludge before/after HT. • Product gases resembled those from wood chips, particularly at high temperature. • HT increases sludge lignin content, possibly enhancing methane yield of product gas. • HT can improve sewage sludge for use as an alternative to biomass and fossil fuels. - Abstract: Hydrothermal treatment is a promising option for pretreatment drying of organic waste, due to its low energy consumption and contribution to increasing fuel energy density. In this study, the characteristics of hydrothermally treated sewage sludge were investigated, and pyrolysis and steam gasification were performed with the sludge before and after hydrothermal treatment. The overall composition of product gases from treated sludge was similar to that obtained from steam gasification of wood chips, particularly under high-temperature conditions. In addition, the increase in lignin content of sewage sludge following hydrothermal treatment could help enhance methane yield in product gas during pyrolysis and steam gasification. The findings suggest that hydrothermal treatment is an appropriate method for improving sewage sludge for use as an alternative to biomass and fossil fuels

  6. Studies on land application of sewage sludge and its limiting factors

    International Nuclear Information System (INIS)

    Wang Xin; Chen Tao; Ge Yinghua; Jia Yongfeng

    2008-01-01

    Field experiments were conducted to study the effect of sewage sludge application on the heavy metal content in soils and grasses. The sewage sludge was obtained from Northern Shenyang Wastewater Treatment Plant, China, and applied at 0, 15, 30, 60, 120 and 150 t ha -1 . Native grasses Zoysia japonica and Poa annua were chosen as experimental plants. The experimental results showed that nutrient content of the soil, especially organic matter, was increased after sewage sludge application. The grass biomass was increased and the grass growing season was longer. Heavy metal concentrations in the soil also increased; however, the Zn content did not exceed the stringent Chinese environmental quality standard for soil. Pb and Cu did not exceed the standard for B grade soil, but Cd concentration in soil amended by sewage sludge has exceeded the B grade standard. Therefore, it is suggested that the sewage sludge produced from the wastewater treatment plant should not be applied to farmland, for which B grade soil or better is required. The sludge is suitable for application to forestry and grasslands or nurseries where food chain contamination with cadmium is not a concern

  7. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    OpenAIRE

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Avera...

  8. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  9. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  10. Future of sewage sludge in disposal; Klaerschlammentsorgung. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Benjamin [Umweltbundesamt, Dessau (Germany). Fachgebiet III 2.4 - Abfalltechnik, Abfalltechniktransfer

    2013-06-01

    The thermal treatment of sewage sludge is changing continuously. In the future, the disposal of sewage sludge is framed and will be adjust by the idea of resource saving. Simultaneously due the amendment of the 17th BImSchV emission control will be encouraged. Although, more than a quarter of the upcoming sludge is incinerated in mono-incineration plants, this amount should be increased. Therefore, it is necessary to build up new capacities of mono-incineration plants. The legal and strategic framework which has an influence on the combustion of sludge will be examined in this paper. (orig.)

  11. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge

    International Nuclear Information System (INIS)

    Li, Hanhui; Chen, Zhihua; Huo, Chan; Hu, Mian; Guo, Dabin; Xiao, Bo

    2015-01-01

    Highlights: • Bioleaching can modify the physicochemical property of sewage sludge. • The enhancement is mainly hydrogen. • Bioleaching can enhance the gas production in gasification of sewage sludge. • Study provides an insight for future application of bioleached sewage sludge. - Abstract: Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge was carried out in a lab-scale fixed-bed reactor. The influence of sewage sludge solids concentrations (6–14% (w/v) in 2% increments) during the bioleaching process and reactor temperature (600–900 °C in 100 °C increments) on gasification product yields and gas composition were studied. Characterization of samples showed that bioleaching treatment, especially in 6% (w/v) sludge solids concentration, led to metal removal effectively and modifications in the physicochemical property of sewage sludge which was favored for gasification. The maximum gas yield (49.4%) and hydrogen content (46.4%) were obtained at 6% (w/v) sludge solids concentration and reactor temperature of 900 °C. Sewage sludge after the bioleaching treatment may be a feasible feedstock for hydrogen-rich gas product.

  12. Activated sewage sludge, a potential animal foodstuff. Part I. Nutritional characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tacon, A.G.J.

    1979-08-01

    The nutritive value of activated sewage sludge is discussed in terms of its amino acid N, non-amino acid N, carbohydrate, fat, mineral, vitamin and microbial content. Processed activated sewage sludge is described as a stable dark brown material of relatively uniform quality, having a nutritive value broadly equivalent to brewers yeast or a protein-rich cereal. The potential hazards associated with the use of activated sewage sludge as a feed ingredient are discussed. 29 references

  13. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    Science.gov (United States)

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Practical aspects of the pasteurization of sewage sludge by electron irradiation

    International Nuclear Information System (INIS)

    Tauber, M.; Hofmann, E.G.; Offermann, B.P.

    1975-01-01

    Recently the demand for disinfection of sewage sludge has increased. Investigations have shown that the radiation pasteurization of sludge is the most preferable treatment. Up to now most of these investigations have been made with 60 Co radiation sources. However, it is not easy to run an economic and safe process line for the irradiation of sewage sludge with such isotope sources. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. From the standpoint of the limited electron penetration into the material it is desirable to use high-energy electrons (up to 1.5 MeV) whereas from an economic standpoint it may be better to use electrons of lower energies (0.5 to 1 MeV) and to homogenize the sewage sludge to the required thickness. The following parameters must be considered for a commercial process line: effectivity of the electron radiation process; limited penetration of electrons into the material to be irradiated; beam power of electron accelerators required for sewage sludge treatment; safety aspects; economics of the process with regard to electron energy, power and homogenization of the material; and environmental aspects of the installations. The practical aspects of commercial process lines for electron irradiation of sewage sludge and the design of handling equipment are discussed in relation to these parameters. (author)

  15. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    Science.gov (United States)

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Leachability of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Sewage sludge is sewerage from wastewater treatment plants that generates millions tons of sludge ever year. Regarding this activity, it causes lack management of waste which is harmful to the surrounding conditions. Therefore, this study is focuses on the incorporation of sewage sludge waste into fired clay brick to provide an option of disposal method, producing adequate quality of brick as well as limiting the heavy metal leachability to the environment. Sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, 20% and 30% of sewage sludge waste (SSW). Heavy metals of crushed SSB were determined by using Toxicity Characteristic Leaching Procedure (TCLP) according to Method 1311 of United State Environment Protection Agency (USEPA) standard. From the results obtained, up to 20% of SSW could be incorporated into fired clay brick and comply with the USEPA standard. Therefore, this study revealed that by incorporating SSW into fired clay brick it could be an alternative method to dispose the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  17. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  18. Radiation disinfection of liquid sewage sludge for safe reutilization

    International Nuclear Information System (INIS)

    Harsoyo; Hilmy, Nazly; Suwirma, S.

    1992-01-01

    Liquid sewage sludge with water content of 80.9% was irradiated with doses of 2, 4, and 6 kGy respectively and then stored at room temperature. Parameter observed were total microbes per g, chemical, physical properties. Total bacterial counts of unirradiated liquid sewage sludge were found to be 12,91 X 10(5) per g, while coliform, enterobacteriaceae, staphylococcus, fecal streptococcus, and pseudomonas were found to be 76.66 X 10(4) per g, 23.82 X 10(4) per g, 46.57 X 10(3) per g, 6.27 X 10(2) per g, 20.04 X 10(3) per g, respectively. About 10% of the total coliform were escherichia coli. Irradiation dose of 4 kGy eliminated salmonella from all samples observed. No shigella was found in the samples. Total nitrogen contents of the liquid sewage sludge ranged berween 0.34 and 0.48%, phosphorus between 0.78 and 1.04%, and potassium between 0.04 and 0.06%. Heavy metal elements were found only in very small amount. The BOD(5), COD, solid suspension, particle size, and sedimentation rate of unirradiated liquid sewage sludge were found to be 1.49 ppm, 13.93% W, 46 mg/ml, 0.0035 ml, and 11.30 cm/week, respectively. A combination of irradiation at 4 kGy and storage for 4 weeks could eliminate enterobacteriaceae, staphylococcus, fecal streptococcus, psedomonas, and salmonella in the liquid sewage sludge. (authors). 9 refs, 13 tabs

  19. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    Lavale, D.S.; George, J.R.; Shah, M.R.; Rawat, K.P.

    1998-01-01

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60 Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60 Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60 Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  20. Evaluation of the nutritional value of Irradiated sewage sludges reuse in agriculture

    International Nuclear Information System (INIS)

    El-Motaium, R.A.; El-Ammari, M.F.

    2006-01-01

    Four different sludges were collected from wastewater treatment plants and a farm in greater Cairo area. These sludges represent three different treatments: secondary (Helwan), primary (Abou Rawash), digested (El-Gabal El-Asfar) and raw (El-Gabal El-Asfar farm). Half of the collected sludge was exposed to 6 KGy of gamma radiation and the other half was kept non-irradiated. The different parameters measured for this evaluation were ph, EC, total and available nitrogen, total and available phosphorus, total potassium, organic matter, C/N ratio, micro nutrients (Fe, Zn, Cu, Mn) and heavy metals (Cd, Pb, Ni). The data showed that irradiated sewage sludges contain high organic matter, nitrogen, phosphorus, potassium and micro nutrients content. Heavy metals concentrations in the different sludges were less than the international permissible levels for sludge utilization in agriculture. Thus, Egyptian irradiated sewage sludge can be reused for agriculture. Irradiated sewage sludge if applied at 20 t/ha rate can provide plants with their need of macro nutrients (NPK) and micro nutrients (Fe, Zn, Mn, Cu). In the meantime, Cd concentration that can be added to the soil at the same application rate is very small; 0.042-0.108 kg/ha for primary and secondary treated sludge, respectively. Sludge that was treated by digestion showed the highest concentrations of organic matter, nitrogen and phosphorus. Non-significant differences were observed between the ph, EC, OM%, C% and C/N values of irradiated and non-irradiated sewage sludges. In general, no consistent effect of gamma radiation on heavy metals content was recorded. Gamma radiation can impose positive effect on sewage sludge without a reduction of its nutritional value and it is recommended method for sewage sludge treatment

  1. Sewage sludge treatment and disposal in Germany. Results of the DWA Sewage Sludge Study of 2003; Stand der Klaerschlammbehandlung und -entsorgung in Deutschland. Ergebnisse der DWA-Klaerschlammerhebung 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-15

    In 2003, DWA carried out a nation-wide enquiry on sewage sludge treatment and disposal in Germany among operators of communal sewage treatment plant. Information was obtained on sewage sludge volumes and qualities as well as on methods of treatment and disposal pathways. Data were also compiled on the volumes and disposal of filtered-out material. This publication also includes results of other studies, e.g. by the Federal Office of Statistics (StBA) and Federal Environmental Office (UBA). The studies were initiated by the DWA Waste and Sewage Sludge Section. (orig.)

  2. Survey of radiation effect on sewage sludge

    International Nuclear Information System (INIS)

    M'selmi, Nadia Ammar

    2005-01-01

    The high nutrient and organic matter contents of sewage sludge make it a useful soil amandment for famers. the presence of heavy metals and pathogens poses a major problem for utilisation of sladge to agriculture land. Radiation is a convenable method of sewage treatment. (author)

  3. Future fly ash marketing; Flugaschevermarktung in der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Mauder, R.; Hugot, A. [Evonik Power Minerals GmbH, Dinslaken (Germany)

    2008-07-01

    It can be assumed that the fly ash production volumes will undergo a marked increase over the next few years. The conditions of fly ash production will improve as a result of modern and refurbished power plants, yielding a positive effect on the quality of fly ashes. Other vital parameters of future fly ash marketing are fly ash logistics and the infrastructure of power plants. Basically, economic utilisation of the increased production volumes is possible; however, new and long-term strategies are necessary. (orig.)

  4. Plant growth on 'fly ash'

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R; Hodgson, D R; Townsend, W N; Wood, J W

    1958-04-12

    Plants were grown in plot and pot experiments to assess the toxicity of the fly ash. It was found that plants grouped into three classes: tolerant, moderately tolerant, and sensitive. Boron was found to be a major compoent of the toxic principle of fly ash.

  5. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  6. Impacts of Sewage Sludge in Tropical Soil: A Case Study in Brazil

    International Nuclear Information System (INIS)

    Bettiol, W.; Ghini, R.

    2011-01-01

    A long-term assay was conducted to evaluate the environmental impacts of agriculture use of sewage sludge on a tropical soil. This paper describes and discusses the results obtained by applying a interdisciplinary approach and the valuable insights gained. Experimental site was located in Jaguariuna (SP, Brazil). Multiyear comparison was developed with the application of sewage sludge obtained from wastewater treatment plants at Barueri (domestic and industrial sewage) and Franca (domestic sewage), Sao Paulo State. The treatments were control, mineral fertilization, and sewage sludge applied based on the N concentration that provides the same amount of N as in the mineral fertilization recommended for corn crop, two, four, and eight times the N recommended dosage. The results obtained indicated that the amount of sewage sludge used in agricultural areas must be calculated based on the N crop needs, and annual application must be avoided to prevent over applications.

  7. Sewage sludge treatment and disposal. Experiences and perspectives; Klaerschlammbehandlung und -entsorgung. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N.; Mueller, J. [comps.] [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1997-09-01

    Topics of the proceedings are: sewage sludge treatment and sewage sludge disposal by means of: thermal treatment, fermentation, composting, wet oxidation, hydrolysis, disposal in agriculture, economical aspects of sewage sludge treatment. This book deals with theoretical aspects and practical examples. (SR)

  8. Disposal of sewage sludge. Rotary kiln plants and energetic utilization of sewage sludge; Klaerschlammentsorgung. Drehrohranlagen in der Trocknung und energetischen Nutzung von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, Franz [Visser und Smit Hanab GmbH, Kaarst (Germany). Rotary Kilns

    2013-03-01

    The author of the contribution under consideration reports on rotary kiln plants in the disposal of sewage sludge. The examples give an insight into the systems engineering for the thermal treatment of sewage sludge, for the minimization or full thermal utilization. The examples show that there exists any specific solution. The process selection depends on the legal requirements and the framework conditions in dependence from the site and infrastructure. Generally, the following statements are valid: (a) The co-combustion is cheaper than every mono-combustion; (b) The costs for the transport of wet sludge often are more favourable than the costs of drying; (c) Plants for low capacities are specifically expensive. The following criteria become more important: (a) energy costs, recycling of energy; (b) recycling of phosphorus from sewage sludge; (c) Reduction of the input of heavy metals in order to comply with the fertilizer ordinance.

  9. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization.

    Science.gov (United States)

    vom Eyser, C; Palmu, K; Schmidt, T C; Tuerk, J

    2015-12-15

    We investigated the removal of twelve pharmaceuticals in sewage sludge by hydrothermal carbonization (HTC), which has emerged as a technology for improving the quality of organic waste materials producing a valuable biochar material. In this study, the HTC converted sewage sludge samples to a biochar product within 4h at a temperature of 210 °C and a resulting pressure of about 15 bar. Initial pharmaceutical load of the sewage sludge was investigated as well as the residual concentrations in biochar produced from spiked and eight native sewage sludge samples from three waste water treatment plants. Additionally, the solid contents of source material and product were compared, which showed a considerable increase of the solid content after filtration by HTC. All pharmaceuticals except sulfamethoxazole, which remained below the limit of quantification, frequently occurred in the investigated sewage sludges in the μg/kg dry matter (DM) range. Diclofenac, carbamazepine, metoprolol and propranolol were detected in all sludge samples with a maximum concentration of 800 μg/kgDM for metoprolol. HTC was investigated regarding its contaminant removal efficiency using spiked sewage sludge. Pharmaceutical concentrations were reduced for seven compounds by 39% (metoprolol) to≥97% (carbamazepine). In native biochar samples the four compounds phenazone, carbamazepine, metoprolol and propranolol were detected, which confirmed that the HTC process can reduce the load of micropollutants. In contrast to the other investigated compounds phenazone concentration increased, which was further addressed in thermal behaviour studies including three structurally similar potential precursors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Potential use of sewage sludge ash (SSA as a cement replacement in precast concrete blocks

    Directory of Open Access Journals (Sweden)

    Pérez-Carrión, M.

    2014-03-01

    Full Text Available The present study explored the technological feasibility of re-using sewage sludge ash (SSA as a Portland cement replacement in commercially manufactured pre cast concrete blocks. The blocks analysed were made to the guidelines laid down in Spain’s National Plan for Waste Water Treatment Plant Sludge, 2001–2006, and European Union specifications (CE marking for such products. Performance was compared in three families of blocks, with 0, 10 and 20% SSA. The findings proved that SSA is apt for pre cast concrete block manufacture and that, in addition to the economic and environmental benefits afforded, its use would improve certain of the properties of conventional block.El objetivo de esta investigación es estudiar el uso potencial de las cenizas de lodos de depuradora (CLD, como sustitución del cemento Portland en bloques de hormigón prefabricados, de forma que se pueda lograr una revalorización de este material de desecho mediante este procedimiento. La metodología utilizada en este trabajo se rige por las directrices del Plan Nacional Español de Lodos de Aguas Residuales de 2001–2006, y por las exigencias del Consejo Europeo (marcado CE, que es obligatorio para este tipo de productos. Se han utilizado dos niveles de sustitución de cemento (10% y 20%, y todos los resultados han sido referidos a las muestras control. Los resultados obtenidos muestran que es posible utilizar una sustitución parcial del cemento por CLD, en la fabricación de bloques de hormigón prefabricados, y por lo tanto, se pueden conseguir beneficios económicos y ambientales, así como la mejora de una serie de propiedades.

  11. Anaerobic digestion of sewage sludge: French inventory and state of the art

    International Nuclear Information System (INIS)

    Reverdy, A.L.; Dieude-Fauvel, E.; Baudez, J.C.; Ferstler, V.

    2012-01-01

    Following the Kyoto Protocol and the 'Grenelle de l'environnement', France committed itself to develop renewable energies. Methanization is a process which falls within this objective. Anaerobic digestion of organic material generates biogas made of methane (CH 4 ), carbon dioxide (CO 2 ) and water (H 2 O). In 2009, electricity generation from biogas represented only 0, 93% of the renewable electricity production in France. An inventory of facilities and a state of the art of the methanization of sewage sludge on wastewater treatment plants with the inhabitant equivalent of more than 30.000 were realized. They were done with bibliography and surveys. In France, 68 installations of sewage sludge methanization were counted. The primary technology used is a mix reactor in which sewage sludge, heated at deg. C 37, are introduced. Biogas is mainly valued to warm those sludges. Electrical valorization is poor, especially on old installations. Anaerobic digestion of sewage sludge is generally accepted by managers, mainly because of its capacity to reduce sewage sludge quantity and odors. Methanization as listed in France is quite basic. It is performed with digestion series modification, with pretreatments or with co-digestion. Given the quantity of sewage sludge which could be digested, France could increase renewable energies via biogas. However this technology is perfectible in many units because biogas is burned in flares. (authors)

  12. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.

    Science.gov (United States)

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-01

    Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO2 as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at

  13. Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation.

    Science.gov (United States)

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-08-28

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  14. Effects of heat, radiation, and thermoradiation on the filterability of sewage sludge

    International Nuclear Information System (INIS)

    Carter, C.V.

    1978-01-01

    The effects of heat, radiation and thermoradiation processes on the dewatering properties of raw and primary digested sewage sludges were investigated. These effects were measured by observing the changes in filterability subsequent to treatment. Thermal treatment (40 0 to 95 0 C) of the sewage sludge resulted in decreased filterability. Radiation and thermoradiation treatment increased the filterability, the increase being dose and temperature dependent. These treatment methods are not as effective as chemical additives in increasing the filterability of sewage sludge. The combined use of radiation and organic polymer conditioner shows no significant improvement in the filterability of sewage sludge over the use of polymer alone. There appears to be some interaction; however, it shows no useful synergistic effect

  15. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  16. Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans

    Science.gov (United States)

    Wen, Ye-Ming; Lin, Hong-Yan; Wang, Qing-Ping; Chen, Zu-Liang

    2010-11-01

    Acidithiobacillus thiooxidans was isolated from sewage sludge using the incubation in the Waksman liquor medium and the inoculation in Waksman solid plate. It was found that the optimum conditions of the bioleaching included solid concentration 2%, sulfur concentration 5 gṡL-1 and cell concentration 10%. The removal efficiency of Cr, Cu, Pb and Zh in sewage sludge, which was obtained from waste treatment plant, Jinshan, Fuzhou, was 43.65%, 96.24%, 41.61% and 96.50% in the period of 4˜10 days under the optimum conditions, respectively. After processing using the proposed techniques, the heavy metals in sewage sludge did meet the requirement the standards of nation.

  17. Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Wilhelm Jan Tic

    2018-03-01

    Full Text Available This study proposes an innovative installation concept for the sustainable utilization of sewage sludge. The aim of the study is to prove that existing devices and technologies allow construction of such an installation by integration of a dryer, torrefaction reactor and gasifier with engine, thus maximizing recovery of the waste heat by the installation. This study also presents the results of drying tests, performed at a commercial scale paddle dryer as well as detailed analysis of the torrefaction process of dried sewage sludge. Both tests aim to identify potential problems that could occur during the operation. The scarce literature studies published so far on the torrefaction of sewage sludge presents results from batch reactors, thus giving very limited data of the composition of the torgas. This study aims to cover that gap by presenting results from the torrefaction of sewage sludge in a continuously working, laboratory scale, isothermal rotary reactor. The study confirmed the feasibility of a self-sustaining installation of thermal utilization of sewage sludge using low quality heat. Performed study pointed out the most favorable way to use limited amounts of high temperature heat. Plasma gasification of the torrefied sewage sludge has been identified that requires further studies.

  18. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  19. Basic Physical - Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

    Science.gov (United States)

    Sičáková, Alena; Števulová, Nadežda

    2017-06-01

    The binding potential of fly ash (FA) as a typical basic component of building mixtures can be improved in mechanical way, which unfolds new possibilities of its utilization. This paper presents the possibilities of preparing the geopolymer mixtures based on ground (dm = 31.0 μm) FA, used in varying percentages to the original (unground; dm = 74.1 μm) one. As a modification, fine-grain sludge from the process of washing the crushed aggregates was used as filler in order to obtain mortar-type material. The basic physical-mechanical properties of mixtures are presented and discussed in the paper, focusing on time dependence. The following standard tests were executed after 2, 7, 28, and 120 days: density, total water absorption, flexural strength, and compressive strength. Ground FA provided for positive effect in all tested parameters, while incorporation of fine portion of sludge into the geopolymer mixture does not offer a significant technical profit. On the other hand, it does not cause the decline in the properties, so the environmental effect (reduction of environmental burden) can be applied through its incorporation into the geopolymer mixtures.

  20. Urban Sewage Sludge, Sustainability, and Transition for Eco-City

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Chan, Felix T. S.

    2017-01-01

    The treatment of urban sewage sludge is of vital importance for mitigating the risks of environmental contaminations, and the negative effects on human health. However, there are usually various different technologies for the treatment of urban sewage sludge; thus, it is difficult for decision......-makers/stakeholders to select the most sustainable technology among multiple alternatives. This study aims at developing a generic multi-criteria decision support framework for sustainability assessment of the technologies for the treatment of urban sewage sludge. A generic criteria system including both hard and soft criteria...... in economic, environmental, social and technological aspects was developed for sustainability assessment. The improved analytic hierarchy process method, namely Best-Worst method, was employed to determine the weights of the criteria and the relative priorities of the technologies with respect to the soft...

  1. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  2. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  3. Effects of thermal drying on phosphorus availability from iron-precipitated sewage sludge

    DEFF Research Database (Denmark)

    Lemming, Camilla; Scheutz, Charlotte; Bruun, Sander

    2017-01-01

    Thermal drying of sewage sludge implies sanitation and improves practical handling options of the sludge prior to land application. However, it may also affect its value as a fertilizer. The objective of this study was to assess whether thermal drying of sewage sludge, as well as drying temperature...

  4. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  5. Energy crops cultivated on the slag from incineration of the sewage sludge energy value assessment

    Science.gov (United States)

    Głowacka, Anna; Tarnowski, Krzysztof; Bering, Sławomira; Mazur, Jacek; Kiper, Justyna; Wołoszyk, Czesław

    2017-11-01

    In 2011-2013, research on the fertilizer value of slag from the incineration of municipal sewage sludge as an alternative source of phosphorus was carried out. The research scheme included 5 variants (in 4 repetitions) fertilization cultivated for grain with mineral fertilizers and ash. (P1, P2 and P3 - consecutive doses of phosphorus from ash) from municipal sewage sludge combustion: NK, NPK, NK+P1, NK+P2 and NK+P3. The obtained results indicate that the average of the three years of research, the value for the straw spring rape heat of combustion was 15.99 MJ/kg d.m., corn straw 16.20 MJ/kg d.m., triticale straw 17.06 MJ/kg d.m. and Miscanthus 17.34 MJ/kg d.m. The highest value of combustion heat for spring rape straw and miscanthus performed for objects fertilized with NK + P3 - 16.08 MJ/kg d.m. (Spring rape) and 17.57 MJ/kg d.m. (Miscanthus); For corn straw objects fertilized with nitrogen and potassium - 16.35 MJ/kg d.m. and triticale straw objects fertilized with NPK and NK + P2 - 17.10 MJ/kg d.m. Straw calorific value of tested plants was lower than the combustion heat by an average of 6.97% (triticale) to 7.38% (spring rape).

  6. The sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Sludge contains Salmonellae in more than 90% of samples. The maximum number reaches 10 7 per liter. Neither aerobic stabilization nor anaerobic digestion significantly reduces the contamination with Salmonellae. Moreover, Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. Sanitizing of sludge to be used as fertilizer is therefore urgent. The sanitary effect of pasteurisation and of gamma irradiation on sewage sludge was investigated. For this the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants was examined. The doses applied were 100, 200, 300, 400 and sometimes 500 krad. A linear reduction of Enterobacteriaceae was achieved with increasing radiation doses. A dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae. Less than 10 Enterobacteriaceae per gramm were found in 97.2% of the samples irradiated with 300 krad. The effect found in the above mentioned model experiments could be perfectly confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by Enterobacteriaceae reduction, was equivalent to the effect of heat treatment by pasteurisation. (orig./MG) [de

  7. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    Directory of Open Access Journals (Sweden)

    Magdalena Frąc

    2014-08-01

    Full Text Available Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS and from a sewage sludge landfill that was 3 m from a SS landfill (SS3 were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD, Richness (R and Shannon-Weaver index (H were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  8. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    Science.gov (United States)

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

  9. Disinfection of sewage sludge by gamma radiation, electron beams and alternative methods

    International Nuclear Information System (INIS)

    Lessel, T.

    1997-01-01

    Sewage sludges generally contain high concentrations of pathogens, even after digestion or other conventional treatments for stabilization. Disinfection can be effected by irradiation (e.g. gamma or electron beam), by heat treatment (pasteurization or thermophilic stabilization), and by changing the pH (lime treatment). Irradiation is a simple and reliable process for disinfection with special advantages and favorable side-effects. Irradiation can be combined with oxygenation, heat or other treatments, with favorable synergistic effects. The total costs for the irradiation treatment of sewage sludges are comparable to those of alternative disinfection methods. Most of the worldwide practical experience has been obtained at the sewage-sludge irradiation plant in Geiselbullach (10 km west of Munich, Germany), which was continuously in operation from 1973 to 1993. A multidisciplinary research programme was conducted during the first 8 years. In subsequent years, the plant was operated commercially for sewage-sludge disinfection, without public funds. Other demonstration or research plants for sewage-sludge irradiation have been reported in the USA, India, Russia, Japan, Austria, Germany and Hungary. (author)

  10. Land application of sewage sludge: A guide for land appliers on the requirements of the federal standards for the use or disposal of sewage sludge, 40 CFR part 503

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The U.S. Environmental Protection Agency promulgated a regulation at 40 Code of Federal Regulations (CFR) Part 503 to ensure that sewage sludge is used or disposed of in a way that protects human health and the environment. Part 503 imposes requirements for the land application, surface disposal, and incineration of sewage sludge. The manual focuses on land application, providing guidance to land appliers of sewage sludge. The purpose of the document is to provide the land applier with sufficient guidance to comply fully with all applicable Part 503 requirements. The guidance is structured to first provide a general understanding of the Rule and its underlying principles, including definitions of sewage sludge, land application, and an explanation of who under the Rule is considered a land applier.

  11. Reduction of metal leaching in brown coal fly ash using geopolymers

    International Nuclear Information System (INIS)

    Bankowski, P.; Zou, L.; Hodges, R.

    2004-01-01

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60 wt% for fly ash obtained from the electrostatic precipitators and 70 wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition

  12. Toluene in sewage and sludge in wastewater treatment plants.

    Science.gov (United States)

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  13. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  14. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  15. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    Science.gov (United States)

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  16. Leaching of Heavy Metals Using SPLP Method from Fired Clay Brick Incorporating with Sewage Sludge

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Amira Sarani, Noor; Aqma Izurin Rahmat, Nur

    2017-05-01

    Sewage sludge is a by-product generate from wastewater treatment process. The sewage sludge contains significant trace metal such as Cr, Mn, Ni, Cu, Zn, As, Cd and Pb which are toxic to the environment. Sewage sludge is disposed of by landfilling method. However, this option not suitable because of land restriction and environmental control regulations imposed. Therefore, sewage sludge from wastewater treatment plant was incorporated into fired clay brick to produce good quality of brick as well as reducing heavy metals from sludge itself. Sewage sludge with 0%, 1%, 5%, 10% and 20% of were incorporated into fired clay bricks and fired at 1050°C temperature with heating rates of 1°C/min. The brick sample then crushed and sieved through 9.5 mm sieve for Synthetic Precipitation Leaching Procedure (SPLP). From the results, incorporation up to 20% of sewage sludge has leached less heavy metals and compliance with USEPA standard.

  17. Acidolysis of coal fly ash by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.; Singh, A.K. (EG and G Idaho Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1993-12-01

    The kinetics of aluminium extraction were investigated, using as-received and calcined fly ash samples and a pure culture of [ital Aspergillus niger]. This fungus metabolized sucrose to citric and oxalic acids, which were involved in the acidolysis of fly ash. Aluminium extraction from as-received fly ash was only 5-8%, whereas from calcined fly ash it was up to 93.5%. The order of reaction and the overall reaction rate constant were determined by the van't Hoff technique with respect to the concentration of calcined fly ash. A linearized form of a modified Monod expression was applied to the experimental data to assess the kinetic constants for the acidolysis process. Statistically designed experiments were carried out with calcined fly ash and synthetic solutions containing citric and oxalic acids to determine the optimum leaching conditions. The acidolysis reaction mechanism is discussed. 28 refs., 6 figs., 3 tabs.

  18. Thermal utilisation and disposal of sewage sludge; Thermische Klaerschlammverwertung und -Beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N. [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    2004-07-01

    In view of the increasing difficulty of getting rid of sewage sludge under the new legal specifications, thermal methods of sewage sludge treatment will become more important. While sewage sludge contains useful material such as carbon, nitrogen, or phosphorus, there are also harmful constituents like heavy metals and organic compounds. Thermal processes will handle these critical constituents, provided that they are really eliminated in the process and not emitted again with the flue gases. Even if thermal processes meet the rigid emission criteria, it should be kept in mind that other useful constituents, especially phosphorus, will remain unused. (orig.)

  19. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    Science.gov (United States)

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L -1 and from 11.8 to 792.9 μg kg -1 dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  20. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  1. Use of sewage sludge as a fertilizer for increasing soil fertility and crop production

    International Nuclear Information System (INIS)

    Suess, A.

    1997-01-01

    The high nutrient and organic-matter contents of sewage sludge make it a useful soil amendment for farmers. In this study at four locations in Bavaria, the application of sewage sludge produced com yields that were similar to or better than those produced by an equal application (in terms of N) of chemical fertilizer. High rates of sludge (800 m 3 /ha) further improved crop yields, although such are impractical for farmers' fields. Residual beneficial effects of sewage-sludge application were seen also in terms of subsequent yields of barley. Application of sludge also improved biological and physical properties of the soils. More long-term studies are needed to better understand how sewage sludge contributes to the improvement of soil fertility and crop yields. (author)

  2. Zinc Regime in the Sewage Sludge-Soil-Plant System of a City Waste Water Treatment Pond

    Directory of Open Access Journals (Sweden)

    Lacatusu Radu

    2014-10-01

    Full Text Available The sewage sludge from wastewater treatment plant of Iasi, a city with 300,000 inhabitants, for domestic and industrial origin, was stored in a mud pond arranged on an area of 18,920 m2. Chemical analyzes of the sludge showed that, of all the chemical elements determined, only Zn is found at pollutant level (5739 mg∙kg-1, i.e. almost 30 times more than the maximum allowable limit for Zn in soil and 45 times more than the Zn content of the soil on which the mud pond has been set. Over time, the content of Zn in the mud pond, but also from soil to which it has been placed, has become upper the normal content of the surrounding soil up to a depth of 260 cm. On the other hand, the vegetation installed on sewage sludge in the process of mineralization, composed predominantly of Phragmites, Rumex, Chenopodium, and Aster species had accumulated in roots, stems and leaves Zn quantities equivalent to 1463 mg Kg-1, 3988 mg Kg-1, 1463 mg Kg-1, respectively, 1120 mg∙Kg-1. The plants in question represents the natural means of phytoremediation, and sewage sludge as such may constitute a fertilizer material for soils in the area, on which Zn deficiency in maize has been recorded. In addition, the ash resulted from the incineration of plants loaded with zinc may constitute, in its turn, a good material for fertilizing of the soils that are deficient in zinc.

  3. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  5. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method

    International Nuclear Information System (INIS)

    Ottosen, Lisbeth M.; Pedersen, Anne J.; Hansen, Henrik K.; Ribeiro, Alexandra B.

    2007-01-01

    Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed to the electrode compartments. Even though the matrices were very different the remediation was successful in all cases. After treatment the Cd concentration in the ashes allowed for spreading at agricultural land and the limiting concentration of 0.8 mg Cd/kg for the wastewater sludge was almost reached (0.84 and 0.88 mg Cd/kg). The main differences of the waste products influencing the remediation process were: the sludges had a high content of organic particles that were mobilized by electrophoresis and fouled the anion exchange membrane; the straw-ash contained a lot of chloride, which formed anionic complexes with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrix

  6. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.

    Science.gov (United States)

    Samolada, M C; Zabaniotou, A A

    2014-02-01

    For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Physical, chemical and mineralogical properties of fly ash

    International Nuclear Information System (INIS)

    Khairul Nizar Ismail; Kamaruddin Hussin; Mohd Sobri Idris

    2007-01-01

    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ) and iron oxide (Fe 2 O 3 ). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F. (Author)

  8. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  9. Sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Our investigations prove that sludge contains Salmonellae in more than 90% of samples. The maximum number of organisms was 10 7 per litre. One of our most important findings was the fact that neither aerobic stabilization nor anaerobic digestion significantly reduces contamination with Salmonellae. Moreover we found that Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. The increasing number of Salmonella carriers among our herds of cattle and their striking accumulation during the grazing period demonstrate that such transmission represents a growing danger. Sanitation of sludge to be used as fertilizer is therefore urgent. In our investigation of the sanitary effect of pasteurization (70degC for 30 min) and of gamma irradiation on sewage sludge, we examined the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants. The doses applied were 100, 200, 300, 400 and also 500 krad. We found a linear reduction of Enterobacteriaceae with increasing doses; a dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae; and there were less than 10 Enterobacteriaceae per gram in 97.2% of the samples irradiated with 300 krad. The results of these model experiments could be completely confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by the reduction in Enterobacteriaceae, was equivalent to the effect of heat treatment by pasteurization. (author)

  10. Analysis of briquetting process of sewage sludge with coal to combustion process

    Directory of Open Access Journals (Sweden)

    Kosturkiewicz Bogdan

    2016-01-01

    Full Text Available Energy recovery from sewage sludge can be achieved by several thermal technologies, but before those processes sewage sludge requires special pretreatment. The paper presents the investigation of the sewage sludge with coal briquettes as a fuel for combustion process. Research is conducted at Department of Manufacturing Systems and Department of Thermal Engineering and Environmental Protection, AGH University of Science and Technology to develop a technology of briquette preparation. The obtained results showed possibility of briquetting of municipal sewage sludge with coal in roll presses, equipped with asymmetric thickening gravity feed system. The following properties were determined for the obtained briquettes: density, drop strength and compressive strength. Based on physical and chemical analysis of prepared briquettes it was confirmed that briquettes have good fuel properties to combustion process. Thermal behaviour of studied sewage sludge and prepared mixture was investigated by thermogravimetric analysis (TG. For the thermo gravimetric analysis (TG the samples were heated in an alumina crucible from an ambient temperature up to 1000 °C at a constant rates: 10 °C/min, 40 °C/min and 100 °C/min in a 40 ml/min flow of air.

  11. Odor assessment for sewage sludge samples 300A01002

    International Nuclear Information System (INIS)

    Cash, D.B.; Molton, P.M.

    1976-12-01

    The use of radiation as a means of detoxifying sewage sludge as an alternate to the more conventional biological digestion treatment method was studied. A combination of gamma irradiation and heat (thermoradiation) treatment is being considered. In support of this effort, Battelle's Pacific Northwest Laboratories (PNL) were requested to assess the odor change of the sewage sludge, if any, that occurs with time after the samples were subjected to the treatment conditions. The test methods and results are presented

  12. Life cycle assessment of sewage sludge treatment and its use on land

    DEFF Research Database (Denmark)

    Yoshida, Hiroko

    factors per unit application of N fertiliser on land by fitting a linear mixed-effect model to the outcome of simulations with varying N application levels. It was evident that the effects of inorganic N fertiliser appear immediately after its application, while improvements in crop yield and emissions......Sewage sludge is generated as an end-product of wastewater treatment processes, and its management holds importance in the operation of wastewater treatment plants from both an economic and an environmental point of view. At the same time, the management of sewage sludge is becoming increasingly...... (LCAs) have been applied in the field of sewage sludge management for the past two decades. While providing a flexible platform for comparing a range of sewage sludge management options, a knowledge gap has been identified through the review of existing studies, including inconsistencies in pollutant...

  13. Characterization of sewage sludge generated in Rio de Janeiro, Brazil, and perspectives for agricultural recycling

    Directory of Open Access Journals (Sweden)

    Alan Henrique Marques de Abreu

    2017-08-01

    Full Text Available Sanitary sewage collection and treatment is a serious environmental problem in Brazilian cities, as well as the destination of solid waste resulting from this process, i.e. the sewage sludge, a substance rich in organic matter and nutrients, which is normally discarded in landfills. The aim of this study was to characterize the sewage sludge generated in four treatment stations in Rio de Janeiro State, Brazil and check if they meet the legal criteria of the National Environment Council (CONAMA, Resolution No. 375/2006. It also focused on analyzing the perspectives for its agricultural recycling based on the potential demand for main agricultural crops grown in Rio de Janeiro State. Samples from eight sewage sludge lots from four treatment stations located in the metropolitan area of Rio de Janeiro were analyzed. These stations receive and treat only domestic sewage by activated sludge system. For chemical and biological characterization of these lots, representative samples were collected and analyzed according to parameters of CONAMA Resolution No. 375/2006. In order to analyze the perspectives of agricultural recycling of sewage sludge in Rio de Janeiro State, 10 crops with the largest cultivated area in the state were surveyed and analyzed which of them are apt to receive sewage sludge as fertilizer and/or soil amendment. To determine the potential demand for sewage sludge in agriculture, the area occupied by these crops were multiplied by each fertilizer recommendation considering the sewage sludge as fertilizer. The analyzed sludge presented a high content of nutrients and organic matter and was included in the parameters of heavy metals, pathogenic agents, and bacteriological indicators stipulated by CONAMA Resolution No. 375/2006. The agricultural panorama of Rio de Janeiro State is favorable for agricultural recycling of sewage sludge since there is a great potential demand for this residue and, among the 10 agricultural crops with the

  14. Basic Physical – Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

    Directory of Open Access Journals (Sweden)

    Sičáková Alena

    2017-06-01

    Full Text Available The binding potential of fly ash (FA as a typical basic component of building mixtures can be improved in mechanical way, which unfolds new possibilities of its utilization. This paper presents the possibilities of preparing the geopolymer mixtures based on ground (dm = 31.0 μm FA, used in varying percentages to the original (unground; dm = 74.1 μm one. As a modification, fine-grain sludge from the process of washing the crushed aggregates was used as filler in order to obtain mortar-type material. The basic physical-mechanical properties of mixtures are presented and discussed in the paper, focusing on time dependence. The following standard tests were executed after 2, 7, 28, and 120 days: density, total water absorption, flexural strength, and compressive strength. Ground FA provided for positive effect in all tested parameters, while incorporation of fine portion of sludge into the geopolymer mixture does not offer a significant technical profit. On the other hand, it does not cause the decline in the properties, so the environmental effect (reduction of environmental burden can be applied through its incorporation into the geopolymer mixtures.

  15. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  16. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  19. Changes on sewage sludge stability after greenhouse drying

    Science.gov (United States)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  20. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  1. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita.

    Science.gov (United States)

    Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta

    2017-04-03

    The aim of the study was to evaluate the efficacy of the multiflora rose var. "Jatar" (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby) to phytoextract heavy metals from municipal sewage sludge. The 6-year field experiment involved four levels of fertilization with sewage sludge at doses of 0, 10, 20, 40, and 60 Mg DM (Dry Mass) sludge ha -1 . The increasing doses of sewage sludge were found to significantly increase the yield of multiflora rose and Virginia fanpetals biomass. They also significantly increased the content of heavy metals in these plants. The highest uptake of heavy metals by the multiflora rose and Virginia fanpetals crops was recorded at the fertilization dose of 60 Mg DM ⋅ ha -1 . Our investigations show that the Virginia fanpetals was more efficient in the phytoextraction of Cr, Ni, Cu, Zn, and Cd from the sewage sludge than the multiflora rose, due to the greater yields and higher heavy metal uptake by the former plant. In turn, the multiflora rose phytoextracted greater amounts of Pb from the sewage sludge. The analyses indicate that the Virginia fanpetals can be used for phytoremediation (phytoextraction) of heavy metals contained in sewage sludge.

  2. Utilization of municipal sewage sludge as additives for the production of eco-cement

    International Nuclear Information System (INIS)

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-01-01

    Highlights: ► The results of X-ray diffraction (XRD) pattern and scanning electron micrograph (SEM) indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. ► Though the C 2 S phase formation increased with the increase of sewage sludge contents. ► All the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge contents in raw meal increased. ► All the eco-cement pastes had lower early flexural strengths and it increased with the increase of sewage sludge contents increased, while the compressive strengths decreased slightly. ► However, it had no significant effect on all the strengths at later ages. - Abstract: The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50–15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C 2 S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco

  3. Sewage sludge: guidelines and its use as fertilizer, soil conditioner and forest substrate

    Directory of Open Access Journals (Sweden)

    David Pessanha Siqueira

    2017-12-01

    Full Text Available Sewage sludge is a residue generated after treatment of sewage, being a growing environmental issue due to the increase in wastewater collection and treatment networks. The disposal of these wastes to agricultural land has been presented as the most appropriate, with positive effects indicated by research. However, there are criteria and procedures to be followed  for the sewage sludge legal management. The main guidelines for sewage sludge use in agriculture are presented, as well as its impact on the chemical and physical properties of soils and its performance as a forest substrate, highlighting its strengths and weaknesses.

  4. Effects of Sewage Sludges Contaminated with Chlorinated Aromatic Hydrocarbons on Sludge-Treated Areas (Soils and Sediments

    Directory of Open Access Journals (Sweden)

    Ethel Eljarrat

    2002-01-01

    Full Text Available The fate of PCDDs, PCDFs, and PCBs in sewage sludges after different management techniques — such as agricultural application, land restoration, and marine disposal — was studied. Changes observed in the concentrations, in the ratio between PCDD and PCDF levels, and in the isomeric distribution suggest the influence of the sewage sludge on the sludge-treated areas (soils and sediments. Whereas land application techniques seem to produce no serious environmental consequences, marine disposal practices produce considerable increases in the levels of contamination in marine sediments.

  5. Nutrient supply to reed canary grass as a bioenergy crop. Intercropping and fertilization with ash or sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lindvall, Eva

    2012-07-01

    Production of renewable energy from herbaceous crops on agricultural land is of great interest since fossil fuels need to be replaced with sustainable energy sources. Reed canary grass (RCG), Phalaris arundinacea L. is an interesting species for this purpose. The aim of this thesis was to study different approaches to reduce the requirement of mineral fertilizers in RCG production for bioenergy purposes. Paper I describes a study where fertilization effects and risk of heavy metal enrichment were studied, using annual applications of ash for seven years. Ash from co-combustion of RCG and municipal wastes (mixed ash), pure RCG ash and commercial fertilizers were compared. The experiment was harvested each spring. Paper II describes an ongoing study in which the effects of intercropping RCG in mixture with nitrogen-fixing perennial legumes are examined in two experiments, in combination with various fertilization treatments. Three fertilization treatments were applied: high N, low N (half of the high N) and low N + RCG ash/sewage sludge. A delayed harvest method was used; cutting the biomass in late autumn and harvesting in spring. Besides dry matter yield, the N-fixation rate was estimated. The results from paper I showed no differences between treatments in the dry matter yields or in the heavy metal concentrations in the biomass. Soil samples, taken when the experiment was finished, showed differences between treatments for Cd, Pb and Zn only in the uppermost soil level, highest levels for the mixed ash treatment. The results in paper II showed that at one site the legume proportion in the mixtures was low and did not affect RCG growth negatively. The high N treatment gave a higher spring yield than the low N treatments. Mean rates of N2-fixation in the first production year were 12-28, 33-40 and 55 kg N ha-1 kg for goat's rue (Galega orientalis Lam.), red clover (Trifolium pratense L.), and alsike clover (Trifolium hybridum L.), plots, respectively. At the

  6. Considerations in the public acceptance of sewage sludge irradiation systems

    International Nuclear Information System (INIS)

    Dix, G.P.

    1975-01-01

    Considerations associated with public acceptance of municipal sewage sludge irradiation systems are discussed including the benefit to society, public information and safeguards. Public acceptance of products is based upon the benefit to society as measured by reduced consumer costs, minimization of public risk and enhancement of the quality of life and the environment. When viewed in this positive light, the sludge irradiator has high potential benefits to the community. If large-scale engineering experiments show that sludge irradiation is more cost-effective than other methods, reduced consumer costs would result. Today many sewage plants do not consistently remove pathogens from sludge; sludge irradiation could be an effective method of pathogen removal and result in avoidance of a major public risk. The sludge irradiator may be able to clean up recreational areas, reduce noxious odours from sewage treatment facilities, and reduce the energy requirements for producing fertilizer and soil conditioners and conserve their mineral content. Plant safeguards must be explained to dispel public concern that the contents of the source can be released to the sludge accidentally. This will be the main issue within the technical sector of the public, and the design, procedural and administrative safeguards of the plant must be fully explained. The primary risk associated with sludge irradiators will be the remote possibility of source leakage into the sludge. The various safeguards in sludge irradiation plants are discussed in detail including the form of the radionuclide, encapsulation, the irradiation chamber, safeguards instrumentation, shielding and thermal safeguards. (Author)

  7. grown on soil amended with sewage sludge

    African Journals Online (AJOL)

    DELL

    2Department of Civil Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. Corresponding ... Key Words: Sewage sludge, Green amaranth, Phytoextraction, Heavy metals. ..... Wastewater-irrigated Areas of Titagarh,.

  8. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    Da Silva, P.H.M.; Poggiani, F.; Laclau, J.P.

    2011-01-01

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha - '1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  9. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2011-01-01

    Full Text Available In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1 and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  10. Yield of castor bean fertilized with sewage sludge and potassium and magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Thâmara F. M. Cavalcanti

    2015-08-01

    Full Text Available ABSTRACTThe aim of this study was to evaluate the yield and nutrition of castor bean in response to fertilization with sewage sludge and potassium (K and magnesium (Mg sulphate. The experiment was carried out from January to July 2011. The treatments, in a randomized block design with three replicates, in a Nitosol, corresponded to a factorial scheme (2 x 4 +1: two doses of K and Mg sulphate combined with four doses of sewage sludge (0, 2.60, 5.20 and 10.40 t ha-1, dry basis, applied based on its nitrogen (N content and the N requirement for the crop and an additional treatment with NPK. The castor bean grain yield fertilized with sewage sludge did not differ from conventional fertilization, with the maximum value achieved at a dose of 7.5 t ha-1 of sewage sludge. The fertilization with sewage sludge increased zinc and copper levels in the soil to values close to or higher than those in conventional fertilization, without any influence on the concentrations in the leaf. Fertilization with K and Mg sulphate increased the levels of these cations in the soil without affecting the concentrations in the leaves. The fertilization with sewage sludge increased the contents of organic matter, sulfur, zinc, iron, copper and boron in the soil, and manganese and boron in castor bean leaves.

  11. Inactivation of bacteria in sewage sludge by gamma radiation

    International Nuclear Information System (INIS)

    Pandya, G.A.; Kapila, Smita; Kelkar, V.B.; Negi, Shobha; Modi, V.V.

    1987-01-01

    The survival of certain bacterial cultures suspended in sewage sludge and exposed to gamma-radiation was studied. The inactivation patterns of most of the organisms were significantly different when irradiation was performed using sewage samples collected in the summer and monsoon seasons. The summer sample collected from the anaerobic digester afforded significant protection to both Gram negative and Gram positive organisms. This was evident by the increase in dose required to bring about a 6 log cycle reduction in viable count of the bacterial cultures, when suspended in sewage samples instead of phosphate buffer. The observations made using monsoon digester samples were quite different. This sewage sludge greatly enhanced inactivation by gamma-radiation in most cases. The effects of certain chemicals on the inactivation patterns of two organisms - Salmonella typhi and Shigella flexneri - were examined. Arsenate, mercury and lead salts sensitised S. typhi, while barium acetate and sodium sulphide protected this culture against gamma-radiation. In the case of Sh. flexneri, barium acetate and iodacetamide proved to be radioprotectors. The effects of some chemicals on the inactivation pattern of Sh. flexneri cells irradiated in sludge are also discussed. (author)

  12. CO2 emission from soil after reforestation and application of sewage sludge

    Directory of Open Access Journals (Sweden)

    Janaina Braga Carmo

    2014-09-01

    Full Text Available This study aimed to quantify the carbon dioxide emissions from an Oxisol under degraded pasture located in Sorocaba, São Paulo State, Brazil. The treatments were: sewage sludge (LE, sewage sludge compost (CLE, mineral fertilizer (AM and no fertilization (T0. The experiment was conducted in a completely randomized block design with analysis of the effect of the four treatments (CLE, LE, and AM T0 with four replications. The application of sewage sludge, sewage sludge compost, mineral fertilizer and no fertilizer was statistically significant for the variables of height increase and stem height of Guanandi seedlings (Calophyllum brasiliense Cambessèdes - Calophyllaceae. Treatments showed significant differences in terms of CO2 emissions from soil. The CLE exhibited the highest CO2 fluxes, reaching a peak of 9.33±0.96 g C m- 2 day- 1 (p<0.0001, as well as the LE with a maximum CO2 flux of 6.35±1.17 C m- 2 day- 1 (p<0.005. The AM treatment (4.96±1.61 g C m- 2 day- 1 had the same statistical effect as T0 (5.33±0.49 g C m- 2 day- 1. CO2 fluxes were correlated with soil temperature in all treatments. However, considering the period of 172 days of evaluation, the total loss of C as CO2 was 2.7% for sewage sludge and 0.7% for the sewage sludge compost of the total C added with the application on soil.

  13. Forms of polycyclic aromatic hydrocarbon in the formation of sewage sludge toxicity to Heterocypris incongruens

    International Nuclear Information System (INIS)

    Oleszczuk, Patryk

    2008-01-01

    The aim of the present study was to evaluate to what degree polycyclic aromatic hydrocarbon (PAH) determines sewage sludge toxicity in relation to Heterocypris incongruens. Six differing sewage sludges with increasing contents of polycyclic aromatic hydrocarbons were selected for the present study. As well as total PAH content, the content of the potentially bioavailable fraction was also determined in the sewage sludges using a method of mild-solvent extraction (with n-butanol). The PAH content was also calculated in the sewage sludge pore water by the equilibrium partitioning method. The total PAH content in the sewage sludges studied were in the range 3.60 to 27.95 mg kg -1 . The contribution of the n-butanol extracted fraction was in the range 38.7 to 75.4%. In the group of individual PAHs, 4- and 5-ring compounds had the highest content in the potentially bioavailable group. H. incongruens mortality in the range 6.7 to 100%, depending both on the sewage sludge and the dose applied. An increase of the sewage sludge dose usually resulted in an increase in toxicity. At the highest dose, a 100% mortality of H. incongruens was found in half of the sludges. The lowest dose, irrespective of the sludge type, caused over 40% growth inhibition. However, the results obtained did not allow for the establishing of an unambiguous relationship between various sludge toxicity levels and the content of potentially bio-available PAHs. In some cases only, the extraction using n-butanol explained the high difference in toxicity despite a slight differentiation in the PAH content

  14. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  15. Influence of maize straw content with sewage sludge on composting process

    Directory of Open Access Journals (Sweden)

    Czekała Wojciech

    2016-09-01

    Full Text Available After entrance to EU in 2004, the management of sewage sludge has become more and more important problem for the new members. In Poland, one of the most promising technologies is composting process of sewage sludge with carbonaceous materials. However, the high price of typically used cereal straw forces the specialists to look for new and cheap materials used as donor of carbon and substrates creating good, porous structure of composted heap. This work presents the results of sewage sludge composting mixed with sawdust and maize straw used to create structure favorable for air exchange. The results show dynamic thermophilic phase of composting process in all cases where maize straw was used.

  16. Review of enhanced processes for anaerobic digestion treatment of sewage sludge

    Science.gov (United States)

    Liu, Xinyuan; Han, Zeyu; Yang, Jie; Ye, Tianyi; Yang, Fang; Wu, Nan; Bao, Zhenbo

    2018-02-01

    Great amount of sewage sludge had been produced each year, which led to serious environmental pollution. Many new technologies had been developed recently, but they were hard to be applied in large scales. As one of the traditional technologies, anaerobic fermentation process was capable of obtaining bioenergy by biogas production under the functions of microbes. However, the anaerobic process is facing new challenges due to the low fermentation efficiency caused by the characteristics of sewage sludge itself. In order to improve the energy yield, the enhancement technologies including sewage sludge pretreatment process, co-digestion process, high-solid digestion process and two-stage fermentation process were widely studied in the literatures, which were introduced in this article.

  17. Chlorinated hydrocarbons and PCBs in field soils, sediments and sewage sludges

    International Nuclear Information System (INIS)

    Schaaf, H.

    1992-01-01

    As requested by the Ministry of Agriculture of the FRG, the 'Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA)' built up a data collection over chlorinated hydrocarbons and PCBs in field soils, sediments, sewage sludges. Nearly 70.000 samples were collected and statistically evaluated. The results of these investigations will be described. The major constituents of the chlorinated hydrocarbons generally were Lindane, DDT(total) and HCB. In sewage sludges PCBs could be detected in nearly every sample. The contents of PCBs in field soils are smaller than in sewage sludges. Rather 'high contents', greater than 100-200 μg/kg d.m./organic pollutants, were detected only in 2% of the samples. 7 refs., 5 figs., 2 tabs

  18. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg −1 of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  19. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  20. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  1. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  2. PAHs content of sewage sludge in Europe and its use as soil fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Suciu, Nicoleta A., E-mail: nicoleta.suciu@unicatt.it; Lamastra, Lucrezia; Trevisan, Marco

    2015-07-15

    Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lack of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha{sup −1} sewage sludge annually than 15 t ha{sup −1} triennially. Results suggest, the EU maximum recommended limit of 6 mg kg{sup −1} PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms.

  3. PAHs content of sewage sludge in Europe and its use as soil fertilizer

    International Nuclear Information System (INIS)

    Suciu, Nicoleta A.; Lamastra, Lucrezia; Trevisan, Marco

    2015-01-01

    Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lack of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha −1 sewage sludge annually than 15 t ha −1 triennially. Results suggest, the EU maximum recommended limit of 6 mg kg −1 PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms

  4. Changes in the Concentration of Heavy Metals (Cr, Cd, Ni During the Vermicomposting Process of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Aušra Zigmontienė

    2014-10-01

    Full Text Available Sewage sludge treatment and utilization is an important issue for a biodegradable waste management strategy. Heavy metals in sewage sludge complicate its use. Vermicomposting is one of the ways to improve the characteristics of sewage sludge and to reduce the residual concentrations of heavy metals. Study on changes in the concentration of heavy metals (Chromium, Nickel and Cadmium, when vermicomposting sewage sludge, was performed using Californian earthworms (Eisenia fetida. For that purpose, 60 kg of sewage sludge from Vilnius Waste Water Treatment Plant were taken thus inserting 1.5 kg of Californian earthworms into it. Optimal conditions for work (optimum temperature, moisture, pH for earthworms to survive were maintained in the course of the study that lasted 120 days and was conducted in June – August. The samples of sewage sludge and earthworms were taken every 10 days. The concentrations of heavy metals in sewage sludge were measured using atomic absorption spectroscopy.

  5. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  7. Effects of Amended Sewage Sludge Application on Yield and Heavy Metal Uptake of Barley: A Case Study of Ahvaz Sewage Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mostafa Chorom

    2007-06-01

    Full Text Available One aspect of sewage sludge application as an organic fertilizer on agricultural farms is environmental pollution concerns such as heavy metals uptake by plants. The aim of this study was to investigate the influence of amended sewage sludge application on yield and heavy metal uptake of Barley. This study was carried out over a period of barley growth with two treatments of sewage sludge (50 and 100 ton/ha and control treatment with four replicates arranged in a randomized complete block design. Plant samples were taken at three intervals (50, 90, and 180 days after sowing. The samples were prepared for measuring nutrients and heavy metals in stem, leaf, straw, and grain. Results of plant analysis showed that application of sewage sludge increased nitrogen, phosphorous, potassium and cadmium in vegetative parts compared to control. Grain analysis showed that application of sewage sludge significantly increased nitrogen, phosphorous, potassium, iron, and zinc. Grass yield significantly increased in the plot treated with 100 ton/ha sewage sludge. Grain yield in the two treatments significantly increased. The results revealed that the sewage sludge increased heavy metals uptake by plants but still below standard levels. It is, therefore, necessary to use the quantities of the elements introduced into soil and absorbed by plants in order to determine the toxicity level for each metal taking into account factors such as plant and soil types as well as environmental conditions. This information can then be used to determine sludge application quantities in each case. Meanwhile, sludge application may only be recommended for irrigated crops receiving adequate irrigation water due to its salinity. Moreover, it cannot be recommended for irrigated crops directly consumed by man.

  8. Innovative sewage sludge utilization in Switzerland; Innovative Klaerschlammverwertung in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Greiler, Erwin [oeCompany - Renewable Energy Consulting, Graz (Austria)

    2017-08-01

    ln the nature in millions of years running of coal origin process is technically copied with the socalled hydrothermal carbonization within less hours. As source substrate any biomass can be used practically. ln the case of sewage sludge as the starting substrate, both fresh and sludge dewatering can be used. The advantage of the HTC procedure compared with to conventional sewage sludge utilisation lies, among other things, in the lower energy consumption during the process. Therefore, overall, it is more environmentally friendly.

  9. TECHNOLOGICAL AND ENVIRONMENTAL PROBLEMS CONNECTED WITH THERMAL CONVERSION OF SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2016-02-01

    Full Text Available Overview of the most common technological and environmental problems connected with thermal conversion of sewage sludge was presented in the article. Such issues as the influence of content of moisture and mineral matter on fuel properties of sludge, problem of emission of pollutants, problem of management of solid residue, risk of corrosion, were described. Besides, consolidated characteristic of the most important methods of thermal conversion of sewage sludge, with their advantages and disadvantages, was presented in the paper.

  10. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.; Meng, X. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  11. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  12. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions...

  13. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  14. Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization

    Science.gov (United States)

    Priyadarshini, J.; Roy, P. K.; Mazumdar, A.

    2014-01-01

    In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.

  15. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  16. Potential harmful effects on agricultural environments of sewage sludge utilization as a fertilizer

    International Nuclear Information System (INIS)

    Suess, A.

    1997-01-01

    There can be harmful effects of sewage-sludge utilization in agriculture. However, these can be overcome by treatment of the sludge and by appropriate farm-management practices. Sewage sludge is of increasing potential importance to farmers because of its value as a fertilizer. But some compounds in sludge can be harmful for plants, animals and man. Heavy metals may be taken up by plants, and the higher the content in the soil, the greater the uptake. There are substantial differences in heavy-metal accumulation and tolerance among plant species. With respect to pathogens (for example Salmonella) in sludge, recent developments in decontamination processes can provide greater guarantee of preservation of the environment. Gamma-radiation treatment at a dose of 3 kGy has been proven effective. The use of sewage sludge in agriculture is attractive from the economical and environmental points of view. It is therefore important that farmers are provided not only with more information about the nutrient effects, but also about risks, if any, of leaching of heavy metals and microbial condition to groundwater. To achieve this, there must be close co-operation between farmers and the authorities responsible for disposal of sewage sludge. (author)

  17. Glass-ceramic from mixtures of bottom ash and fly ash.

    Science.gov (United States)

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  19. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  20. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    Science.gov (United States)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  1. Leaching of assimilable silicon species from fly ash

    International Nuclear Information System (INIS)

    Piekos, R.; Paslawska, S.

    1998-01-01

    The objective of this study was to investigate the leaching of assimilable silicon species from coal fly ash with distilled water, sea waterand synthetic sea water at various fly ash/water ratios, pHs and temperatures. At the 1 g/100 ml fly ash/water ratio, less than 1 mg Si was found in 11 of aqueous slurries over the pH range 4-8 after 2 h at ambient temperature. The leaching was most effective at pH 10.5. At the fly ash/waterratio indicated, the pH of the suspensions decreased from 10.4 to 8.4 after 5days. The pH of fly ash slurries in sea water varied only slightly over time as compared with that in distilled water. Generally, the leaching of assimilable silicon species with distilled water was more intense than that with the sea water. 27 refs., 6 figs., 3 tabs

  2. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  3. Sewage sludge utilisation and disposal in Switzerland; Loesungen zur Verwertung oder Beseitigung von Klaerschlamm in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Matter, C. [TBF Toscano-Bernardi-Frey AG, Zuerich (Switzerland); Pelloni, L.; Vollmeier, T. [TBF Toscano-Bernardi-Frey AG, Zuerich (Switzerland)

    1996-11-01

    Sewage sludge can be dumped in Switzerland only during a period of transition which will end by 2000. The amount of sewage sludge utilized in agriculture is limited. For these reasons, sewage sludge combustion is an important option. The available methods for sludge combustion are described and compared.

  4. Technical and economical feasibility study of a sewage sludge disinfection plants by irradiation process

    International Nuclear Information System (INIS)

    Rojas Bustos, Gustavo

    1999-01-01

    This report presents a technical and economical evaluation for a disinfection plant of sewage sludge based on irradiation. The process starts after sludge stabilization which is achieved by anaerobic digestion. It includes two stages, plus an optional: the first corresponds to dewatering of sewage sludge up to a solids content between 20 and 25 %, the second stage corresponds to disinfection by gamma or electron beam irradiation, and the third, which is optional, corresponds to the drying of sewage sludge up to a water content of 50%, which allows to diminish significantly the volumes of solids to be transported. If this stage is not accomplished the final product corresponds to a sewage sludge with 25 % of dry solids, which can also be disposed in agricultural land. Process was designed to treat 60 tons per day of sewage sludge (dry matter basis). The report presents the design of process equipment, principal and auxiliary, the investment and operational cost estimations as well as the total cost of treatment per ton of sewage sludge. A sensitivity analysis is also included to determine the influence of operational process parameters in operational and investment costs. The results showed that a sewage sludge plant including dewatering and disinfection process through gamma irradiation, achieves a capital investment of about US$ 12.000.000 with a treatment cost per ton of dry sludge of US$140. Including the optional air-drying stage, the total cost of treatment is about US$148 per ton of dry matter. In the case of electron beam irradiation the capital investment achieves a value of US$ 11 millions with a total treatment cost of US$ 136 per ton of dry matter. These values resulted quite similar to the cost of alternative treatment, i.e., disposal in a dedicated landfill. (L.V.)

  5. Sustainability of Domestic Sewage Sludge Disposal

    OpenAIRE

    Claudia Bruna Rizzardini; Daniele Goi

    2014-01-01

    Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a s...

  6. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  7. Sewage sludge does not induce genotoxicity and carcinogenesis

    Science.gov (United States)

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  8. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    Whitley, Annie R.; Levard, Clément; Oostveen, Emily; Bertsch, Paul M.; Matocha, Chris J.; Kammer, Frank von der; Unrine, Jason M.

    2013-01-01

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  9. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes

    International Nuclear Information System (INIS)

    Alvarez-Ayuso, E.; Querol, X.; Plana, F.; Alastuey, A.; Moreno, N.; Izquierdo, M.; Font, O.; Moreno, T.; Diez, S.; Vazquez, E.; Barra, M.

    2008-01-01

    The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 o C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut fuer Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80 o C

  10. Effectiveness of DTPA Chelate on Cd Availability in Soils Treated with Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Pegah Houshyar

    2017-09-01

    Full Text Available Application of sewage sludge as a fertilizer on farmlands is a common practice in most countries. Although the practice may play a positive role in plant performance, the organic amendments introduced may increase the soil heavy metals content. This study was conducted in Arak, Iran, to investigate the effectiveness of DTPA chelate on corn Cd availability in a sewage sludge treated soil. The treatments consisted of sewage sludge (0, 15, and 30 t ha-1 polluted with cadmium applied at 0, 5, 10, and 15 mg kg-1 as well as DTPA applied at 0 and 1.5 mmol kg-1 soil. Corn plants were then grown in the soil in each treatmnent and, on day 60, the physic-chemical characteristics and Cd quantities were measured ion both the corn plants and soil samples. Application of 1.5 m mol of DTPA chelate in soil contaminated with 5 mg Cd led to a significant increase in the soil available Cd content. It was also observed that application of DTPA chelate to soils containing 30 t ha-1 of sewage sludge polluted with 10 mg Cd increased root and shoot Cd concentrations by 17 and 25%, respectively. Results indicated the effectiveness of DTPA chelate in reducing Cd phytoremediation with increasing sewage sludge loading rate. This was evidenced by the lowest phytoremediation effectiveness observed for the treatment with the greatest sewage sludge loading (30 t ha-1 and the lowest cadmium pollution (5 mg Cd.

  11. Ensured waste disposal without thermal treatment of sewage sludge?; Entsorgungssicherheit ohne thermische Klaerschlammbehandlung?

    Energy Technology Data Exchange (ETDEWEB)

    Melsa, A.K. [Niersverband, Viersen (Germany)

    1998-07-01

    The Technical Rule on Domestic Waste Management (TASi) specifies that from 2005, sewage sludge containing more than 5% of organic dry matter must no longer be dumped. This means that sewage sludge combustion will be the only means of disposal, apart from using sewage sludge as a fertilizer. The author's employer ('Niersverband' utility) was among the first to develop a future-oriented sewage sludge disposal strategy, and a drying plant was construct which is to reduce the weight and volume of sewage sludge in order to obtain a fuel of high calorific value. Further, a contract was closed for combustion of sewage sludge as fuel in a combustion system. [German] Unter Beruecksichtigung der TASi, die verlangt, dass spaetestens ab dem Jahr 2005 Klaerschlaemme mit einem hoeheren organischen Feststoffgehalt als 5% nicht mehr abgelagert werden duerfen, verbleibt uns neben der stofflichen Verwertung in der Landwirtschaft als massgeblicher Entsorgungsweg die Verbrennung, und zwar nicht - und das ist zu unterstreichen - um die Schadstoffe im Klaerschlamm zu beseitigen, sondern um den Klaerschlamm zu entsorgen. Eine betriebssichere Klaerschlammverbrennung stellt dabei die hoechste erreichbare Stufe der Entsorgungssicherheit dar. Der Niersverband hat sich fruehzeitig mit der Aufstellung einer zukunftsfaehigen Klaerschlammentsorgungsstrategie befasst und eine Trocknungsanlage geplant, die eine weitgehende Gewichts- und Volumenreduktion des Klaerschlamms sowie die Erzeugung eines heizwertreichen Brennstoffs gewaehrleistet und damit die Entsorgungsmoeglichkeiten deutlich verbessert. Des weiteren wurde ein erster Vertrag zur energetischen Klaerschlammverwertung in einer Verbrennungsanlage abgeschlossen. (orig.)

  12. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  13. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  14. Zinc, copper and manganese availability in soils treated with alkaline sewage sludge from Paraná state (Brazil

    Directory of Open Access Journals (Sweden)

    Maristela Dalpisol

    Full Text Available ABSTRACT In Paraná, most of the sludge generated in sewage treatment plants is subjected to the prolonged alkaline stabilization process. Although it is known that the alkaline sewage sludge contains micronutrients such as Zn, Cu and Mn, little is known about the availability of these elements in soils treated with this type of sewage sludge. Thus, the objective of the study was to evaluate the influence of alkaline sewage sludge from Paraná on Zn, Cu and Mn availability in soils. Twenty sewage treatment plants were selected throughout Paraná, where alkaline sewage sludge and the most representative agricultural soil of the each region were collected. Each soil was incubated for 60 days with alkaline sewage sludge rates (0, 10, 20, 40, and 80 Mg ha-1 from their region. Subsequently, Zn, Cu and Mn availability was determined using the Mehlich-1 extractant. The alkaline sewage sludge increased Zn availability and decreased Mn availability in most soils. Cu showed intermediate results, with increased availability, primarily in medium texture soils and decrease in most of the clayey soils. In soils with pH close to ideal for the plant growth, the alkaline sewage sludge rate should be carefully calculated so that there is no excessive increase in the pH and Zn, Cu and Mn imbalance.

  15. Examination of sewage sludge for specific organic pollutants and their effect on the agriculture usage of sewage sludge; Untersuchung von Klaerschlamm auf ausgewaehlte Schadstoffe und ihr Verhalten bei der landwirtschaftlichen Klaerschlammverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, E.; Bischoff, W.A.; Kaupenjohann, M.; Bundschuh, R.; Koehler, S.; Schmidt, B.; Kleiner, M.; Schraitle, T.

    2001-12-01

    In this research report, 50 different kinds of sewage sludges appropriate for the utilization in agriculture were tested for the organic pollutants that are not regulated in the official sewage sludge directive: organo tin compounds, mineral oil hydrocarbons, the tensides LAS and nonylphenol, as well as chlorinated paraffins. The analysis of mineral oil hydrocarbons was performed using the gaschromatografic method, which is based on DIN-proposal H 53. The analysis data was evaluated according to the size of the waste water treatment plant, its degree of usage to full capacity, the employed cleaning and sewage treatment methods and the industrial discharges. Investigations of sewer slime were conducted in the duct systems of two selected waste water treatment plants and tested for organo tin compounds. The dependence from domestic as well as from certain industrial and commercial sources was examined. In the second part of this research project, organo tin compounds and mineral oil hydrocarbons were tested in field trials and laboratory column experiments for the effects of the distribution of sewage sludge into agriculture. For the column experiments, ground soil samples were taken from two selected areas with muddy and sandy ground. The samples were then compounded with wet sludge and exposed to rain under strictly defined conditions. At the same time, the selected areas were exposed to the maximum amount of sewage sludge permitted and then planted with carrots. After a vegetation period, the carrots were harvested, adsorption bodies (SIA-system-method) were brought into the soil before the sewage sludge fertilization was examined, and several soil samples were taken and analysed for the selected parameters. In these examinations, a minor shift of organo tin compounds from the sewage sludge deeper into the ground can be detected and a shift of mineral oil hydrocarbons cannot be detected. (orig.)

  16. KINETICS OF FLY ASH BENEFICIATION BY CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph N.D. Dodoo; Dr. Joseph M. Okoh

    2000-11-01

    Surface area analyses performed on fly ash samples reveal that the surface area is controlled by carbon content. The higher surface areas found in large particles are due to the presence of highly porous carbonaceous particles. Adsorption-desorption isotherms and t-plots of fly ash samples indicate that fly ash is porous. BJH Adsorption/Desorption pore size analysis reveal that pore diameters are independent of sieve size. They appear to be dependent only on the nature of the material which confers porosity. Based on the results of Brown and Dykstra (41) it is reasonable to assume that calculations of reaction rates at temperatures above 550 C were confounded by weight losses from processes other than carbon oxidation and, therefore, are not useful in determination of the temperature dependence of carbon oxidation in fly ash. The results of the present study indicate that temperatures below 550 C should be used for future studies in order to satisfactorily assess the temperature dependence of carbon oxidation in fly ash. Furthermore, it is also advisable that percent carbon determinations be performed on fly ash samples after the oxidation reactions to determine whether all carbon present in fly ash is oxidized. This will ensure that reaction rates are representative of the complete oxidation of carbon. An inverse relationship was determined between reaction rates and oxygen concentration for this study. As discussed, this may be due to volatilization of volatiles from fly ash and ease of transport of products away from the reaction sites by the action of the vacuum applied to the samples. A more accurate determination of oxygen dependence of carbon oxidation can be accomplished by the use of specialty gases containing different concentrations of oxygen which could eliminate the need to apply vacuum to the samples.

  17. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.

    Science.gov (United States)

    Zielińska, Anna; Oleszczuk, Patryk

    2016-06-01

    The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    Science.gov (United States)

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  19. Evaluation of the mechanical properties of class-F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.; Prezzi, M. [Purdue University, West Lafayette, IN (United States)

    2008-07-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  20. Relative effectiveness of sewage sludge as a nitrogen fertilizer for tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Kiemnec, G.L.; Jackson, T.L.; Hemphill, D.D. Jr.; Volk, V.V.

    Sewage sludge application rates on grasses are mainly determined by N availability and concentration of toxic metals in sludge. The exact availability of N in sludge is difficult to predict. A 3-yr study was conducted to determine which sludge rates would give yields of tall fescue (Festuca arundinacea Shreb. Alta) comparable to yields obtained from inorganic N application. Sludge and NH/sub 4/NO/sub 3/ were surface applied at annual rates of 0, 110, 220, 440, and 880 (sludge only) kg N/ha. Dry matter yield of tall fescue from sludge-treated soils was 36, 56, and 50% of that on NH/sub 4/NO/sub 3/-treated soils for 1976, 1977, and 1978, respectively. Sludge was 27, 41, and 44% as effective as NH/sub 4/NO/sub 3/ as a source of available N in 1976, 1977, and 1978, respectively. Ammonium-N in the sewage sludge apparently provided most of the available N for fescue growth. Concentrations of Zn, Cd, and Cu were higher and Mn lower in tall fescue grown on sludge-treated soil with NH/sub 4/NO/sub 3/ and usually increased toward the end of the growing season. However, plant concentrations of these heavy metals never reached toxic levels at any time. Sewage sludge was an effective and safe nutrient source for tall fescue.

  1. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    2009-07-31

    Jul 31, 2009 ... The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and. R2 at 20oC) fed with primary sewage sludge and sulphate ...

  2. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and R2 at 20oC) fed with primary sewage sludge and sulphate was investigated ...

  3. Use of radiation hygienised municipal sewage sludge as a soil conditioner to enhance agricultural productivity

    International Nuclear Information System (INIS)

    Shah, M.R.; Nareshkumar; Sabharwal, S.

    2009-01-01

    This paper presents a report on the applications that have been developed and demonstrated in the radiation hygienisation of municipal sewage sludge for use in the agriculture as value added manure. Radiation hygienization process effectively eliminates the pathogenic bacteria present in the sewage sludge. Application of sludge to agricultural land enhances the yield and quality of agricultural products due to macronutrients and micronutrients present in the sludge. The process benefits municipal sewage treatment plant authorities as well as farming community. (author)

  4. Costs and economic efficiency of the drying of sewage sludges; Kosten und Wirtschaftlichkeit der Klaerschlammtrocknung

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Ulrich [Haarslev Industries A/S, Herlev (Denmark). Marketing and Business Development

    2013-03-01

    New methods of the thermal utilization have to be created due to the fact that agricultural utilisation of sewage sludge and the use in the reclamation due to stringent limit values and enhanced quality criteria are available restricted in future. The incineration of mechanically dewatered and dried sewage sludge is performed in mono-combustion plants as well as in coal-fired power plants. The author of the contribution under consideration reports on the costs and economic efficiency of the drying of sewage sludge. The drying of sewage sludge may perform an important and reasonable contribution to the utilization of municipal sewage sludge. The selection of a suitable drying process should ever depend on the local realities. Proved and suitable technologies are available for every application. Before the decision for a certain provider, one should examine reference plants and consider specific experiences of the operator among the decision-making.

  5. Disinfection of municipal sewage sludges in installation equipped with electron accelerator

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Zimek, Z.; Bryl-Sandelewska, T.; Kosmal, W.; Kalisz, L.; Kazmierczuk, M.

    1995-01-01

    Growing awareness of environment pollution hazards causes more and more stringent waste disposal regulations in many countries which stimulate searching for new methods of waste disposal, the best of which is recycling them after suitable treatment. Sludges from municipal sewage treatment plants contain organic and inorganic components valuable as soil fertilizer, so if disinfected they can be beneficially recycled in agriculture instead of being burdensome waste. Investigations performed in many countries showed that irradiation with a suitable dose of gamma or electron beam radiation makes sewage sludges sanitary safe and usable as soil fertilizer immediately after treatment. This paper describes some results of investigations performed in the Institute of Nuclear Chemistry and Technology and the Institute of Environmental Protection in Warsaw on the influence of 10 MeV electron beam on bacteria, parasites and parasite eggs present in sewage sludges from different municipal sewage treatment plants in Poland. Basic design parameters of the industrial installation elaborated on the basis of those experiments are presented. (Author)

  6. Reuse and recycling options for solid prescribed industrial wastes and brown coal fly ash

    OpenAIRE

    Seyoum Hailu, Tesfaye

    2017-01-01

    This dissertation presents the results of detailed investigation of the possible use of stabilised sludge and brown coal fly ash as raw material ingredients for road construction and manufacture of building bricks. The thesis is organised into seven chapters including a general introduction chapter. A literature review of solid waste management practices employed in Australia and some selected countries are discussed (chapter 1) together with waste generation from power station...

  7. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  8. Biodegradation of tetrabromobisphenol A in the sewage sludge process.

    Science.gov (United States)

    Peng, Xingxing; Wang, Zhangna; Wei, Dongyang; Huang, Qiyuan; Jia, Xiaoshan

    2017-11-01

    Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A (TBBPA) was successfully acclimated in an anaerobic reactor over 280days. During the period from 0 to 280days, the TBBPA degradation rate (DR), utilization of glucose, and VSS were monitored continuously. After 280days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20days of treatment in batch experiments. Based on scanning electron microscopy (SEM) observations and denaturing gradient gel electrophoresis (DGGE) determinations, the diversity of the microorganisms after 0 and 280days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol, 3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A, were identified by gas chromatography-mass spectrometry (GC-MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model. Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions. Copyright © 2017. Published by Elsevier B.V.

  9. Ceramsite preparation from sea sludge with sewage sludge biochar and its environmental risk assessment

    Science.gov (United States)

    Li, Jie; Yu, Guangwei; Pan, Lanjia; Li, Chunxing; Xie, Shengyu; Wang, Gang; Wang, Yin

    2018-02-01

    Ceramsite were produced from sea sludge (SS) by adding different percentage of sewage sludge biochar (SSB). The characteristics of ceramsite including micrograph and elementary composition were analyzed. In addition, the heavy metals (HMs) fractions, leaching behaviour and potential environmental risk were also investigated. The microstructure of the ceramsite was slit pores and the main elements of the ceramsite were Si, Al and O. The residual fraction (F4) of Cu, Cr and Cd in ceramsite with 100% SS (SS100) reached the maximum (100%, 99% and 100%, respectively), while F4 of Zn and Ni in ceramsite with 80% SS and 20% SSB (SS80) reached the top value of 99.5% and 98%. Moreover, the HMs of feedstock can be immobilized after sintering as ceramsite and the leached amounts of HMs in all ceramsite were much lower than that stated by GB 5085.3-2007. Furthermore, ceramsite preparation from sea sludge with sewage sludge biochar will not bring HMs contamination and potential ecological risk.

  10. Co-composting of sewage sludge and Echinochloa pyramidalis (Lam.)

    African Journals Online (AJOL)

    Yaoundé-Cameroon) in order to assess the effect of three sewage sludge: Macrophyte ratios on the co-composting process and compost quality. The ratios were T1: 25 kg of plant material (Echinochloa pyramidalis) and 75 kg sludge; T2: 50 kg ...

  11. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  12. Sewage sludge disposal-requirements, expense and acceptance; Klaerschlammentsorgung zwischen Anspruch, Aufwand und Akzeptanz

    Energy Technology Data Exchange (ETDEWEB)

    Gruenebaum, T. [Ruhrverband, Essen (Germany)

    1997-02-01

    Production of sewage sludges is unavoidable at wastewater treatment. Sewage sludges shall be used in agriculture. Although the content of hazardous substances in sewage sludges has obviously been minimized, the use of those sludges is limited because of the low acceptance in agriculture and food industry. Therefore it is necessary to build up methods of disposal which make possible and ensure a medium- or even longtime disposal. Incineration seems to be the solution since the requirements for landfill of sewage sludges have been renewed. The currently valid transitional regulation lead to remarkable reactions of the disposal market. The plans for sewage sludge disposal have to agree with the principles of environmental protection, safety, economic efficiency, good realization and operational handling. (orig.) [Deutsch] Bei der Abwasserreinigung faellt Klaerschlamm an. Dieser ist moeglichst in der Landwirtschaft zu verwerten. Obwohl die Schadstoffgehalte der Klaerschlaemme in den letzten 15 Jahren sehr deutlich gesunken sind, ist der Einsatz durch Akzeptanzprobleme in der Landwirtschaft und bei der Nahrungsmittelindustrie limitiert. Es gilt deshalb, Entsorgungspfade aufzubauen, die eine mittel- und langfristige Sicherung der Entsorgung ermoeglichen. Nach den neueren Anforderungen an eine Deponierung ist demnach immer eine Verbrennung vorzusehen. Die z.Z. noch geltende Uebergangsregelung hat zu massiven Reaktionen des Entsorgungsmarktes gefuehrt. Die Planungen zur Klaerschlammentsorgung muessen sich an den Grundsaetzen der Umsetzbarkeit und betrieblichen Handhabbarkeit ausrichten. (orig.)

  13. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    Science.gov (United States)

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  14. Potential impacts of using sewage sludge biochar on the growth of plant forest seedlings

    Directory of Open Access Journals (Sweden)

    Maria Isidoria Silva

    Full Text Available ABSTRACT: Sewage sludge has long been successfully used in the production of nursery plants; however, some restriction may apply due to its high pathogenic characteristics. The process of charring the organic waste significantly reduces that undesired component and may be as effective as the non-charred residue. The aim of this study was to evaluate the effect of sewage sludge biochar on the growth and morphological traits of eucalyptus ( Eucalyptus grandis L. seedlings, and compare results with those observed when using uncharred sewage sludge. Treatments were arranged in a completely randomized design, in a 2 x 2 factorial scheme, with four replications. Charred and non-charred sewage sludge were tested with and without NPK addition. A control treatment was also evaluated. Ten weeks old eucalyptus seedlings were transferred to the pots and grew for eight weeks. Chlorophyll content, plant height and stem diameter were measured at 0, 30 and 60 days after transplant. Shoot and root biomass were measured after plant harvest. Dickson Quality Index was calculated to evaluate the overall quality of seedlings. Biochar was effective in improving the seedlings quality, and had similar effects as the non-charred waste. Therefore, sewage sludge biochar has the potential to improve the process of production of forest species seedlings and further reduce the environmental risks associated with the use of non-charred sewage sludge.

  15. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

  16. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    International Nuclear Information System (INIS)

    Samolada, M.C.; Zabaniotou, A.A.

    2014-01-01

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated

  17. Removal of siloxanes in sewage sludge by thermal treatment with gas stripping

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Omori, Keigo; Takaoka, Masaki; Mizuno, Tadao

    2014-01-01

    Highlights: • A new treatment of sewage sludge were studied to reduce siloxanes in biogas. • D5 of cyclic siloxane concentrations were the highest in sewage sludge. • Under optimal conditions, most of siloxanes in the sludge were removed previously. • By this treatment, CH 4 was 1.6-fold larger and siloxane in biogas 95% lower. - Abstract: In this study, thermal treatment with gas stripping of sewage sludge before anaerobic digestion to reduce siloxanes in the sludge and accelerate the anaerobic digestion was studied experimentally. Regarding siloxanes in the sludge, D5 concentrations were the highest. Siloxane concentrations in the digested sludge were decreased, versus those in thickened sludge, because siloxanes in the sludge are moved to the biogas during the anaerobic digestion. Thermal treatment and gas stripping experiments were conducted. The optimum conditions for siloxane removal from sludge were found to be thermal treatment with gas stripping at 80 °C with 0.5 L/min of air flow for 48 h. Under these conditions, approximately 90% of all siloxanes in the sludge were removed. Next, anaerobic digestion experiments were conducted with the optimally treated sludge and untreated sludge. The biogas volume of the optimally treated sludge was 1.6-fold larger than that of the untreated sludge. Furthermore, D5 contents in biogas from the optimally treated sludge were 95% lower than in biogas from untreated sludge. Thus, thermal treatment with gas stripping of sludge before anaerobic digestion was effective in increasing biogas amounts, decreasing siloxane concentrations in the biogas, and reducing the need for a siloxane removal process from the biogas

  18. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  19. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  20. Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-09-01

    Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  2. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. [University of Kentucky, Lexington, KY (United States). Center of Applied Energy Research

    2011-01-15

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.

  3. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution...

  5. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  6. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge.

    Science.gov (United States)

    Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta

    2016-05-01

    The application of municipal sewage sludge on energy crops is an alternative form of recycling nutrients, food materials, and organic matter from waste. Municipal sewage sludge constitutes a potential source of heavy metals in soil, which can be partially removed by the cultivation of energy crops. The aim of the research was to assess the effect of municipal sewage sludge on the uptake of heavy metals by monocotyledonous energy crops. Sewage sludge was applied at doses of 0, 10, 20, 40, and 60 Mg DM · ha(-1) once, before the sowing of plants. In a 6-year field experiment, the effect of four levels of fertilisation with sewage sludge on the uptake of heavy metals by two species of energy crops, reed canary grass (Phalaris arundinacea L.) of 'Bamse' cultivar and giant miscanthus (Miscanthus × giganteus GREEF et DEU), was analysed. It was established that the increasing doses of sewage sludge had a considerable effect on the increase in biomass yield from the tested plants. Due to the increasing doses of sewage sludge, a significant increase in heavy metals content in the energy crops was recorded. The heavy metal uptake with the miscanthus yield was the highest at a dose of 20 Mg DM · ha(-1), and at a dose of 40 Mg DM · ha(-1) in the case of reed canary grass. Research results indicate that on account of higher yields, higher bioaccumulation, and higher heavy metal uptake, miscanthus can be selected for the remediation of sewage sludge.

  7. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  8. Radioresistance of microorganisms in sewage sludge with special regard to the virus species

    International Nuclear Information System (INIS)

    Mayr, A.; Mahnel, H.; Brodorotti, H.S. v.; Ottis, K.

    1979-01-01

    Of the viral species present in surface and waste water only entero-, reo-, parvo-, and possibly paramyxoviruses are of relevance. These viruses remain infectious through to the sewage sludge stage, although then only present in small numbers. Bacteria and moulds are present in high concentrations in sewage sludge, the majority being non-pathogenis or only facultative pathogenic species. Of these only Salmonellae are of public health concern. Viruses are considerably more radiation resistant than bacteria and moulds. In sewage sludge a parvo virus was clearly the most resistant towards radiation followed, in order of decreasing resistivity, by reo- and entero-viruses. With the exception of the strongly resistant streptococcus faecalis two enterobacteria and one mould were found to be relatively radiation-sensitive. Gamma radiation is effective for inactivating all viral and bacterial contamination of sewage sludge. The dose required depends upon the radiation resistance and concentration of the individual strain. Enteroviral elimination determines the dose required for viruses and salmonella radiation the dose for bacteria. For practical sewage sludge decontamination a total irradiation dose of 500 krad has been calculated to meet normal requirements, and this dose can be raised to 1 Mrad for more stringent demands. (orig./MG) [de

  9. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Directory of Open Access Journals (Sweden)

    Anna Wyrwicka

    Full Text Available The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot, while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx, catalase (CAT and guaiacol peroxidase (POx, were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST. Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  10. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Science.gov (United States)

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  11. Interaction of alkylphenolic and perfluorinated compounds with sewage sludges and soils

    OpenAIRE

    Milinovic, Jelena

    2014-01-01

    [eng] In this doctoral thesis the interaction of emergent organic pollutants, such as alkylphenolic and perfluorinated compounds (APCs and PFCs, respectively) with sewage sludge and soil samples was studied. These two families of organic compounds were selected because of their ubiquitous presence and persistence in environmental matrices and to know mechanisms responsible for their interaction. With respect to the behaviour of APCs in sewage sludges, concretely octylphenol (OP), nonylphenol ...

  12. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    Science.gov (United States)

    Czekała, Wojciech; Dach, Jacek; Przybył, Jacek; Mazurwiekiwcz, Jakub; Janczak, Damian; Lewicki, Andrzej; Smurzyńska, Anna; Kozłowski, Kamil

    2018-02-01

    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge.

  13. Experience with a pilot plant for sewage sludge: Experiments on the inactivation of viruses in sewage sludge after a radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a Cobalt-60-plant were, till now, limited to the attempts to isolate virus from the sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in those sludge samples virus presence could be proven only on a rather irregular basis, an experiment was devised in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. Furthermore one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content was determined before and after the radiation treatment. In 33 sludge samples examined before hygienization, presence of one or several viruses occurred in 8 samples. With the 33 capsules examined after hygienization with 300 krad, only 2 showed presence of virus. Suspensions of attenuated polio virus type I packed into synthetic capsules with a medium virus dosis of 10sup(6.92) JD 50/0.1 were immersed into sludge. In 6 experiments it was found that after hygienization, virus dosis was reduced to an average value of 10sup(5.4) JD 50/0.1 ml. Accordingly, the experimental results showed that after the radiation treatment the reduction of the exposed virus was more than 90%. Under natural conditions the investigation of the sewage sludge samples showed presence of virus 4 times less after hygienization than in the samples examined before hygienization. (orig./AK) [de

  14. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  16. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  17. Elemental concentrations of sewage sludge ashes from 1972 to 1994. Trends in environmental pollution and purification technology; Elementgehalte von Klaerschlammaschen 1972-1994. Trends bei Umwelteintraegen und Klaertechnik

    Energy Technology Data Exchange (ETDEWEB)

    Helmers, E. [Fachhochschule Trier (Germany). Umweltcampus; Wippler, K. [Amt fuer Umweltschutz, Stuttgart (Germany). Chemisches Inst.

    1999-06-01

    An archive of sewage sludge ashes back to the year 1972 has been analysed for the concentrations of 28 elements exhibiting innovations in the purification technology as well as variations in environmental pollution up to the present. Addition of Al- and Fe-containing precipitating agents also affected signatures of Na, Mo, Ti and Mn. Temporal trends of Mg, K, Li, Sr and Ca are influenced by the mechanism of phosphate reduction. Continuous decrease in the concentrations of Ag, Cr, Ni, Sn, Cd, Cu, Pb and Zn have been traced back to several local as well as general reasons. The decrease of elemental concentrations is discussed with respect to the disposal of sewage sludge on agri- or horticulturally used areas. (orig.) [Deutsch] Aus der Untersuchung archivierter Klaerschlammaschen wird ein Ueberblick ueber die Gehalte von 28 Elementen und ihre zeitliche Entwicklung ueber 23 Jahre vorgelegt. Die dabei gewonnenen Zeitreihen (1972-1994) reflektieren Innovationen und Aenderungen im Klaerverfahren sowie im Eintrag von Elementen und Metallen waehrend dieses Zeitraums. Der Zusatz von Al- und Fe-haltigen Faellmitteln beeinflusste auch die Signaturen der Elemente Na, Mo, Ti und Mn. Die Trendverlaeufe von Mg, K, Li, Sr und Ca weisen auf mechanistische Zusammenhaenge bei der Phosphatelimination hin. Der kontinuierliche Rueckgang der Metalle Ag, Cr, Ni, Sn, Cd, Cu, Pb, Zn konnte mit einer Reihe von lokalen und ueberregionalen Quellen in Zusammenhang gebracht werden. Die Entwicklung der Elementgehalte wird im Hinblick auf eine moegliche landwirtschaftliche Entsorgung diskutiert. (orig.)

  18. Plant nutrition on fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W J; Sidrak, G H

    1956-12-01

    Experiments were performed to determine the plant nutritional potential of fly ash. Chemical analysis indicates that it contains all the essential nutrients. It is deficient in nitrogen and only manganese and aluminum appear to be available in quantities toxic to plants. Barley and spinach grown on fly ash accumulate excessive quantities of Al and Mn in their leaves and exhibit symptoms of toxicities of these metals. Atriplex hastata grows vigorously on the ash, has a high Al and Mn leaf content, but does not show toxicity symptoms. Atriplex, barley and spinach grown at reduced N levels gave lower yields than the normal controls, but symptoms of N deficiency which were evident in barley and spinach were not observed in Atriplex. 17 references, 2 figures, 14 tables.

  19. Assessment of doses due to radionuclides in sewage sludge for different scenario of its use

    International Nuclear Information System (INIS)

    Lydagiene, R.; Morkunas, G.; Pilkyte, L.

    2003-01-01

    Assessment of doses due to radionuclides in sewage sludge for different scenarios of its use was made for sewage plant storage in Visaginas, Rimses district, Karlu village. Calculations of individual and collective doses were made on the basis of results of measurements. Two potential exposure pathways from radionuclides in sewage sludge were considered and two scenarios descriptions were made. The first scenario is when the sludge is using for fertilization, and the second one - the sludge is covered with soil. Using program Environ-Calc made by American Chemical Society the number of samples needed to be sampled was optimized. 38 sewage samples were collected for gamma spectrometrical measurements and 10 samples - for measurements of tritium activity. Results of measurements pointed out that the sludge has no higher activity of tritium that background ones. The only two man made radionuclides 60 Co and 137 Cs were found by gamma spectrometry in the sludge. Average activity for the fresh weight in the samples of 60 Co was 42 Bq/kg, 137 Cs - 10 Bq/kg. Concentration of natural radionuclides was in the same range as in any soil samples from Lithuania. The dose for the first scenario for 1 years child will be 12 μSv, for adult - 9,4 μSv. In another scenario doses for the workers in sewage plant were estimated as 0,76 mSv. Collective dose in case of use of sewage sludge for fertilizers will be 4,4*10 -3 man Sv. The lowest doses will be when the sewage storage is covered using soil. (author)

  20. Perspectives of sewage sludge disposal. Technical meeting; Perspektiven der Klaerschlammentsorgung. Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Wilderer, P.A. [ed.; Faulstich, M. [ed.; Rothemund, C. [ed.; Angerhoefer, R. [ed.

    1996-10-01

    Sewage sludge is a material requiring utilization and disposal. A profound change is due with the prohibition from the year 2005 to deposit untreated sewage sludge at landfills. As it will hardly be possible to use all sewage sludge in farming, thermal disposal will be indispensable. A major problem consists in forecasting the quantities of sewage sludge requiring processing and determining the corresponding plant capacities. If the problem is varied, so are the solutions offered. Therefore, a final panel discussion was held where representatives of science, the ministries and the interest groups concerned had the possibility to voice their opinions. (orig.) [Deutsch] Es gilt Klaerschlaemme zu verwerten und zu entsorgen. Hier ist eine nachhaltige Veraenderung vor allem deshalb zu erwarten, da ab dem Jahr 2005 die Ablagerung nicht vorbehandelter Klaerschlaemme untersagt ist. Da aber kaum saemtliche Klaerschlaemme landwirtschaftlich zu verwerten sind, ist das Standbein thermische Behandlung unverzichtbar. Ein grundsaetzliches Problem ist hier die Prognose der zukuenftig zu behandelnden Mengen und des sich daraus ergebenden Anlagenbedarfs. So vielfaeltig wie das Problem, so vielfaeltig sind die Auffassungen zur Loesung desselben. In einer abschliessenden Podiumsdiskussion hatten daher Vertreter der Wissenschaft, der Ministerien sowie der einschlaegigen Interessenverbaende die Moeglichkeit, ihre Positionen zu verdeutlichen. (orig.)

  1. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  2. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  3. Performance evaluation of clay fly ash brick masonry

    Energy Technology Data Exchange (ETDEWEB)

    Kute, S.; Deodhar, S.V. [K.K. Wagh College of Engineering, Panchavati (India). Dept. of Civil Engineering

    2003-07-01

    Despite inexorable trends of automation in manufacturing industry throughout the world, the conventional brick manufacturing practices have remained largely unchanged since the dawn of civilization in India. This has imposed restrictions on quality of bricks in general. The paper highlights the results derived from an extensive experimental work on performance evaluation of brick masonry. Four types of bricks, three values of joint thickness and fineness modulus of sand, and two grades of mortar with four different proportions were used as samples. Fly ash was from Nashik Thermal Power Station in Maharashtra, India. The results show that the brick masonry of 40% fly ash bricks and mortar with 20% fly ash as replacement to cement with 1:4 and 1:6 proportion gives optimum strength and advocates use of fly ash for this combination. 8 tabs.

  4. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  5. CISCO - Combined Cycle with Integrated Sewage Sludge Combustion; Kombi-Anlage mit integrierter Klaerschlam-Verbrennung - CISCO (Combined Cycle with Integrated Sewage Sludge Combustion)

    Energy Technology Data Exchange (ETDEWEB)

    Vockrodt, S.; Leithner, R. [Technische Univ. Braunschweig (Germany). Inst. fuer Waerme- und Brennstofftechnik

    2004-12-01

    A new combined process is presented in which is sewage sludge is dried until it can be combusted, and the heat of combustion is used for sludge drying. (orig.) [German] Mit einer neuen Verfahrenskombination ist es moeglich, Klaerschlamm so weit zu trocknen, dass er verbrannt werden kann, wobei die Verbrennungswaerme zur Trocknung genutzt wird. (orig.)

  6. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  7. Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Zhang, Guangming; Ma, Weifang; Wu, Hao; Ma, Boqiang

    2012-11-01

    Alkaline pretreatment combined with high pressure homogenization (HPH) was applied to promote sewage sludge disintegration. For sewage sludge with a total solid content of 1.82%, sludge disintegration degree (DD(COD)) with combined treatment was higher than the sum of DD(COD) with single alkaline and single HPH treatment. NaOH dosage ⩽0.04mol/L, homogenization pressure ⩽60MPa and a single homogenization cycle were the suitable conditions for combined sludge treatment. The combined sludge treatment showed a maximum DD(COD) of 59.26%. By regression analysis, the combined sludge disintegration model was established as 11-DD(COD)=0.713C(0.334)P(0.234)N(0.119), showing that the effect of operating parameters on sludge disintegration followed the order: NaOH dosage>homogenization pressure>number of homogenization cycle. The energy efficiency with combined sludge treatment significantly increased compared with that with single HPH treatment, and the high energy efficiency was achieved at low homogenization pressure with a single homogenization cycle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S.; Hattacharya, S.; Chaudhury, S. [Visva Bharati, Santini Ketan (India)

    2009-10-15

    Among pollutants, the coal fly ash occupies a significant position in industrial wastes. The fly ash matrix is a complex mixture of various organic (polyhalogenated compounds) and inorganic (Si, Al, Fe, As, Cd, Bi, Hg, etc.) chemicals. The application of fly ash for agricultural purposes and as landfills may lead to the contamination of the land with some of the toxic chemical compounds present in fly ash. Thus prior to the application of fly ash for developmental activities, it requires bio-monitoring and risk characterization. In order to achieve this objective adult Lampito mauritii were exposed to different proportions of fly ash in soil for 30 d and the concentrations of metallothionein in earthworm were assessed. The results revealed that up to 50% of fly ash amendment does not apparently harm the earthworm in respect of their survival and growth. A significant increase in tissue metallothionein level was recorded in L mauritii exposed to fly ash amended soil without tissue metal accumulation indicating that metallothionein is involved in scavenging of free radicals and reactive oxygen species metabolites. It is concluded that this biochemical response observed in L mauritii exposed to fly ash amended soil could be used in ecotoxicological field monitoring.

  9. Optimization of soil stabilization with class C fly ash.

    Science.gov (United States)

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  10. Using locally available fly ash for modifying concrete properties

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Toor, S.R.; Ahmad, H.

    2005-01-01

    This paper suggests the possible use of fly ash, a bye-product produced in our thermal power plants operating on coal as fuel for improvement of concrete quality. In the present investigation, locally available finely divided fly ash has been used for modification Presently, it is being used extensively in concrete in modem countries and is considered as waste material in general. Behavior of fly ash modified concrete in comparison to normal concrete having same mix proportions, aggregates, net water-cement ratio and similar curing conditions has been studied in short terms up to the age of 56 days during which the specimens were subjected to normal water curing method. Tests were carried out for compressive strength at 3, 7, 14,28 and 56 days, 24 hours % age water absorption at the age of 56 days and durability (resistance of concrete against N/2 solutions of both nitric acid and hydrochloric acid for one month) of concrete were also carried out at the age of 56 days. It was seen that the compressive strength of concrete modified with the available type of fly ash was less than the normal concrete. But so. far as the durability and % age water absorption are concerned, fly ash plays an important role here. 24 hours % age water absorption decreases with increase in fly ash content an admixture and as a cement replacement in concrete. But so far as durability is concerned, 20% replacement of fly ash with cement appears to be more effective than it is with 40%. The purpose of investigation was to introduce the use of fly ash in concretes to the Engineers and Architects in Pakistan. (author)

  11. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  12. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  13. Feasibility analysis of a sewage sludge treatment by an irradiation plant in Mexico

    CERN Document Server

    Moreno, J; Colin, A; Tavera, L

    2002-01-01

    Technical and economic analyses of an irradiation plant for sewage sludge treatment determined that an appropriate place for the first sludge electron irradiator in Mexico would be the sewage water treatment plant located north of Toluca in the State of Mexico. This treatment plant is mainly used for domestic wastewater and produces an approximate volume of 70 ton d-] liquid sewage sludge. Considering a 50 k W power of a 10 MeV electron linear accelerator, an irradiation dose of S KGy and a treatment capacity of 346 tons per day, it is estimated that the treatment cost would be of $9.00 US dollars per ton. (Author)

  14. Modeling the Radiological Impact of Tritium in Sewage Sludge Being Used as Fertilizer

    International Nuclear Information System (INIS)

    Venter, A.; Smith, G.

    2005-01-01

    A study was undertaken to assess the radiological impact on humans via the foodchain resulting from the presence of tritium and C-14 in sewage sludge being used as fertilizer on agricultural land. The key endpoint of the assessment was the annual individual dose to an average member of potential critical groups. As part of the assessment, a model was developed to simulate the distribution of tritium between sewage sludge and effluent in the sewage treatment plant, the release of tritium upon sludge decomposition and subsequent uptake by plants and animals. The modeling assumptions, as well as key parameters and parameter values will be discussed in this paper

  15. SEWAGE SLUDGE EFFECTS ON POTATO, WINTER WHEAT AND MAIZE YIELD CULTIVATED IN ROTATION, AND SOIL PROPERTY MODIFICATION

    Directory of Open Access Journals (Sweden)

    Gh. Lixandru

    2005-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of sewage sludge as phosphorus and nitrogen amendment for cambic chernozem soils in comparison with inorganic fertilizers (NH4NO3 and KCl. The experiment reported here were conducted during 10 years in two rotation: 1 potato – winter wheat – maize, and 2 maize – potato – winter wheat. Sewage sludge rates applied in potato was 65, 130 and 195 t/ha respectively, and in maize 30, 60 and 90 t/ha, sewage sludge rates applied alone or in combination with N and K as mineral fertilizers. The results led to the following conclusions: 1 The air-dried sewage sludge from plot Iaşi contained about 200 kg organic matter, 6 kg N, 8 kg P, 2 kg K, 30 kg Ca and 10 kg soluble salts in 1000 kg. The heavy metals content was under the maximum limits allowable, excepting Zn which was found between 4140 and 5378 ppm Zn. 2 At potato crops resulted in an yield increase of 100 kg tubers for one ton sewage sludge in case of rate of 65 t/ha, at higher rates the yield increase being lower. Annual rainfall had a significant influence on yield increase. 3 The nitrogen utilization from sewage sludge was of 8.5 % at a rate of 65 t/ha and 2.5 % at a rate of 195 t/ha. From 100 kg N as mineral fertilizer, potato used 30 % and produced 60 kg tubers/1 kg N applied in soil. The yield increase at 1 kg N from sewage sludge was of 17 kg tubers at a rate of 65 t/ha. Therefore, the nitrogen efficiency from mineral fertilizer was about three times higher compared to N from sewage sludge. 4 Applied in maize crop, resulted an yield increase of 23.2 kg grains for 1 ton sewage sludge at a rate of 30 t/ha and only 13.2 kg/1 t at a rates 90 t/ha. By comparing to manure, the yield increased was lower. The nitrogen utilization from sewage sludge by maize was of 11 % at 3o t/ha and 6.6 % at 90 t/ha. From mineral fertilizer, maize used 25.9 % of 100 kg N/ha. 5 Residual effect of sewage sludge in second year in wheat crop was of 7

  16. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  17. Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Recently, gamma rays and electron beams have been successfully used on sludges and wastewater to eliminate pathogenic organisms and some toxic chemicals. Sufficient technical data are available for gamma treatment of sludges, permitting its application on the demonstration or commercial scale, but gaps in our knowledge exist for the practical application of electron-beam technology. The IAEA`s involvement in studies of radiation processing of sewage sludge dates back several years. A five-year Co-ordinated Research programme on Radiation Treatment of Sewage Sludge for Safe Reutilization, involving Canada, Germany, India, Indonesia, Italy, Japan, and the United State of America, was completed in 1990. This programme laid a solid foundation on which future programmes can be built. However, at present, information is limited on the availability of nutrients from sewage sludges to crops, its benefits as an organic amendment to soil, and the harmful effects of heavy metals on crop growth. Isotope and radiation techniques are valuable tools of potential use in finding answers to some of these questions. Refs, figs, tabs.

  18. Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings

    International Nuclear Information System (INIS)

    1997-10-01

    Recently, gamma rays and electron beams have been successfully used on sludges and wastewater to eliminate pathogenic organisms and some toxic chemicals. Sufficient technical data are available for gamma treatment of sludges, permitting its application on the demonstration or commercial scale, but gaps in our knowledge exist for the practical application of electron-beam technology. The IAEA's involvement in studies of radiation processing of sewage sludge dates back several years. A five-year Co-ordinated Research programme on Radiation Treatment of Sewage Sludge for Safe Reutilization, involving Canada, Germany, India, Indonesia, Italy, Japan, and the United State of America, was completed in 1990. This programme laid a solid foundation on which future programmes can be built. However, at present, information is limited on the availability of nutrients from sewage sludges to crops, its benefits as an organic amendment to soil, and the harmful effects of heavy metals on crop growth. Isotope and radiation techniques are valuable tools of potential use in finding answers to some of these questions

  19. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    Science.gov (United States)

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  20. Investigation into Total Carbon in Sewage Sludge and Compost

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-02-01

    Full Text Available The relation between soil and climate change is highly important. The soil is a part of the climate change problem; however, it could also be a part of the solution to the encountered problem. For a better understanding and estimation of climate gas emissions and for slowing down these processes, more investigation in this field is required. Sustainable soil usage could help with saving or even increasing the amount of carbon in the soil. Such process will sustain the balance of climate gas emissions. Soil carbon is an essential element that determines soil fertility. Recently, the importance of organic materials for soil quality and the applicability of sewage sludge to enrich the soil using such materials have been discussed. Sewage sludge as an organic carbon source can improve soil quality. The best way to stabilise and immobilise carbon is mineralisation that occurs in the composting process. The article analyses and evaluates the loss of organic carbon content during the composting process of sewage sludge and explores loss rates by adding various natural supplements (wood shavings and chips, milled bark, grained branches, peat and zeolite.Article in Lithuanian

  1. Simulation of substrate degradation in composting of sewage sludge

    International Nuclear Information System (INIS)

    Zhang Jun; Gao Ding; Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin; Du Wei

    2010-01-01

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k 20 (the first-order rate constant at 20 o C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k 20 , k 20s (first-order rate coefficient of slow fraction of BVS at 20 o C) of the sewage sludge were estimated as 0.082 and 0.015 d -1 , respectively.

  2. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.

    Science.gov (United States)

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW(th) circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  4. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  6. Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.

    Science.gov (United States)

    Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi

    2015-02-01

    A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. Copyright © 2014. Published by Elsevier B.V.

  7. Evaluation of various techniques for the pretreatment of sewage sludges prior to trace metal analysis by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    Six techniques were evaluated for their suitability for the pretreatment of dried sewage sludge prior to trace metal analysis by atomic absorption spectrophotometry. The evaluation comprised analysis of two prepared samples of dried sludge for aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel and zinc, after the following pretreatment: dry ashing at 500 degrees Celsius followed by extraction with dilute hydrochloric acid; dry ashing at 500 degrees Celsius followed by extraction with aqua regia; nitric acid digestion followed by extraction with hydrochloric acid; extraction with aqua regia; ashing with magnesium nitrate solution at 550 degrees Celsius followed by digestion with hydrochloric acid and extraction with nitric acid; extraction with nitric acid. Procedures involving the use of perchloric acid, hydrofluoric acid and hydrogen peroxide were not considered for reasons of safety. Except in the case of aluminium the direct mineral acid digestion and/or extraction methods generally gave higher recoveries than the procedures incorporating an ashing step. Direct extraction of the sample with aqua regia was recommended as a rapid and simple general method of sample pretreatment prior to analysis for all the metals investigated except aluminium. For this metal, more drastic sample pretreatment will be required, for example fusion or hydrofluoric acid digestion

  8. Study of radon exhalation and emanation rates from fly ash samples

    International Nuclear Information System (INIS)

    Raj Kumari; Jain, Ravinder; Kant, Krishan; Gupta, Nitin; Garg, Maneesha; Yadav, Mani Kant

    2013-01-01

    Fly ash, a by-product of burnt coal is technologically important material being used for manufacturing of bricks, sheets, cement, land filling etc. The increased interest in measuring radon exhalation and emanation rates in fly ash samples is due to its health hazards and environmental pollution and the same have been measured to assess the radiological impact of radon emanated from fly ash disposal sites. Samples of fly ash from different thermal power stations in northern India and National Council for Cement and Building Materials (NCB) were collected and analysed for the measurements. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Gamma spectrometry and can technique was used for the measurements. The experimental data show that fly ash samples emanate radon in significant amount and this consequently, may result in increased radon levels in dwellings built by using fly ash bricks and excessive radiation exposure to workers residing in the surroundings of fly ash dumping sites. (author)

  9. ASSESSMENT OF THE POSSIBILITIES OF AGRICULTURAL USE OF SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANTS IN OLECKO

    Directory of Open Access Journals (Sweden)

    Magdalena Filkiewicz

    2015-03-01

    Full Text Available According to the National Waste Management Plan 2014 (NWMP 2014 recommended method of utilization of sewage sludge is using it for agricultural purposes or for land reclamation. The sludge is characterized by a high content of organic substances, microelements and biogenic compounds, through which sewage sludge possess high soil formation and fertilization properties. It is assumed that in 2020 approximately 30% of the sludge production will be used for agricultural purposes, while 15% will be used for land reclamation. We have to remember that prior to the introduction of sludge into the ground, security, health and chemical requirements should be met. In order to use the sludge for agricultural purposes, the process of their disposal should be previously carried out e.g. Autoheated Thermophilic Aerobic Digestion (ATAD. It allows for hygienisation of sewage sludge and reducing the heavy metal content. As a result, processed sewage sludge is characterized by the presence of heavy metals in amounts which do not exceed the standards. It is also deprived of microorganisms. The stabilized sludge is characterized by high phosphorus and calcium content. Therefore there is possibility to use the examined sludge in agriculture.

  10. Ecological and Economic Aspects of the Application of Sewage Sludge in Energetic Plant Plantations - A Swot Analysis

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2017-12-01

    Sewage sludge management in Poland is a relatively new field of waste management called "in statu nascendi", the standards of which have not been recognized yet. It also requires the implementation of new solutions in the field of sewage sludge. So far, the most popular method of sewage sludge utilization has been landfill disposal. In line with the restriction placed on landfill waste with a calorific value above 6 MJ/kg introduced on 1 January 2016, agricultural use and thermal methods are particularly applied. Municipal sewage sludge may be successfully used in the cultivation of energetic plant plantations. The aforementioned waste could be treated as an alternative to traditional mineral fertilizers, which in turn might successfully provide valuable nutrients for plants. This paper illustrates the SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats) associated with the use of sewage sludge from Świlcza-Kamyszyn WTTP (Podkarpackie Province, Poland) for agricultural purposes. This analysis could be useful in evaluating the utility of sewage sludge in perennial plant plantations in order to determine the appropriate waste management strategies.

  11. Strength Characteristics of Fiber Reinforced Quarry Dust Stabilized Fly Ash

    OpenAIRE

    Akshaya Kumar Sabat; Bidula Bose

    2015-01-01

    Effects of quarry dust and polypropylene fiber on compaction properties, shear strength parameters, and California bearing ratio (CBR) of a fly ash have been discussed in this paper. Quarry dust was added to a fly ash from 0 to 60% at an increment of 10%, compaction and soaked CBR tests were conducted on fly ash-quarry dust mixes and the optimum percentage of quarry dust was found out to be 40%. Polypropylene fiber was added to fly ash stabilized with optimum percentage of quarry dust, from 0...

  12. Sewage sludge - arisings, composition, disposal capacities; Klaerschlamm - Mengen, Zusammensetzung, Entsorgungskapazitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Rabus, J. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft; Urban, A.I.; Friedel, M. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    One of the main disposal paths for sewage sludge in the past was landfilling. This option was severely restricted by the issue of the Technical Code on Household Waste in 1993. In its agricultural applications sewage sludge serves as a fertiliser and a soil improvement agent. Estimates on potential thermal treatment capacities have shown that there are enough public power plants to accommodate and provide thermal treatment for the total of sewage sludge arisings in Germany. As can be seen from the estimates presented in this paper, it would not even be necessary to restrict oneself to public power plant capacities. The paper points out possibilities of using plant capacities already existing in industrial firing plants and certain production sectors. It uses a comparison to show that sewage sludge would have to be dried in order to permit its thermal treatment in these private facilities. Aside from this, there are a number of new techniques entering the market which from the technical viewpoint also appear to be well suited for thermal sewage sludge treatment. [Deutsch] Ein wesentlicher Entsorgungsweg von Klaerschlamm war in der Vergangenheit die Verbringung auf eine Deponie. Diese Moeglichkeit ist durch die TA Siedlungsabfall von 1993 stark eingeschraenkt. Bei der landwirtschaftlichen Verwertung wird durch den Klaerschlamm eine Duengewirkung sowie eine Bodenverbesserung erreicht. Eine Abschaetzung der potentiellen thermischen Behandlungskapazitaeten zeigt, dass die gesamte bundesdeutsche Klaerschlammenge in oeffentlichen Kraftwerken unterzubringen und thermisch zu behandeln waere. Wie die hier dargestellten Abschaetzungen gezeigt haben, ist man durchaus nicht allein auf die Nutzung oeffentlicher Kraftwerkskapazitaeten angewiesen. Es wurden Moeglichkeiten zur Nutzung vorhandener Anlagenkapazitaeten in industriellen Feuerungsanlagen und in Produktionsbereichen aufgezeigt. Wie aus einem Vergleich erkennbar wird, ist allerdings eine Trocknung der Klaerschlaemme

  13. Role of soil properties in sewage sludge toxicity to soil collembolans

    OpenAIRE

    Domene, X.

    2010-01-01

    Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances lin...

  14. Assessing earthworm and sewage sludge impacts on microbiological and biochemical soil quality using multivariate analysis

    Directory of Open Access Journals (Sweden)

    Hanye Jafari Vafa

    2017-06-01

    Full Text Available Introduction: Land application of organic wastes and biosolids such as municipal sewage sludge has been an important and attractive practice for improving different properties of agricultural soils with low organic matter content in semi-arid regions, due to an increase of soil organic matter level and fertility. However, application of this organic waste may directly or indirectly affect soil bio-indicators such as microbial and enzymatic activities through a change in the activity of other soil organisms such as earthworms. Earthworms are the most important soil saprophagous fauna and much of the faunal biomass is attributed to the presence of these organisms in the soil. Therefore, it is crucial to evaluate the effect of earthworm activity on soil microbial and biochemical attributes, in particularly when soils are amended with urban sewage sludge. The purpose of this study was to evaluate the earthworm effects on biochemical and microbiological properties of a calcareous soil amended with municipal sewage sludge using Factor Analysis (FA. Materials and Methods: In the present study, the experimental treatments were sewage sludge (without and with 1.5% sewage sludge as the first factor and earthworm (no earthworm, Eiseniafoetida from epigeic group, Allolobophracaliginosa from endogeic group and a mixture of the two species as the second factor. The study was setup as 2×4 full factorial experiment arranged in a completely randomized design with three replications for each treatment under greenhouse conditions over 90 days. A calcareous soil from the 0-30 cm layer with clay loam texture was obtained from a farmland field under fallow without cultivation history for ten years. The soil was air-dried and passed through a 2-mm sieve for the experiment. Sewage sludge as the soil organic amendment was collected from Wastewater Treatment Plant in Shahrekord. Sewage sludge was air-dried and grounded to pass through a 1-mm sieve for a uniform mixture

  15. Agricultural yields of irradiated sewage sludge; Rendimiento agricola de barros cloacales irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Magnavacca, Cecilia; Miranda, E; Sanchez, M [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Centro Atomico Ezeiza

    1999-07-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  16. Odor composition analysis and odor indicator selection during sewage sludge composting

    Science.gov (United States)

    Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua

    2016-01-01

    ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index

  17. Odor composition analysis and odor indicator selection during sewage sludge composting.

    Science.gov (United States)

    Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua

    2016-09-01

    On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation

  18. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  19. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    Science.gov (United States)

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  20. Fly ash stabilisation of gravel roads; Flygaska som foerstaerkningslager i grusvaeg

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef

    2006-01-15

    Majority of the existing gravel roads have low bearing capacity during spring and autumn, due to thaw and/or rain. Low bearing capacity leads often to bad road conditions. This situation results in higher costs for the lumber industry and the public. Management of gravel roads all the year around would traditionally require excavation of frost susceptible soils and replacement with natural materials. Fly ash (from bio fuels) has good technical properties as bearing layer in road constructions. Fly ash stabilised gravel roads have better function and longer life span with less maintenance than traditional gravel roads. The aim of this project is to show how fly ash stabilisation of gravel roads can increase bearing capacity and what its environmental impact is. The overall aim is to make it easier for entrepreneurs and consulting companies to use fly ash during gravel road renovation and/or constructing new gravel roads. This report targets fly ash producers and road constructors as well as environmental agencies. Two different pilot tests were investigated in this study, Norberg with fly ash from Stora Enso Fors AB, and Boerje (Uppsala) with fly ash from Vattenfall Uppsala AB. Both road sections with related reference section were investigated during a two year period. Only fly ash was used in the bearing layer at Norberg and fly ash gravel was used at Boerje. Bearing capacity was investigated twice, for both locations, November 2003 one month after the road renovation and during thawing, April 2004. Water samples from lysimeters, ground water and surface water were only collected and analysed from Norberg. Experience from the fly ash stabilised road sections show that curing and traffic load can with time compensate for less compaction. The same is noticed at Boerje, although deflection measurements show that there are small differences. Stabilisation of gravel roads increases the roads bearing capacity. Two years after stabilisation 90 timber loads were

  1. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2012-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialy......Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through...

  2. Effect of class F fly ash on the durability properties of concrete

    Directory of Open Access Journals (Sweden)

    Ashish Kumer Saha

    2018-01-01

    Full Text Available The present study evaluates the application of class F fly ash as a partial replacement of binder in concrete. The compressive strength of the fly ash samples showed low early compressive strength comparing to the control samples. However, due to pozzolanic reaction strength was improved gradually over a longer period of time, whereas control samples stopped the strength growth after 56-d of curing. The drying shrinkage was reduced with the increment of fly ash content in the mix. The inclusion of fly ash as a binder reduced the porosity of the concrete. As a result, the fly ash concrete exhibited lower water sorptivity and chloride permeability. Furthermore, a significant drop of sorptivity and chloride permeability was observed for fly ash concrete between the curing period of 28–180 days. Microstructural morphology of fly ash samples was investigated to evaluate the reason behind the improved durability characteristics. Keywords: Fly ash, Compressive strength, Drying shrinkage, Permeable void, Water sorptivity, Chloride permeability

  3. Sewage Sludge Disposal with Energy Recovery by Fluidized Bed Gasification and CHP-Units

    Energy Technology Data Exchange (ETDEWEB)

    Horst, J.; Gross, B.; Kimmerle, K. [Inst. fuer ZukunftsEnergieSysteme, Saarbruecken (Germany); Eder, C. [Christian Eder Technology e.K., Neunkirchen (Germany)

    2006-07-15

    Sewage sludge is a composition of by-products collected during the different stages of the waste water cleaning process of communal and industrial treatment plants. Because of its harmful impacts on environment as well as animals - and mankind - health sewage sludge has become a problem. Therefore disposal of sludge is today on a crossroad depending on the discussion about soil contamination by using the sludge as fertiliser. Some countries are now abandoning disposal to agriculture and are entering into thermal treatment with the argument: 'Harmful substances already separated with high financial effort should definitely be removed from the food cycle and should not return indirectly via the fields to food and water'. The SEDIS project - a project funded by the European Commission under the specific research and technological development programme 'Promotion of innovation and encouragement of SME participation' - is aimed at eliminating the rising disposal problem of sewage sludge by an energy-related use of the raw sludge directly on site of wastewater treatment plants. SEDIS is developing an innovative, self-sustaining system to process liquid and pasty waste such as sewage sludge and solid biomass to utilise product-gas for power-generation direct on site. This process is called ETVS-process and is patented by Christian Eder Technology e.K. Today, where each company has to look for sustainable savings, the SEDIS concept offers a decentralised process, self-sustaining from other energy sources and able to provide the whole treatment plant with energy. Furthermore the treatment plant would be independent of price policy of sludge disposers.

  4. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  5. Agricultural potential of an industrial sewage sludge in compliance with CONAMA Resolution no. 375/2006

    Directory of Open Access Journals (Sweden)

    Lívia Rodrigues Dias Machado

    2015-12-01

    Full Text Available The agricultural use of sewage sludge is one of the best alternatives to disposal because of its potential as a plant fertilizer and soil conditioner. However, to be safe for agricultural use, the sewage sludge must be evaluated according to its physical, chemical, and biological properties and its origin. In Brazil, NBR 10.004/2004 is the standard that determines the classification of solid waste, and CONAMA Resolution 375/2006 defines the criteria for the agricultural use of sewage sludge. This study evaluated the agricultural potential of an aerobically digested industrial sewage sludge from the Serramar Dairy Cooperative in the city of Guaratinguetá, São Paulo. This sludge was classified as Class IIA waste according to NBR 10.004/2004 and displayed potential for agricultural use by falling within the limits in terms for heavy metals and pathogenic organisms established by Resolution 375/2006 as well as containing high levels of nutrients. To establish the sludge doses allowed for application to crops such as maize (annual and Eucalyptus sp. (perennial by the resolution, the amount of nitrogen available in the sludge and the amounts of this nutrient required by these crops were considered. The recommended sewage sludge doses for corn (8 Mg ha- 1 and Eucalyptus sp. forestation (6 Mg ha- 1 can meet the nitrogen and phosphorus needs of these crops but require supplementation with potassium mineral fertilizer.

  6. Upshot of Elevated Temperature on Performance Facet of Fly Ash ...

    African Journals Online (AJOL)

    This study investigates the effects of elevated temperature variation on the compressive strength of Fly Ash/Ordinary Portland Cement (OPC) Laterized concrete ... and 10% Fly ash content at 2500C. This is an indication that the strength of Fly ash/OPC Laterized concrete is generally sufficient for use at elevated temperature ...

  7. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  8. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  9. Thermal utilisation and disposal of sewage sludge; Thermische Klaerschlammverwertung -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, H.C. [Emscher Genossenschaft/Lippeverband, Essen (Germany). Technischer Vorstand

    2001-07-01

    Sewage sludge combustion - either in an incinerator or for heat or power generation - has always been important and is getting ever more so. From the cost aspect, it makes quite a difference whether sewage sludge is just incinerated or utilised. The author makes it clear that this cost aspect - and what it means to communities and citizens - tends to be neglected by those who favour sewage sludge combustion and utilisation. [German] Die Verbrennung von Klaerschlamm - sei es als Schlammveraschung oder als thermische oder energetische Verwertung - hat schon immer fuer grosse Klaeranlagen einen bedeutenden Stellenwert gehabt. Die Bedeutung der Verbrennung scheint in letzter Zeit sogar zuzunehmen. Unter Kostengesichtspunkten ist es ein grosser Unterschied, ob ein Klaerschlamm nur verascht oder energetisch verwertet wird. Vor dem Hintergrund der allgemeinen Diskussion um die leeren Kassen der Kommunen, um die sogenannte dritte Miete fuer den Buerger und damit die Zumutbarkeit fuer weitere Steigerungen der Abwassergebuehren stoert mich die Bagatellisierung der Kostengesichtspunkte vor allem auf Seiten derer, die die Verbrennung der Klaerschlaemme fordern. (orig.)

  10. Energy recovery from sewage sludge by means of fluidised bed gasification

    International Nuclear Information System (INIS)

    Gross, Bodo; Eder, Christian; Grziwa, Peter; Horst, Juri; Kimmerle, Klaus

    2008-01-01

    Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes

  11. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  12. Properties of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  13. Modeling of Evaporation Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to the instantaneous quantity of water in the sludge. The aim of this work was to develop a model to assist ...

  14. Mutagenicity and genotoxicity of coal fly ash water leachate.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2009-03-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals-sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significant (Ppercentage (%), tail length (mum), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  15. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  16. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  17. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application.

    Science.gov (United States)

    Jin, Zhengyu; Chang, Fengmin; Meng, Fanlin; Wang, Cuiping; Meng, Yao; Liu, Xiaoji; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2017-10-01

    Aiming at closed-loop sustainable sewage sludge treatment, an optimal and economical pyrolytic temperature was found at 400-450 °C considering its pyrolysis efficiency of 65%, fast cracking of hydrocarbons, proteins and lipids and development of aromatized porous structure. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) tests demonstrated the development of adsorptive functional groups and crystallographic phases of adsorptive minerals. The optimal sludge-char, with a medium specific surface area of 39.6 m 2  g -1 and an iodine number of 327 mgI 2 g -1 , performed low heavy metals lixiviation. The application of sludge-char in raw sewage could remove 30% of soluble chemical oxygen demand (SCOD), along with an acetic acid adsorption capacity of 18.0 mg g -1 . The developed mesopore and/or macropore structures, containing rich acidic and basic functional groups, led to good biofilm matrices for enhanced microbial activities and improved autotrophic nitrification in anoxic stage of an A/O reactor through adsorbed extra carbon source, and hence achieved the total nitrogen (TN) removal up to 50.3%. It is demonstrated that the closed-loop sewage sludge treatment that incorporates pyrolytic sludge-char into in-situ biological sewage treatment can be a promising sustainable strategy by further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SEWAGE SLUDGE AS AN INGREDIENT IN FERTILIZERS AND SOIL SUBSTITUTES

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    2016-06-01

    Full Text Available In Poland, sludge management especially in medium and small sewage treatment plants is still a significant problem. According to data from the Central Statistical Office and the report on the implementation of the National Urban Wastewater Treatment Program (in polish KPOŚK land application of sewage sludge remains one of the main methods, although there has been considerable interest known: 'application for other purposes ", where the preparation of composts and fertilizers is included. The use of fertilizer produced from sewage sludge (compost, granules, organic and mineral fertilizers, is regulated by the Act on fertilizers and fertilization, and the relevant implementing rules. For example, they define the test procedure (concerning the quality of fertilizers to enable appropriate permissions to market this type of fertilizers. There is still only several technologies existing on the Polish market dedicated to production of fertilizers in advanced technologies of sewage sludge treatment. Usually the treatment plants are trying to obtain the necessary certificates for generated fertilizers (including composts, or soils substitutes. The advantages of these technologies should be no doubt: the loss of waste status, ability to store the fertilizer and unlimited transportation between areas, sanitization of the product (as a result of the use of calcium or sulfur compounds or temperature should be an alternative for drying technology. While the disadvantages are primarily the investment costs and time consuming certification procedures. However, these solutions enable to maintain the organic matter and phosphorus as well as greater control over possible pollution introduced into the soil.

  19. Environmental application for GIS: Assessing Iskandar Malaysia's (IM) sewage sludge for potential biomass resource

    Science.gov (United States)

    Salim, M. R.; Shaharuddin, N.; Abdullah Halim, K.

    2014-02-01

    The low carbon scenario could be achieved through the identification of major sectors contributing to the emission of high greenhouse gases (GHG) into the atmosphere. Sewage treatment plant (STP) was ranked as one of the major sectors that emits methane gas (CH4) during treatment processes, including sludge treatment. Sludge treatment is also capital extensive with high operational cost. Thus, sewage sludge has been accepted as a nuisance in STP. However, many has claimed that, sludge produced contain organic matter that has the potential for biomass resource. Thus, it would be such a Žwaste? if sludge are directly disposed of into the landfill without utilizing them at its full potential. In order to do so, it is vital to be able to determine the amount of sludge production. This research was implemented in Iskandar Malaysia regions in the state of Johor. By using GIS tool, the regions that produced the most sewage sludge can be determined, and can be group as critical area. Result shows that Nusajaya produces the most, compared to other regions, which indicated Nusajaya as a densely populated region.

  20. Byproducts Utilization Program: Sewage Sludge Irradiation Project. Progress report, July-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Engineering support for a demonstration-scale irradiator design included assisting the City of Albuquerque in preparing a comprehensive site plan for their proposed sludge handling and treatment facilities. The solar sludge dryer has been delivered to SNLA. A preliminary sludge drying experiment indicated the importance of optimizing stirring and air flow. Installation of instrumentation and mechanical equipment continued. The Sandia Irradiator for Dried Sewage Solids (SIDSS) was used to irradiate 23 tons of dried, digested sewage sludge for the New Mexico State University (NMSU) Department of Crop and Soil Sciences. Gamma Irradiation Facility (GIF) operations included irradiation of ground pork for Toxoplasma gondii inactivation experiments, irradiation of surgical supplies and soil samples. Beneficial Uses Shipping Systems (BUSS) cask activities included near completion of the two full-scale cask bodies. Work continued on the Cask Safety Analysis Report (SAR) including additional analyses to reconfigure the six strontium fluoride capsules and/or reduce the number of capsules accommodated. NMSU has indicated no regrowth of salmonellae occurred in the irradiated sludge stockpile, while salmonellae did regrow in the unirradiated stockpile. Analyses of raw and digested sewage sludge from the Albuquerque Waste Water Treatment Plant showed levels of Yersinia enterocolitica (a human pathogen of emerging significance) to be below detection limits.