WorldWideScience

Sample records for flux tubes due

  1. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  2. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  3. Critical heat flux in bottom heated two-phase thermosyphon. Improvement in critical heat flux due to concentric tube; Katan shuchu kanetsugata niso netsu syphon no genkai netsu ryusoku. Nijukan ni yoru genkai netsu ryusoku no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Monde, M.; Mitsutake, Y. [Saga University, Saga (Japan). Faculty of Science and Engineering

    2000-02-25

    An experiment has been carried out to elucidate the critical heat flux (CHF) of an open two-phase thermosyphon with a bottom heated chamber in which heat is absorbed by evaporation of liquid. Another objective is to enhance the CHF using a concentric-tube by which counter-current flow of vapor and liquid in the throat of the chamber can be controlled well. The CHF data are measured for the saturated liquid of R 113 at a different pressure and different configuration of concentric tubes. The CHF data without the inner tube are in good agreement with the existing correlation and analytical result. The CHF increases by as much as several times of the CHF without the inner tube with an increase in the inner tube diameter up to a certain diameter of the inner tube and then decreases continuously as the inner tube diameter approaches the outer tube diameter. The optimum diameter of inner tube exists at which the CHF is maximum. (author)

  4. Flux Tube Dynamics in the Dual Superconductor

    International Nuclear Information System (INIS)

    Lampert, M.; Svetitsky, B.

    1999-01-01

    We have studied plasma oscillations in a flux tube created in a dual superconductor. The theory contains an Abelian gauge field coupled magnetically to a Higgs field that confines electric charge via the dual Meissner effect. Starting from a static flux tube configuration, with electric charges at either end, we release a fluid of electric charges in the system that accelerate and screen the electric field. The weakening of the electric field allows the flux tube to collapse, and the inertia of the charges forces it open again. We investigate both Type I and Type II superconductors, with plasma frequencies both above and below the threshold for radiation into the Higgs vacuum. (The parameters appropriate to QCD are in the Type II regime; the plasma frequency depends on the mass taken for the fluid constituents.) The coupling of the plasma oscillations to the Higgs field making up the flux tube is the main new feature in our work

  5. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  6. Models of Flux Tubes from Constrained Relaxation

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 299 302. Models of Flux Tubes from Constrained Relaxation. Α. Mangalam* & V. Krishan†, Indian Institute of Astrophysics, Koramangala,. Bangalore 560 034, India. *e mail: mangalam @ iiap. ernet. in. † e mail: vinod@iiap.ernet.in. Abstract. We study the relaxation of a compressible plasma to ...

  7. Dynamical Processes in Flux Tubes and their Role in ...

    Indian Academy of Sciences (India)

    tribpo

    tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal ... the energy flux in transverse waves is calculated and the implications for chromospheric heating are ... highly dynamical state, due to the buffeting effect of random convective motions. (e.g., Müller 1983; Muller et ...

  8. Identification of radio emission from the Io flux tube

    International Nuclear Information System (INIS)

    Riddle, A.C.

    1983-01-01

    Many theories and observations suggest that Jovian decametric radio emission is generated in flux tubes that pass close to Io's orbit. However, comparison of theory and observation is hindered by lack of knowledge as to which specific flux tube is responsible for a particular emission. In this note, emission from the instantaneous Io flux tube is identified. This makes possible a mapping of emissions onto the causative flux tubes for a significant range of Jovian longitudes (240 0 --360 0 )

  9. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  10. Dynamical Processes in Flux Tubes and their Role in ...

    Indian Academy of Sciences (India)

    We model the dynamical interaction between magnetic flux tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal (sausage) tube waves. The investigation is motivated by the interpretation of network oscillations in terms of flux tube waves. The calculations show that ...

  11. Simulations of fully deformed oscillating flux tubes

    Science.gov (United States)

    Karampelas, K.; Van Doorsselaere, T.

    2018-02-01

    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org

  12. Force-free thin flux tubes: Basic equations and stability

    International Nuclear Information System (INIS)

    Zhugzhda, Y.D.

    1996-01-01

    The thin flux tube approximation is considered for a straight, symmetrical, force-free, rigidly rotating flux tube. The derived set of equations describes tube, body sausage, and Alfveacute charn wave modes and is valid for any values of Β. The linear waves and instabilities of force-free flux tubes are considered. The comparison of approximate and exact solutions for an untwisted, nonrotating flux tube is performed. It is shown that the approximate and exact dispersion equations coincides, except the 20% discrepancy of sausage frequencies. An effective cross section is proposed to introduce the removal of this discrepancy. It makes the derived approximation correct for the force-free thin flux tube dynamics, except the detailed structure of radial eigenfunction. The dispersion of Alfveacute charn torsional waves in a force-free tubes appears. The valve effect of one directional propagation of waves in rotating twisted tube is revealed. The current and rotational sausage instabilities of a force-free, thin flux tube are considered. copyright 1996 American Institute of Physics

  13. Supersymmetric quantum mechanics of the flux tube

    Science.gov (United States)

    Belitsky, A. V.

    2016-12-01

    The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.

  14. Magnetic flux tube models in superstring theory

    CERN Document Server

    Russo, Jorge G

    1996-01-01

    Superstring models describing curved 4-dimensional magnetic flux tube backgrounds are exactly solvable in terms of free fields. We consider the simplest model of this type (corresponding to `Kaluza-Klein' Melvin background). Its 2d action has a flat but topologically non-trivial 10-dimensional target space (there is a mixing of angular coordinate of the 2-plane with an internal compact coordinate). We demonstrate that this theory has broken supersymmetry but is perturbatively stable if the radius R of the internal coordinate is larger than R_0=\\sqrt{2\\a'}. In the Green-Schwarz formulation the supersymmetry breaking is a consequence of the presence of a flat but non-trivial connection in the fermionic terms in the action. For R R/2\\a' there appear instabilities corresponding to tachyonic winding states. The torus partition function Z(q,R) is finite for R > R_0 (and vanishes for qR=2n, n=integer). At the special points qR=2n (2n+1) the model is equivalent to the free superstring theory compactified on a circle...

  15. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  16. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  17. Lifetime of electric flux tubes near the QCD phase transition

    International Nuclear Information System (INIS)

    Faroughy, Cyrus; Shuryak, Edward

    2010-01-01

    Electric flux tubes are a well-known attribute of the quantum chromodynamic (QCD) vacuum in which they manifest confinement of electric color charges. Recently, experimental results appeared which suggest that not only do those objects persist at temperatures T≅T c near the QCD phase transitions, but their decay is suppressed and the resulting clusters in Au-Au collisions are larger than in pp collisions (i.e., in vacuum). This correlates well with recent theoretical scenarios that view the QCD matter in the T≅T c region as a dual-magnetic plasma dominated by color-magnetic monopoles. In this view, the flux tubes are stabilized by dual-magnetic currents and are described by dual magnetohydrodynamics (DMHD). In this article, we calculate classically the dissipative effects in the flux tube. Such effects are associated with rescattering and finite conductivity of the matter. We derive the DMHD solution in the presence of dissipation and then estimate the lifetime of the electric flux tubes. The conclusion of this study is that a classical treatment leads to too short of a lifetime for the flux tubes.

  18. Exploring the Flux Tube Paradigm in Solar-like Convection Zones

    Science.gov (United States)

    Weber, Maria A.; Nelson, Nicholas; Browning, Matthew

    2017-08-01

    In the solar context, important insight into the flux emergence process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized flux tubes. Global-scale dynamo models are only now beginning to capture some aspects of flux emergence. In certain regimes, these simulations self-consistently generate magnetic flux structures that rise buoyantly through the computational domain. How similar are these dynamo-generated, rising flux structures to traditional flux tube models? The work we present here is a step toward addressing this question. We utilize the thin flux tube (TFT) approximation to simply model the evolution of flux tubes in a global, three-dimensional geometry. The TFTs are embedded in convective flows taken from a global dynamo simulation of a rapidly rotating Sun within which buoyant flux structures arise naturally from wreaths of magnetism. The initial conditions of the TFTs are informed by rising flux structures identified in the dynamo simulation. We compare the trajectories of the dynamo-generated flux loops with those computed through the TFT approach. We also assess the nature of the relevant forces acting on both sets of flux structures, such as buoyancy, the Coriolis force, and external forces imparted by the surrounding convection. To achieve the fast <15 day rise of the buoyant flux structures, we must suppress the large retrograde flow established inside the TFTs which occurs due to a strong conservation of angular momentum as they move outward. This tendency is common in flux tube models in solar-like convection zones, but is not present to the same degree in the dynamo-generated flux loops. We discuss the mechanisms that may be responsible for suppressing the axial flow inside the flux tube, and consider the implications this has regarding the role of the Coriolis force in explaining sunspot latitudes and the observed Joy’s Law trend of active regions. Our work aims to provide constraints, and possible

  19. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    International Nuclear Information System (INIS)

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-01-01

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma β changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  20. Formation and dynamics of a solar eruptive flux tube

    Science.gov (United States)

    Inoue, Satoshi; Kusano, Kanya; Büchner, Jörg; Skála, Jan

    2018-01-01

    Solar eruptions are well-known drivers of extreme space weather, which can greatly disturb the Earth's magnetosphere and ionosphere. The triggering process and initial dynamics of these eruptions are still an area of intense study. Here we perform a magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the dynamics of a solar eruption in a real magnetic environment. In our simulation, we confirmed that tether-cutting reconnection occurring locally above the polarity inversion line creates a twisted flux tube, which is lifted into a toroidal unstable area where it loses equilibrium, destroying the force-free state, and driving the eruption. Consequently, a more highly twisted flux tube is built up during this initial phase, which can be further accelerated even when it returns to a stable area. We suggest that a nonlinear positive feedback process between the flux tube evolution and reconnection is the key to ensure this extra acceleration.

  1. Critical heat flux in tubes and tight hexagonal rod lattices

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Cheng Xu; Zeggel, W.

    1994-01-01

    The critical heat flux (CHF) in small-diameter tubes and in tight hexagonal 7-rod and 37-rod bundles was investigated in the KRISTA test facility, using Freon 12 as the working fluid. The measurements in tubes showed that the influence of the tube diameter on CHF cannot be described as suggested by earlier publications with sufficient accuracy. CHF in bundles is lower than in tubes under comparable conditions. The influence of spacers (grid spacers, wire wraps) on CHF was found to be governed by local steam qualities. A comparison of the test results with some CHF prediction methods showed that the look-up table method reproduces the test results in circular tubes most accurately. Combined with CHF look-up tables, subchannel analysis and Ahmad's fluid-to-fluid scaling law, Freon experiments have proven to be a suitable tool for CHF prediction in water-cooled rod bundles. (orig.) [de

  2. Multi-flux-tube system in the dual Ginzburg-Landau theory

    International Nuclear Information System (INIS)

    Ichie, H.; Suganuma, H.; Toki, H.

    1996-01-01

    We study the multi-flux-tube system in terms of the dual Ginzburg-Landau theory. We consider two periodic cases, where the directions of all the flux tubes are the same in one case and alternating in the other case for neighboring flux tubes. We formulate the multi-flux-tube system by regarding it as the system of two flux tubes penetrating through a two-dimensional spherical surface. We find the multi-flux-tube configuration becomes uniform above some critical flux-tube number density ρ c =1.3 endash 1.7 fm -2 . On the other hand, the inhomogeneity of the color electric distribution appears when the flux-tube density is smaller than ρ c . We study the inhomogeneity on the color electric distribution in relation with the flux-tube number density, and discuss the quark-gluon plasma formation process in ultrarelativistic heavy-ion collisions. copyright 1996 The American Physical Society

  3. Guided flows in coronal magnetic flux tubes

    Science.gov (United States)

    Petralia, A.; Reale, F.; Testa, P.

    2018-01-01

    Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims: We investigate this effect by modelling flows confined along magnetic channels. Methods: We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results: We find that although the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and back-reaction of the magnetic field. This model could explain an observation made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory of erupted fragments that fall back onto the solar surface as thin and elongated strands and end up in a hedge-like configuration. Conclusions: The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels. Movies are available in electronic form at http://www.aanda.org

  4. Vertical motions in an intense magnetic flux tube. Pt. 5

    International Nuclear Information System (INIS)

    Webb, A.R.; Roberts, B.

    1980-01-01

    It is of interest to examine the effect of radiative relaxation on the propagation of waves in an intense magnetic flux tube embedded in a stratified atmosphere. The radiative energy loss (assuming Newton's law of cooling) leads to a decrease in the vertical phase-velocity of the waves, and to a damping of the amplitude for those waves with frequencies greater than the adiabatic value (ωsub(upsilon)) of the tube cut-off frequency. The cut-off frequency is generalized to include the effects of radiative relaxation, and allows the waves to be classified as mainly progressive or mainly damped. The phase-shift between velocity oscillations at two different levels and the phase-difference between temperature and velocity perturbations are compared with the available observations. Radiative dissipation of waves propagating along an intense flux tube may be the cause of the high temperature (and excess brightness) observed in the network. (orig.)

  5. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    International Nuclear Information System (INIS)

    Chou, W.; Tajima, C.T.; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented

  6. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  7. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  8. Neutron flux measurements in C-9 capsule pressure tube

    International Nuclear Information System (INIS)

    Barbos, D.; Roth, C. S.; Gugiu, D.; Preda, M.

    2001-01-01

    C-9 capsule is a fuel testing facility in which the testing consists of a daily cycle ranging between the limits 100% power to 50% power. C-9 in-pile section with sample holder an instrumentation are introduced in G-9 and G-10 experimental channels. The experimental fuel channel has a maximum value when the in-pile section (pressure tube) is in G-9 channel and minimum value in G-10 channel. In this paper the main goals are determination or measurements of: - axial thermal neutron flux distribution in C-9 pressure tube both in G-9 and G-10 channel; - ratio of maximum neutron flux value in G-9 and the same value in G-9 channel and the same value in G-10 channel; - neutron flux-spectrum. On the basis of axial neutron flux distribution measurements, the experimental fuel element in sample holder position in set. Both axial neutron flux distribution of thermal neutrons and neutron flux-spectrum were performed using multi- foil activation technique. Activation rates were obtained by absolute measurements of the induced activity using gamma spectroscopy methods. To determine the axial thermal neutron flux distribution in G-9 and G-10, Cu 100% wire was irradiated at the reactor power of 2 MW. Ratio between the two maximum values, in G-9 and G-10 channels, is 2.55. Multi-foil activation method was used for neutron flux spectrum measurements. The neutron spectra and flux were obtained from reaction rate measurements by means of SAND 2 code. To obtain gamma-ray spectra, a HPGe detector connected to a multichannel analyzer was used. The spectrometer is absolute efficiency calibrated. The foils were irradiated at 2 MW reactor power in previously determined maximum flux position resulted from wire measurements. This reaction rates were normalized for 10 MW reactor power. Neutron self shielding corrections for the activation foils were applied. The self-shielding corrections are computed using Monte Carlo simulation methods. The measured integral flux is 1.1·10 14 n/cm 2 s

  9. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    International Nuclear Information System (INIS)

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-01-01

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated

  10. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  11. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  12. Vertical motions in an intense magnetic flux tube

    International Nuclear Information System (INIS)

    Roberts, B.; Webb, A.R.

    1978-01-01

    The recent discovery of localised intense magnetic fields in the solar photosphere is one of the major surprises of the past few years. Here the theoretical nature of small amplitude motions in such an intense magnetic flux tube, within which the field strength may reach 2 kG is considered. A systematic derivation of the governing 'expansion' equations is given for a vertical slender tube, taking into account the dependence upon height of the buoyancy, compressibility and magnetic forces. Several special cases (e.g. the isothermal atmosphere) are considered as well as a more realistic, non-isothermal, solar atmosphere. The expansion procedure is shown to give good results in the special case of a uniform basic-state (in which gravity is negligible) and for which a more exact treatment is possible. (Auth.)

  13. Further comparisons of critical heat flux correlations for vertical tubes

    International Nuclear Information System (INIS)

    Govan, A.H.

    1986-11-01

    An earlier report by Govan (1984, AERE-R11298), described a data-bank of critical heat flux measurements in vertical upflow in tubes, and compared the predictions of the Harwell Annular Flow Model with two previously reported correlations. In this report two further correlations, those of Biasi [1967, Studies on burnout, Part 3] and Zuber [1961, Int. Devel. Heat Transfer, Part 2, PB230-236]/ Griffith,[1977, Nucl. Safety vol 18, no3] have been tested. These two correlations are used extensively in reactor design. Overall comparisons are given between all the correlations tested so far. (author)

  14. Vertical motions in an intense magnetic flux tube. Pt. 4

    International Nuclear Information System (INIS)

    Webb, A.R.; Roberts, B.

    1980-01-01

    Radiative damping of waves is important in the upper photosphere. It is thus of interest to examine the effect of radiative relaxation on the propagation of waves in an intense magnetic flux tube embedded in a uniform atmosphere. Assuming Newton's law of cooling, it is shown that the radiative energy loss leads to wave damping. Both the damping per wavelength and the damping per period reach maximum value when the sound and radiative timescales are comparable. The stronger the magnetic field, the greater is the damping. (orig.)

  15. Pair production at the edge of the QED flux tube

    Energy Technology Data Exchange (ETDEWEB)

    Berényi, Dániel, E-mail: berenyi.daniel@wigner.mta.hu [Loránd Eötvös University, H-1117, Budapest (Hungary); Wigner RCP, Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest 1525 (Hungary); Varró, Sándor [Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, Budapest 1525 (Hungary); Skokov, Vladimir V. [Department of Physics, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI 49008, United Sates (United States); Lévai, Péter [Wigner RCP, Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest 1525 (Hungary)

    2015-10-07

    We investigate the process of Abelian pair production in the presence of strong inhomogeneous and time-dependent external electric fields. The spatial dependence of the external field is motivated by a non-Abelian color flux tube in heavy-ion collisions. We show that the inhomogeneity significantly increases the particle yield compared to that in the commonly used models with a constant and homogeneous field. Moreover our results indicate that in contrast to the latter, most of the particles are produced at the interface of the field profile in accordance with Heisenberg's prediction.

  16. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  17. Preliminary Study of Magnetic Flux Leakage on Tube Inspection

    International Nuclear Information System (INIS)

    Noorhazleena Azaman; Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif

    2015-01-01

    Magnetic Flux Leakage (MFL) is an advanced NDT technique which has the inspection capability in wall loss detection and measurement of sharp defects such as pitting, grooving and circumferential cracks in ferromagnetic samples. The working principle of MFL involves the induction of magnetic field in the part to be tested and the response or signal produced is analysed to determine the presence and characteristics of defects. In this paper, simulation and experimental work on wall loss detection in steel tube using MFL were carried out. The simulation was performed using Comsol software and followed by experimental work using MFL system for validation. The results from the simulation and experiment indicates that variation of the groove defect affect the magnetisation and the output of the MFL signal is related to change of flux caused by the detection of wall loss. (author)

  18. Duality of the magnetic flux tube and electric current descriptions magnetospheric plasma and energy flow

    International Nuclear Information System (INIS)

    Atkinson, G.

    1981-01-01

    The duality between electric current and magnetic flux tubes is outlined for the magnetosphere. Magnetic flux tubes are regarded as fluid elements subjected to various stresses. Current closure then becomes the dual of stress balance, and Poynting vector energy flow a dual of J x E dissipation. The stresses acting on a flux tube are magnetic stresses, which correspond to currents at a distance, and plasma stresses, which correspond to local currents. The duality between current and stress is traced for ionospheric ion drag forces, solar wind stresses at the magnetopause, inertial effects, and the effects of energetic plasma on flux tubes. The stress balance and dual current systems are outlined for idealized magnetospheres of increasing complexity. For a simple magnetosphere with no convective flow, the balance stresses are solar wind pressure and neutral sheet plasma pressure. The corresponding current systems are the Chapman-Ferraro magnetopause currents and the magetotail current system. The introduction of convective flow introduces further stresses: ionospheric ion drag. Alfven layer shielding, and an imbalance in day-night magnetic stresses due to transport of flux tubes to the nightside by the solar wind. These stresses balance, and hence the corresponding additional currents (the ionospheric Pedersen current and the electrojets, the partial ring current, and two other current systems from the magnetopause and tail) must form a closed current system and do so by the region I and II field-aligned currents of Iijima and Potemra. The energy flow in the above models is described in terms of both Poynting vectors and the above current systems. Temporal variations examined are (1) an increase in dayside merging and/or nightside reconnection, (2) an increase in the energy density of plasma in the plasma sheet, (3) an increase in ionospheric conductivity, and (4) an increase in solar wind pressure

  19. Numerical prediction of dryout heat flux in vertical uniformly heated round tubes

    International Nuclear Information System (INIS)

    Okawa, Tomio; Kotani, Akio; Kataoka, Isao; Naito, Masanori

    2003-01-01

    Dryout heat fluxes in vertical uniformly heated round tubes were predicted using a film flow model. The correlations adopted in the present analysis were summarized as follows: (1) Entrainment rate and deposition rate were evaluated by the correlations whose validity was confirmed in wide range of thermal-hydraulic conditions. (2) In addition to the droplet entrainment due to interfacial shear force, the entrainment resulting from the boiling in liquid film was considered. (3) The vapor quality at the onset of annular flow was evaluated by the correlation based on the measurement of minimum droplet flowrate. (4) It was postulated that the droplet flowrate at the starting point of annular flow was to be approximated by that in equilibrium state. (5) The onset of critical heat flux condition was determined by the complete disappearance of liquid film. Though several assumptions were used in the present model, all the correlations adopted here were based on experimental data or considerations of the physical processes in annular flow. The resulting model required no parameters that should be adjusted from the measured data of critical heat flux. A number of experimental data of critical heat flux in forced flow of water in vertical uniformly heated round tubes were used to test the basic performance of the model. The comparisons between the calculated and measured critical heat fluxes showed that the predicted results by the present model agree with the experimental data fairly well if the flow pattern at burnout is considered annular flow. The predictive capability was not deteriorated even in the cases of small diameter tube, short length tube as well as low vapor quality at the onset of critical heat flux condition. (author)

  20. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States)

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  1. Influence of test tube material on subcooled flow boiling critical heat flux in short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    2007-01-01

    The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u=4.0 to 13.3 m/s), the inlet subcoolings (ΔT sub,in =48.6 to 154.7 K), the inlet pressure (P in =735.2 to 969.0 kPa) and the increasing heat input (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tube of inner diameter (d=6 mm), heated length (L=66 mm) and L/d=11 with the inner surface of rough finished (Surface roughness, Ra=3.18 μm), the Cupro Nickel (Cu-Ni 30%) test tube of d=6 mm, L=60 mm and L/d=10 with Ra=0.18 μm and the Platinum (Pt) test tubes of d=3 and 6 mm, L=66.5 and 69.6 mm, and L/d=22.2 and 11.6 respectively with Ra=0.45 μm are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcoolings. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed. (author)

  2. Influence of Test Tube Material on Subcooled Flow Boiling Critical Heat Flux in Short Vertical Tube

    International Nuclear Information System (INIS)

    Koichi Hata; Masahiro Shiotsu; Nobuaki Noda

    2006-01-01

    The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u = 4.0 to 13.3 m/s), the inlet subcooling (ΔT sub,in = 48.6 to 154.7 K), the inlet pressure (P in = 735.2 to 969.0 kPa) and the increasing heat input (Q 0 exp(t/t), t = 10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tubes of inner diameters (d = 6 mm), heated lengths (L = 66 mm) and L/d = 11 with the inner surface of rough finished (Surface roughness, R a = 3.18 μm), the Cupro Nickel (Cu-Ni 30%) test tubes of d = 6 mm, L = 60 mm and L/d = 10 with R a = 0.18 μm and the Platinum (Pt) test tubes of d = 3 and 6 mm, L = 66.5 and 69.6 mm, and L/d 22.2 and 11.6 respectively with R a = 0.45 μm are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcooling. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed. (authors)

  3. Hexagonal tube behaviour in fuel assemblies under neutron flux in a French fast neutron reactor core

    International Nuclear Information System (INIS)

    Bernard, A.; Ammann, P.

    This paper presents what is obtained in the field of the interpretation by calculation of the post irradiation examination of hexagonal tubes, and in the field of prevision by calculation of the behaviour of hexagonal tubes under fast flux [fr

  4. Flux tubes in U(1) - Do they attract or repel each other?

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Skala, P.

    1998-01-01

    The dually transformed path integral of four-dimensional U(1) lattice gauge theory is used for a numerical investigation of multiply charged systems and the interaction between flux tubes. For this aim, it is convenient to implement periodically closed flux tubes (torelons) in the dual formulation. We calculate the free energy as well as the total electro-magnetic energy of doubly charged flux tubes as a function of the coupling β. The main results are that the string tension scales proportionally to the charge (contrary to the Coulomb potential) and in the range 0.9<β<1.0 we find a clear signal for attraction between flux tubes. (orig.)

  5. MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR

    International Nuclear Information System (INIS)

    Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando

    2015-01-01

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street

  6. MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Sykora, Juan; Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Moreno-Insertis, Fernando [Instituto de Astrofísica de Canarias, E-38200 La Laguna (Tenerife) (Spain)

    2015-11-20

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  7. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  8. Flux tube gyrokinetic simulations of the edge pedestal

    Science.gov (United States)

    Parker, Scott; Wan, Weigang; Chen, Yang

    2011-10-01

    The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.

  9. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  10. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    Science.gov (United States)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  11. Sunspots and the physics of magnetic flux tubes. II. Aerodynamic drag

    International Nuclear Information System (INIS)

    Parker, E.N.

    1979-01-01

    The aerodynamic drag on a slender flux tube stretched vertically across a convective cell may push the flux tube into the updrafts or into the downdrafts, depending on the density stratification of the convecting fluid and the asymmetry of the fluid motions. The drag is approximately proportional to the local kinetic energy density, so the density stratification weights the drag in favor of the upper layers where the density is low, tending to push the vertical tube into the downdrafts. If, however, the horizontal motions in the convective cell are concentrated toward the bottom of the cell, they may dominate over the upper layers, pushing the tube into the updrafts. In the simple, idealized circumstance of a vertical tube extending across a fluid of uniform density in a convective cell that is symmetric about its midplane, the net aerodynamic drag vanishes in lowest order. The higher order contributions, including the deflection of the tube, then provide a nonvanishing force pushing the tube into a stable equilibrium midway between the updraft and the downdraft.It is pointed out that in the strongly stratified convective zone of the Sun, a downdraft herds flux tubes together into a cluster, while an updraft disperses them. To account for the observed strong cohesion of the cluster of flux tubes that make up a sunspot, we propose a downdraft of the order 2 km s - 1 through the cluster of seprate tubes beneath the sunspot

  12. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  13. Intermittent energy bursts and recurrent topological change of a twisting magnetic flux tube

    International Nuclear Information System (INIS)

    Amo, Hiroyoshi; Sato, Tetsuya; Kageyama, Akira.

    1994-09-01

    When continuously twisted, a magnetic flux tube suffers a large kink distortion in the middle part of the tube, like a knot-of-tension instability of a bundle of twisted rubber strings, and reconnection is triggered starting with the twisted field lines and quickly proceeding to the untwisted field lines at the twist-untwist boundary, whereby a giant burst-like energy release takes place. Subsequently, bursts occur intermittently and reconnection advances deeper into the untwisted region. Then, a companion pair of the linked twist-untwist flux tubes reconnect with each other to return to the original axisymmetric tube. The process is thus repeatable. (author)

  14. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  15. Sunspots and the physics of magnetic flux tubes in the sun

    International Nuclear Information System (INIS)

    Ballegooijen, A.A. van.

    1982-01-01

    This thesis refers to the sub-surface structure of the solar magnetic field. Following an introductory chapter, chapter II presents an analysis of spectroscopic observations of a sunspot at infrared wavelengths and models of the temperature stratification in the sunspot atmosphere are derived. The main subject of this thesis concerns the structure of the magnetic field deep down below the stellar surface, near the base of the convective envelope. In Chapter III the stability of toroidal flux tubes to wave-like perturbations is discussed, assuming that the tubes are neutrally buoyant. A model is proposed in which the toroidal flux tubes are neutrally buoyant and located in a stably stratified layer just below the base of the convective zone. On the basis of some simple assumptions for the temperature stratification in this storage layer the author considers in Chapter IV the properties of the vertical flux tubes in the convective zone. The adiabatic flux model cannot satisfactorily be applied to the simplified model of the storage layer, so that the problem of magnetic flux storage is reconsidered in Chapter V. A new model of the temperature stratification at the interface of convective zone and radiative interior of the sun is described. Finally, in Chapter VI, the stability of toroidal flux tubes in a differentially rotating star are discussed. It is demonstrated that for realistic values of the magnetic field strength, rotation has a strong effect on the stability of the toroidal flux tubes. (C.F.)

  16. Heat tranfer decrease during water boiling in a tube for the heat flux step distribution by the tube length

    International Nuclear Information System (INIS)

    Remizov, O.V.; Sergeev, V.V.; Yurkov, Yu.I.

    1983-01-01

    The effect of the heat flux distribution along the circular tube length on supercritical convective heat transfer at parameters typical for steam generators heated by liquid metal is studied. The effect of conditions in a under- and a supercritical zones of a vertical tube with independently heated lower and upper sections on supercritical convective heat transfer is studied on a water circulation loop at 9.8-17.7 MPa pressure and 330-1000 kg/m 2 s mass velocities. The experimental heat fluxes varied within the following limits: at the upper section from 0 to 474 kW/m 2 , at the lower section from 190 to 590 kW/m 2 . Analysis of the obtained data shows that when heat flux changes in the supercritical zone rewetting of the heated surface and simultaneous existence of two critical zones are observed. The effect of heat flux in the supercritical zone on convective heat transfer is ambiguous: the heat flux growth up to 60-100 kW/m 2 leads to increasing minimum values of the heat transfer factor in the supercritical zone, and a further heat flux growth - to their reduction. The conclusion is made that the value of heat flux in the undercritical zone affects convective heat transfer in the supercritical zone mainly through changing the value of critical vapour content

  17. Wear on Plugged Tube due to the Foreign Objects on the Secondary Side of Steam Generator

    International Nuclear Information System (INIS)

    Kim, Hyung Nam; Cho, Nam Cheoul; Nam, Min Woo

    2013-01-01

    In this paper, the changes of the tube frequency and amplitude are introduced before and after plugging. The amplitude of the bottom span for the steam generator tube is not much changed after tube plugging. Moreover, the contact force between the plugged tube and the foreign object is the same as that of intact tube and the foreign object. However, the frequencies of plugged tubes are about 9∼12% higher than those of intact tubes. That means the wear due to the foreign object would be accelerated after the tube plugging. Therefore, the tube stabilizer should be installed when the tube is plugged due to the foreign object wear. The tube wall of steam generator is a pressure boundary between the coolant of the primary system and the feedwater of the secondary system. It is very important to insure the structural integrity of the tubes because the radioactive coolant is flow into the feedwater due to the pressure difference as the result of tube failure. The degradations of steam generator tubes are corrosion, wear, fatigue and foreign object wear, etc. The foreign object wear is one of mechanical degradation due to materials flew into the secondary side of steam generator. The steam generator tubes, estimated not to insure structural integrity from the results of the nondestructive evaluation such as eddy current test and visual inspection, are excluded from the service with plugging. However, the tube wear is still being progressed after the plugging because the relative motion between the tube and structure is still existed due to the secondary side flow in the steam generator. If the tube is completely cut because of the degradation, the tube can be a stress or of failure of tubes around the plugged tube. The contact force between the structure and tube is lowered as the wear is progressed. However, the contact force between the foreign object and tube is not changed as the wear is progressed. Therefore, the structural integrity of tubes around the foreign

  18. A twisted flux-tube model for solar prominences. I. General properties

    International Nuclear Information System (INIS)

    Priest, E.R.; Hood, A.W.; Anzer, U.

    1989-01-01

    It is proposed that a solar prominence consists of cool plasma supported in a large-scale curved and twisted magnetic flux tube. As long as the flux tube is untwisted, its curvature is concave toward the solar surface, and so it cannot support dense plasma against gravity. However, when it is twisted sufficiently, individual field lines may acquire a convex curvature near their summits and so provide support. Cool plasma then naturally tends to accumulate in such field line dips either by injection from below or by thermal condensation. As the tube is twisted up further or reconnection takes place below the prominence, one finds a transition from normal to inverse polarity. When the flux tube becomes too long or is twisted too much, it loses stability and its true magnetic geometry as an erupting prominence is revealed more clearly. 56 refs

  19. Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio

    1998-01-01

    Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)

  20. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    International Nuclear Information System (INIS)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2013-01-01

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences

  1. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  2. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  3. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  4. Benchmark of WIMS-IST against MCNP for CANDU pressure tube fast fluxes

    International Nuclear Information System (INIS)

    Donders, R.E.; Douglas, S.R.

    2002-01-01

    Pressure tube fast-flux data in CANDU are currently calculated using the multi-group neutron transport code WIMS-IST. In this study, the WIMS-IST fast flux calculations are benchmarked against MCNP calculations (a Monte Carlo particle transport code), over the range of fuel burnup and coolant density in CANDU. The comparison shows good agreement between WIMS and MCNP, with WIMS fast fluxes being 1.5% to 4% lower than the MCNP values. The difference is smallest for fresh fuel, and increases with burnup. The fast flux gradient across the pressure tube (factor of 1.23 from inner edge to outer edge) is accurately calculated by WIMS. When reporting fast fluxes in pressure tubes, these are generally given as >1.000 MeV fluxes. For WIMS, this requires an extra conversion step, since the WIMS ENDF/B libraries do not have a group boundary at 1 MeV. The conversion step is based on a fictitious isotope ONEMEV in the WIMS nuclear data library. The conversion factor in WIMS was found to be about one percent too high. When providing >1 MeV fluxes from WIMS, this partially compensates for the slight under prediction of the fast flux. Pressure tube >1 MeV fluxes from WIMS are therefore 0.5% to 3% lower than MCNP values. To obtain accurate fast flux data, neutron transport calculations must be performed on a critical cell. For this study, all calculations were performed with radial albedo boundary conditions giving a critical cell. This required the use of an albedo version of MCNP, developed at AECL. (author)

  5. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P. C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  6. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  7. Dynamical fragmentation of flux tubes in the Friedberg-Lee model

    International Nuclear Information System (INIS)

    Loh, S.; Greiner, C.; Mosel, U.; Thoma, M.H.

    1997-01-01

    We present two novel dynamical features of flux tubes in the Friedberg-Lee model. First the fusion of two (anti-)parallel flux tubes, where we extract a string-string interaction potential which has a qualitative similarity to the nucleon-nucleon potential in the Friedberg-Lee model obtained by Koepf et al. Furthermore we show the dynamical breakup of flux tubes via qq-particle production and the disintegration into mesons. We find, as a shortcoming of the present realization of the model, that the full dynamical transport approach presented in a previous publication fails to provide the disintegration mechanism in the semiclassical limit. Therefore, in addition, we present here a molecular dynamical approach for the motion of the quarks and show, as a first application, the space-time development of the quarks and their mean-fields for Lund-type string fragmentation processes. (orig.)

  8. Critical heat flux measurements in small-diameter tubes using R12 as model fluid

    International Nuclear Information System (INIS)

    Mueller-Menzel, T.

    1987-01-01

    Results of critical heat flux measurements are reported for vertical upflow of Refrigerant 12 at high mass fluxes and high pressures in small diameter tubes. The data are transformed into water data using a scaling law, which is verified by means of a new analysis. An error estimation includes the error of the scaling law. Special phenomena ('limiting quality', 'upstream boiling crisis') are explained by theoretical models. The applicability of existing correlations is checked and a new CHF-table for small diameter tubes is presented. With 41 figs., 12 tabs [de

  9. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  10. Studies on the instrumentation of a beam-tube medium flux reactor

    International Nuclear Information System (INIS)

    Axmann, A.; Pollet, J.L.; Queudot, J.

    1979-01-01

    In the years 1977/78, the ad hoc commitee for medium-flux reactor development of the Federal Ministry for Research and Technology developed constructional concepts for a medium-flux reactor to be utilized by beam tube experiments. The HMI has elaborated contributions for discussions of the subject of instrumentation, in particular for experiments in solid state physics. These contributions are contained in the report. (orig./RW) [de

  11. Measurement and computation for sag of calandria tube due to irradiation creep in PHWR

    International Nuclear Information System (INIS)

    Son, S. M.; Lee, W. R.; Lee, S. K.; Lee, J. S.; Kim, T. R.; Na, B. K.; Namgung I.

    2003-01-01

    Calandria tubes and Liquid Injection Shutdown System(LISS) tubes in a Pressurized Heavy Water Reactor(PHWR) are to sag due to irradiation creep and growth during plant operation. When the sag of calandria tube becomes bigger, the calandria tube possibly comes in contact with LISS tube crossing beneath the calandria tube. The contact subsequently may cause the damage on the calandria tube resulting in unpredicted outage of the plant. It is therefore necessary to check the gap between the two tubes in order to periodically confirm no contact by using a proper measure during the plant life. An ultrasonic gap measuring probe assembly which can be inserted into two viewing ports of the calandria was developed in Korea and utilized to measure the sags of both tubes in the PHWR. It was found that the centerlines of calandria tubes and liquid injection shutdown system tubes can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. Based on the irradiation creep equation and the measurement data, a computer program to calculate the sags was also developed. With the computer program, the sag at the end of plant life was predicted

  12. The flow distribution in the parallel tubes of the cavity receiver under variable heat flux

    International Nuclear Information System (INIS)

    Hao, Yun; Wang, Yueshe; Hu, Tian

    2016-01-01

    Highlights: • An experimental loop is built to find the flow distribution in the parallel tubes. • With the concentration of heat flux, two-phase flow makes distribution more uneven. • The total flow rate is chosen appropriately for a wider heat flux distribution. • A suitable system pressure is essential for the optimization of flow distribution. - Abstract: As an optical component of tower solar thermal power station, the heliostat mirror reflects sunlight to one point of the heated surface in the solar cavity receiver, called as one-point focusing system. The radiation heat flux concentrated in the cavity receiver is always non-uniform temporally and spatially, which may lead to extremely local over-heat on the receiver evaporation panels. In this paper, an electrical heated evaporating experimental loop, including five parallel vertical tubes, is set up to evaluate the hydrodynamic characteristics of evaporation panels in a solar cavity receiver under various non-uniform heat flux. The influence of the heat flux concentration ratio, total flow rate, and system pressure on the flow distribution of parallel tubes is discussed. It is found that the flow distribution becomes significantly worse with the increase of heat flux and concentration ratio; and as the system pressure decreased, the flow distribution is improved. It is extremely important to obtain these interesting findings for the safe and stable operation of solar cavity receiver, and can also provide valuable references for the design and optimization of operating parameters solar tower power station system.

  13. A review on critical heat flux in horizontal tubes

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Gaikwad, Avinash; Prabhu, S.V.

    2015-01-01

    Coolant channels of PHWR during accident similar to loss of coolant accident (LOCA) may experience different flow transients with low pressure and low flow conditions. In the advanced PHWRs it is desired to have small amount of positive quality at the exit of the coolant channel to increase the thermal efficiency. Investigation on pressure drop and heat transfer coefficient under subcooled boiling condition is important in the design and operation of the PHWRs. Understanding of thermal hydraulic phenomena associated with horizontal flow is also important in the safety and accident management in these reactors. A detailed experimental investigation on the important thermal hydraulic phenomena of horizontal tubes under low pressure and low flow conditions is carried out. The phenomena covered in this work are measurement of diabatic single phase and subcooled boiling pressure drop and local heat transfer coefficients, steady state CHF, effect of upstream flow restrictions on flow transients and CHF, CHF under oscillatory flow and flow decreasing transients. A detailed literature review is carried out on CHF in horizontal channels to take stock of the works being carried out along with current state of the art and to justify the motivation for the experimental study. This paper presents the review of available literature on horizontal CHF with the results of the experimental work. (author)

  14. Design and use of the ORNL HFIR [High Flux Isotope Reactor] pneumatic tube irradiation systems

    International Nuclear Information System (INIS)

    Dyer, F.F.; Emery, J.F.; Robinson, L.; Teasley, N.A.

    1987-01-01

    A second pneumatic tube that was recently installed in the High Flux Isotope Reactor for neutron activation analysis is described. Although not yet tested, the system is expected to have a thermal neutron flux of about 1.5 x 10 14 cm -2 s -1 . A delayed neutron counter is an integral part of the pneumatic tube, and all of the hardware is present to enable automated use of the counter. The system is operated with a Gould programmable controller that is programmed with an IBM personal computer. Automation of any mode of operation, including the delayed neutron counter, will only require a nominal amount of software development. Except for the lack of a hot cell, the irradiation facility has all of the advantageous features of an older pneumatic tube that has been in operation for 17 years. The design of the system and some applications and methods of operation are described

  15. Correlation of critical heat flux data for uniform tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jafri, T.; Dougherty, T.J.; Yang, B.W. [Columbia Univ., New York, NY (United States)

    1995-09-01

    A data base of more than 10,000 critical heat flux (CHF) data points has been compiled and analyzed. Two regimes of CHF are observed which will be referred to as the high CHF regime and the low CHF regime. In the high CHF regime, for pressures less than 110 bar, CHF (q{sub c}) is a determined by local conditions and is adequately represented by q{sub c} = (1.2/D{sup 1/2}) exp[-{gamma}(GX{sub t}){sup 1/2}] where the parameter {gamma} is an increasing function of pressure only, X{sub t} the true mass fraction of steam, and all units are metric but the heat flux is in MWm{sup -2}. A simple kinetic model has been developed to estimate X{sub t} as a function of G, X, X{sub i}, and X{sub O}, where X{sub i} is the inlet quality and X{sub O} represents the quality at the Onset of Significant Vaporization (OSV) which is estimated from the Saha-Zuber (S-Z) correlation. The model is based on a rate equation for vaporization suggested by, and consistent with, the S-Z correlation and contains no adjustable parameters. When X{sub i}X{sub O}, X{sub t} depends on X{sub i}, a nonlocal variable, and, in this case, CHF, although determined by local conditions, obeys a nonlocal correlation. This model appears to be satisfactory for pressures less than 110 bar, where the S-Z correlation is known to be reliable. Above 110 bar the method of calculating X{sub O}, and consequently X{sub t}, appears to fail, so this approach can not be applied to high pressure CHF data. Above 35 bar, the bulk of the available data lies in the high CHF regime while, at pressures less than 35 bar, almost all of the available data lie in the low CHF regime and appear to be nonlocal.

  16. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  17. Surprisingly low frequency attenuation effects in long tubes when measuring turbulent fluxes at tall towers

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Brændholt, Andreas; Pilegaard, Kim

    2016-01-01

    The eddy covariance technique relies on the fast and accurate measurement of gas concentration fluctuations. While for some gasses robust and compact sensors are available, measurement of, e.g., non CO2 greenhouse gas fluxes is often performed with sensitive equipment that cannot be run on a tower...... without massively disturbing the wind field. To measure CO and N2O fluxes, we installed an eddy covariance system at a 125 m mast, where the gas analyser was kept in a laboratory close to the tower and the sampling was performed using a 150 m long tube with a gas intake at 96 m height. We investigated...... by reducing both the water vapour dilution correction and the cross sensitivity effects on the N2O and CO flux measurements. Here we present the set-up of the concentration step change experiment and its results and compare them with recently developed theories for the behaviour of gases in turbulent tube...

  18. Magnetic trapping of energetic particles on open dayside boundary layer flux tubes

    International Nuclear Information System (INIS)

    Cowley, S.W.H.; Lewis, Z.V.

    1990-01-01

    Both simple as well as detailed empirical magnetic models of the Earth's dayside magnetosphere suggest that field lines near the magnetopause boundary in the noon quadrant (∼ 09:00 to ∼ 15:00 M.L.T.) possess an unusual property due to the compressive effect of the impinging solar wind flow, namely that the equatorial region represents a local maximum in the magnetic field strength, and not a minimum as elsewhere in the magnetosphere. In this region the field lines can therefore support two distinct particle populations, those which bounce across the equator between mirror points on either side, and those which are trapped about the off-equatorial field strength minima and are confined to one side of the equator. When these field lines become magnetically open due to the occurrence of magnetic reconnection at the equatorial magnetopause, the former particles will rapidly escape into the magnetosheath by field-aligned flow, while the latter population may be sustained within the boundary layer over many bounce periods, as the flux tubes contract and move tailward. Consequently, trapped distributions of energetic particles may commonly occur on open field lines in the dayside boundary layer in the noon quadrant, particularly at high latitudes. The existence of such particles is thus not an infallible indicator of the presence of closed magnetic field lines in this region. At earlier and later local times, however, the boundary layer field lines revert to possessing a minimum in the field strength at the equator. (author)

  19. Dynamic Characteristics of Steam Generator Tubes with Defect due to Wear

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangjin; Rhee, Huinam [Sunchon National Univ., Sunchon (Korea, Republic of); Yoon, Doo Byung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    These defects may affect the dynamic characteristics of tubes, and therefore, the vibrational behavior of the tube due to flow-induced loads can be varied. Change in the vibrational response of a tube may result in different wear characteristics from the design condition, which must be checked for both safety and economic point of view. This paper deals with the study on the effect of wears or cracks on the dynamic characteristics of steam generator tubes using finite element analysis. In this paper the effect of defects on the surface due to wear on the variation of dynamic characteristics of steam generator tubes was studied using the finite element analysis. The changes of natural frequencies and mode shapes can directly affect the flow-induced vibration response characteristics, therefore, they must be evaluated appropriately. The results in this study can be a good basis to estimate the FIV characteristics of the steam generator tubes having defects such as wear or crack.

  20. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  1. High-energy x-ray detection of G359.89–0.08 (SGR A–E): magnetic flux tube emission powered by cosmic rays?

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.

    2014-01-01

    of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps Te...

  2. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  3. Critical heat flux of subcooled flow boiling in a narrow tube

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Shimura, Toshiya.

    1986-01-01

    The critical heat flux (CHF) of subcooled flow boiling in a narrow tube was investigated experimentally using water as a coolant. Experiments were conducted at nearly ambient pressure under the following conditions: tube inside diameter: 1 ∼ 3 mm, tube length: 10 ∼ 100 mm, and water mass velocity: 7000 - 20000 kg/(m 2 · s). The critical heat flux increases the shorter the tube length and the smaller the tube inside diameter, at the same water mass velocity and exit quality. Experimental data were compared with empirical correlations, such as the Griffel and Knoebel correlations for subcooled boiling at low pressure, the Tong correlation for subcooled boiling at high pressure, and the Katto correlation. The existence of two parameter regions was confirmed. The first is the low CHF region in which experimental data can be predicted well by Griffel and Knoebel correlations, and the second is the high CHF region in which experimental data are higher than the predictions by the above two correlations. (author)

  4. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  5. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  6. Critical heat flux of R134A and R245FA in a 2.2 mm circular tube

    Energy Technology Data Exchange (ETDEWEB)

    Tibirica, Cristiano Bigonha; Ribatski, Gherhardt [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica], E-mails: bigonha@sc.usp.br, ribatski@sc.usp.br; Szczukiewicz, Sylwia; Thome, John Richard [Ecole Polytechnique Federale de Lausanne (LTCM/EPFL) (Switzerland). Lab. of Heat and Mass Transfer], Emails: sylwia.szczukiewicz@epfl.ch, john.thome@epfl.ch

    2010-07-01

    Critical heat flux (CHF) during flow boiling is generally related to a drastic decrease in the heat transfer coefficient and it is the maximum operational heat flux that can be achieved under safe operation. Due to such a fact, this topic has attracted great attention of the academic society dealing with boiling heat transfer and also in the industrial sector involved with the dissipation of high heat flux densities. In the specific case of high heat flux densities, micro-channel flow boiling is a promising technique for pursuing this objective. The boundary where microscale effects start in flow boiling is still an open issue in the literature and a 3 mm internal diameter (ID) threshold value, as suggested by Kandlikar and Grande (2003) is frequently adopted to characterize this point. Considering the needs for a better understanding of the micro/macro transition, this paper presents new experimental critical heat flux results in saturated flow boiling conditions for a macro/micro-scale tube. The data were obtained in a horizontal 2.20 mm ID stainless steel tube with heating lengths of 361 and 154 mm, R134a and R245fa as working fluids, mass velocities ranging from 100 to 1500 kg/m{sup 2s}, critical heat fluxes from 25 to 300 kW/m2, exit saturation temperatures of 25, 31 and 35 degree C, and critical vapor qualities ranging from 0.55 to 1. The experimental results show that critical heat flux increases with increasing mass velocity and inlet subcooling but decreases with increasing saturation temperature and heated length. The data also indicated a higher CHF for R245fa when compared with R134a at similar conditions. The experimental data were compared against the following CHF predictive methods: Katto and Ohno (1984), Shah (1987), Zhang et al. (2006) and Ong and Thome(2010). Katto and Ohno (1984) and Ong and Thome (2010) best predicted the database with a mean average error smaller than 15%. Both correlations include low and high pressure fluids in their

  7. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  8. Fluctuations of the baryonic flux-tube junction from effective string theory

    International Nuclear Information System (INIS)

    Pfeuffer, Melanie; Bali, Gunnar S.; Panero, Marco

    2009-01-01

    In quenched QCD, where the dynamic creation of quark-antiquark pairs out of the vacuum is neglected, a confined baryonic system composed of three static quarks exhibits stringlike behavior at large interquark separation, with the formation of flux tubes characterized by the geometry of the so-called Y ansatz. We study the fluctuations of the junction of the three flux tubes, assuming the dynamics to be governed by an effective bosonic string model. We show that the asymptotic behavior of the effective width of the junction grows logarithmically with the distance between the sources, with the coefficient depending on the number of joining strings, on the dimension of spacetime and on the string tension.

  9. Experimental study and technique for calculation of critical heat fluxes in helium boiling in tubes

    International Nuclear Information System (INIS)

    Arkhipov, V.V.; Kvasnyuk, S.V.; Deev, V.I.; Andreev, V.K.

    1979-01-01

    Studied is the effect of regime parameters on critical heat loads in helium boiling in a vertical tube in the range of mass rates of 80 2 xc) and pressures of 100<=p<=200 kPa for the vapor content range corresponding to the heat exchange crisis of the first kind. The method for calculating critical heat fluxes describing experimental data with the error less than +-15% is proposed. The critical heat loads in helium boiling in tubes reduce with the growth of pressure and vapor content in the regime parameter ranges under investigation. Both positive and negative effects of the mass rate on the critical heat flux are observed. The calculation method proposed satisfactorily describes the experimental data

  10. N+ρ decay of baryons in a flux-tube-breaking mechanism

    International Nuclear Information System (INIS)

    Stassart, P.; Stancu, F.

    1990-01-01

    A flux-tube-breaking mechanism motivated by QCD is extended to the analysis of the decay of nonstrange resonances into N+ρ. A proper threshold behavior is obtained by taking into account the instability of the ρ meson. The only parameter of the model has previously been fixed to adjust the decay of Δ into N+π. We find a good agreement with the few available data and make predictions for many other resonances where data are needed

  11. Application of tube critical heat flux tables to annuli and rod bundles

    International Nuclear Information System (INIS)

    Ulrych, G.

    1985-01-01

    The purpose of this paper is to show that tables for the critical heat flux (CHF) in tubes have a much wider range of applicability than only to tubes. With the proper choice of a characteristic length replacing the tube diameter as a parameter the validity of the tables can be expanded to more complex geometries. The paper describes how the tables must be applied to annuli or rod bundles. The data base for comparisons is mainly taken from the open literature. For rod bundles the proposed methodology was checked for very different geometries including rod bundles from very tight hexagonal to extremely open square bundle arrays. It is concluded that the tables give reasonable results for a wide range of hydraulic diameters

  12. Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube

    Science.gov (United States)

    Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.

    2018-02-01

    We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.

  13. A comparison of critical heat flux in tubes and bilaterally heated annuli

    Energy Technology Data Exchange (ETDEWEB)

    Doerffer, S.; Groeneveld, D.C.; Cheng, S.C. [Univ. of Ottawa (Canada)

    1995-09-01

    This paper examines the critical heat flux (CHF) behaviour for annular flow in bilaterally heated annuli and compares it to that in tubes and unilaterally heated annuli. It was found that the differences in CHF between bilaterally and unilaterally heated annuli or tubes strongly depend on pressure and quality. the CHF in bilaterally heated annuli can be predicted by tube CHF prediction methods for the simultaneous CHF occurrence at both surfaces, and the following flow conditions: pressure 7-10 MPa, mass flux 0.5-4.0 Mg/m{sup 2}s and critical quality 0.23-0.9. The effect on CHF of the outer-to-inner surface heat flux ratio, was also examined. The prediction of CHF for bilaterally heated annuli was based on the droplet-diffusion model proposed by Kirillov and Smogalev. While their model refers only to CHF occurrence at the inner surface, we extended it to cases where CHF occurs at the outer surface, and simultaneously at both surfaces, thus covering all cases of CHF occurrence in bilaterally heated annuli. From the annuli CHF data of Becker and Letzter, we derived empirical functions required by the model. the proposed equations provide good accuracy for the CHF data used in this study. Moreover, the equations can predict conditions at which CHF occurs simultaneously at both surfaces. Also, this method can be used for cases with only one heated surface.

  14. Probability of a steam generator tube rupture due to the presence of axial through wall cracks

    International Nuclear Information System (INIS)

    Mavko, B.; Cizelj, L.

    1991-01-01

    Using the Leak-Before-Break (LBB) approach to define tube plugging criteria a possibility to operate with through wall crack(s) in steam generator tubes may be considered. This fact may imply an increase in tube rupture probability. Improved examination techniques (in addition to the 100% tube examination) have been developed and introduced to counterbalance the associated risk. However no estimates of the amount of total increase or decrease of risk due to the introduction of LBB have been made. A scheme to predict this change of risk is proposed in the paper, based on probabilistic fracture mechanics analysis of axial cracks combined with available data of steam generator tube nondestructive examination reliability. (author)

  15. Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Teper, Michael

    2016-01-01

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l"γ) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.

  16. Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Department of Physics, University of Cyprus,POB 20537, 1678 Nicosia (Cyprus); Computation-based Science and Technology Research Center, The Cyprus Institute,20 Kavafi Str., Nicosia 2121 (Cyprus); Teper, Michael [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-10-18

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l{sup γ}) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.

  17. Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube

    Energy Technology Data Exchange (ETDEWEB)

    Requerey, Iker S.; Cobo, B. Ruiz [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, E-18080 Granada (Spain); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: iker@iac.es [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.

  18. Switching process between bistable positons of multiquantum flux tubes in a thin-film type I superconductor

    International Nuclear Information System (INIS)

    Parisi, J.; Huebener, R.P.; Muhlemeier, B.

    1983-01-01

    A superconducting memory device based on a bistable vortex position represents an interesting storage medium for future Josephson computers. In order to study the operational mode of such a single-flux quantum memory cell, we use as a model system multiquantum flux tubes in a thin-film type I superconductor (Pb). By employing high-resolution stroboscopic magnetooptical flux detection, we are able to globally visualize both spatial and temporal behavior of rapidly switching individual flux tubes. All experimental results agree reasonably well with theoretical model considerations of the energy balance during the elementary switching process

  19. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Science.gov (United States)

    Petrie, Christian M.; Koyanagi, Takaaki; McDuffee, Joel L.; Deck, Christian P.; Katoh, Yutai; Terrani, Kurt A.

    2017-08-01

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300-350 °C under a representative high heat flux (∼0.66 MW/m2) during one cycle of irradiation in an un-instrumented ;rabbit; capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. The success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  20. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deck, Christian P. [General Atomics, San Diego, CA (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-04

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300–350 °C under a representative high heat flux (~0.66 MW/m2) during one cycle of irradiation in an un-instrumented “rabbit” capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. Furthermore, the success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  1. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  2. A study on the critical heat flux for annuli and round tubes under low pressure conditions

    International Nuclear Information System (INIS)

    Park, Jae Wook

    1997-02-01

    This study aims to reveal the characteristics of the critical heat flux (CHF) of internally heated concentric annuli and vertical round tubes in low-pressure and low-flow (LPLF) conditions. Although many efforts have been devote to the subject of the CHF during the last forty years, the information on the CHF phenomenon for LPLF conditions is still very limited. The applicable ranges of the CHF correlations for annuli and round tubes are concentrate on the operating conditions of nuclear power plant (NPP), namely high-pressure and high-flow (HPHF) conditions. these facts promoted to collect the reliable CHF data for LPLF conditions for both annuli and round tubes. The critical heat flux data for vertical flow boiling of water in annuli and round tubes at low pressures and low mass fluxes show the following trends: The observed CHF mechanism for annuli was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. The observed parametric trends for annuli are consistent with the previous understanding except that the CHF for downward flow is considerably lower (up to 40%) than that for upward flow. The critical quality is much lower than that for round tubes at the same inlet conditions. The observed parametric trends for round tubes are generally consistent with the previous understanding except for system pressure an tube diameter effect. For the system pressure effect, it is observed that the pressure effect is complicated but not so large, whereas the existing CHF correlations do not present the parametric trend exactly. For tube diameter effect, the decreasing trends of CHF with respect to tube diameter was the general understanding so far, but in this region the CHF show a increasing trend of tube diameter. The prediction and the parametric trend analyses are performed by two view points, I.e., for fixed inlet conditions and for local

  3. External glass peening of zircaloy calandria tubes to increase the critical heat flux

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Coleman, C.E.; Nitheanandan, T.; Kroeger, V.D.; Moyer, R.G.; Sanderson, D.B.; Root, J.H.; Rogge, R.B.

    1997-12-01

    Glass-peening the outside surfaces of Zircaloy calandria tubes increases the nucleation sites available for boiling heat transfer and has been demonstrated to enhance the critical heat flux (CHF) in pool-boiling experiments. The objective of this study is to optimise the heat-transfer enhancement by glass peening while ensuring that the microstructure of the peened tube is acceptable for reactor use. Pool-boiling tests were done using small Zircaloy tubes with as-received ('smooth') surfaces and variously peened surfaces, to evaluate two peening parameters, glass-bead size and the coverage of peened surface. Our results showed that the maximum enhancement of CHF (by 60% compared with as-received tubes) was obtained using a glass-bead size of 90-125 μm with a coverage of 100%. The CHF enhancement was found to be insensitive to glass-bead size over a wide range (from 60-90 μm to 125-180 μm). Using a fixed glass-bead size of 125-180 μm to evaluate the influence of peening coverage, the maximum effect on the CHF response was obtained with a coverage of 1 00%. The microstructures of the peened tubes were evaluated using light microscopy, X-ray and neutron diffraction, and mechanical tests. After peening, the microstructure in the subsurface layer (-30 μm) consisted of deformed α-Zr grains, and the crystallographic texture of the grains changed slightly. After stress-relieving at 500 degrees C for 1 h, some recrystallisation had occurred and the residual strains remaining in the tube were low. The tensile and burst properties of glass-peened and stress-relieved tubes were similar to those of as-received tubes. The microstructures introduced by peening and stress relieving were judged to have little effect on creep and growth behaviour. Since there are no deleterious consequences of the glass-peening treatment, the peened and stress-relieved tubes are found to be acceptable for reactor use. (author)

  4. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  5. An Analytical Model for Prediction of Magnetic Flux Leakage from Surface Defects in Ferromagnetic Tubes

    Directory of Open Access Journals (Sweden)

    Suresh V.

    2016-02-01

    Full Text Available In this paper, an analytical model is proposed to predict magnetic flux leakage (MFL signals from the surface defects in ferromagnetic tubes. The analytical expression consists of elliptic integrals of first kind based on the magnetic dipole model. The radial (Bz component of leakage fields is computed from the cylindrical holes in ferromagnetic tubes. The effectiveness of the model has been studied by analyzing MFL signals as a function of the defect parameters and lift-off. The model predicted results are verified with experimental results and a good agreement is observed between the analytical and the experimental results. This analytical expression could be used for quick prediction of MFL signals and also input data for defect reconstructions in inverse MFL problem.

  6. Tube failures due to cooling process problem and foreign materials in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia); Purbolaksono, J., E-mail: judha@uniten.edu.m [Department of Mechanical Engineering, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia); Beng, L.C. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia)

    2010-07-15

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  7. Tube failures due to cooling process problem and foreign materials in power plants

    International Nuclear Information System (INIS)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.

    2010-01-01

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  8. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-10-01

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.

  9. Observing long colour flux tubes in SU(2) lattice gauge theory

    CERN Document Server

    Bali, G S; Schlichter, C; Bali, G S; Schilling, K; Schlichter, C

    1995-01-01

    We present results of a high statistics study of the chromo field distribution between static quarks in SU(2) gauge theory on lattices of volumes 16^4, 32^4, and 48^3*64, with physical extent ranging from 1.3 fm up to 2.7 fm at beta=2.5, beta=2.635, and beta=2.74. We establish string formation over physical distances as large as 2 fm. The results are tested against Michael's sum rules. A detailed investigation of the transverse action and energy flux tube profiles is provided. As a by-product, we obtain the static lattice potential in unpreceded accuracy.

  10. Study on tube critical heat flux data treatment with artificial neural networks

    International Nuclear Information System (INIS)

    Han Lang; Shan Jianqiang

    2005-01-01

    Prediction of the Critical Heat Flux (CHF) are analyzed by Artificial Neural Networks (ANN) to a CHF database for upward flow of water in uniformly heated vertical round tubes. The analysis is performed with three viewpoints hypothesis, i.e. for fixed inlet condition, fixed exit condition and local condition. Half of 6941 from CHF database data is trained through ANN, the trained ANN predicts the total CHF data better than any other conventional correlations, showing RMS error of 6.6%, 10.39% and 21.39%, respectively. (author)

  11. Sunspots and the physics of magnetic flux tubes. III. Aerodynamic lift

    International Nuclear Information System (INIS)

    Parker, E.N.

    1979-01-01

    The aerodynamic lift on a rigid circular cylinder of radius a in a nonuniform free stream is calculated to first order in the derivatives of the free-stream velocity, u(r). The lift per unit length, is of the order of the dynamical pressure 1/2rhou 2 times (a 2 /u 2 ) vertical-bardelu 2 vertical-bar. The results have application to the motion of flux tubes in the Sun. Illustrative examples are provided in subsequent papers of this series

  12. Formation of field-twisting flux tubes on the magnetopause and solar wind particle entry into the magnetosphere

    International Nuclear Information System (INIS)

    Sato, T.; Shimada, T.; Tanaka, M.; Hayashi, T.; Watanabe, K.

    1986-01-01

    A global interaction between the solar wind with a southward interplanetary magnetic field (IMF) and the magnetosphere is studied using a semi-global simulation model. A magnetic flux tube in which field lines are twisted is created as a result of repeated reconnection between the IMF and the outermost earth-rooted magnetic field near the equatorial plane and propagates to higher latitudes. When crossing the polar cusp, the flux tube penetrates into the magnetosphere reiterating reconnection with the earth-rooted higher latitude magnetic field, whereby solar wind particles are freely brought inside the magnetosphere. The flux tube structure has similarities in many aspects to the flux transfer events (FTEs) observed near the dayside magnetopause

  13. NUMERICAL SIMULATIONS OF PLASMA DYNAMICS IN THE VICINITY OF A RETRACTING FLUX TUBE

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Roger B.; Longcope, Dana W.; McKenzie, David E. [Montana State University P.O. Box 173840 Bozeman, MT 59717-3840 (United States)

    2016-11-01

    In a previous paper, we presented an analytical, zero- β model for supra-arcade downflows in which a retracting flux tube deforms the surrounding magnetic field, constricting the flow of plasma along affected field lines and, in some cases, forcing the plasma to exhibit collimated shocks. Here we present a numerical simulation based on the same model construction—a retracting flux tube is treated as a rigid boundary around which the plasma is forced to flow and the magnetic field and plasma evolve according to the governing equations of magnetohydrodynamics. We find that the collimated shocks described in our previous study are recovered for plasma β in the range of 0 ≤ β ≲ 1, while for 1 ≲ β the behavior is similar to the simpler hydrodynamic case, with classical bow shocks forming when the acoustic Mach number approaches or exceeds unity. Furthermore, we find that while the plasma β is important for identifying the various types of behaviors, more important still is the Alfvén Mach number, which, if large, implies that the bulk kinetic energy of the fluid exceeds the internal energy of the magnetic field, thereby leading to the formation of unconfined, fast-mode magnetosonic shocks, even in the limit of small β .

  14. Soft photon production in the boost-invariant color-flux tube model

    International Nuclear Information System (INIS)

    Czyz, W.; Florkowski, W.

    1993-07-01

    Starting from the classical expressions for emission of radiation we calculate soft photon production in the boost-invariant color-flux tube model. In the center-of-mass system of the initial tube we find that for large energies (√s ∼ 20 GeV) the production of photons with frequencies: 20 MeV < ω < 50 MeV, and emitted perpendicularly to the collision axis is strongly enhanced; it exceeds considerably production of photons given by the Low limit. For the emission more collinear with the collision axis and for decreasing ω the effect becomes weaker and, eventually, in the limit ω = 0 we recover precisely the Low formula. We also find that for smaller energies (√s ∼ 5 GeV) the emission of photons is well reproduced by the Low formula. Generally speaking, the observed enhancement is related to the existence of a large, i.e. extended in time, region of photon emission. This, in turn, results from the time dilution accompanying the space-time evolution of tubes. Strong time dilution effects follow from the boost-invariance of our model and, for large s, considerably enhance radiation of soft photons. By the same token, this enhancement decreases with decreasing s, because dilation decreases. (author). 21 refs, 7 figs

  15. Soft photon production in the boost-invariant color-flux tube model

    Energy Technology Data Exchange (ETDEWEB)

    Czyz, W. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki]|[Institute of Nuclear Physics, Cracow (Poland); Florkowski, W. [Institute of Nuclear Physics, Cracow (Poland)

    1993-07-01

    Starting from the classical expressions for emission of radiation we calculate soft photon production in the boost-invariant color-flux tube model. In the center-of-mass system of the initial tube we find that for large energies ({radical}s {approx} 20 GeV) the production of photons with frequencies: 20 MeV < {omega} < 50 MeV, and emitted perpendicularly to the collision axis is strongly enhanced; it exceeds considerably production of photons given by the Low limit. For the emission more collinear with the collision axis and for decreasing {omega} the effect becomes weaker and, eventually, in the limit {omega} = 0 we recover precisely the Low formula. We also find that for smaller energies ({radical}s {approx} 5 GeV) the emission of photons is well reproduced by the Low formula. Generally speaking, the observed enhancement is related to the existence of a large, i.e. extended in time, region of photon emission. This, in turn, results from the time dilution accompanying the space-time evolution of tubes. Strong time dilution effects follow from the boost-invariance of our model and, for large s, considerably enhance radiation of soft photons. By the same token, this enhancement decreases with decreasing s, because dilation decreases. (author). 21 refs, 7 figs.

  16. Closed flux tubes and their string description in D=3 1 SU(N) gauge theories

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Bringoltz, Barak; Teper, Michael

    2010-08-01

    We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l√σ ∝ 1.6, and extends up to l√σ∝6 (where σ is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to √σ, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J P =0 - quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)

  17. Prediction of pressure tube fretting-wear damage due to fuel vibration

    International Nuclear Information System (INIS)

    Yetisir, M.; Fisher, N.J.

    1997-01-01

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington Nuclear Generating Station (NGS) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGSs. (orig.)

  18. Prediction of pressure tube fretting-wear damage due to fuel vibration

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M; Fisher, N J [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington NGS (nuclear generating station) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGS`s (nuclear generating stations). (author). 12 refs., 2 tabs., 11 figs.

  19. Non-Abelian flux tubes in N=1 SQCD: Supersizing world-sheet supersymmetry

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2005-01-01

    We consider non-Abelian 1/2 Bogomol'nyi-Prasad-Sommerfield (BPS) flux tubes (strings) in a deformed N=2 supersymmetric gauge theory, with mass terms μ 1,2 of the adjoint fields breaking N=2 down to N=1. The main feature of the non-Abelian strings is the occurrence of orientational moduli associated with the possibility of rotations of their color fluxes inside a global SU(N) group. The bulk four-dimensional theory has four supercharges; half-criticality of the non-Abelian strings would imply then N=1 supersymmetry on the world sheet, i.e. two supercharges. In fact, superalgebra of the reduced moduli space has four supercharges. Internal dynamics of the orientational moduli are described by a two-dimensional CP(N-1) model on the string world sheet. We focus mainly on the SU(2) case, i.e. CP(1) world-sheet theory. We show that non-Abelian BPS strings exist for all values of μ 1,2 . The low-energy theory of moduli is indeed CP(1), with four supercharges, in a wide region of breaking parameters μ 1,2 . Only in the limit of very large μ 1,2 , above some critical value does the N=2 world-sheet supersymmetry break down to N=1. We observe 'supersymmetry emergence' for the flux-tube junction (confined monopole): The kink-monopole is half-critical considered from the standpoint of the world-sheet CP(1) model (i.e. two supercharges conserved), while in the bulk N=1 theory there is no monopole central charge at all

  20. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    Science.gov (United States)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  1. Flow boiling heat transfer of R134a and R404A in a microfin tube at low mass fluxes and low heat fluxes

    Science.gov (United States)

    Spindler, Klaus; Müller-Steinhagen, Hans

    2009-05-01

    An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and -20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.

  2. Evaluation of subcooled critical heat flux correlations for tubes with and without internal twisted tapes

    International Nuclear Information System (INIS)

    Inasaka, F.; Nariai, H.

    1996-01-01

    Eleven correlations and models for critical heat flux (CHF) of subcooled flow boiling in water were evaluated. Both a direct substitution method (DSM) and a heat balance condition method (HBM) were compared in the evaluations. The HBM was recommended as a better prediction method in the present study. For straight tubes under uniform heating conditions, the correlations of the Gunther, Knoebel, modified Tong, W-2, and Tong-75, and also the Celata and Weisman-Pei models were confirmed to give reasonably good predictions. Among them, the Celata model was the best with respect to accuracy. For swirl flow under uniform heating conditions, Tong-75-I (involving modification of the water velocity parameter) and Nariai-Inasaka correlations were confirmed to give reasonably good predictions, even though their predictions were too low for the CHF under non-uniform heating conditions. (orig.)

  3. Meson emissions from quark-gluon plasma through formation and fission of chromoelectric flux tubes

    International Nuclear Information System (INIS)

    Matsui, T.; Banerjee, B.; Glendenning, N.K.

    1983-06-01

    In the present work we study a facet of the plasma evolution, the formation and radiation of mesons at the surface of hog plasma. The surface meson radiation would play two important roles. First, it may carry some information about the pre-freezeout stage of the plasma evolution. Second, it causes a pressure decrease at the surface that works against the expansion. In the extreme, the plasma may extinct very rapidly by the surface meson radiation without collective expansion. It is very unclear how the incident quark degrees of freedom is converted into mesonic degrees of freedom and how the color confinement works in such a process. We have studied the problem by fully employing the chromoelectric flux tube model. We found that their parametrization is quite unsatisfactory and is actually incompatible with a dynamical description of color confinement. We briefly recapitulate our treatments and findings

  4. Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS

    Science.gov (United States)

    Posner, Arik; Liemohn, Michael W.; Zurbuchen, Thomas H.

    2003-03-01

    We present a case study of a remarkable upstream O+ and N+ ion outflow event. We present observational evidence for spatially structured outflow of these Low Charge State Heavy Ions (LCSHIs) of magnetospheric origin along a small reconnected field line region within the framework of a magnetic cloud of an ICME. From the particles' in situ 3D distribution function we conclude that in this case the interaction of the outflow with the bow shock is small. We conclude further that the gyrophases of outflowing ions at the reconnection point are randomly distributed. This leads to the formation of a flux tube with a specific geometry. In particular, the outflow reveals spatial dispersion and non-gyrotropy. This result has implications for the size of the dayside reconnection site.

  5. Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube

    Science.gov (United States)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-08-01

    From experiments of axially homogeneous turbulent convection in a vertical tube using heat (Prandtl number Pr≃6 ) and brine (Pr≃600 ) we show that at sufficiently high Rayleigh numbers (Rag), the Nusselt number Nug˜(RagPr)1/2, which corresponds to the so-called ultimate regime scaling. In heat experiments below certain Rag,however,there is transition to a new regime, Nug˜(RagPr)0.3. This transition also seems to exist in earlier reported data for Pr=1 and Pr≃600 , at different Rag. However, the transition occurs at a single Grashof number, Grgc≃1.6 ×105 , and unified flux scalings for Pr≥1 , Nug/Pr˜Grg0.3, and Nug/Pr˜Grg1/2 can be given for the two regimes.

  6. Limited Streamer Tubes for the BaBar Instrumented Flux Return Upgrade

    International Nuclear Information System (INIS)

    Lu, C.

    2005-01-01

    Starting from the very beginning of their operation the efficiency of the RPC chambers in the BaBar Instrumented Flux Return (IFR) has suffered serious degradation. After intensive investigation, various remediation efforts had been carried out, but without success. As a result the BaBar collaboration decided to replace the dying barrel RPC chambers about two years ago. To study the feasibility of using the Limited Streamer Tube (LST) as the replacement of RPC we carried out an R and D program that has resulted in BaBar's deciding to replace the barrel RPC's with LST's. In this report we summarize the major detector R and D results, and leave other issues of the IFR system upgrade to the future publications

  7. Critical heat flux and transition boiling characteristics for a sodium-heated steam generator tube for LMFBR applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S.; Holmes, D.H.

    1977-04-01

    An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.

  8. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  9. Corrosion failure due to flux residues in an electronic add-on device

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    of the electrochemical behavior metallic materials (alloys) used in the switch and risk of electrochemical migration (ECM) between the switch components in presence of flux residues was also carried out. Investigations included potentiodynamic polarization measurements on the switch electrodes using a micro......-electrochemical technique, in situ ECM studies, and scanning electron microscopy (SEM). Failure of the switches was found to be either due to the flux residue acting as an nsulating layer or as a corrosion accelerator causing ECM....

  10. On the look-up tables for the critical heat flux in tubes (history and problems)

    International Nuclear Information System (INIS)

    Kirillov, P.L.; Smogalev, I.P.

    1995-01-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section

  11. Optimized numerical annular flow dryout model using the drift-flux model in tube geometry

    International Nuclear Information System (INIS)

    Chun, Ji Han; Lee, Un Chul

    2008-01-01

    Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code

  12. On the look-up tables for the critical heat flux in tubes (history and problems)

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, P.L.; Smogalev, I.P. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.

  13. Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: A review

    International Nuclear Information System (INIS)

    Singh, Vinay; Gupta, Munish

    2016-01-01

    Highlights: • Reviews heat transfer augmentation of nanofluids in a tube with constant heat flux. • Recent advances in hybrid nanofluids are reviewed. • Identifies and compares significant results. • Scope of future research in this area is discussed. - Abstract: In the last few decades, research on nanofluids has increased rapidly. Traditional heat transfer fluids with order of nanometer sized particles (1–100 nm) suspended in them are termed as nanofluids. Nanofluids have been proved as better heat transfer fluids despite of various contradictions in results by different research groups. The aim of this article is to review and summarize the recent experimental and theoretical studies on convective heat transfer in heat exchangers using constant heat flux boundary condition. The use of different types of nanoparticles with different base fluids by different research groups has been presented and compared. Further an overview of experimental results about heat transfer abilities of hybrid nanofluids from available literature sources is also presented. Finally, the challenges and future directions in which research can be further progress are discussed.

  14. Critical heat flux data in a vertical tube at low and medium pressures

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Olekhnowitch, A [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Tapucu, A [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Champagne, P [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Groeneveld, D [Chalk River Laboratories, AECL Research, Chalk River (Canada)

    1994-09-01

    AECL Research and Ecole Polytechnique have been cooperating on the validation of the critical heat flux (CHF) look-up table (D.C. Groeneveld et al., Heat Transfer Eng. 7(1-2) (1986) 46-62). For low and medium pressures the values in the table have been obtained by extrapolation and curve fitting; therefore, errors could be expected. To reduce these possible extrapolation errors, CHF experiments are being carried out in water cooled 8mm internal diameter (ID) tubes, at conditions where the data are scarce. This paper presents some of the experimental CHF data obtained for vertical up flow in an 8mm ID test section, for a wide range of exit qualities (5-70%) and the exit pressure ranging from 5 to 30bar. The experiments were carried out for heated lengths of 0.75, 1, 1.4 and 1.8m. In general, the collected data show parametric trends similar to those described in the open literature. However, it was observed that for low pressure conditions CHF depends on the heated length; this dependence begins to disappear for exit pressure of about 30bar. The CHF data have also been compared with predictions of well-known correlations (L. Biasi et al., Energia Nucl. 14(9) (1967) 530-536; R. Bowring, Br. Report AEEW-R789, Winfrith, UK, 1972; Y. Khatto and H. Ohno, Int. J. Heat Mass Transfer 27 (1984) 1641-1648) and those of the look-up table given by Groeneveld et al. For low pressures and low mass fluxes the look-up table seems to yield better predictions of the CHF than the correlations. However, for medium pressures and mass fluxes the correlations perform better than the look-up table; among those tested, Katto and Ohno's correlation gives the best results. ((orig.))

  15. Simulation of the space-time evolution of color-flux tubes (guidelines to the TERMITE program)

    International Nuclear Information System (INIS)

    Dyrek, A.

    1990-08-01

    We give the description of the computer program which simulates boost-invariant evolution of color-flux tubes in high-energy processes. The program provides a graphic demonstration of space-time trajectories of created particles and can also be used as Monte-Carlo generator of events. (author)

  16. Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature

    Science.gov (United States)

    Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.

    2018-02-01

    We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.

  17. Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    International Nuclear Information System (INIS)

    Alford, Mark G.; Good, Gerald

    2008-01-01

    We analyze magnetic-flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient ('entrainment') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional κ≡λ/ξ=1/√(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical κ and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to 'type-II(n)' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical κ and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region but might be observed in condensed-matter systems

  18. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  19. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements

    International Nuclear Information System (INIS)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-01-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. - Highlights: • Neutron flux redistribution due to control rod movement in JSI TRIGA has been studied. • Detector response sensitivity to the control rod position has been minimized. • Optimal radial and axial detector positions have been determined

  20. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  1. Flux and energy dependence of methane production from graphite due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.; Stangeby, P.C.

    1986-06-01

    Carbon is in widespread use for limiter surfaces, as well as first wall coatings in current tokamaks. Chemical erosion via methane formation, due to energetic H + impact, is expected to contribute to the total erosion rate of carbon from these surfaces. Experimental results are presented for the methane yield from pyrolytic graphite due to H + exposure, using a mass analyzed ion beam. H + energies of 0.1-3 keV and flux densities of ∼ 5x10 13 to l0 16 H + /cm 2 s were used. The measured methane yield (CH 4 /H + ) initially increases with flux density, then reaches a maximum, which is followed by a gradual decrease. The magnitude of the maximum yield and the flux density at which it occurs depends on the graphite temperature. The yields obtained at temperatures corresponding to yield maxima at specific flux densities also show an initial increase, followed by a shallow maximum and a gradual decrease as a function of flux density; the maximum occurs at ∼10 15 H + /cm 2 s. Also presented are results on the methane production dependence on ion energy over the range 0.1 to 3 keV, and graphite temperature dependence measurements

  2. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  3. Fast Flux Depressions Due to Nonelastic Effects in Lead and Bismuth

    International Nuclear Information System (INIS)

    Holloway, James Paul

    2002-01-01

    The problem of neutrons from a 14 MeV source slowing down in heavy Pb and Bi moderators is examined. Careful Monte Carlo simulations show a very deep flux depression immediately below the source energy. This flux depression is the result of the small energy loss in elastic scattering, in competition with the far more dramatic loss due to nonelastic events such as inelastic scatter and (n; 2n) reactions. A simple analytical model recovers the essential qualitative features of the Monte Carlo simulations. (author)

  4. Guidelines for Safety Evaluation of a Potential for PWR Steam Generator Tube Failure due to Fluid elastic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Do, Kyu Sik; Sheen, Cheol [Nuclear System Evaluation Dept., Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    It was found that both SG tube rupture events occurred at North Anna Unit 1 in 1987 and at Mihama Unit 2 in 1991 were caused by a high cycle fatigue due to fluid elastic instability. Therefore, with regard to nuclear safety it is important to design the SG properly in a conservative manner so that the potential for SG U-tube failures due to fluid elastic instability can be minimized. This article provides guidelines for assessing the potential for SG U-tube damage due to fluid elastic instability. This article described guidelines for safety evaluation of a potential for PWR steam generator tube failure due to fluid elastic instability. The guidelines address the requirements for realistically performing the SG thermal-hydraulic analysis and the modal analysis of tubes as well as the criteria for conservatively determining the added mass, the damping ratio and the fluid elastic instability coefficient. The guidelines can be used to predict the potential SG tubes which are susceptible to failure due to fluid elastic instability at operating nuclear power plants and also to evaluate the safety and structural integrity of new SG designs at the licensing review stage. Failure of a pressurized water reactor (PWR) steam generator (SG) tube leads to a leakage of contaminated primary coolant to the secondary system, which has serious safety implications such as the potential for direct release of radioactive fission products to the environment and the loss of coolant. Excessive tube vibration excited by dynamic forces of internal or external fluid flow is called flow-induced vibration (FIV). Among the FIV mechanisms, the so-called fluid elastic instability of SG tubes in cross flow is the most important safety issue in the design of SGs because it may cause severe tube failure in a very short time.

  5. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  6. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  7. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  8. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  9. Sunspots and the physics of magnetic flux tubes. IV. Aerodynamic lift on a thin cylinder in convective flows

    International Nuclear Information System (INIS)

    Tsinganos, K.C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out of the upwellings and the downdrafts of the convective cell, into a location midway between them.The implications for the intense magnetic flux tubes in the convection beneath the surface of the Sun are considered

  10. Sunspots and the physics of magnetic flux tubes. IV - Aerodynamic lift on a thin cylinder in convective flows

    Science.gov (United States)

    Tsinganos, K. C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out the upwellings and the downdrafts of the convective cell, into a location midway between them. The implications for the intense magnetic flux tubes in the convection beneath the surface of the sun are considered.

  11. Determination of He and D permeability of neutron-irradiated SiC tubes to examine the potential for release due to micro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Driven by the need to enlarge the safety margins of light water reactors in both design-basis and beyond-design-basis accident scenarios, the research and development of accident-tolerant fuel (ATF) has become an importance topic in the nuclear engineering and materials community. Continuous SiC fiber-reinforced SiC matrix ceramic composites are under consideration as a replacement for traditional zirconium alloy cladding owing to their high-temperature stability, chemical inertness, and exceptional irradiation resistance. Among the key technical feasibility issues, potential failure of the fission product containment due to probabilistic penetrating cracking has been identified as one of the two most critical feasibility issues, together with the radiolysisassisted hydrothermal corrosion of SiC. The experimental capability to evaluate the hermeticity of SiC-based claddings is an urgent need. In this report, we present the development of a comprehensive permeation testing station established in the Low Activation Materials Development and Analysis laboratory at Oak Ridge National Laboratory. Preliminary results for the hermeticity evaluation of un-irradiated monolithic SiC tubes, uncoated and coated SiC/SiC composite tubes, and neutron-irradiated monolithic SiC tubes at room temperature are exhibited. The results indicate that this new permeation testing station is capable of evaluating the hermeticity of SiC-based tubes by determining the helium and deuterium permeation flux as a function of gas pressure at a high resolution of 8.07 x 10-12 atm-cc/s for helium and 2.83 x 10-12 atm-cc/s for deuterium, respectively. The detection limit of this system is sufficient to evaluate the maximum allowable helium leakage rate of lab-scale tubular samples, which is linearly extrapolated from the evaluation standard used for a commercial as-manufactured light water reactor fuel rod at room temperature. The un-irradiated monolithic SiC tube is hermetic, as

  12. Small bowell obstruction due to disruption and displacement of celestine tube

    International Nuclear Information System (INIS)

    Volpe, E.; Brugnettini, M.; Soardi, G.; Colombo, C.

    1986-01-01

    When the Celestin tube is used for treatment of benign oesophageal strictures after several months structural deterioration and fatigue occur. The tube disruption and displacement are serious complications which can be early identified with routine-radiological examinations

  13. Small bowell obstruction due to disruption and displacement of celestine tube. Radiological findings (two cases)

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, E; Brugnettini, M; Soardi, G; Colombo, C

    1986-01-01

    When the Celestin tube is used for treatment of benign oesophageal strictures after several months structural deterioration and fatigue occur. The tube disruption and displacement are serious complications which can be early identified with routine-radiological examinations.

  14. Chromospheric polarimetry through multiline observations of the 850-nm spectral region - II. A magnetic flux tube scenario

    Science.gov (United States)

    Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2017-11-01

    In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.

  15. The angular gamma flux in an iron shield due to a thin slab source

    International Nuclear Information System (INIS)

    Penkuhn, H.

    1977-04-01

    The angular spectra of the gamma energy fluxes and dose rates in iron shields due to thin and thick sources are compared. The anisotropicity increases with increasing source thickness. But the changes can be ignored near the forward direction (shield axis) and moreover for all directions at deep penetrations. At low source energies the changes are smaller than at higher ones (at equal penetrations in cm)

  16. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  17. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    International Nuclear Information System (INIS)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul

    2013-01-01

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced

  18. Evaluation of heat transfer tube failure propagation due to sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi

    1978-01-01

    An evaluation was made of heat transfer tube failure propagation due to sodium-water reaction wastage in a sodium heated steam generator, by comparing an empirically derived wastage equation with leak detector responses. The experimental data agreed well with the wastage equation even for different values of distance-to-nozzle diameter ratio, though the formula had been based on wastage data obtained for only one given distance. The time taken for failure propagation was estimated for a prototype steam generator, and compared with the responses characteristics of acoustic detectors and level gages. It was found that there exists a range of leak rate between 0.5 and 100 g/sec, where the level gage can play a useful role in leak detection. The acoustic detector can be expected to respond more rapidly than the cover gas pressure gage, if noise is kept below ten times the value observed in an experimental facility, SWAT-2. (auth.)

  19. Color superconductivity, ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.

    2003-11-01

    We study the ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories. In order to do that we consider an N=4 super Yang-Mills theory with an arbitrary gauge group G and add some N=2, N=1 and N=0 deformation terms. We analyze some possible vacuum solutions and phases of the theory, depending on the deformation terms which are added. In the Coulomb phase for the N=2* theory, G is broken to U(1)r and the theory has monopole solutions. Then, by adding some deformation terms, the theory passes to the Higgs or color superconducting phase, in which G is broken to its center CG. In this phase we construct the ZN flux tubes Ansatz and obtain the BPS string tension. We show that the monopole magnetic fluxes are linear integer combinations of the string fluxes and therefore the monopoles can become confined. Then, we obtain a bound for the threshold length of the string-breaking. We also show the possible formation of a confining system with 3 different monopoles for the SU(3) gauge group. Finally we show that the BPS string tensions of the theory satisfy the Casimir scaling law. (author)

  20. Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013

    Science.gov (United States)

    Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.

    2017-12-01

    Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.

  1. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  2. Boiling transition and the possibility of spontaneous nucleation under high subcooling and high mass flux density flow in a tube

    International Nuclear Information System (INIS)

    Fukuyama, Y.; Kuriyama, T.; Hirata, M.

    1986-01-01

    Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated

  3. Measurement of the neutron flux distributions, epithermal index, Westcott thermal neutron flux in the irradiation capsules of hydraulic conveyer (Hyd) and pneumatic tubes (Pn) facilities of the KUR

    International Nuclear Information System (INIS)

    Chatani, Hiroshi

    2001-05-01

    The reactions of Au(n, γ) 198 Au and Ti(n, p) 47 or 48 Sc were used for the measurements of the thermal and epithermal (thermal + epithermal) and the fast neutron flux distributions, respectively. In the case of Hyd (Hydraulic conveyer), the thermal + epithermal and fast neutron flux distributions in the horizontal direction in the capsule are especially flat; the distortion of the fluxes are 0.6% and 5.4%, respectively. However, these neutron fluxes in the vertical direction are low at the top and high at the bottom of the capsule. These differences between the top and bottom are 14% for both distributions. On the other hand, in polyethylene capsules of Pn-1, 2, 3 (Pneumatic tubes Nos. 1, 2, 3), in contrast with Hyd, these neutron flux distributions in the horizontal direction have gradients of 8 - 18% per 2.5 cm diameter, and those on the vertical axis have a distortion of approximately 5%. The strength of the epithermal dE/E component relative to the neutron density including both thermal and epithermal neutrons, i.e., the epithermal index, for the hydraulic conveyer (Hyd) and pneumatic tube No.2 (Pn-2), in which the irradiation experiments can be achieved, are determined by the multiple foil activation method using the reactions of Au(n, γ) 198 Au and Co(n, γ) 60(m+g) Co. The epithermal index observed in an aluminum capsule of Hyd is 0.034-0.04, and the Westcott thermal neutron flux is 1.2x10 14 cm -2 sec -1 at approximately 1 cm above the bottom. The epithermal index in a Pn-2 polyethylene capsule was measured by not only the multiple foil activation method but also the Cd-ratio method in which the Au(n, γ) 198 Au reaction in a cadmium cover is also used. The epithermal index is 0.045 - 0.055, and the thermal neutron flux is 1.8x10 13 cm -2 sec -1 . (J.P.N.)

  4. Critical heat flux of water in vertical round tubes at low-pressure and low-flow conditions

    International Nuclear Information System (INIS)

    Park, Jae-Wook; Kim, Hong-Chae; Beak, Won-Pil; Chang, Soon Heung

    1997-01-01

    A series of critical heat flux (CHF) tests have been performed to provide a reliable set of CHF data for water flow in vertical round tubes at low pressure and low flow (LPLF) conditions. The range of experimental conditions is as follows: diameter 8, 10 mm; heated length 0.5, 1 m; pressure 2-9 bar, mass flux 50-200 kg/m 2 s; inlet subcooling 350, 450 kJ/kg. The observed parametric trends are generally consistent with the previous understanding except for the effects of system pressure and tube diameter. The pressure effect is small but very complicated; existing CHF correlations do not represent this parametric trend properly. CHF increases with the increase in diameter at fixed exit conditions, contrary to the general understanding. The artificial neural networks are applied to the round tube CHF data base at LPLF (P = 110-1100 kPa, G = 0-500 kg/m 2 s) conditions. The trained backpropagation networks (BPNs) predict CHF better than any other CHF correlations. Parametric trends of CHF based on the BPN for fixed inlet conditions generally agree well with our experimental results. (author)

  5. Propagation of Torsional Alfvén Waves from the Photosphere to the Corona: Reflection, Transmission, and Heating in Expanding Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Ballester, José Luis, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2017-05-01

    It has been proposed that Alfvén waves play an important role in the energy propagation through the solar atmospheric plasma and its heating. Here we theoretically investigate the propagation of torsional Alfvén waves in magnetic flux tubes expanding from the photosphere up to the low corona and explore the reflection, transmission, and dissipation of wave energy. We use a realistic variation of the plasma properties and the magnetic field strength with height. Dissipation by ion–neutral collisions in the chromosphere is included using a multifluid partially ionized plasma model. Considering the stationary state, we assume that the waves are driven below the photosphere and propagate to the corona, while they are partially reflected and damped in the chromosphere and transition region. The results reveal the existence of three different propagation regimes depending on the wave frequency: low frequencies are reflected back to the photosphere, intermediate frequencies are transmitted to the corona, and high frequencies are completely damped in the chromosphere. The frequency of maximum transmissivity depends on the magnetic field expansion rate and the atmospheric model, but is typically in the range of 0.04–0.3 Hz. Magnetic field expansion favors the transmission of waves to the corona and lowers the reflectivity of the chromosphere and transition region compared to the case with a straight field. As a consequence, the chromospheric heating due to ion–neutral dissipation systematically decreases when the expansion rate of the magnetic flux tube increases.

  6. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    Science.gov (United States)

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  7. Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes

    Science.gov (United States)

    Terradas, J.; Magyar, N.; Van Doorsselaere, T.

    2018-01-01

    Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.

  8. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on the range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.

  9. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  10. Computation and empirical modeling of UV flux reaching Arabian Sea due to O3 hole

    International Nuclear Information System (INIS)

    Yousufzai, M. Ayub Khan

    2008-01-01

    Scientific organizations the world over, such as the European Space Agency, the North Atlantic Treaty Organization, the National Aeronautics and Space Administration, and the United Nations Organization, are deeply concerned about the imbalances, caused to a significant extent due to human interference in the natural make-up of the earth's ecosystem. In particular, ozone layer depletion (OLD) over the South Pole is already a serious hazard. The long-term effect of ozone layer depletion appears to be an increase in the ultraviolet radiation reaching the earth. In order to understand the effects of ozone layer depletion, investigations have been initiated by various research groups. However, to the best of our knowledge, there does not seem to be available any work treating the problem of computing and constructing an empirical model for the UV flux reaching the Arabian Sea surface due to the O3 hole. The communication presents the results of quantifying UV flux and modeling future estimation using time series analysis in a local context to understand the nature of the depletion. (author)

  11. Mechanism of subcooled water flow boiling critical heat flux in a circular tube at high liquid Reynolds number

    International Nuclear Information System (INIS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2014-01-01

    The subcooled boiling heat transfer and the steady state critical heat flux (CHF) in a vertical circular tube for the flow velocities (u=3.95 to 30.80 m/s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tube of inner diameter (d=6 mm) and heated length (L=59.5 mm) is used in this work. The outer surface temperatures of the SUS304 test tube with heating are observed by an infrared thermal imaging camera and a video camera. The subcooled boiling heat transfers for SUS304 test tube are compared with the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details based on the experimental data. Nucleate boiling surface superheats at the CHF are close to the lower limit of the heterogeneous spontaneous nucleation temperature and the homogeneous spontaneous nucleation temperature. The dominant mechanism of the subcooled flow boiling CHF on the SUS304 circular tube is discussed at high liquid Reynolds number. On the other hand, theoretical equations for k-ε turbulence model in a circular tube of a 3 mm in diameter and a 526 mm long are numerically solved for heating of water on heated section of a 3 mm in diameter and a 67 mm long with various thicknesses of conductive sub-layer by using PHOENICS code under the same conditions as the experimental ones previously obtained considering the temperature dependence of thermo-physical properties concerned. The Platinum (Pt) test tube of inner diameter (d=3 mm) and heated length (L=66.5 mm) was used in this experiment. The thicknesses of conductive sub-layer from non-boiling regime to CHF are clarified. The thicknesses of conductive sub-layer at the CHF point are evaluated for various flow velocities. The experimental values of the CHF are also compared with the corresponding

  12. Internal hernia due to adjustable gastric band tubing: review of the literature and illustrative case video.

    Science.gov (United States)

    Hamed, Osama H; Simpson, Lashondria; Lomenzo, Emanuele; Kligman, Mark D

    2013-11-01

    Laparoscopic adjustable gastric banding (LAGB) is a commonly performed bariatric procedure. Device-related morbidity is typically associated with the subcutaneous port or the band itself. Complications related to band tubing are unusual. Small bowel obstruction (SBO) after LAGB is a unique and serious complication; there is the potential of delayed diagnosis and the risk of closed-loop bowel obstruction. SBO secondary to internal hernia caused by band tubing is very rare, with only five cases reported in the literature. In this article, we describe our experience and provide an illustrative video of a case of SBO related to band tubing. We also provide a detailed review of the few previously published case reports. Based on the common features of our case and other published case reports, we hypothesize some risk factors that might lead to this unique morbidity of adjustable gastric band tubing and provide potential solutions to prevent this problem. Tubing-related SBO is a serious complication with the risk of closed-loop bowel obstruction. Urgent operative exploration is required to avoid bowel strangulation. To prevent recurrence we advise functionally shortening the tubing by tucking it to the right upper quadrant above the liver and also provide some omental coverage between the bowel and band tubing if possible.

  13. Measurement of mass flux in two-phase flow using combinations of Pitot tubes and gamma densitometers

    International Nuclear Information System (INIS)

    Hau, K.F.F.L.; Banerjee, S.

    1981-01-01

    New experimental data indicate that mass flux in cocurrent gas-liquid flows may be determined by the use of Pitot tubes in conjunction with a local mixture density measurement technique. The data were taken over a wide range of flow regimes in a horizontal pipe and included separated patterns such as stratified and annular flows. Local mixture densities were obtained by a computer-assisted algebraic reconstruction technique that used chordal average densities measured by traversing gamma beam attenuation. The results extend the applicability of this mass flux measurement technique well beyond the relatively homogeneous, high-pressure, steam-water flow situations originally studied by S. Banerjee and D.M. Nguyen. 13 refs

  14. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  15. The role of the velocity gradient in laminar convective heat transfer through a tube with a uniform wall heat flux

    International Nuclear Information System (INIS)

    Wang Liangbi; Zhang Qiang; Li Xiaoxia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer

  16. Prediction of strongly-heated gas flows in a vertical tube using explicit algebraic stress/heat-flux models

    International Nuclear Information System (INIS)

    Baek, Seong Gu; Park, Seung O.

    2003-01-01

    This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions

  17. Magnetic Flux Rope Shredding By a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Chintzoglou, Georgios [Lockheed Martin Solar and Astrophysics Laboratory, 3176 Porter Drive, Palo Alto, CA 94304 (United States); Vourlidas, Angelos [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Savcheva, Antonia; Tassev, Svetlin [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Beltran, Samuel Tun; Stenborg, Guillermo, E-mail: gchintzo@lmsal.com [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-07-10

    We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the Very high Angular resolution Ultraviolet Telescope ( VAULT2.0 ) sounding rocket launch. The refurbished VAULT2.0 is a Ly α ( λ 1216 Å) spectroheliograph launched on 2014 September 30. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low-level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No coronal mass ejection was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion that enabled us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope (MFR)-like structure was destroyed during its interaction with the ambient magnetic field, creating downflows of cool plasma and diffuse hot coronal structures reminiscent of “cusps.” We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.

  18. Magnetic Flux Rope Shredding By a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions

    International Nuclear Information System (INIS)

    Chintzoglou, Georgios; Vourlidas, Angelos; Savcheva, Antonia; Tassev, Svetlin; Beltran, Samuel Tun; Stenborg, Guillermo

    2017-01-01

    We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the Very high Angular resolution Ultraviolet Telescope ( VAULT2.0 ) sounding rocket launch. The refurbished VAULT2.0 is a Ly α ( λ 1216 Å) spectroheliograph launched on 2014 September 30. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low-level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No coronal mass ejection was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion that enabled us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope (MFR)-like structure was destroyed during its interaction with the ambient magnetic field, creating downflows of cool plasma and diffuse hot coronal structures reminiscent of “cusps.” We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.

  19. Life prediction of steam generator tubing due to stress corrosion crack using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Hu Jun; Liu Fei; Cheng Guangxu; Zhang Zaoxiao

    2011-01-01

    Highlights: → A life prediction model for SG tubing was proposed. → The initial crack length for SCC was determined. → Two failure modes called rupture mode and leak mode were considered. → A probabilistic life prediction code based on Monte Carlo method was developed. - Abstract: The failure of steam generator tubing is one of the main accidents that seriously affects the availability and safety of a nuclear power plant. In order to estimate the probability of the failure, a probabilistic model was established to predict the whole life-span and residual life of steam generator (SG) tubing. The failure investigated was stress corrosion cracking (SCC) after the generation of one through-wall axial crack. Two failure modes called rupture mode and leak mode based on probabilistic fracture mechanics were considered in this proposed model. It took into account the variance in tube geometry and material properties, and the variance in residual stresses and operating conditions, all of which govern the propagations of cracks. The proposed model was numerically calculated by using Monte Carlo Simulation (MCS). The plugging criteria were first verified and then the whole life-span and residual life of the SG tubing were obtained. Finally, important sensitivity analysis was also carried out to identify the most important parameters affecting the life of SG tubing. The results will be useful in developing optimum strategies for life-cycle management of the feedwater system in nuclear power plants.

  20. Closed flux tubes and their string description in D=3+1 SU(N) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [Washington Univ., Seattle, WA (United States). Dept. of Physics; Teper, Michael [Oxford Univ. (United Kingdom). Centre for Theoretical Physics

    2010-08-15

    We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l{radical}{sigma} {proportional_to} 1.6, and extends up to l{radical}{sigma}{proportional_to}6 (where {sigma} is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to {radical}{sigma}, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J{sup P}=0{sup -} quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)

  1. Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube

    International Nuclear Information System (INIS)

    Courtaud, M.; Roumy, R.

    1975-01-01

    After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr

  2. Tube bundle vibrations due to cross flow under the influence of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Popp, K.; Romberg, O. [Institute of Mechanics, University of Hannover (Germany)

    1998-10-01

    Tube bundles are often used in heat exchangers and chemical reactors. Besides of large heat transfer capacities and small pressure drops in the apparatus a safe design against vibration damages is demanded. For many years extensive investigations concerning the dynamical behaviour of tube bundles subjected to cross-flow have been carried out in the wind tunnel of the Institute of Mechanics at the University of Hannover. In the last years the investigations were concentrated on the experimental investigations of different flow excitation mechanisms in a fully flexible bundle as well as in a bundle with one single flexibly mounted tube in an otherwise fixed array with variable geometry and changing equilibrium position. The aim of the studies was the determination of the stability boundaries, i.e. the critical reduced fluid velocity depending on the reduced damping coefficient in a wide parameter region. Theoretical investigations of the stability behaviour on the basis of an one dimensional flow model as well as experimental investigations of the influence of turbulence on the stability boundaries have been carried out. Here, for certain tube bundle configurations an increased turbulence has a stabilizing effect and leads to a shift of the stability boundaries to higher velocities. The change of the turbulence was realised by using turbulence grids at the inlet of the bundles or thin Prandtl-tripwires at the tube surfaces. Flow visualization studies at the original experimental set-up under relevant Reynolds numbers give an impression of the flow pattern. At this time an investigation of the exciting fluid forces is carried out using a flexibly mounted pressure test tube. A survey about some recent investigations is given. (orig.)

  3. The interventional treatment for biliary recurrent obstruction after palliative T tube drainage in patients with obstruction due to cholangiocarcinoma

    International Nuclear Information System (INIS)

    Han Xinwei; Li Yongdong; Guan Sheng; Wu Gang; Xing Gusheng; Ma Bo

    2002-01-01

    Objective: To explore the interventional method to treat biliary recurrent jaundice after T tube drainage in patients with malignant obstructive jaundice due to cholangiocarcinoma. Methods: 7 biliary metallic stents were placed in 7 patients with recurrent jaundice after T-tube drainage in cholangiocarcinoma cases. Results: Stent placement was once successful in all 7 cases with successful rate of 100%. For all cases, TBIL, ALT, GTP and AKP values 7 days postoperatively were significantly lower than that of preoperation together with subsidence of jaundice satisfactorily for 100% after the treatment. Conclusions: Percutaneous placement of biliary metallic stents was effective economic, minimal invasive and safe for palliation of biliary recurrent jaundice after T tube drainage in cholangiocarcinoma-induced obstructive jaundice

  4. Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition

    International Nuclear Information System (INIS)

    Satapathy, Ashok K.

    2009-01-01

    In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.

  5. Experimental investigation of the vibration response of a flexible tube due to simulated reactor core, cross and annular exit flows

    International Nuclear Information System (INIS)

    Haslinger, K.H.; Martin, M.L.; Higgins, W.H.; Rossano, F.V.

    1989-01-01

    Instrumentation tubes in pressurized nuclear reactors have experienced wear due to excessive flow-induced vibrations. Experiments to identify the predominant flow excitation mechanism at a particular plant, and to develop a sleeve design to remedy the wear problem are reported. An instrumented flow visualization model enabled simulation of a wide range of individual or combined reactor core flow, cross flow and thimble flow conditions. The instrumentation scheme adopted for these experiments used proximity displacement transducers and a force transducer to measure respectively tube motion and contact/impact forces at the wear region. Extensive testing of the original, in-plant configuration identified the normal core flow as the primary source of excitation. Shielding the In-Core-Instrumentation thimble tube from the normal core flow curtailed vibration amplitudes; however, thimble flow excitation then became more pronounced. Various outlet nozzle configurations were investigated. An internal cavity combined with radial outlet slots became the optimum solution for the problem. The paper presents typical test data in the form of orbital tube motion, spectrum analysis and time history collages. The effectiveness of shielding the instrumentation tube from the flow is demonstrated. (author)

  6. Why fast solar wind originates from slowly expanding coronal flux tubes

    International Nuclear Information System (INIS)

    Wang, Y.M.; Sheeley, N.R. Jr.

    1991-01-01

    Empirical studies indicate that the solar wind speed at earth is inversely correlated with the divergence rate of the coronal magnetic field. It is shown that this result is consistent with simple wind acceleration models involving Alfven waves, provided that the wave energy flux at the coronal base is taken to be roughly constant within open field regions. 9 refs

  7. Improvement of Eddy Current testing methods of steam generator tubings due to field experience

    International Nuclear Information System (INIS)

    Comby, R.; Meurgey, P.; David, B.

    1985-01-01

    This paper presents the main stages of the long rotating probe developed by EDF, this probe detects stress corrosion cracks. The method has been validated by the examination of numerous cracked tubes that the probe detected before. Methods to better characterize the signals with regard to the defects are being improved to avoid a complementary examination of the rolling zone more particularly [fr

  8. Critical heat flux of water in vertical tubes with an upper plenum and a closed bottom

    International Nuclear Information System (INIS)

    Kim, Hong Chae; Baek, Won Pil; Chang, Soon Heung

    2000-01-01

    An experimental study is conducted for vertical round tubes with an upper plenum and a closed bottom to investigate CHF behavior and CHF onset location under the counter-current condition. The measured CHF values are well predicted by general Wallis type flooding correlations. A 1-D steady state analytical flooding model for thermosyphon by El-Genk and Saber was assessed with the data and the liquid film thickness at the liquid entrance was calculated. The CHF onset position becomes different with L/D and D, and liquid entrance geometry affects only CHF values not CHF onset positions

  9. Effect of Tube Pitch on Pool Boiling Heat Transfer of Vertical Tube Bundle

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2016-01-01

    Summarizing the previous results it can be stated that heat transfer coefficients are highly dependent on the tube pitch and the heat flux of the relevant tube. The published results are mostly about the horizontal tubes. However, there are many heat exchangers consisting of vertical tubes like AP600. Therefore, the focus of the present study is an identification of the effects of a tube pitch as well as the heat flux of a relevant tube on the heat transfer of a tube bundle installed vertically. When the heat flux is increased many bubbles are generating due to the increase of the nucleation sites. The bubbles become coalescing with the nearby bubbles and generates big bunches of bubbles on the tube surface. This prevents the access of the liquid to the surface and deteriorates heat transfer. The bubble coalescence is competing with the mechanisms enhancing heat transfer. The pitch was varied from 28.5 mm to 95 mm and the heat flux of the nearby tube was changed from 0 to 90kW/m"2. The enhancement of the heat transfer is clearly observed when the heat flux of the nearby tube becomes larger and the heat flux of the upper tube is less than 40kW/m"2. The effect of the tube pitch on heat transfer is negligible as the value of DP/ is increased more than 4.

  10. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  11. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    International Nuclear Information System (INIS)

    Nigmatulin, R.I.

    1995-01-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered

  12. An investigation of critical heat fluxes in vertical tubes internally cooled by Freon-12. Part I - Critical heat flux experiments with axially uniform and non-uniform heating and comparisons of data with selected correlations

    International Nuclear Information System (INIS)

    Green, W.J.; Stevens, J.R.

    1981-08-01

    Experiments have been performed using vertical heated tubes, cooled internally by Freon-12, to determine critical heat fluxes (CHFs) for both a uniformly heated section and an exit region with a separately controlled power supply. Heated lengths of the main separately were 2870 mm (8.48 and 16.76 mm tube bores) and 3700 mm (for 21.34 mm tube bore); heated length of the exit section was 230 mm. Coolant pressures, exit qualities and mass fluxes were in the range 0.9 to 1.3 MPa, 0.19 to 0.86, and 380 to 2800 kg m -2 s -1 , respectively. The data have been compared with published empirical correlations specifically formulated to predict CHFs in Freon-cooled, vertical tubes; relevant published CHF data have also been compared with these correlations. These comparisons show that, even over the ranges of conditions for which the correlations were developed, predicted values are only accurate to within +-20 per cent. Moreover, as mass fluxes increase above 3500 kg m -2 s -1 , the modified Groeneveld correlation becomes increasingly inadequate, and the Bertoletti and modified Bertoletti correlations under-predict CHF values by increasing amounts. At mass fluxes below 750 kg m -2 s -1 the Bertoletti correlations exhibit increasing inaccuracy with a decrease in mass flux. For non-uniform heating, the correlations are at variance with the experimental data

  13. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Bringoltz, Barak; Teper, Michael

    2011-08-01

    We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest ∝30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N→ ∞ continuum limit. We find that the energies, E n (l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l 2 diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l 3 ) corrections to σl, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l 7 ), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l 7 ) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)

  14. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [The Israeli Institute for Advanced Research (IIAR), Rehovot (Israel); Teper, Michael [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics

    2011-08-15

    We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest {proportional_to}30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N{yields} {infinity} continuum limit. We find that the energies, E{sub n}(l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l{sup 2} diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l{sup 3}) corrections to {sigma}l, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l{sup 7}), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l{sup 7}) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)

  15. Use of proton pump inhibitors is associated with increased mortality due to nosocomial pneumonia in bedridden patients receiving tube feeding.

    Science.gov (United States)

    Hamai, Kosuke; Iwamoto, Hiroshi; Ohshimo, Shinichiro; Wakabayashi, Yu; Ihara, Daisuke; Fujitaka, Kazunori; Hamada, Hironobu; Ono, Koichi; Hattori, Noboru

    2018-05-22

    To investigate the association between the use of proton pump inhibitors (PPI) and nosocomial pneumonia and gastrointestinal bleeding in bedridden patients receiving tube feeding. A total of 116 bedridden hospitalized patients receiving tube feeding, of which 80 were supported by percutaneous endoscopic gastrostomy and 36 by nasogastric tube, were included in the present study. The patients were divided into two groups: 62 patients treated with PPI (PPI group) and 54 patients without PPI (non-PPI group). Mortality due to nosocomial pneumonia was evaluated using the Kaplan-Meier approach and the log-rank test. A total of 36 patients (31%) died of nosocomial pneumonia during the observation period; the mortality rate due to nosocomial pneumonia was significantly higher in the PPI group than in the non-PPI group (P = 0.0395). Cox proportional hazard analysis showed that the use of PPI and lower levels of serum albumin were independent predictors of 2-year mortality due to nosocomial pneumonia. Gastrointestinal bleeding was observed in four patients in the non-PPI group (7.7%) and in one patient in the PPI group (1.6%); there was no significant difference between the two groups. The use of PPI in bedridden tube-fed patients was independently associated with mortality due to nosocomial pneumonia, and the PPI group had a non-significant lower incidence of gastrointestinal bleeding than the non-PPI group. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 The Authors Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  16. Iron Losses in Electrical Machines Due to Non Sinusoidal Alternating Fluxes

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Walker, J.A.; Dorrell, D. G.

    2007-01-01

    This paper shows how the flux waveform in the core of an electrical machine can be vary non- sinusoidally which complicates the calculation of the iron loss in a machine. A set of tests are conducted on a steel sample using an Epstein square where harmonics are injected into the flux waveform which...... of a machine....

  17. Asymmetry in the convective energy fluxes due to electrostatic and magnetic fluctuations in magnetized plasmas

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Hirose, A.

    1993-01-01

    The structure of the energy balance equation for a magnetically confined plasma in the presence of electromagnetic fluctuations is investigated by using the drift kinetic equation. The convective energy fluxes, one caused by E x B electrostatic turbulence and the other by shear-Alfven type magnetic turbulence, are asymmetric: For low frequency electrostatic turbulence, the convective energy flux has a unique numerical factor 3/2, while the convective energy flux induced by magnetic turbulence has a numerical factor 5/2. As expected, in the drift approximation, turbulent heating by the longitudinal electric field is the only anomalous source term in the total energy balance equation. (Author)

  18. Intraoperative Atelectasis Due to Endotracheal Tube Cuff Herniation: A Case Report

    Directory of Open Access Journals (Sweden)

    Hossein Madineh

    2012-09-01

    Full Text Available Endotracheal tube (ETT cuff herniation is a rare, and often difficult to diagnose, cause of bronchial obstruction. We present a case of outside cuff herniation of an endotracheal tube that caused pulmonary right lung atelectasis. A 29-year-old man ,a case of car accident with multiple fractures, was admitted to the emergency ward and transferred to the operating room(OR for open reduction and internal fixation (ORIF of all fractures .The procedures were done under general anesthesia (G/A. The past medical history of the patient did not indicate any problem. Anesthesia was induced with thiopental, atracurium and then maintained by propofol and remifentanyl infusions and 100% O2 via orally inserted ETT. The patient was positioned in left lateral decubitus position for operation. Two hours after induction of anesthesia, the oxygen saturation level dropped to 85 % and the breath sounds in the right side of the chest were weakened. The chest x-ray images showed right lung atelectasis especially in the upper lobe. The problem was disappeared after removal of the ETT. In this case, we observed that an ETT cuff herniation can be a cause of airway obstruction. If there is a decreased unilateral breath sounds, we recommend replacement or repositioning of ETT.

  19. Outbreak of infection in a burns unit due to Pseudomonas aeruginosa originating from contaminated tubing used for irrigation of patients

    DEFF Research Database (Denmark)

    Kolmos, H J; Thuesen, B; Nielsen, S V

    1993-01-01

    water used for irrigation of the burns, as part of the first-aid treatment which the patients received when entering the hospital. Contamination was restricted to showers and tubing that were permanently connected to the taps, and the outbreak stopped after they had been disinfected. Tubing and showers...... used for irrigation of burns should be dismantled and heat-disinfected after each patient and not reconnected to the taps until immediately before the next treatment. Taps used for irrigation of burns should be monitored regularly for the presence of P. aeruginosa and other potentially pathogenic......Five patients with extensive deep burns developed septicaemia due to Pseudomonas aeruginosa serogroup O-7.8 and phage type 21 or 21/188 shortly after they had been admitted to hospital. Four other burned patients became colonized with the same strain. The source of infection was contaminated tap...

  20. Heat transfer to sub- and supercritical water flowing upward in a vertical tube at low mass fluxes: numerical analysis and experimental validation

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; Koster, P.; van der Ham, Aloysius G.J.; van der Hoef, Martin Anton; Kersten, Sascha R.A.

    2016-01-01

    Heat transfer to supercritical water (SCW) flowing upward in a vertical heated tube at low mass fluxes (G ≤ 20 kg/m2 s) has been numerically investigated in COMSOL Multiphysics and validated with experimental data. The turbulence models, essential to describing local turbulence, in COMSOL have been

  1. Effects of Oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Nitheanandan, T.; Bullock, C.D.; Slater, L.F.; McRae, G.A.

    2003-05-01

    Glass-bead peening the outside surfaces of zirconium alloy tubes has been shown to increase the Critical Heat Flux (CHF) in pool boiling of water. The CHF is found to correlate with the fractal roughness of the metal tube surfaces. In this study on the effect of oxidation on glass-peened surfaces, test measurements for CHF, surface wettability and roughness have been evaluated using various glass-peened and oxidized zirconium alloy tubes. The results show that oxidation changes the solid-liquid contact angle (i.e., decreases wettability of the metal-oxide surface), but does not change the fractal surface roughness, appreciably. Thus, oxidation of the glass-peened surfaces of zirconium alloy tubes is not expected to degrade the CHF enhancement obtained by glass-bead peening. (author)

  2. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  3. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    Science.gov (United States)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  4. An Energetic Electron Flux Dropout Due to Magnetopause Shadowing on 1 June 2013

    Science.gov (United States)

    Kang, Suk-Bin; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia

    2018-02-01

    We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May to 1 June 2013 using Van Allen Probe (Radiation Belt Storm Probes (RBSP)) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During the storm main phase, L-shells at RBSP locations are greater than 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing, and drift loss all results in butterfly electron pitch angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs during the storm main phase since the maximum observable equatorial pitch angle from RBSP is not larger than 40° during this period. To investigate the causes of the dropout, the CIMI model is used as a global 4-D kinetic inner magnetosphere model. The CIMI model reproduces the dropout with very similar timing and flux levels and PADs along the RBSP trajectory for 593 keV. Furthermore, the CIMI simulation shows butterfly PADs for 593 keV during the storm main phase. Based on comparison of observations and simulations, we suggest that the dropout during this event mainly results from magnetopause shadowing.

  5. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    Science.gov (United States)

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  6. Potential steam generator tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.

    2009-01-01

    This study develops a methodology to assess the probability for the degraded PWR steam generator to rupture first in the reactor coolant pressure boundary, under severe accident conditions with counter-current natural circulating high temperature gas in the hot leg and SG tubes. The considered SG tube flaws are caused by foreign object wear, which in recent years has emerged as a major inservice degradation mechanism for the new generation tubing materials. The first step develops the statistical distributions for the flaw frequency, size, and the flaw location with respect to the tube length and the tube's tubesheet position, based on data of hundreds of flaws reported in numerous SG inservice inspection reports. The next step performs thermal-hydraulic analysis using the MELCOR code and recent CFD findings to predict the thermal challenge to the degraded tubes and the tube-to-tube difference in thermal response at the SG entrance. The final step applies the creep rupture models in the Monte Carlo random walk to test the potential for the degraded SG to rupture before the surge line. The mean and range of the SG tube rupture probability can be applied to estimate large early release frequency in probabilistic safety assessment.

  7. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    International Nuclear Information System (INIS)

    Drake, J. F.; Swisdak, M.; Opher, M.; Richardson, J. D.

    2017-01-01

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant flux survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.

  8. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J. F. [Department of Physics, the Institute for Physical Science and Technology and the Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Opher, M. [Astronomy Department, Boston University, MA 02215 (United States); Richardson, J. D., E-mail: drake@umd.edu [Kavli Center for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2017-03-10

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant flux survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.

  9. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    Science.gov (United States)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  10. Large flux change due to the intervening cold absorbers in NGC 3516

    International Nuclear Information System (INIS)

    Nogami, K.; Negoro, H.; Hong, S.; Mihara, T.

    2004-01-01

    NGC3516 in the low flux state shows a flat energy spectrum (photon index ∼1) and an intense narrow iron line. Such spectra are also observed in other Seyfert galaxies, and a broad bump structure around 6 keV above the 'flat' power-law spectrum has been interpreted as the gravitationally red-shifted iron line, disk reflection, or cold and/or warm absorbers. However, six years if BeppoSAX observations, including our latest three ones in 2001, clearly demonstrate that energy spectra above 20 keV always exhibit steep power-laws with photon indices ∼2, and the flux changes only by a factor of 2, while the soft X-ray flux by a factor of ∼10. From this fact, using BeppoSAX and ASCA data, we have concluded that the flat spectrum results from reprocessed, and partially covered power-laws with Γ∼1.8 by warm matter nearby the central source and a cold absorber moved in the line of sight, respectively, and that the broad iron line and disk reflection components are less significant than one ever thought. Thus, the long-term spectral variations can be considered by intervening absorbers rather than changes in the accretion rate

  11. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  12. Adaptation of a Freon-12 critical heat flux correlation to correlate water data from uniformly heated vertical tubes. Part I: Based on critical heat flux data for water at pressures of 3 to 14 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1981-12-01

    Comparisons have been made between experimental critical heat flux (CHF) data for upflow of water in uniformly heated vertical tubes and values calculated from an empirical CHF correlation developed from Freon-12 data. When this correlation is re-evaluated to account for vapour Prandtl number effects, very good agreement is obtained between experimental data and calculated values over a wide range of coolant conditions. Comparison of values calculated from the revised correlation with 2063 sets of CHF data obtained from experiments with water in vertical, uniformly heated tubes shows a mean ratio of the calculated to experimental CHF of 0.82 and an r.m.s. error of 5.8 per cent for the following coolant conditions: (1) local pressure of 3.4 to 12 MPa; (2) mass flux greater than approx. 300 kg s -1 m -2 , and (3) thermal equilibrium value of exit quality greater than 0.1

  13. Measurement of mass flux in high temperature high pressure steam-water two-phase flow using a combination of Pitot tubes and a gamma densitometer

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Bzovey, D.

    1990-01-01

    The design and calibration of a two-phase mass-flux measurement device making use of a Pitot-tube rake and a gamma densitometer are described. Five Pitot tubes and three chordal void-fraction measurements are used. Similar devices have been reported previously. The present device is designed for easy operation and simple data interpretation for both axisymmetric and non-axisymmetric flows under high pressure transient two-phase flow conditions. The device was calibrated using a vertical two-phase flow loop as well as a model-scale pump loop in horizontal orientation. Good agreement between the measured two-phase mass fluxes and the single-phase values was obtained in both cases. (orig.)

  14. Inverted V's and/or discrete arcs: a three-dimensional phenomenon at boundaries between magnetic flux tubes

    International Nuclear Information System (INIS)

    Atkinson, G.

    1982-01-01

    If discrete arcs and inverted V's are associated with current sheets and the U shaped electric potential structure, then existing two-dimensional models are probably inadequate. The rapid east-west electric-field associated flow in the arms of the U shaped potential structure requires that there must be a substantial inflow to the outflow from each arm somewhere along the system since arcs and inverted V's have a limited east-west extent. Thus strong north-south polarization currents occur as the plasma enters and leaves the arms of the U. It is hypothesized that these currents, determine the north-south thickness. Three representative three-dimensional models are considered in which the current sheets are either tangential or rotational discontinuities modified by the U shaped potential structure. Thicknesses of the order of a few tens of kilometers are obtained. The occurence and type of discontinuity expected at various locations in the magnetosphere are considered. Discontinuities and hence inverted V's and/or arcs are expected at the interface between open and closed field lines, which explains quiet time polar cap sun-aligned arcs, and at interfaces between plasmas which have merged or been injected on the dayside or reconnected on the nightside in different impulsive events. The last two account for arcs occurring near the throat at active times and for parallel arcs within the oval. The occurrence of long parallel arcs within the oval is encouraged by the convective flow pattern and by the differences in precipitation from flux tubes with differential histories

  15. Increase in VVER type reactor critical heat fluxes due to placing the mixing grids

    International Nuclear Information System (INIS)

    Bezrukov, Y.; Lisenkov, E.; Vasilchenko, I.

    2011-01-01

    The report deals with the results of studies of critical heat fluxes (CHF) on the models of VVER type reactor fuel assembly models equipped with the 'Vihr' intensifiers-grids. The models are the seven-rod bundles with the uniform and non-uniform axial power that correspond to two periods of FA operation i.e. beginning of cycle and end of cycle. The experiments performed showed that the mixing grids of this type are capable of increasing the FA burnout power. The power ascension rate depends on both coolant pressure and steam quality value in the CHF point. Placing the mixing grids in the bundle upper spans results in shifting the point of DNB occurrence downward along the FA height. The experimental data obtained will be used to develop the correlations for determining the CHF in the FA equipped with the mixing grids. (authors)

  16. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  17. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  18. W nano-fuzzes: A metastable state formed due to large-flux He"+ irradiation at an elevated temperature

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping

    2016-01-01

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He"+ irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He"+ bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He"+ bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He"+ bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He"+ irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He"+ irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He"+ irradiation at an elevated temperature.

  19. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    International Nuclear Information System (INIS)

    Gianluigi Ciovati; Alex Gurevich

    2008-01-01

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth's magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not only an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher ''medium field Qslope''), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field

  20. Uncertainties in surface mass and energy flux estimates due to different eddy covariance sensors and technical set-up

    Science.gov (United States)

    Arriga, Nicola; Fratini, Gerardo; Forgione, Antonio; Tomassucci, Michele; Papale, Dario

    2010-05-01

    Eddy covariance is a well established and widely used methodology for the measurement of turbulent fluxes of mass and energy in the atmospheric boundary layer, in particular to estimate CO2/H2O and heat exchange above ecologically relevant surfaces (Aubinet 2000, Baldocchi 2003). Despite its long term application and theoretical studies, many issues are still open about the effect of different experimental set-up on final flux estimates. Open issues are the evaluation of the performances of different kind of sensors (e.g. open path vs closed path infra-red gas analysers, vertical vs horizontal mounting ultrasonic anemometers), the quantification of the impact of corresponding physical corrections to be applied to get robust flux estimates taking in account all processes concurring to the measurement (e.g. the so-called WPL term, signal attenuation due to air sampling system for closed path analyser, relative position of analyser and anemometer) and the differences between several data transmission protocols used (analogue, digital RS-232, SDM). A field experiment was designed to study these issues using several instruments among those most used within the Fluxnet community and to compare their performances under conditions supposed to be critical: rainy and cold weather conditions for open-path analysers (Burba 2008), water transport and absorption at high air relative humidity conditions for closed-path systems (Ibrom, 2007), frequency sampling limits and recorded data robustness due to different transmission protocols (RS232, SDM, USB, Ethernet) and finally the effect of the displacement between anemometer and analyser using at least two identical analysers placed at different horizontal and vertical distances from the anemometer. Aim of this experiment is to quantify the effect of several technical solutions on the final estimates of fluxes measured at a point in the space and if they represent a significant source of uncertainty for mass and energy cycle

  1. Predicted wear on the tube outside surface due to foreign object in the secondary side of steam generator

    International Nuclear Information System (INIS)

    Kim, Hyung Nam; Cho, Nam Cheoul

    2012-01-01

    It is necessary to evaluate the effects of foreign objects on steam generator tubes and to use this information to take appropriate safety precautions to prevent nuclear accidents. Foreign objects may include loose parts from the feed water system and items lost by workers during o/h, and may flow into the secondary side of steam generators during operation. A foreign object could damage steam generator tube walls if there is relative motion between the tube and the foreign object. This is especially true for foreign objects that land on the tube sheet because the velocity of cross flow, which creates a contact force between the tube and foreign object, is relatively high there. During steam generator overhauls, foreign objects are detected by non destructive methods such as the visual test and/or the eddy current test. Confirmed foreign objects should be removed for nuclear safety. The Foreign Object Search and Retrieval System (FOSAR) can be used to remove foreign objects from the steam generators with a square tube array. However, the FOSAR cannot be used (or can be used in only a very restricted area, such as the outside of the tube bundle) in the steam generators with a triangular tube array. In order to continue nuclear power plant operations without removing foreign objects, the integrity of the steam generator tube must be verified. This paper introduces a practical method developed to evaluate the effects of foreign objects detected on tube sheets in the secondary sides of steam generators

  2. Laryngoscope and a new tracheal tube assist lightwand intubation in difficult airways due to unstable cervical spine.

    Directory of Open Access Journals (Sweden)

    Cai-neng Wu

    Full Text Available The WEI Jet Endotracheal Tube (WEI JET is a new tracheal tube that facilitates both oxygenation and ventilation during the process of intubation and assists tracheal intubation in patients with difficult airway. We evaluated the effectiveness and usefulness of the WEI JET in combination with lightwand under direct laryngoscopy in difficult tracheal intubation due to unstable cervical spine.Ninety patients with unstable cervical spine disorders (ASA I-III with general anaesthesia were included and randomly assigned to three groups, based on the device used for intubation: lightwand only, lightwand under direct laryngoscopy, lightwand with WEI JET under direct laryngoscopy.No statistically significant differences were detected among three groups with respect to demographic characteristics and C/L grade. There were statistically significant differences between three groups for overall intubation success rate (p = 0.015 and first attempt success rate (p = 0.000. The intubation time was significantly longer in the WEI group (110.8±18.3 s than in the LW group (63.3±27.5 s, p = 0.000 and DL group (66.7±29.4 s, p = 0.000, but the lowest SpO2 in WEI group was significantly higher than other two groups (p<0.01. The WEI JET significantly reduced successful tracheal intubation attempts compared to the LW group (p = 0.043. The severity of sore throat was similar in three groups (p = 0.185.The combined use of WEI JET under direct laryngoscopy helps to assist tracheal intubation and improves oxygenation during intubation in patients with difficult airway secondary to unstable spine disorders.Chinese Clinical Trial Registry ChiCTR-TRC-14005141.

  3. An utilization of liquid sublayer dryout mechanism in predicting critical heat flux under low pressure and low velocity conditions in round tubes

    International Nuclear Information System (INIS)

    Lee, Kwang-Won; Baik, Se-Jin; Ro, Tae-Sun

    2000-01-01

    From a theoretical assessment of extensive critical heat flux (CHF) data under low pressure and low velocity (LPLV) conditions, it was found out that lots of CHF data would not be well predicted by a normal annular film dryout (AFD) mechanism, although their flow patterns were identified as annular-mist flow. To predict these CHF data, a liquid sublayer dryout (LSD) mechanism has been newly utilized in developing the mechanistic CHF model based on each identified CHF mechanism. This mechanism postulates that the CHF occurrence is caused by dryout of the thin liquid sublayer resulting from the annular film separation or breaking down due to nucleate boiling in annular film or hydrodynamic fluctuation. In principle, this mechanism well supports the experimental evidence of residual film flow rate at the CHF location, which can not be explained by the AFD mechanism. For a comparative assessment of each mechanism, the CHF model based on the LSD mechanism is developed together with that based on the AFD mechanism. The validation of these models is performed on the 1406 CHF data points ranging over P=0.1-2 MPa, G=4-499 kg m -2 s -1 , L/D=4-402. This model validation shows that 1055 and 231 CHF data are predicted within ±30 error bound by the LSD mechanism and the AFD mechanism, respectively. However, some CHF data whose critical qualities are <0.4 or whose tube length-to-diameter ratios are <70 are considerably overestimated by the CHF model based on the LSD mechanism. These overestimations seem to be caused by an inadequate CHF mechanism classification and an insufficient consideration of the flow instability effect on CHF. Further studies for a new classification criterion screening the CHF data affected by flow instabilities as well as a new bubble detachment model for LPLV conditions, are needed to improve the model accuracy.

  4. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  5. Experimental investigation of coolant and poisoned moderator mixing due to a simulated pressure tube/calandria tube fishmouth rupturing an overpoisoned guaranteed shutdown state

    International Nuclear Information System (INIS)

    Mackinnon, J.C.; Fortman, R.A.; Hadaller, G.I.

    1997-01-01

    During a guaranteed shutdown state (GSS) in a CANDU reactor, there must be sufficient negative reactivity to ensure subcriticality in the event of a process failure. In one of the acceptable states, the reactor is kept subcritical by a high concentration of a neutron-absorbing chemical (the poison gadolinium nitrate) dissolved in the moderator (i.e., the moderator is guaranteed overpoisoned). A postulated accident scenario which is considered as a part of reactor safety analysis is the rupture of a fuel channel (i.e., a pressure tube/calandria tube break) when the reactor is in a GSS. If one of the channels in the core breaks (requiring a simultaneous failure of both the pressure tube and the surrounding calandria tube), coolant from the primary heat transport system will be discharged into the moderator, causing an associated displacement of fluid through relief ducts at the top of the calandria vessel. The incoming (unpoisoned) coolant may mix quickly with the moderator, or may mix slowly while displacing poisoned moderator through the relief ducts. The effectiveness of mixing generally depends on the break location, the coolant discharge rate and the moderator circulation. If an in-core loss of coolant accident occurred while the reactor is in this overpoisoned state, it must be guaranteed that even with the dilution of the poison by the incoming coolant the reactor will remain subcritical on both a local and global basis. This paper presents an overview of an experimental program in progress at the Moderator Test Facility at Stern Laboratories to investigate coolant/poison mixing for a simulated in-core fishmouth pressure tube/calandria tube rupture. The nominal system at the same temperature as the heavily poisoned moderator, i.e., a depressurised 'cold' state. The results presented are those obtained during the commissioning of the modified Test Facility. The contents of the paper are as follows. First, the objectives of the experimental program are

  6. Combination of helical ferritic-steel inserts and flux-tube-expansion divertor for the heat control in tokamak DEMO reactor

    International Nuclear Information System (INIS)

    Takizuka, T.; Tokunaga, S.; Hoshino, K.; Shimizu, K.; Asakura, N.

    2015-01-01

    Edge localized modes (ELMs) in the H-mode operation of tokamak reactors may be suppressed/mitigated by the resonant magnetic perturbation (RMP), but RMP coils are considered incompatible with DEMO reactors under the strong neutron flux. We propose an innovative concept of the RMP without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed field is naturally formed in the axisymmetric toroidal field through the helical ferritic steel inserts (FSIs). When ELMs are avoided, large stationary heat load on divertor plates can be reduced by adopting a flux-tube-expansion (FTE) divertor like an X divertor. Separatrix shape and divertor-plate inclination are similar to those of a simple long-leg divertor configuration. Combination of the helical FSIs and the FTE divertor is a suitable method for the heat control to avoid transient ELM heat pulse and to reduce stationary divertor heat load in a tokamak DEMO reactor

  7. Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, A. G.; Rath, F.; Buchholz, R.; Grosshauser, S. R.; Strintzi, D.; Weikl, A. [Physics Department, University of Bayreuth, Universitätsstrasse 30, Bayreuth (Germany); Camenen, Y. [Aix Marseille Univ, CNRS, PIIM, UMR 7345, Marseille (France); Candy, J. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Casson, F. J. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); Hornsby, W. A. [Max Planck Institut für Plasmaphysik, Boltzmannstrasse 2 85748 Garching (Germany)

    2016-08-15

    It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.

  8. An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr

    Science.gov (United States)

    Motowidlo, L. R.; Lee, P. J.; Tarantini, C.; Balachandran, S.; Ghosh, A. K.; Larbalestier, D. C.

    2018-01-01

    We report on the development of multifilamentary Nb3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO2 powder is mixed with Cu5Sn4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filament tubes. Initial results show an average grain size of ˜38 nm in the A15 layer, compared to the 90-130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. There is a shift in the peak of the pinning force curve from H/H irr of ˜0.2 to ˜0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.

  9. Heat transfer improvement due to the imposition of non-uniform wall heating for in-tube laminar forced convection

    International Nuclear Information System (INIS)

    Hajmohammadi, M.R.; Poozesh, S.; Rahmani, M.; Campo, A.

    2013-01-01

    This paper explores the bearing that a non-uniform distribution of heat flux used as a wall boundary condition exerts on the heat transfer improvement in a round pipe. Because the overall heat load is considered fixed, the heat transfer improvement is viewed through a reduction in the maximum temperature (‘hot spot’) by imposing optimal distribution of heat flux. Two cases are studied in detail 1) fully developed and 2) developing flow. Peak temperatures in the heated pipe wall are calculated via an analytical approach for the fully developed case, while a numerical simulation based on CFD is employed for the developing case. By relaxing the heat flux distribution on the pipe wall, the numerical results imply that the optimum distribution of heat flux, which minimizes the peak temperatures corresponds with the ‘descending’ distribution. Given that the foregoing approach is quite different from the ‘ascending’ heat flux distribution recommended in the literature by means of the entropy generation minimization (EGM) method, it is inferred that the optimization of heat transfer and fluid flow, in comparison with the thermodynamic optimization, may bring forth quite different guidelines for the designs of thermal systems under the same constraints and circumstances. -- Highlights: • Considered the bearing of non-uniform distribution of heat flux on the hot spots. • Determined the optimal distribution of heat flux that minimizes the hot spots. • Results are compared with those obtained by EGM method

  10. AN EXPERIMENTAL STUDY FOR HEAT TRANSFER ENHANCEMENT BY LAMINAR FORCED CONVECTION FROM HORIZONTAL AND INCLINED TUBE HEATED WITH CONSTANT HEAT FLUX, USING TWO TYPES OF POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Thamir K. Jassem

    2015-02-01

    Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution  will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at  .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase.  It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.  

  11. A Comparison between a Minijet Model and a Glasma Flux Tube Model for Central Au-Au Collisions at √(ovr sNN)=200 GeV

    International Nuclear Information System (INIS)

    Longacre, R.S.

    2011-01-01

    In this paper we compare two models with central Au-Au collisions at √(ovr s NN )=200 GeV. The first model is a minijet model which assumes that around ∼50 minijets are produced in back-to-back pairs and have an altered fragmentation functions. It is also assumed that the fragments are transparent and escape the collision zone and are detected. The second model is a glasma flux tube model which leads to flux tubes on the surface of a radial expanding fireball driven by interacting flux tubes near the center of the fireball through plasma instabilities. This internal fireball becomes an opaque hydro fluid which pushes the surface flux tubes outward. Around ∼12 surface flux tubes remain and fragment with ∼1/2 the produced particles escaping the collision zone and are detected. Both models can reproduce two particle angular correlations in the different p t1 p t2 bins. We also compare the two models for three additional effects: meson baryon ratios; the long range nearside correlation called the ridge; and the so-called mach cone effect when applied to three particle angular correlations.

  12. Outbreak of infection in a burns unit due to Pseudomonas aeruginosa originating from contaminated tubing used for irrigation of patients

    DEFF Research Database (Denmark)

    Kolmos, H J; Thuesen, B; Nielsen, S V

    1993-01-01

    water used for irrigation of the burns, as part of the first-aid treatment which the patients received when entering the hospital. Contamination was restricted to showers and tubing that were permanently connected to the taps, and the outbreak stopped after they had been disinfected. Tubing and showers...... used for irrigation of burns should be dismantled and heat-disinfected after each patient and not reconnected to the taps until immediately before the next treatment. Taps used for irrigation of burns should be monitored regularly for the presence of P. aeruginosa and other potentially pathogenic...

  13. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    International Nuclear Information System (INIS)

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5 0 and 10 0 to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm 2 and the integrated energy at destruction was 2.0 J/cm 2 . 82 refs., 66 figs., 10 tabs

  14. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    Science.gov (United States)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  15. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    Science.gov (United States)

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  16. An analysis of signal characteristics due to coil-gap variation of ECT bobbin probe for steam generation tube

    International Nuclear Information System (INIS)

    Nam, Min Woo; Cho, Chan Hee; Jee, Dong Hyun; Jung, Jee Hong; Lee, Hee Jong

    2006-01-01

    The bobbin probe technique is basically one of the important ECT methods for the steam generator tube integrity assesment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, geometry and operation frequencies, and has an important effect on examination results. In this study, the relationship between electric characteristic changes and differential coil gap variation has been investigated to optimize the ECT signal characteristics of the bobbin probe. With the results from this study, we have elucidated that the optimum coil gap is 1.2 - 1.6 mm that give the best result for O.D. volumetric defects in ASME calibration standards.

  17. Acute abdomen due to ovarian congestion: a fallopian tube accompanied by a paratubal cyst, coiling tightly round the ovary.

    Science.gov (United States)

    Kaido, Yoshitaka; Kikuchi, Akihiko; Kanasugi, Tomonobu; Fukushima, Akimune; Sugiyama, Toru

    2013-01-01

    We experienced an unreported rare case with an adnexal mass causing severe acute abdomen during pregnancy. A 30-year-old Japanese pregnant woman was transported to our hospital for her right lower abdominal pain at 30 weeks of gestation. Magnetic resonance imaging and ultrasound demonstrated a cyst measuring 3-4 cm in diameter adjacent to the right ovary, and a parovarian cyst was considered to be the most probable diagnosis. We strongly suspected torsion of the ovarian pedicle or fallopian tube in conjunction with her clinical symptoms. Laparotomy revealed that the elongated right fallopian tube accompanied by a paratubal cyst was coiling tightly 2.5 times round the right ovary, causing apparent congestion and enlargement of the right ovary. Soon after we released the congested right ovary from the coiling of the fallopian tube, the congestion subsided. The postoperative course was favorable, and pregnancy and delivery were uneventful. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  18. The effects of oral sucrose on pain due to nasogastric tube insertion in premature infants: A crossover clinical trial

    Directory of Open Access Journals (Sweden)

    Jebreili M

    2014-11-01

    Full Text Available Background and Objective: Pain in neonates may have adverse impacts. Therefore, relieving pain through harmless, simple, and applicable methods, in order to prevent its dangerous consequences, is of great importance. The aim of the present study is to determine the impact of oral sucrose on relieving nasogastric tube insertion pain in premature neonates. Materials and Method: The present study is a crossover clinical trial on 38 preterm infants (gestational age between 28-34 weeks hospitalized in Bistonoh-e-Bahman Hospital, Tabriz, Iran, in 2013. The subjects were selected by convenience sampling and divided into two groups using randomized block design. In the first group, nasogastric tube insertion was carried out in the routine way for the first time, and for the second time, by administration of oral sucrose. In the second group, the procedure was performed in the reverse order of that in the first group. In both groups the emerging pain was measured by the Premature Infant Pain Profile (PIPP tool 2 minutes before, during, and 5 minutes after the procedure. Data were analyzed using, chi-square t-test, Students' independent test, paired t-test, and repeated measures ANOVA in SPSS version 18 to examine the trend of change in pain in time. P values of less than 0.05 were considered statistically significant. Results: The results showed that oral sucrose reduces the pain response of infants. The mean pain score during the insertion of nasogastric tube and administration of oral sucrose was 5.95 ± 2.35 and during routine procedures was 9.93 ± 2.89 (P < 0.001. The mean pain score 5 minutes after insertion of nasogastric tube with administration of oral sucrose was 3.66 ± 0.57 and routine procedure was 6.38 ± 0.83 (P = 0.017. Conclusion: It was revealed that oral sucrose can relieve pain caused by nasogastric tube insertion. Therefore, its implementation as a harmless and simple method can reduce pain in preterm infants.

  19. Evaluation of subcooled critical heat flux correlations using the PU-BTPFL CHF database for vertical upflow of water in a uniformly heated round tube

    International Nuclear Information System (INIS)

    Hall, D.D.; Mudawar, I.

    1997-01-01

    A simple methodology for assessing the predictive ability of critical heat flux (CHF) correlations applicable to subcooled flow boiling in a uniformly heated vertical tube is developed. Popular correlations published in handbooks and review articles as well as the most recent correlations are analyzed with the PU-BTPFL CHF database, which contains 29,718 CHF data points. This database is the largest collection of CHF data (vertical upflow of water in a uniformly heated round tube) ever cited in the world literature. The parametric ranges of the CHF database are diameters from 0.3 to 45 mm, length-to-diameter ratios from 2 to 2484, mass velocities from 0.01 x 10 3 to 138 x 10 3 kg/m 2 ·s, pressures from 1 to 223 bars, inlet subcoolings from 0 to 347 C, inlet qualities from -2.63 to 0.00, outlet subcoolings from 0 to 305 C, outlet qualities from -2.13 to 1.00, and CHFs from 0.05 x 10 6 to 276 x 10 6 W/m 2 . The database contains 4,357 data points having a subcooled outlet condition at CHF. A correlation published elsewhere is the most accurate in both low- and high-mass velocity regions, having been developed with a larger database than most correlations. In general, CHF correlations developed from data covering a limited range of flow conditions cannot be extended to other flow conditions without much uncertainty

  20. Endovascular Treatment of Persistent Epistaxis due to Pseudoaneurysm Formation of the Ophthalmic Artery Secondary to Nasogastric Tube

    Energy Technology Data Exchange (ETDEWEB)

    Selcuk, Hakan, E-mail: hakanselcuk73@yahoo.com; Soylu, Nur; Albayram, Sait; Selcuk, Dogan; Ozer, Harun; Kocer, Naci; Islak, Civan [Cerrahpasa Medical School, Istanbul University, Department of Radiology, Division of Neuroradiology (Turkey)

    2005-04-15

    We present the case of a 60-year-old man with persistent epistaxis for 20 days that had started 2 weeks after removal of a nasogastric tube placed for an abdominal operation. There was no pathologic finding at selective facial and internal maxillary artery injections. An injury to the ethmoidal branches of the ophthalmic arteries or other arterial origins of bleeding was suspected. The internal carotid artery angiography revealed a pseudoaneurysm of an anterior ethmoidal branch of the left ophthalmic artery. The pseudoaneurysm was occluded with NBCA-histoacryl (25%) injection.

  1. Endovascular Treatment of Persistent Epistaxis due to Pseudoaneurysm Formation of the Ophthalmic Artery Secondary to Nasogastric Tube

    International Nuclear Information System (INIS)

    Selcuk, Hakan; Soylu, Nur; Albayram, Sait; Selcuk, Dogan; Ozer, Harun; Kocer, Naci; Islak, Civan

    2005-01-01

    We present the case of a 60-year-old man with persistent epistaxis for 20 days that had started 2 weeks after removal of a nasogastric tube placed for an abdominal operation. There was no pathologic finding at selective facial and internal maxillary artery injections. An injury to the ethmoidal branches of the ophthalmic arteries or other arterial origins of bleeding was suspected. The internal carotid artery angiography revealed a pseudoaneurysm of an anterior ethmoidal branch of the left ophthalmic artery. The pseudoaneurysm was occluded with NBCA-histoacryl (25%) injection

  2. Transient Pressure Surges Due to Pipe Movement in an Oil Well Surpressions transitoires dues au mouvement des colonnes de tubes dans les puits.

    Directory of Open Access Journals (Sweden)

    Lubinski A.

    2006-11-01

    Full Text Available A pressure surge which could cause lost circulation, results from running a stand of drill pipe or a joint of casing into a hole. Similarly, a negative pressure surge, which could cause a blowout, results from pulling pipe from a hole. In past investigations, pressure surges were calculated on the basis of steady state flow. It is shown in this paper that this led to erroneous results. In thls investigation, pressure surges are calculated on the basis of transient wave propagation phenomena. A computer program was developed to that effect. Results are presented in :the first part of the paper, and the mathematics in the second. La descente d'une longueur de tiges ou d'un tube de casing dans le trou provoque une surpression pouvant entraîner des pertes de circulation. De même, la remontée des tiges provoque une surpression négative pouvant entraîner une éruption. Au cours des précédentes recherches, les surpressions étaient calculées pour des débits en régime permanent. Il est montré dans cet étude que les résultats ainsi obtenus ne sont pas exacts. Dans cette recherche, les calculs des surpressions sont basés sur le phénomène de propagation transitoire des ondes. Un programme de calcul sur ordinateur a été développé à cet effet. Les résultats sont présentés dans la première partie de cet article et les calculs font l'objet de la deuxième partie.

  3. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  4. MODTURCCLAS analysis of moderator poison/coolant mixing in the calandria due to a pressure tube/calandria tube guillotine rupture during an overpoisoned guaranteed shutdown state

    International Nuclear Information System (INIS)

    Mackinnon, J.C.; Szymanski, J.K.; Balog, G.

    1996-01-01

    This paper reports the results of a study to investigate moderator poison/coolant mixing due to a guillotine rupture of a fuel channel when the reactor is in an overpoisoned guaranteed shutdown state. The analysis, performed using MODTURC C LAS, allowed for study of the mixing characteristics and the spatial and temporal evolution of the concentration fields. Results for simulated breaks at three channel locations show that the poison in the vessel is quite well mixed throughout the transient, resulting in no extensive regions of low poison concentration. MODTURC C LAS calculations show that at all three break locations investigated, the displacement of poison from the vessel through the relief ducts is less than that calculated by both the simple uniform mixing model and piston mixing model. This result is expected to hold for all break locations in the core. (author)

  5. Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD

    Directory of Open Access Journals (Sweden)

    H. Tanaka

    2017-08-01

    Full Text Available Toroidal distributions of divertor particle flux during neon (Ne and nitrogen (N2 seeded discharges were investigated in the Large Helical Device (LHD. By using 14 toroidally distributed divertor probe arrays, which were positioned at radially inner side where the divertor flux concentrates in the inward-shifted magnetic axis configuration, it is found that Ne puffing leads to toroidally quasi-uniform reduction of divertor particle fluxes; whereas toroidally localized reductions were observed with N2 puffing. The toroidally asymmetric reduction pattern with N2 puffing is strongly related to the magnetic field structure around the N2 puffing port. Assuming that nitrogen particles do not recycle, EMC3-EIRENE simulation shows similar reduction pattern with the experiment around the N2 puffing port.

  6. Heating and reconnection of the emerging magnetic flux-tubes and the role of the interchange instability

    International Nuclear Information System (INIS)

    Uchida, Y.; Sakurai, T.

    1977-01-01

    In this paper it is proposed that the basic behaviors of newly-emerged magnetic regions (NEMR) as seen in EUV and soft X-rays from space are interpreted by the interchange instability of the magnetic field of NEMR in the global situation surrounding it. It is shown that the situation with the NEMR is unstable against the interchange instability, and a continual relaxation to the lower energy state, or a continual invasion of the magnetic flux of the NEMR to the ambient region in the form of fine bundles or thin sheets, will take place in a short time scale of tau 1 approximately L/Vsub(A) following the change in the boundary condition at the photosphere. The second and the final relaxation is shown to be the enhanced Joule dissipation in a time scale of hours to several days occurring in the thin current sheets on the interface of this intermingled structure which is distributed in a large volume. This hypothesis may provide an explanation for the heating of NEMR to an X-ray emitting temperature, which is otherwise rather difficult to explain. The observed fast reconnection without appreciable flares (except for some smaller brightenings) is another aspect which can be explained in the present hypothesis. Namely, since the situation with the NEMR is unstable for the interchange from the beginning, the stressed configuration is relaxed before storing appreciable energy in the form of magnetic stress and therefore without a drastic release of a large amount of stored stress energy in the form of a flare. (Auth.)

  7. A preliminary investigation on the epithermal flux depression effect due to cadmium box in a multiplying medium

    International Nuclear Information System (INIS)

    Ahmad, A.

    1983-01-01

    Cadmium boxes are widely used as filter in Reactor Neutron Activation Analysis (RNAA) for the irradiation of samples in epithermal neutrons. By virtue of being an absorber the cadmium boxes produce epithermal flux depression in the medium surrounding them. A preliminary study of this effect was carried out (author)

  8. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2017-03-01

    Full Text Available X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of “high-foot” experiments on the National Ignition Facility [Miller et al., Nucl. Fusion 44, S228 (2004]. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance of ignition capsules [Li et al., Phys. Plasmas 23, 072705 (2016]. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on Au's M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped ignition capsule and a Si-doped one driven by X-ray sources with P2 M-band flux asymmetry. As the results, (1 mid- or high-Z dopants absorb hard X-rays (M-band flux and re-emit isotropically, which helps to smooth the asymmetric M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2 the smoothing effect of Ge-dopant is more remarkable than Si-dopant because its opacity in Au's M-band is higher than the latter's; and (3 placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as inertial confinement fusion (ICF experiments very near the performance cliffs of asymmetric X-ray drives.

  9. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube; Etude experimentale des coefficients d'echanges thermiques, des flux de chaleur critiques et des pertes de charge avec des melanges eau-vapeur en ecoulement turbulent dans un tube vertical

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P; De La Harpe, A; Rebiere, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1960-12-15

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm{sup 2}, flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x{sub s} > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [French] On a utilise deux tubes en acier inox (avec des diametres de 5 et 10 mm, et des longueurs respectives 400 et 600 mm) chauffes electriquement (50 Hz). Le melange s'ecoule de haut en bas. Les etudes ont porte plus specialement sur des melanges de titres eleves (x > 0,1) a des pressions comprises entre 60 et 90 kg/cm{sup 2} dont l'ecoulement se fait avec film liquide annulaire et gouttelettes en suspension dans le coeur de vapeur. Par l'analyse des lois de transfert de chaleur, on a precise les mecanismes d'echanges et l'on a d'autre part determine dans quelles conditions le flux de chaleur critique peut etre depasse sans danger de 'burnout' proprement dit. On peut ainsi obtenir des

  10. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  11. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  12. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: gregory.detemmerman@iter.org [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Morgan, T.W.; Eden, G.G. van; Kruif, T. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Wirtz, M. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), EURATOM Association, 52425 Jülich (Germany); Matejicek, J.; Chraska, T. [Institute of Plasma Physics, Association EURATOM-IPP, CR Prague (Czech Republic); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Wright, G.M. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (F{sub HF}) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate F{sub HF} = 19 MJ m{sup −2} s{sup −1/2}, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  13. Uncertainty of long-term CO2 flux estimates due to the choice of the spectral correction method

    Science.gov (United States)

    Ibrom, Andreas; Geißler, Simon; Pilegaard, Kim

    2010-05-01

    The eddy covariance system at the Danish beech forest long-term flux observation site at Sorø has been intensively examined. Here we investigate which systematic and non-systematic effects the choice of the spectral correction method has on long-term net CO2 flux estimates and their components. Ibrom et al. (2007) gave an overview over different ways to correct for low-pass filtering of the atmospheric turbulent signal by a closed path eddy covariance system. They used degraded temperature time series for spectral correction of low-pass filtered signals. In this new study, correction for high-pass filtering was also included, which made it anyway necessary to use model co-spectra. We compared different ways of adapting different kinds of model co-spectra to the wealth of 14 years high frequency raw data. As the trees grew, the distance between the sonic anemometer and the displacement height decreased over time. The study enabled us to compare the two approaches and different variants of them to give recommendations on their use. The analysis showed that model spectra should not be derived from co-spectra between the vertical wind speed (w) and the scalars measured with the closed path system, i.e. CO2 and H20 concentrations, but instead with sonic temperature (T) w cospectra, to avoid low-pass filtering effects on the estimation of the co-spectral peak frequency (fx). This concern was already expressed earlier in the above mentioned study, but here we show the quantitative effects. The wT co-spectra did not show any height effect on fx as it was suggested in generally used parameterizations. A possible reason for this difference is that measurements, like in all forest flux sites, took place in the roughness sub-layer and not in the inertial sub-layer. At the same time the shape of the relationship between fx and the stability parameter ? differed much from that of often used parameterizations (e.g. from Horst, 1997). The shift of fx towards higher frequencies at

  14. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    International Nuclear Information System (INIS)

    Gutkin, L.; Scarth, D.A.

    2014-01-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  15. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gutkin, L.; Scarth, D.A. [Kinectrics Inc., Toronto, ON (Canada)

    2014-07-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  16. Changes in standing stocks and fluxes of carbon due to salinization: tidal freshwater wetland forest retreat to marsh

    Science.gov (United States)

    Krauss, K.; Noe, G. B.; Duberstein, J. A.; Conner, W. H.; Stagg, C. L.; Jones, M.; Bernhardt, C. E.; Cormier, N.

    2017-12-01

    Assessments of organic carbon (C) standing stocks and fluxes as wetland ecosystems transition from tidally influenced freshwater forested wetlands to low-salinity marshes are not typically included in "blue carbon" accounting. However, these ecosystems have the potential to store and convey large quantities of C. Here, we report on data collected from eight riverine sites along salinity and hydro-edaphic gradients in South Carolina and Georgia to provide the first complete estimates of C storage, flux, and burial, including estimation of C export to aquatic environments, in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. Total standing stocks of C ranged from 280 to 891 Mg C/ha along both rivers but with no consistent trend in standing stock shifts along salinity gradients between the two rivers. Soil C standing stocks were most variable among sites. Furthermore, we assessed input (litterfall, woody growth, herbaceous growth, root growth and surface sediment C accretion) in comparison with output (surface litter decomposition, root decomposition and gaseous C) fluxes over periods ranging from 2 to 11 years. C sequestration from mass balance calculations ranged from 103 to 728 g C/m2/year among sites, with generally greater C sequestration on sites with prominent salinity-mediated conversion to oligohaline marsh. Dissolved C export was estimated as the difference between C sequestration and soil C burial using 14C dating of cores, and ranged from 144 to 404 g C/m2/year, representing a large amount of C export to feed aquatic biogeochemical transformations and secondary productivity. Along with C accounting, these sites also differed in how N and P were mineralized in soils, with considerable N mineralization on salinity-stressed (2.4-4.3 parts per thousand) forested sites with newly encroached marsh plants and considerable P mineralization on slightly higher salinity marshes. In all, C storage from tidal freshwater forested wetlands

  17. SREM - WRS system module number 3348 for calculating the removal flux due to point, line or disc sources

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the uncollided flux and first-collision source from a disc source in a slab geometry system, a line source at the centre of a cylindrical system or a point source at the centre of a spherical system. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  18. Heat transfer in smooth tubes, between parallel plates, along a semi-infinite plate, in annular spaces and along tube bundles for exponential distribution of the heat flux in forced, laminar or turbulent flow; Transfert de chaleur dans des tubes lisses, entre des plaques planes paralleles, le long d'une plaque plane, dans des espaces annulaires et le long de faisceaux tubulaires pour une repartition exponentielle du flux de chaleur en ecoulement force, laminaire ou turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Graber, H [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1969-04-01

    By introducing an additional parameter F{sub 0}, the processes known hitherto for calculating heat transfer are extended to the heat flux distributions following an exponential law q{sub w} = exp(mx) which give a heat transfer coefficient, independent of position for laminar and turbulent flow with a linear pressure drop. For laminar flow along a semi-infinite plate, the heat flux distribution in accordance with the law qw = x{sup m} leads to the Nusselt number, regardless of the position. Nu is then determined by the thickness of the thermal boundary layer. For the annular space, the equations for explicit calculation of the temperature field will be given, as well as the Nusselt number in laminar flow and constant heat flux. In turbulent flow, the laws of distribution of eddy diffusivity for momentum in a tube, established by H. Reichardt, adapted for the annular space and the tube bundle, give the velocity field and the coefficient of friction and thus permit solution of the heat transfer equations. The results of the numerical calculation are given in the tables and diagrams for an extended range of the various parameters and compared with the experimental results. A simple process to determine the lower limit of the thermal entry length will be described. (author) [French] Par l'introduction d'un parametre supplementaire F{sub 0}, les procedes connus jusqu'a present pour le calcul du transfert de chaleur sont etendus aux repartitions exponentielles q{sub w} = exp(mx) du flux de chaleur qui indiquent un coefficient de transfert de chaleur independant de l'endroit pour l'ecoulement laminaire ou turbulent avec chute de pression lineaire. Pour l'ecoulement laminaire le long d'une plaque plane, la repartition du flux de chaleur selon la loi q{sub w} = x{sup m} conduit au nombre de Nusselt independant de l'endroit. Nu est alors determine par l'epaisseur de la couche limite thermique. Pour l'espace annulaire, seront indiquees les equations pour le calcul explicite du

  19. Heat transfer in smooth tubes, between parallel plates, along a semi-infinite plate, in annular spaces and along tube bundles for exponential distribution of the heat flux in forced, laminar or turbulent flow; Transfert de chaleur dans des tubes lisses, entre des plaques planes paralleles, le long d'une plaque plane, dans des espaces annulaires et le long de faisceaux tubulaires pour une repartition exponentielle du flux de chaleur en ecoulement force, laminaire ou turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Graber, H. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1969-04-01

    By introducing an additional parameter F{sub 0}, the processes known hitherto for calculating heat transfer are extended to the heat flux distributions following an exponential law q{sub w} = exp(mx) which give a heat transfer coefficient, independent of position for laminar and turbulent flow with a linear pressure drop. For laminar flow along a semi-infinite plate, the heat flux distribution in accordance with the law qw = x{sup m} leads to the Nusselt number, regardless of the position. Nu is then determined by the thickness of the thermal boundary layer. For the annular space, the equations for explicit calculation of the temperature field will be given, as well as the Nusselt number in laminar flow and constant heat flux. In turbulent flow, the laws of distribution of eddy diffusivity for momentum in a tube, established by H. Reichardt, adapted for the annular space and the tube bundle, give the velocity field and the coefficient of friction and thus permit solution of the heat transfer equations. The results of the numerical calculation are given in the tables and diagrams for an extended range of the various parameters and compared with the experimental results. A simple process to determine the lower limit of the thermal entry length will be described. (author) [French] Par l'introduction d'un parametre supplementaire F{sub 0}, les procedes connus jusqu'a present pour le calcul du transfert de chaleur sont etendus aux repartitions exponentielles q{sub w} = exp(mx) du flux de chaleur qui indiquent un coefficient de transfert de chaleur independant de l'endroit pour l'ecoulement laminaire ou turbulent avec chute de pression lineaire. Pour l'ecoulement laminaire le long d'une plaque plane, la repartition du flux de chaleur selon la loi q{sub w} = x{sup m} conduit au nombre de Nusselt independant de l'endroit. Nu est alors determine par l'epaisseur de la couche limite thermique. Pour l'espace annulaire, seront

  20. W nano-fuzzes: A metastable state formed due to large-flux He{sup +} irradiation at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn

    2016-12-15

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He{sup +} irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He{sup +} bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He{sup +} bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He{sup +} bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He{sup +} irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He{sup +} irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He{sup +} irradiation at an elevated temperature.

  1. Measurement of radon flux and tailings parameters for quantifying the source term due to radon exhalation from U tailings pile at Jaduguda

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Mayya, Y.S.; Sapra, B.K.; Gaware, J.J.; Khuswaha, H.S.

    2010-01-01

    Full text: The exposures from radon ( 222 Rn) and its decay products have been received considerable attention in the world community because of their adverse health effect. There are various natural and man-made sources of radon present in our environment. Among the man-made sources, the U tailings (waste product from U mining and milling facility) may be considered an important one because it contains significant amount of 226 Ra activity after the U extraction from the ore bodies. These tailings (slurry form) are being impounded into a repository site nearby the facility called 'Tailings Pile' (TP). Significant amount of radon emission takes place from this area by the process of emanation and exhalation. Hence, a study was taken up to quantify the source term arising due to radon emission from uranium tailings pile at Jaduguda in Jharkhand state. In-situ experiments were conducted at 40 locations of the uranium tailings pile in three seasons namely summer, rainy and winter to measure the radon fluxes. The measurements were carried out by deploying a cylindrical chamber, attached to a continuous radon monitor, on the surface of the tailings pile. The dimension of the chamber was selected by using a recently developed two dimensional theory of soil chamber, so that radon concentration growth will be in exponential fashion and the data generated within 2-3 hours of deployment period will be sufficient for accurately deriving the actual radon flux. After the data collection, the fluxes were derived by fitting an exponential growth function to the plot of radon concentration with time. The fluxes were also predicted by diffusion theory using the measured tailings parameters such as 226 Ra content, radon emanation factor, porosity, temperature and moisture. An excellent matching between the predicted and measured fluxes was observed. The validity of diffusion theory in the matrix of U tailings pile provides an alternate method for back-calculating the tailings

  2. A novel investigation of heat transfer characteristics in rifled tubes

    Science.gov (United States)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  3. An application of liquid sublayer dryout mechanism to the prediction of critical heat flux under low pressure and low velocity conditions in round tubes

    International Nuclear Information System (INIS)

    Lee, Kwang-Won; Yang, Jae-Young; Baik, Se-Jin

    1997-01-01

    Based on several experimental evidences for nucleate boiling in annular film and the existence of residual liquid film flow rate at the critical heat flux (CHF) location, the liquid sublayer dryout (LSD) mechanism under annular film is firstly introduced to evaluate the CHF data at low pressure and low velocity (LPLV) conditions, which would not be predicted by a normal annular film dryout (AFD) model. In this study, the CHF occurrence due to annular film separation or breaking down is phenomenologically modelled by applying the LSD mechanism to this situation. In this LSD mechanism, the liquid sublayer thickness, the incoming liquid velocity to the liquid sublayer, and the axial distance from the onset of annular flow to the CHF location are used as the phenomena-controlling parameters. From the model validation on the 1406 CHF data points ranging over P = 0.1 - 2 MPa, G = 4 - 499 kg/m 2 s, L/D = 4 - 402, most of CHF data (more than 1000 points) are predicted within ±30% error bounds by the LSD mechanism. However, some calculation results that critical qualities are less than 0.4 are considerably overestimated by this mechanism. These overpredictions seem to be caused by inadequate CHF mechanism classification criteria and an insufficient consideration of the flow instability effect on CHF. Further studies for a new classification criterion screening the CHF data affected by flow instabilities and a new bubble detachment model for LPLV conditions are needed to improve the model accuracy. (author)

  4. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    Science.gov (United States)

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights

  5. Influence of the heat flux and of the gas on heat transfer and friction coefficients in a smooth cylindrical tube; Influence du flux de chaleur et de la nature du gaz sur les coefficients d'echange et le frottement dans un tube cylindrique lisse

    Energy Technology Data Exchange (ETDEWEB)

    Delpont, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-12-15

    The stainless steel tube used for the experiments is heated by means of d.c current; its inside diameter is 40 mm; its length is about 5.80 meters. Special core has been taken (heated rocket) to avoid heat loss and to provide very accurate measurements. The cooling gases tested are air and carbon dioxide at a pressure of 2.6 to 19 psi; the Reynolds number ranges from 70,000 to 10{sup 6}, the wall temperature and the heat flux reach respectively 430 deg C and 16 watts/cm{sup 2}. The Reynolds number Re{sub m}, Stanton number M{sub m} and friction coefficient f are computed by evaluating the physical properties of the gases at the mean temperature T{sub m}. For a given Reynolds number, a decrease of M{sub m} and of f is observed hen the heat flux increases, this decrease reaches 10 per cent in the experiments described. A formulation is proposed to express this effect in terms of a heat flow parameter (T{sub m} - T{sub m}) / T{sub p} used as a corrective factor (T{sub p} = wall temperature). The correlation formulae are: M{sub m} = 0.0168 Re{sub m}{sup -0.18} P{sub m}{sup -0.6} (1 - 0.4 [(T{sub p} - T{sub m}) / T{sub p}]) for air f = f{sub 0} (1 0.25 [(T{sub p} - T{sub m}) / T{sub p}]) for air M{sub m} = 0.0171 Re{sub m}{sup -0.18} P{sub m}{sup -0.6} (1 - 0.2 [(T{sub p} - T{sub m}) / T{sub p}]) for carbon dioxide f = f{sub 0} (1 - 0.20 [(T{sub p} - T{sub m}) / T{sub p}]) for carbon dioxide where f{sub 0} = the friction coefficient for isotherm flow. (author) [French] Le tube utilite a un diametre interieur de 40 mm; sa longueur est de 5,80 m environ; il est en acier inoxydable et chauffe par un courant continu. Des precautions particulieres (enceinte chauffante exterieure) ont ete prises pour eviter tout echange de chaleur avec le milieu exterieur et permettre des mesures extremement precises. Les gaz de refroidissement experimentes sont l'air et le gaz corbonique sous une pression de 1,8 a 13 hpz; les nombres de Reynolds vont de 70 000 a 10{sup 6}, la temperature de

  6. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  7. Effects of Dihedral Angle on Pool Boiling Heat Transfer from Two Tubes in Vertical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2014-10-15

    One of the major issues in pool boiling heat transfer is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect ( h{sub r} ). It is defined as the ratio of the heat transfer coefficient ( h{sub b} ) for an upper tube in a bundle with lower tubes activated to that for the same tube activated alone in the bundle. Since heat transfer is related with the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. The most effective parameter must be the tube pitch. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The heat transfer on the upper tube of the tubes is enhanced compared with the single tube. The upper tube within a tube bundle can significantly increase nucleate boiling heat transfer compared to the lower tubes at moderate heat fluxes. At high heat fluxes these influences disappear and the data merge onto the pool boiling curve of a single tube. It was explained that the major influential factor is the convective effects due to the fluid velocity and the rising bubbles. They used microstructure-R134a or FC-3184 combinations and identified that the increase in the heat flux of the lower tube decreased the superheat ( ∆T{sub sat} ) of the upper tube. The passive condensers adopted in SWR1000 and APR+ has U-type tubes. Those tubes are slightly inclined from the horizontal to prevent the occurrence of the water hammer. Since the pitch between the upper and lower tubes is varying along the tube length, the results for the fixed pitch are not applicable to the analysis of these condensers. Although there are lots of studies introducing results for the effects of inclination angle on pool boiling heat transfer, no results are treating the angle between two tubes. Therefore, the present study is aimed

  8. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  9. Acute abdomen due to ovarian congestion caused by coiling of the fallopian tube accompanied by paratubal cyst around the utero-ovarian ligament.

    Science.gov (United States)

    Kim, Juyoung; Park, Daehyun; Han, Won Bo; Jeong, Hyangjin; Park, Youngse

    2014-07-01

    Torsion of uterine adnexa is an important cause of acute abdominal pain in females. The main organ which can cause torsion is the ovaries, but torsions of the fallopian tube, subserosal myoma, paratubal cyst, and even the uterine body have been reported. The incidence of isolated fallopian tubal torsion is very rare. Even more rarely, it can coil around nearby organs such as the utero-ovarian ligament, showing similar clinical manifestations with those of adnexal torsion. We experienced an extremely rare case of acute abdomen induced by ovarian congestion triggered by the fallopian tube accompanying a paratubal cyst coiling around the utero-ovarian ligament. The right paratubal cyst was misinterpreted as being part of a cystic component of the left ovary on preoperative sonographic examination, and the coiling of the right fallopian tube accompanying the paratubal cyst was misdiagnosed as torsion of the right ovary. We report this rare case with a brief literature review.

  10. Tube-wave Generation Due to Permeable Layers in a VSP Experiment : A New Model Elucidating the Effect of Dip Angles

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2017-01-01

    The hydraulic properties of subsurface fractures are critically important in the exploration of geothermal and hydrocarbon reservoirs. The analysis of tube waves (low-frequency Stoneley waves propagating along a fluidfilled borehole) is a promising approach to estimate the hydraulic properties of

  11. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  12. Acute abdomen due to ovarian congestion caused by coiling of the fallopian tube accompanied by paratubal cyst around the utero-ovarian ligament

    OpenAIRE

    Kim, Juyoung; Park, Daehyun; Han, Won Bo; Jeong, Hyangjin; Park, Youngse

    2014-01-01

    Torsion of uterine adnexa is an important cause of acute abdominal pain in females. The main organ which can cause torsion is the ovaries, but torsions of the fallopian tube, subserosal myoma, paratubal cyst, and even the uterine body have been reported. The incidence of isolated fallopian tubal torsion is very rare. Even more rarely, it can coil around nearby organs such as the utero-ovarian ligament, showing similar clinical manifestations with those of adnexal torsion. We experienced an ex...

  13. Mortalidad por defectos del tubo neural en México, 1980-1997 Mortality due to neural tube defects in Mexico, 1980-1997

    Directory of Open Access Journals (Sweden)

    José A Ramírez-Espitia

    2003-10-01

    Full Text Available OBJETIVO: Describir la mortalidad en México por defectos del tubo neural, durante el periodo 1980-1997. MATERIAL Y MÉTODOS: Las tasas anuales de mortalidad estatales y nacionales, por defectos del tubo neural, se calcularon por 10 000 nacidos vivos. La tendencia temporal fue evaluada por el porcentaje de cambio anual obtenido mediante un modelo de regresión de Poisson. Se calculó la razón de mortalidad, tomando la media nacional como referencia. Las tasas y las razones se representaron gráficamente en mapas. RESULTADOS: Durante el periodo la tasa bruta de mortalidad por defectos del tubo neural fue de 5.8 por 10 000 nacidos vivos. La anencefalia fue el tipo de defecto más frecuente (37.7%, seguida de la espina bífida sin hidrocefalia (31.6%. La tendencia nacional de la mortalidad por defectos del tubo neural fue ascendente entre 1980 y 1990 (porcentaje de cambio anual 7.5 IC 95% 6.5, 8.6 y descendente entre 1990-1997 (porcentaje de cambio anual -2.3 IC 95% -3.6, -0.9. CONCLUSIONES: Las altas tasas de mortalidad por defectos del tubo neural fueron debidas principalmente a la elevada frecuencia de las anencefalias. El incremento observado parece no ser sólo atribuible a cuestiones puramente diagnósticas o de mejora en los registros. La influencia de factores asociados a estos defectos, como determinados polimorfismos genéticos, la deficiencia de ácido fólico, la obesidad materna, la exposición laboral a plaguicidas y la pobreza deberán evaluarse mediante estudios específicos.OBJECTIVE: To describe the mortality due to neural tube defects (NTD in Mexico for the 1980-1997 period. MATERIAL AND METHODS: The annual NTD mortality rates per 10000 liveborn infants were calculated by state and for the country. The time trend was evaluated with the annual percent change (APC obtained using a Poisson regression model. The NTD mortality ratio was calculated using the average national rate as reference. NTD mortality rates and ratios were

  14. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  15. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  16. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  17. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  18. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  19. Production of the heat exchanger tubes, which will cool down the LHC magnets, and of the cold bore tubes, in which the proton beams will circulate, is due to be completed around the end of 2004. These essential components of the LHC magnets are receiving their finishing touches at CERN : cold bore tubes

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Insulation of the cold bore tubes in which the LHC beams will circulate takes place in Building 927. In the background, Bruno Meunier checks the wrapping machine while, in the foreground, Olivier Vasseur removes the polyester wrapping that covers the tube's insulating layers.

  20. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  1. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  2. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  3. Entropy Generation during Turbulent Flow of Zirconia-water and Other Nanofluids in a Square Cross Section Tube with a Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hooman Yarmand

    2014-11-01

    Full Text Available The entropy generation based on the second law of thermodynamics is investigated for turbulent forced convection flow of ZrO2-water nanofluid through a square pipe with constant wall heat flux. Effects of different particle concentrations, inlet conditions and particle sizes on entropy generation of ZrO2-water nanofluid are studied. Contributions from frictional and thermal entropy generations are investigated, and the optimal working condition is analyzed. The results show that the optimal volume concentration of nanoparticles to minimize the entropy generation increases when the Reynolds number decreases. It was also found that the thermal entropy generation increases with the increase of nanoparticle size whereas the frictional entropy generation decreases. Finally, the entropy generation of ZrO2-water was compared with that from other nanofluids (including Al2O3, SiO2 and CuO nanoparticles in water. The results showed that the SiO2 provided the highest entropy generation.

  4. Pressure tube type research reactor

    International Nuclear Information System (INIS)

    Ueda, Hiroshi.

    1976-01-01

    Object: To prevent excessive heat generation due to radiation of a pressure tube vessel. Structure: A pressure tube encasing therein a core comprises a dual construction comprising inner and outer tubes coaxially disposed. High speed cooling water is passed through the inner tube for cooling. In addition, in the outer periphery of said outer tube there is provided a forced cooling tube disposed coaxially thereto, into which cooling fluid, for example, such as moderator or reflector is forcibly passed. This forced cooling tube has its outer periphery surrounded by the vessel into which moderator or reflector is fed. By the provision of the dual construction of the pressure tube and the forced cooling tube, the vessel may be prevented from heat generation. (Ikeda, J.)

  5. Evaporation heat transfer characteristics inside the U-bend of the smooth and the microfin tube using alternative refrigerant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K N [Sung Kyun Kwan University, Seoul (Korea, Republic of); Kim, B G [Sung Kyun Kwan University Graduate School, Seoul (Korea, Republic of)

    1997-09-01

    The present work experimentally investigated the effects of mass flux, heat flux, inlet quality on the heat transfer performance inside the U-bend of smooth and microfin tube using R-22 and R-407C refrigerants. The parameters were 200 and 400 kg/m{sup 2} s for mass flux, 6 and 12 kw/m{sup 2} for heat flux, 0.1 and 0.2 for inlet quality under the pressure of 0.65 MPa. The apparatus consisted of the test section of four straight sections and three U-bends, preheater, condenser, refrigerant pump, mass flow meter etc. The average heat transfer coefficient at the downstream straight section after U-bend was affected by U-bend due to the centrifugal force and mixing of two-phase flow in the U-bend. The average heat transfer coefficient at the U-bend was 4{approx}33 % higher than that at the straight section. The average heat transfer coefficients were affected in the order of mass flux, heat flux and inlet quality. The average heat transfer coefficients in the microfin tube were lager by 19{approx}49 % and 33{approx}69 % than that in the smooth tube at the straight section and at the U-bend separately. The average heat transfer coefficients for R-407C were larger by 33{approx}41 % and 17{approx}29% than that for R-22 in the smooth tube and the microfin tube separately. (author). 24 refs., 9 figs.

  6. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E; He, Ruoying; Hopkinson, Charles S

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO 2 , and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO 2 , and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO 2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  7. Effects of some structural materials on the reactivity and flux distributions in a pressurised water reactor

    International Nuclear Information System (INIS)

    Mondal, A.M.W.; Mannan, M.A.

    1983-01-01

    The effect of the structural materials of the guide tubes, spacer grids and the shroud on the reactivity and the flux distribution of a Pressurised Water Reactor (PWR) has been studied. Group constants of different cells of guide tubes, spacer grids, shroud and the fuel have been calculated using the cell codes LEOPARD, PANTHER and METHUSELAH. Core calculations have been performed using the diffusion code EQUIPOISE. It has been found for a PWR of 1300 MWe of Kraftwork Union design for Iron that the total change in reactivity due to the presence of guide tubes, spacer grids and the shroud is about -2.48x10 -2 . (author)

  8. Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The current investigation presents Darcy-Forchheimer flow of viscous fluid caused by a curved stretching sheet. Flow for porous space is characterized by Darcy-Forchheimer relation. Concept of homogeneous and heterogeneous reactions is also utilized. Heat transfer for Cattaneo–Christov theory characterizing the feature of thermal relaxation is incorporated. Nonlinear differential systems are derived. Shooting algorithm is employed to construct the solutions for the resulting nonlinear system. The characteristics of various sundry parameters are studied and discussed. Skin friction coefficient and heat transfer rate are numerically described. Keywords: 2D flow, Curved stretching surface, Darcy-Forchheimer porous medium, Cattaneo-Christov heat flux, Homogeneous-heterogeneous reactions

  9. Hideout in steam generator tube deposits

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Franklin, K.J.; Turner, C.W.

    1998-05-01

    Hideout in deposits on steam generator tubes was studied using tubes coated with magnetite. Hideout from sodium chloride solutions at 279 degrees C was followed using an on-line high-temperature conductivity probe, as well as by chemical analysis of solution samples from the autoclave in which the studies were done. Significant hideout was observed only at a heat flux greater than 200 kW/m 2 , corresponding to a temperature drop greater than 2 degrees C across the deposits. The concentration factor resulting from the hideout increased highly non-linearly with the heat flux (varying as high as the fourth power of the heat flux). The decrease in the apparent concentration factor with increasing deposit thickness suggested that the pores in the deposit were occupied by a mixture of steam and water, which is consistent with the conclusion from the thermal conductivity measurements on deposits in a separate study. Analyses of the deposits after the hideout tests showed no evidence of any hidden-out solute species, probably due to the concentrations being very near the detection limits and to their escape from the deposit as the tests were being ended. This study showed that hideout in deposits may concentrate solutes in the steam generator bulk water by a factor as high as 2 x 10 3 . Corrosion was evident under the deposit in some tests, with some chromium enrichment on the surface of the tube. Chromium enrichment usually indicates an acidic environment, but the mobility required of chromium to become incorporated into the thick magnetite deposit may indicate corrosion under an alkaline environment. An alkaline environment could result from preferential accumulation of sodium in the solution in the deposit during the hideout process. (author)

  10. How thick are chromoelectric flux tubes

    International Nuclear Information System (INIS)

    Luescher, M.; Muenster, G.; Weisz, P.

    1980-07-01

    We analyse the space dependence of the expectation value of the chromoelectric energy density in the presence of a static quark anti-quark pair by means of the strong coupling expansion on a lattice and by the relativistic string model. Both methods indicate that the transversal width of the field energy distribution increases without bound, when the quark anti-qark separation goes to infinity. (orig.)

  11. Frecuencia y algunos factores de riesgo de mortalidad en el estado de Hidalgo, México, por defectos de cierre del tubo neural Mortality due to neural tube defects and risk factors in Hidalgo, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Muñoz-Juárez

    2002-09-01

    Full Text Available Objetivo. Calcular el riesgo de muerte fetal secundaria a defectos del cierre del tubo neural y estimar factores asociados con este tipo de muertes en el estado de Hidalgo. Material y métodos. La información analizada en el año 2000 fue obtenida de los certificados de muerte fetal del periodo 1990-1995 en el estado de Hidalgo. Se utilizó un diseño de mortalidad proporcional, considerado como una variante del diseño de casos y controles. Los casos fueron aquellas muertes fetales secundarias a defectos del tubo neural y los controles las muertes fetales por otros motivos. Se utilizó ji cuadrada de Pearson para estimar las diferencias entre los casos y controles. Para el riesgo crudo de morir por defectos de cierre del tubo neural se empleó la razón de momios, y para el riesgo ajustado se usó la regresión logística no condicional. Resultados. Se analizaron 3 673 certificados de muerte fetal, identificándose 8.06% de muertes por defectos del tubo neural; el resto lo constituyeron muertes por otras causas. Se encontró como variables asociadas con la muerte fetal por defectos del tubo neural a los fetos que pesaron menos de 2 500 gramos (RM 5.0, IC 95% 3.6, 6.7, a los productos del sexo femenino (RM 1.7, IC 95% 1.3, 2.3 y a las muertes ocurridas en el periodo fetal tardío (RM 5.5 IC 95% 3.8, 8.1. Conclusiones. Los resultados indican que el riesgo de muerte fetal debida a defectos del tubo neural es mayor en productos de bajo peso, en los del sexo femenino y los que ocurren en el periodo fetal tardío.Objective. To calculate the risk of fetal death due to neural tube defects and estimate associated factors in the state of Hidalgo, Mexico. Material and Methods. Data were abstracted from death certificates registered during 1990-1995 in the state of Hidalgo, Mexico. The design was a proportional mortality study, which is considered as a variant of the case control design. Cases were deaths with any type of neural tube defect, and controls

  12. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  13. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  14. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  15. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae

    Science.gov (United States)

    Matsushika, Akinori; Nagashima, Atsushi; Goshima, Tetsuya; Hoshino, Tamotsu

    2013-01-01

    In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4

  16. Vaporization inside a mini microfin tube: experimental results and modeling

    Science.gov (United States)

    Diani, A.; Rossetto, L.

    2015-11-01

    This paper proposes a comparison among the common R134a and the extremely low GWP refrigerant R1234yf during vaporization inside a mini microfin tube. This microfin tube has an internal diameter of 2.4 mm, it has 40 fins, with a fin height of 0.12 mm. Due to the high heat transfer coefficients shown by this tube, this technology can lead to a refrigerant charge reduction. Tests were run in the Heat Transfer in Micro Geometries Lab of the Dipartimento di Ingegneria Industriale of the Università di Padova. Mass velocities range between 375 and 940 kg m-2 s-1, heat fluxes from 10 to 50 kW m-2, vapour qualities from 0.10 to 0.99, at a saturation temperature of 30°C. The comparison among the two fluids is proposed at the same operating conditions, in order to highlight the heat transfer and pressure drop differences among the two refrigerants. In addition, two correlations are proposed to estimate the heat transfer coefficient and frictional pressure drop during refrigerant flow boiling inside mini microfin tubes. These correlations well predict the experimental values, and thus they can be used as a useful tool to design evaporators based on these mini microfin tubes.

  17. Improving the calandria tubes for CANDU reactors

    International Nuclear Information System (INIS)

    Coleman, C.E.; Fong, R.W.L.; Doubt, G.L.

    1997-01-01

    CANDU calandria tubes are made from annealed Zircaloy-2 sheet formed into a cylinder and welded along its length to make the tube. The current calandria tubes have given exemplary service for many years. With more stringent regulations and the need to accommodate warm cooling water in tropical countries, we started a development program to increase the margins for failure during postulated accidents. These improvements involve increasing the tube strength and optimising the heat-transfer from an excessively hot fuel channel to the cool moderator. If the postulated accident involves a pressure tube break, it would be desirable if the calandria tube withstood the full pressure of the heat-transport system. The weakest link in current calandria tubes is the weld. Thickening the weld can increase the strength by 20% while seamless tubes can be 45% stronger than current tubes. The latter tubes can hold full system pressure for many hours without failure. If during the postulated accident the fuel and pressure tube become excessively hot but do not touch the calandria tube, the radiant heat loss must be maximised. Current calandria tubes have an absorptivity (emissivity) of about 0.2. To protect the fuel and the fuel channel we have devised a finish to the inside surface of the calandria tube that increases the emissivity to 0.7. If during the postulated accident the hot pressure tube touches the cool calandria tube, the contact conductance and the critical heat flux must be optimised to ensure nucleate boiling of the moderator at the outside surface of the calandria tube and therefore efficient exploitation of the moderator as a heat sink. In laboratory tests small ridges on the inside surface and roughening of the outside surface have been shown to increase the margins against failure and increase the possible moderator temperatures thus providing the opportunity to decrease the cost of the moderator heat-exchange system and remove restrictions on reactor operation in

  18. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  19. Bradycardia after Tube Thoracostomy for Spontaneous Pneumothorax

    Directory of Open Access Journals (Sweden)

    Yomi Fashola

    2018-01-01

    Full Text Available We present the case of an elderly patient who became bradycardic after chest tube insertion for spontaneous pneumothorax. Arrhythmia is a rare complication of tube thoracostomy. Unlike other reported cases of chest tube induced arrhythmias, the bradycardia in our patient responded to resuscitative measures without removal or repositioning of the tube. Our patient, who had COPD, presented with shortness of breath due to spontaneous pneumothorax. Moments after tube insertion, patient developed severe bradycardia that responded to Atropine. In patients requiring chest tube insertion, it is important to be prepared to provide cardiopulmonary resuscitative therapy in case the patient develops a life-threatening arrhythmia.

  20. The evolution of magnetic structures due to open-quote open-quote magnetosonic streaming close-quote close-quote

    International Nuclear Information System (INIS)

    Ryutova, M.P.; Kaisig, M.; Tajima, T.

    1996-01-01

    The Faraday effect in gasdynamics called acoustic streaming and its accompanying nonlinear phenomena have analogies in plasma magnetohydrodynamics. A natural place where these effects may occur is the solar atmosphere with its strongly inhomogeneous magnetic fields concentrated in random magnetic flux tubes. Unlike acoustic streaming in the usual gasdynamics, nonlinear phenomena consisting in the generation of plasma flows by an oscillating magnetic flux tube, open-quote open-quote magnetosonic streaming close-quote close-quote (Ryutova 1986), is accompanied by a current drive and results in a specific evolution of magnetic structures: depending on the physical parameters of the medium a single magnetic flux tube may be either split into thinner flux tubes or dissolved diffusively into the ambient plasma. The effect of the open-quote open-quote magnetosonic streaming,close-quote close-quote on one hand, is an obvious candidate for the generation of mass flows at magnetic flux tubes sites, and on the other hand, it plays an essential role in the evolution of magnetic structures and ultimately may determine their lifetime. The theory of magnetosonic streaming is general and can be applied to other astrophysical objects that maintain oscillatory motions and contain structured magnetic fields or magnetic domains. We review analytical results and describe the origin of the magnetosonic streaming in magnetic flux tubes due to their interaction with acoustic waves. We study numerically the regime of the open-quote open-quote magnetosonic streaming close-quote close-quote corresponding to splitting of a magnetic flux tube. Our computer simulation supports and extends the analytical result. copyright 1996 The American Astronomical Society

  1. Stratified flow model for convective condensation in an inclined tube

    International Nuclear Information System (INIS)

    Lips, Stéphane; Meyer, Josua P.

    2012-01-01

    Highlights: ► Convective condensation in an inclined tube is modelled. ► The heat transfer coefficient is the highest for about 20° below the horizontal. ► Capillary forces have a strong effect on the liquid–vapour interface shape. ► A good agreement between the model and the experimental results was observed. - Abstract: Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m 2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.

  2. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  3. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  4. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    International Nuclear Information System (INIS)

    Routh, S.; Musielak, Z. E.; Hammer, R.

    2010-01-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  5. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  6. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    2000-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source

  7. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  8. Factors affecting in-core dimensional stability of Zircaloy-2 calandria tubes

    International Nuclear Information System (INIS)

    Fidleris, V.; Causey, A.R.; Holt, R.A.

    1985-01-01

    In CANDU PHW reactors, the heavy water moderator is contained in a cylindrical vessel (calandria) which is penetrated by 380 horizontal fuel channel assemblies. The outer Zircaloy-2 tube of each assembly (the calandria tube) is rolled into the end shields to seal the calandria. The calandria tubes operate at ≅340 K with axial stresses that range from -10 to +40 MPa and experience fast neutron fluxes as large as 3 x 10 17 n m -2 s -1 , E > 1.0 MeV. In this environment tubes elongate and sag due to irradiation-induced creep and growth. Our understanding of these irradiation effects is based on creep, stress relaxation and irradiation growth experiments on calandria tube materials irradiated to neutron fluences of 7 x 10 25 n m -2 , E > 1.0 MeV. Both creep and growth strains decrease with the proportion of grains that have basal plane normals in the direction of testing. Cold work increases the creep rate but appears to introduce a negative component of growth in the working direction due to neutron induced stress relief that persists up to at least 7 x 10 25 n m -2 . Thermal stress relief restores the positive growth rate in the working direction. There is little effect of grain size in the range 10 TO 30 μm. This information can be used to select fabrication routes that will minimize dimensional changes of tubes during service

  9. Database for Pressure Tube Diameter and Operation Data of Wolsong NPP

    International Nuclear Information System (INIS)

    Jung, Jong Yeob; Kim, W. Y.; Bae, J. H.; Park, J. H.

    2010-12-01

    Pressure tube of CANDU reactor which is a long cylindrical shape of its diameter about 10 cm and length of about 6m, can be expanded toward both radial and axial directions due to irradiation under the high pressure and temperature condition. As the irradiation period increases, the radial expansion due to creep of the pressure tube increases. The radial expansion of the pressure tube comes out the reduction of the coolability and it results in the power deration. The objectives of the current work is to establish the database for the measured diametral data of pressure tube and operational data from Wolsong NPP as a preliminary work of developing the prediction model for pressure tube diameter. In order to develop the database, measured data for total 86 channels were collected from Wolsong NPP 1, 2, 3 and 4 and analyzed. Based on the provided data, the operational conditions such as an axial temperature and a pressure of the channel and neutron fluxes were derived. All data were analysed to derive the correlation between the pressure tube diameter and the other operational parameters

  10. Studies in boiling heat transfer in two phase flow through tube arrays: nucleate boiling heat transfer coefficient and maximum heat flux as a function of velocity and quality of Freon-113

    International Nuclear Information System (INIS)

    Rahmani, R.

    1983-01-01

    The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively

  11. Development of Eddy Current Technique for Reactor In-Core Flux Thimble Wear

    International Nuclear Information System (INIS)

    Park, S. S.; Jang, Y. Y.; Yim, C. Y.; Park, K. H.

    1990-01-01

    Since in-core flux thimble tube wear the due to flow-induced vibration could degrade the integrity of nuclear reactor, the effective detection and interpretation of the wear is important. In order to establish an inspection technique for thimble tubes, an eddy current experiment was performed to determine the optimum test frequency, defect sensitivity and evaluation accuracy. Eddy current probes were designed and fabricated with a theory. Specimens with artificial defects were fabricated using electro discharge machining method. The results from inspection technique developed and on-site inspection showed good applicability

  12. Neutron flux measurement by mobile detectors

    International Nuclear Information System (INIS)

    Verchain, M.

    1987-01-01

    Various incore instrumentation systems and their technological evolution are first reviewed. Then, for 1300 MWe PWR nuclear power plant, temperature and neutron flux measurement are described. Mobile fission chambers, with their large measuring range and accurate location allow a good knowledge of the core. Other incore measures are possible because of flux detector thimble tubes inserted in the reactor core [fr

  13. Physics of magnetic flux ropes. Geophysical Monograph, No. 58

    International Nuclear Information System (INIS)

    Russell, C.T.; Priest, E.R.; Lee, L.C.

    1990-01-01

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations

  14. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  15. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  16. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  17. Comparative CO{sub 2} flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Fumiyoshi (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan); Atmosphere and Ocean Research Inst., Univ. of Tokyo, Tokyo (Japan)), Email: fkondo@aori.u-tokyo.ac.jp; Tsukamoto, Osamu (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan))

    2012-04-15

    Direct comparison of airsea CO{sub 2} fluxes by open-path eddy covariance (OPEC) and closed-path eddy covariance (CPEC) techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO{sub 2} flux by OPEC was larger than the bulk CO{sub 2} flux using the gas transfer velocity estimated by the mass balance technique, while the CO{sub 2} flux by CPEC agreed with the bulk CO{sub 2} flux. We investigated a traditional conflict between the CO{sub 2} flux by the eddy covariance technique and the bulk CO{sub 2} flux, and whether the CO{sub 2} fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO{sub 2} flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO{sub 2} fluctuation over the ocean. Further, the underestimated CO{sub 2} flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H{sub 2}O flux. The CO{sub 2} flux by CPEC agreed with the total CO{sub 2} flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO{sub 2} flux

  18. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo

    2012-04-01

    Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.

  19. Effect of tube-support interaction on the dynamic responses of heat exchanger tubes

    International Nuclear Information System (INIS)

    Shin, Y.S.; Jendrzejczyk, J.A.; Wambsganss, M.W.

    1977-01-01

    Operating heat exchangers have experienced tube damages due to excessive flow-induced vibration. The relatively small inherent tube-to-baffle hole clearances associated with manufacturing tolerances in heat exchangers affect the tube vibrational characteristics. In attempting a theoretical analysis, questions arise as to the effects of tube-baffle impacting on dynamic responses. Experiments were performed to determine the effects of tube-baffle impacting in vertical/horizontal tube orientation, and in air/water medium on the vibrational characteristics (resonant frequencies, mode shapes, and damping) and displacement response amplitudes of a seven-span tube model. The tube and support conditions were prototypic, and overall length approximately one-third that of a straight tube segment of the steam generator designed for the CRBR. The test results were compared with the analytical results based on the multispan beam with ''knife-edge'' supports

  20. Laminar forced convective heat transfer to near-critical water in a tube

    International Nuclear Information System (INIS)

    Lee, Sang Ho

    2003-01-01

    Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed

  1. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  2. Horizontal beam tubes in FRM-II

    International Nuclear Information System (INIS)

    Coors, D.; Vanvor, D.

    2001-01-01

    The new research reactor in Garching FRM-II is equipped with 10 leak tight horizontal beam tubes (BT1 - BT10), each of them consisting of a beam tube structure taking an insert with neutron channels. The design of all beam tube structures is similar whereas the inserts are adapted to the special requirements of the using of each beam tube. Inside the reflector tank the beam tube structures are shaped by the inner cones which are made of Al-alloy with circular and rectangular cross sections. They are located in the region of maximum neutron flux (exception BT10), they are directly connected to the flanges of the reflector tank, their lengths are about 1.5 m (exception BT10) and their axes are directed tagentially to the core centre thus contributing to a low γ-noise at the experiments. (orig.)

  3. N Reactor pressure tube 1350 postirradiation examination

    International Nuclear Information System (INIS)

    Cook, D.J.

    1977-01-01

    The N Reactor pressure tubes were fabricated from Zircaloy-2 primarily due to the excellent corrosion resistance, low neutron absorption, and high strength properties of this alloy. Irradiation damage mechanisms increase the strength and decrease the ductility of the Zircaloy-2. Irradiation data available at the time the tubes were installed indicated that fast neutron irradiation damage mechanisms would not decrease the ductility to unacceptable levels over the estimated plant life of 25 to 30 years. However, because the tubes are a primary coolant system component and only limited data are available on irradiation effects at high fluences, a Postirradiation Examination (PIE) program was developed to assure that service factors do not compromise pressure tube integrity essential to reactor safety. The PIE program requires that a pressure tube be periodically removed from the reactor for destructive testing. The N Reactor Technical Specifications specify that the frequency of pressure tube removal and examination be based upon the previous PIE test results. Four pressure tubes were examined before tube 1350, and the test results were summarized in individual reports. PIE results on tube 1350 were summarized along with the test results on the previous four tubes in a previous report. The purpose of this report is to present in detail the results on PIE of pressure tube 1350, and, in particular, document the technique by which the fracture toughness of the pressure tube was determined

  4. Spring/dimple instrument tube restraint

    International Nuclear Information System (INIS)

    DeMario, E.E.; Lawson, C.N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures

  5. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  6. Burnout in a channel with non-uniform circumferential heat flux

    International Nuclear Information System (INIS)

    Lee, D.H.

    1966-03-01

    Burnout experiments are reported for uniform flux and circumferential flux tilt (maximum/average flux about 1.25) with tubes and annuli, all the experiments having uniform axial heating. These show similar results, the burnout power with flux tilt being within 10% of that with uniform flux. For the same mean exit steam quality, the local maximum flux is higher than the predicted burnout value and generally a better prediction is obtained using the average flux. (author)

  7. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  8. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  9. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  10. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  11. Condensation heat transfer coefficients of flammable refrigerants on various enhanced tubes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Jung, Dong Soo

    2005-01-01

    In this study, external condensation Heat Transfer Coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39 .deg. C on a 1023 fpm low fin and turbo-C tubes. All data were taken under the heat flux of 32∼116 and 42∼142 kW/m 2 for the low fin and turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to 30% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of 7.3%. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate

  12. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  13. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    Science.gov (United States)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  14. Experiments on condensation heat transfer characteristics inside a microfin tube with R410A

    Energy Technology Data Exchange (ETDEWEB)

    Han, D H; Cho, Y J [Korea University Graduate School, Seoul (Korea); Lee, K J; Park, S S [Korea University, Seoul (Korea)

    2000-11-01

    Due to the ozone depletion and global warming potentials, some refrigerants (CFCs and HCFCs) have been rapidly substituted. R410A is considered as the alternative refrigerant of R22 for the air-conditioners used at home and in industry. Experiments on the condensation heat transfer characteristics inside a smooth or a micro-fin tube with R410A are performed in this study. The test tubes 7/9.52 mm in outer diameters and 3 m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. It is shown that the heat transfer is enhanced and the amount of pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficient and the pressure penalty factor, it is found that the high heat transfer enhancement coefficients are obtained in the range of small mass flux while the penalty factors are almost equal. (author). 13 refs., 12 figs., 1 tab.

  15. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  16. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  17. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil

    Science.gov (United States)

    Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.

    2018-03-01

    In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.

  18. Tubes, Mono Jets, Squeeze Out and CME

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-23

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  19. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    Science.gov (United States)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  20. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  1. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)

    2006-05-15

    An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube. (author)

  2. Burnout in the horizontal tubes of a furnace waterwall panel

    Energy Technology Data Exchange (ETDEWEB)

    B.Y. Kamenetskii [All-Russia Research Institute of Nuclear Power Engineering (OAO VNIIAM), Moscow (Russian Federation)

    2009-07-01

    An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.

  3. Burnout in the horizontal tubes of a furnace waterwall panel

    Science.gov (United States)

    Kamenetskii, B. Ya.

    2009-08-01

    An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.

  4. Ideal flux field dielectric concentrators.

    Science.gov (United States)

    García-Botella, Angel

    2011-10-01

    The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.

  5. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  6. Vortex line topology during vortex tube reconnection

    Science.gov (United States)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  7. Splitting of inviscid fluxes for real gases

    Science.gov (United States)

    Liou, Meng-Sing; Van Leer, Bram; Shuen, Jian-Shun

    1990-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations for auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  8. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  9. Fractional flux excitations and flux creep in a superconducting film

    International Nuclear Information System (INIS)

    Lyuksyutov, I.F.

    1995-01-01

    We consider the transport properties of a modulated superconducting film in a magnetic field parallel to the film. Modulation can be either intrinsic, due to the layered structure of the high-T c superconductors, or artificial, e.g. due to thickness modulation. This system has an infinite set ( >) of pinned phases. In the pinned phase the excitation of flux loops with a fractional number of flux quanta by the applied current j results in flux creep with a generated voltage V ∝ exp[-jo/j[. (orig.)

  10. Experimental study of heat transfer for parallel flow in tube bundles with constant heat flux and for medium Prandtl numbers; Etude experimentale du transfert de chaleur dans des faisceaux tubulaires en ecoulement parallele pour une densite de flux thermique constante dans le domaine des nombres de Prandtl moyens

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The heat transfer parameters were determined experimentally in electrically heated tube bundles for turbulent flow parallel to the axis. The tubes were arranged in a pattern of equilateral triangles. The ratios of the distance between the axes of the tubes to their external diameter were 1.60 and 1.25 in the two test sections studied. The experiments were carried out with distilled water and with a mixture of 60 per cent ethylene glycol and 40 per cent water. The values obtained for the Prandtl numbers in this way fell within the range from 2.3 to 18. The Reynolds numbers were varied between 10{sup 4} and 2.10{sup 5}. The relation between the mean heat transfer coefficients and the friction factor in the tube bundles was found from the experiments as: Nu = [Re Pr {zeta}/8]/[1+{radical}({zeta}/8) 8.8 (Pr-1.3) Pr{sup -0.22}]. The experimentally determined mean Nusselt numbers were also given by the following function: Nu = (0.0122 + 0.00245 p/d) Re{sup 0.86} Pr{sup 0.4}, with a maximum deviation of {+-}4 per cent. For certain local Nusselt numbers, deviations of up to 20 per cent with respect to the relations given were observed. (author) [French] Dans des faisceaux tubulaires a chauffage electrique parcourus par un ecoulement turbulent parallele a l'axe, on a determine experimentalement les parametres du transfert de chaleur. Les centres des sections droites des tubes etaient des sommets de triangles equilateraux. Les rapports de la distance a l'axe des tubes et leur diametre exterieur dans les deux veines de mesure etudiees etaient de 1.60 et 1.25. Des essais furent effectues avec de l'eau distillee ainsi qu'avec un melange de 60 pour cent de glycol ethylenique et 40 pour cent d'eau. Les valeurs des nombres de Prandtl obtenues ainsi etaient situees entre 2.3 a 18. On a fait varier les nombres de Reynolds entre 10{sup 4} et 2.10{sup 5}. La relation entre les nombres caracteristiques de transfert de chaleur moyens et la perte de charge dans les faisceaux tabulaires

  11. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  12. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

    International Nuclear Information System (INIS)

    Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

    2005-01-01

    Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

  13. Heat transfer in laminar flow for a finned double - tube

    International Nuclear Information System (INIS)

    Colle, S.

    1977-01-01

    An analitical study of the steady-state heat transfer in laminar flow in finned double-tube heat exchangers is presented. The fins are plane, straight and continous, equally spaced and are fixed over the external surface of the inner tube. A constant peripheral temperature distribution is assumed to apply over the inner tube surface and each fin, and a constant peripheral heat flux is assumed to apply over the outer tube surface, while the overall heat flux is suposed to be uniform in the longitudinal direction of the duct. The prediction of the thermal performance of the finned double-tube is made by means of the relationship between the Nusselt number, the boundary conditions and the geometric characteristcs of the duct. (author) [pt

  14. Fracture analysis of HFIR beam tube caused by radiation embrittlement

    International Nuclear Information System (INIS)

    Chang, S.J.

    1994-01-01

    With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation

  15. Photomultiplier tube artifacts on 67Ga-citrate imaging caused by loss of correction floods due to an off-peak status of one head of a dual-head γ-camera.

    Science.gov (United States)

    Glaser, Joseph E; Song, Na; Jaini, Sridivya; Lorenzo, Ruth; Love, Charito

    2012-12-01

    γ-cameras use flood-field corrections to ensure image uniformity during clinical imaging. A loss or corruption of the correction data of one head of a dual-head camera can result in an off-peak artifactual appearance. We present our experience with the occurrence of such an incident on a (67)Ga scan. A patient was referred for a whole-body (67)Ga scan to evaluate for causes of neutropenic fever. Whole-body planar and static images of the head, chest, abdomen, pelvis, and lower extremities in multiple projections were obtained. Whole-body images showed decreased image quality on the anterior view obtained with detector 1 and an unremarkable posterior image obtained with detector 2. A problem with detector 2 was suspected, and additional static images were obtained after rotation of the detector heads. The posterior images taken with detector 1 showed photomultiplier tube outlines. The anterior images taken with detector 2 showed improved count and image quality. It was later found that the uniformity map for detector 2 had been lost and that this software malfunction led to the resulting imaging problem. When artifacts with an off-peak appearance are seen on scintigraphic images, evaluation of possible causes should include not only isotope window settings but also an incorrect or corrupted uniformity map.

  16. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  17. The development and application of overheating failure model of FBR steam generator tubes. 2

    International Nuclear Information System (INIS)

    Miyake, Osamu; Hamada, Hirotsugu; Tanabe, Hiromi

    2001-11-01

    The JNC technical report 'The Development and Application of Overheating Failure Model of FBR Steam Generator Tubes' summarized the assessment method and its application for the overheating tube failure in an event of sodium-water reaction accident of fast breeder reactor's steam generators (SGs). This report describes the following items studied after the publication of the above technical report. 1. On the basis of the SWAT-3 experimental data, realistic local heating conditions (reaction zone temperature and related heat transfer conditions) for the sodium-water reaction were proposed. New correlations are cosine-shaped temperature profiles with 1,170 C maximum for the 100% and 40% Monju operating conditions, and those with 1,110 C maximum for the 10% condition. 2. For the cooling effects inside of target tubes, LWR's studies of critical heat flux (CHF) and post-CHF heat transfer correlations have been examined and considered in the assessment. The revised assessment adopts the Katto's correlation for CHF, and the Condie-Bengston IV correlation for post-CHF. 3. Other additional examination for the assessment includes treatments of the whole heating effect (other than the local reaction zone) due to the sodium-water reaction, and the temperature-dependent thermal properties of the heat transfer tube material (2.25Cr-1Mo steel). The revised overheating tube failure assessment method has been applied to the Monju SG studies. It is revealed consequently that no tube failure occurs in 100%, 40%, and 10% operating conditions when an initial leak is detected by the cover gas pressure detection system. The assessment for the SG system improved for the detection and blowdown systems shows even better safety margins against the overheating tube failure. (author)

  18. Experimental investigation of tube length effect on nucleate pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kang, Myeong-Gie

    1998-01-01

    The effect of a vertically installed tube length on the nucleate pool boiling heat transfer coefficient under atmospheric pressure has been empirically obtained using various combination of major parameters for application to advanced light water reactor design. The experimental data for q'' versus ΔT test are counted as 1,063 points and can cover the extent of D = 9.7 ∼ 25.4 mm, ε = 15.1 ∼ 60.9 nm, H = 5.25 ∼ 30.93, and q'' ≤ 160 kW/m 2 . The experimental results show that a shorter tube is more efficient to increase heat transfer rate due to smaller bubble slug formation on the tube surface. The effect of tube length is greatly observed before H(= L/D) gets 50. After that, the heat flux decreases linearly with H increase. To quantify tube length effect, a new empirical correlation has been developed based on the experimental data bank for pool boiling heat transfer and some parametric studies have been done using the newly developed empirical correlation to broaden its applicability. The newly developed empirical correlation has the form of q'' 0.019ε 0.570 ΔT 4.676 /(D 1.238 H 0.072 ) and can predict the experimental data within ± 20% bound. Heat transfer characteristics can be changed with tube length variation and the transition point is H ∼ 50. Before the transition point, bubble coalescence is active and heat transfer rate gets rapidly decreased with increasing tube length. After that, heat transfer gets somewhat slowly decreased since bubble coalescence effect gets nearly equilibrium with liquid agitation effect

  19. An investigation on SA 213-Tube to SA 387-Tube plate using friction welding process

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. Pandia; Kumaraswamidhas, L. A. [Indian Institute of Technology, Jharkhand (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Tamil Nadu (India); Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Friction welding of tube to tube plate using an external tool (FWTPET) is a relatively newer solid state welding process used for joining tube to tube plate of either similar or dissimilar materials with enhanced mechanical and metallurgical properties. In the present study, FWTPET has been used to weld SA 213 (Grade T12) tube with SA 387 (Grade 22) tube plate. The welded samples are found to have satisfactory joint strength and the Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) study showed that inter metallic compound is absent in the weld zone. The different weld joints have been identified and the phase composition is found using EDX and XRD. Microstructures have been analyzed using optical and Scanning electron microscopy (SEM). The mechanical properties such as hardness, compressive shear strength and peel test for different weld conditions are studied and the hardness survey revealed that there is increase in hardness at the weld interface due to grain refinement. The corrosion behavior for different weld conditions have been analyzed and the weld zone is found to have better corrosion resistance due to the influence of the grain refinement after FWTPET welding process. Hence, the present investigation is carried out to study the behavior of friction welded dissimilar joints of SA 213 tube and SA 387 tube plate joints and the results are presented. The present study confirms that a high quality tube to tube plate joint can be achieved using FWTPET process at 1120 rpm.

  20. A Method to Establishing Tube Plugging Criterion for Heat Exchangers with Straight Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungnam [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The difference of thermal expansion coefficients between the shell and tube materials causes the stress in axial direction of tube. Because of the axial stress due to thermal load, the straight tubes are used for heat exchangers operated in low temperature such as CCW (Component Cooling Water) heat exchangers and condensers. It is inevitable for the materials of the components to be degraded as the power plants become older. The degradation accompanies increasing maintenance cost as well as creating safety issues. The materials and wall thickness of heat exchanger tubes in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers, which is based on the USNRC Regulatory Guide 1.121, is introduced and the tube plugging criteria for the TPCCW heat exchanger of Yonggwang NPP No. 1 and 2. A method to establish the tube plugging criteria of heat exchangers with straight tubes are introduced based on the USNRC Regulatory Guide 1.121. As an example, the tube plugging criterion for the CCW heat exchanger of a nuclear power plant is provided.

  1. Ultrasonic measurement of gap between calandria tube and liquid injection shutdown system tube in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man; Lee, Jun Shin; Lee, Sun Ki; Lee, Jong Po

    2001-01-01

    Sag of CT or liquid injection shutdown system tubes in pressurized heavy water reactor is known to occur due to irradiation creep and growth during plant operation. When the sag of CT is big enough, the CT tube possibly comes in contact with liquid injection shutdown system tube (LIN) crossing beneath the CT, which subsequently may prevent the safe operation. It is therefore necessary to check the gap between the two tubes in order to confirm no contacts when using a proper measure periodically during the plant life. An ultrasonic gap measuring probe assembly which can be fed through viewing port installed on the calandria was developed and utilized to measure the sags of both tubes in a pressurized heavy water reactor in Korea. It was found that the centerlines of CT and LIN can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. But the measured gap data observed at the viewing port were actually not the data at the crossing point of CT and LIN. To get the actual gap between two tubes, mathematical modeling for the deflection curves of two tubes was used. The sags of CT and LIN tubes were also obtained by comparison of the present centerlines with the initial elevations at the beginning of plant operation. The gaps between two tubes in the unmeasurable regions were calculated based on the measurement data and the channel power distribution

  2. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  3. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  4. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  5. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  6. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  7. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  8. Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Greuner, H. [Max Planck Institute for Plasma Physics, Garching (Germany); Ehrke, G. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Böswirth, B.; Wang, Z. [Max Planck Institute for Plasma Physics, Garching (Germany); Clark, E. [University of Tennessee, Knoxville (United States); Lumsdaine, A. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Tretter, J. [Max Planck Institute for Plasma Physics, Garching (Germany); McGinnis, D.; Lore, J. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Ekici, K. [University of Tennessee, Knoxville (United States)

    2016-11-01

    Highlights: • Aim of scraper element: reduction of heat loads on high heat flux divertor ends. • Design: actively water-cooled for 20 MW/m{sup 2} local heat loads. • Technology: CFC NB31 monoblocks bonded by HIP to CuCrZr cooling tube. • Successful high heat flux testing up to 20 MW/m{sup 2}. - Abstract: The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m{sup 2}. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. The prototypes are presently under fabrication.

  9. Measurement of the single and two phase flow using newly developed average bidirectional flow tube

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Euh, Dong Jin; Kang, Kyung Ho; Song, Chul Hwa; Baek, Won Pil

    2005-01-01

    A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the pitot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal dirft-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio and Malnes' momentum exchange model could predict the phasic mass flow rates within a 15% error. A new momentum exchange model was also proposed from the present data and its implementation provides a 5% improvement to the measured mass flow rate when compared to that with the Bosio and Malnes' model

  10. Response of small pitot tubes in gas-liquid flows

    International Nuclear Information System (INIS)

    Davis, M.R.

    1980-01-01

    The pressure rise experienced by a pitot tube immersed in a bubbly gas-liquid mixture flow exceeds that predicted by homogeneous flow analysis under conditions where the pitot is smaller than the mean bubble size. A systematic dependence of the deviation from homogeneous flow analysis exists, depending upon the mixture void fraction. A maximum effect is observed at a void fraction of 0.60, where the pressure rise was found to be 1.73 times the predicted stagnation pressure rise or 0.87 of the mixture momentum flux density. The magnitude of these effects is comparable with similar effects reported elsewhere for gas/solid mixture flow due to relative motion between phases in the vicinity of the sensing probe tip. (orig.)

  11. Titanium condenser tubes--problems and their solutions for wider application to large surface condensers

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M

    1978-01-01

    To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.

  12. Axial strain localization of CuCrZr tubes during manufacturing of ITER-like mono-block W/Cu components using HIP

    International Nuclear Information System (INIS)

    Zhao, S.X.; Peng, L.J.; Li, Q.; Wang, W.J.; Wei, R.; Qin, S.G.; Shi, Y.L.; Chang, S.P.; Xu, Y.; Liu, G.H.; Wang, T.J.; Luo, G.-N.

    2014-01-01

    Highlights: • Axial cracking and denting of CuCrZr tubes were observed. • Annealing the as-received tubes can alleviate cracking. • Denting results in the formation bonding flaws at the Cu/CuCrZr interfaces. - Abstract: Two forms of axial strain localization of CuCrZr tubes, i.e., cracking and denting, were observed during the manufacturing of ITER-like mono-block W/Cu components for EAST employing hot isostatic pressing (HIP). Microscopic investigations indicate that the occurrence of axial strain localization correlates to the heavily deformed Cu grains and elongated Cr-rich precipitates as well as highly anisotropic microstructures, which impair the circumferential ductility. Annealing the as-received tubes at 600 °C alleviates cracking due to partial recrystallization of Cu grains. However, the annealed tubes are still sensitive to wall thinning (caused by non-uniform polishing or tube bending), which results in denting. Denting may cause bonding flaws at CuCrZr/Cu interfaces and the underlying mechanisms are discussed. To some extent, denting seems do not affect the high heat flux performance of components. In this paper, we demonstrate that testing only the axial mechanical properties is not enough for manufacturers who use HIP or hot radial pressing technologies, especially for those anisotropic tubes

  13. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  14. The Neutron Spectrum in a Uranium Tube

    International Nuclear Information System (INIS)

    Johansson, E.; Jonsson, E.; Lindberg, M.; Mednis, J.

    1963-10-01

    A series of experimental and theoretical investigations on neutron spectra in lattice cells has been started at the reactor R1. This report gives the results from the first one of these cells - one with a tube of natural -uranium surrounded by heavy water. In the measurements the cell was placed in the central, vertical channel of the reactor. The neutron spectrum from a lead scatterer in the uranium tube - outer diameter 49.2 mm, inner diameter 28.3 mm - was measured with a fast chopper in the energy region 0.01 to 100 eV. Subsidiary measurements indicated that the spectrum in the beam from the lead piece corresponds to the spectrum of the angular flux integrated over all angles. This correspondence is important for the interpretation of the experimental data. The thermal part of the spectrum was found to deviate significantly from a Maxwellian. However, the deviation is not very large, and one could use a Maxwellian, at least to give a rough idea of the hardness of the spectrum. For the present tube the temperature of this Maxwellian was estimated as 90 to 100 deg C above the moderator temperature (33 deg C). In the joining region the rise of the spectrum towards the thermal part is slower than for the cell boundary spectrum, measured earlier. In the epithermal region the limited resolution of the chopper has affected the measurements at the energies of the uranium resonances. However, the shape of the spectrum on the flanks of the first resonance in 238 U (6.68 eV) has been obtained accurately. In the theoretical treatment the THERMOS code with a free gas scattering model has been used. The energy region was 3.06 - 0.00025 eV. The agreement with the measurements is good for the thermal part - possibly the theoretical spectrum is a little softer than the experimental one. In the joining region the results from THERMOS are comparatively high - probably due to the scattering model used

  15. The Neutron Spectrum in a Uranium Tube

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Jonsson, E; Lindberg, M; Mednis, J

    1963-10-15

    A series of experimental and theoretical investigations on neutron spectra in lattice cells has been started at the reactor R1. This report gives the results from the first one of these cells - one with a tube of natural -uranium surrounded by heavy water. In the measurements the cell was placed in the central, vertical channel of the reactor. The neutron spectrum from a lead scatterer in the uranium tube - outer diameter 49.2 mm, inner diameter 28.3 mm - was measured with a fast chopper in the energy region 0.01 to 100 eV. Subsidiary measurements indicated that the spectrum in the beam from the lead piece corresponds to the spectrum of the angular flux integrated over all angles. This correspondence is important for the interpretation of the experimental data. The thermal part of the spectrum was found to deviate significantly from a Maxwellian. However, the deviation is not very large, and one could use a Maxwellian, at least to give a rough idea of the hardness of the spectrum. For the present tube the temperature of this Maxwellian was estimated as 90 to 100 deg C above the moderator temperature (33 deg C). In the joining region the rise of the spectrum towards the thermal part is slower than for the cell boundary spectrum, measured earlier. In the epithermal region the limited resolution of the chopper has affected the measurements at the energies of the uranium resonances. However, the shape of the spectrum on the flanks of the first resonance in {sup 238}U (6.68 eV) has been obtained accurately. In the theoretical treatment the THERMOS code with a free gas scattering model has been used. The energy region was 3.06 - 0.00025 eV. The agreement with the measurements is good for the thermal part - possibly the theoretical spectrum is a little softer than the experimental one. In the joining region the results from THERMOS are comparatively high - probably due to the scattering model used.

  16. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  17. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  18. Results of investigation of spray controlled heat transfer crisis in tubes

    International Nuclear Information System (INIS)

    Sapankevich, A.P.; Kalinina, O.K.; Selivanov, Yu.F.

    1984-01-01

    Coefficient of liquid phase mass transfer is a determining parameter in tubes at crisis controlled with precipitating on heat surface a liquid phase carried in flow. To determine mass transfer coefficients in 4-14 MPa pressure range at 400-2000 kg/m 2 s mass velocities, special experiments were performed in experimental section consisting of two independently heated tubes in-series-connected along the flow. Heat transfer crisis was reached simultaneously in two sections which permitted to eliminate influence of liquid flowing on the wall in the controlsection. A part of heat removed due to forced convection was taken account of during calculation of mass transfer coefficient. Processing results are presented in the criterional form. Mean-square deviation with respect to massive obtained was amounted to 24% during calculation of the mass transfer coefficient and 20% during calculation of critical heat flux

  19. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  20. Intercostal drainage tube or intracardiac drainage tube?

    Science.gov (United States)

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  1. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  2. Support tube of in-core instruments

    International Nuclear Information System (INIS)

    Suzumura, Takeshi; Saito, Shozo; Yasuda, Tetsuo; Shirosaki, Kiyotaka.

    1975-01-01

    Object: To permit satisfactory output measurement by preventing the bending of a in-core instrument tube within a reactor due to vibrations by means of a spring and thereby preventing mechanical damage of an adjacent fuel channel box. Structure: At a corner of a channel box of a fuel assembly, a in-core instrument tube is arranged along a channel box and has its surface provided with a plurality of removable leaf springs arranged in the direction of axis of the in-core instrument tube and each having an arcular tip. Thus, when the in-core instrument tube is inserted into the reactor, the arcular tip portions of the leaf springs are brought into plane contact with the corner of the channel box so that the in-core instrument tube is elastically supported on the channel box. Thus, there is no possibility of causing damage to the adjacent fuel channel box. (Kamimura, M.)

  3. Plugging criteria for steam generator tubes with axial cracks near tube support plates

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2000-01-01

    Stress corrosion cracking with intergranular attack occurs on the secondary side of steam generator (SG) tubes where impurities concentrate due to boiling under restricted flow conditions. In the most of cases, it can be called ODSCC (Outer Diameter Stress Corrosion Cracking). The typical locations are areas near support plates, in sludge piles and at top of tubesheet crevices. Though it can also occur on free spans under the relatively thin deposits that build up on the tube surfaces. ODSCC near tube plate supports have been the cause of plugging of many tubes. Thus, studies on SG tubes plugging criteria related to this degradation mechanism are presented in this paper. Th purpose is to avoid unnecessary tube plugging from either safety or reliability standpoint. Based on these studies some conclusions on the plugging criteria and on the difficulties to apply them are addressed. (author)

  4. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  5. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  6. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  7. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  8. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  9. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    Science.gov (United States)

    Moran, Joaquin E.

    An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass

  10. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    Science.gov (United States)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  11. Effect of boric acid on intergranular corrosion in tube support plate crevices

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campan, J.L.

    1993-10-01

    Intergranular attack on steam generator tubing is one important phenomenon involved in availability of Pressurized Water Reactors. Boric acid appears to be a possible candidate for inhibiting the corrosion process. The program performed in Cadarache was supposed to give statistical informations on the boric acid effect. It was based on a large number of samples initially attacked during a program performed by BABCOCK ampersand WILCOX. These samples were sleeved onto Alloy 690 tubes, in order to prevent premature cracking. Unfortunately it was not possible to find chemical conditions able to produce significant additional corrosion; we postulated mainly due to a drastic reduction of the thermal flux resulting from the increase of the tube wall thickness under the tube support plates (TSP). The tests demonstrate that such sleeve could be a possible remedy of the corrosion when introduced under the TSP. The tests show indications of a possible beneficial effect of the boric acid, a large variability of the heats sensitivity to the IGA and a predominant effect of Na 2 CO 3 on IGA production

  12. Failure of fretted steam generator tubes under accident conditions

    International Nuclear Information System (INIS)

    Forrest, C.F.

    1996-10-01

    Tests were carried out with a bank of tubes in a water tunnel to determine the tolerance of flawed nuclear reactor steam generator tubes to accident conditions which would result in high cross-flow velocities. Fourteen specimen tubes were tested, each having one or two types of defect machined into the surface simulating fretting-wear type scars found in some operating steam generators. The tubes were tested at flow velocities sufficient to induce high fluid elastic-type vibrations. Seven of the tubes failed near the thinnest section of the defects during the one-hour tests, due to impacting and/or rubbing between the tube and the support. Strain gauges, displacement transducers, force gauges and an accelerometer were used on the target tube and/or the tube immediately downstream of it to measure their vibrational characteristics

  13. Tube sheet design for PFBR steam generator

    International Nuclear Information System (INIS)

    Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1991-01-01

    Top and bottom tube sheets of PFBR Steam Generators have been analysed with 3D and axisymmetric models using CASTEM Programs. Analysis indicates that the effects of piping reactions at the inlet/outlet nozzles on the primary stresses in the tube sheets are negligible and the asymmetricity of the deformation pattern introduced in the tube sheet by the presence of inlet/outlet and manhole nozzles is insignificant. The minimum tube sheet thicknesses for evaporator and reheater are 135 mm and 75 mm respectively. Further analysis has indicated the minimum fillet radius at the junction of tube sheet and dished end should be 20 mm. Simplified methodology has been developed to arrive at the number of thermal baffles required to protect the tube sheet against fatigue damage due to thermal transient. This method has been applied to PFBR steam generators to determine the required number of thermal baffles. For protecting the bottom tube sheet of evaporator against the thermal shock due to feed water and secondary pump trip, one thermal shield is found to be sufficient. Further analysis is required to decide upon the actual number to take care of the severe thermal transient, following the event of sudden dumping of water/steam, immediately after the sodium-water reaction. (author)

  14. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  15. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube......’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  16. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  17. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Gherbanovschi, N.; Tanasa, M.; Stoican, O.

    2002-01-01

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  18. Computation and measurement of calandria tube sag in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man

    2003-01-01

    Calandria tubes and liquid injection shutdown system (LISS) tubes in a pressurized heavy water reactor (PHWR) is known to sag due to irradiation creep and growth during plant operation. When the sag of calandria tube becomes bigger, the calandria tube possibly comes in contact with LISS tube crossing beneath and calandria tube. The contact subsequently may cause the damage on the calandria tube resulting in unpredicted outage of the plant. It is therefore necessary to check the gap between the two tubes in order to periodically confirm no contact by using a proper measure during the plant life. An ultrasonic gap measuring probe assembly which can be inserted into two viewing ports of the calandria was developed in Korea and utilized to measure the sags of both tubes in the PHWR. It was found that the centerlines of calandria tubes and liquid injection shutdown system tubes can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. Based on the irradiation creep equation and the measurement data, a computer program to calculate the sags was also developed. With the computer program, the sag at the end of plant life was predicted. (author)

  19. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  20. Structural integrity assessment of steam generator tubes deteriorated through primary water stress corrosion cracking in transition region of tube expansion

    International Nuclear Information System (INIS)

    Silveira, Helvecio Carlos Klinke da

    2002-01-01

    In PWR plants, steam generator tube degradation has been one of the most important economical concerns, besides causing operational safety problems. In this work, a survey of steam generator tube degradation modes is done. Degradation mechanisms and influence factors are introduced and discussed. The importance of stress corrosion cracking, especially in transition region of tube expansion zone, is underlined. The actual steam generator tube plugging criteria are conservative. Proposed alternative criteria are introduced and discussed. Distinction is done to structural integrity assessment of defective tubes. Real data of tube defect indications of axial cracks in expansion transition zone due to primary water stress corrosion cracking are used in analysis. Results allow discussing application aspects of deterministic and probabilistic criteria on structural integrity assessment of tubes with defect indications. Applied models are specifics, but the application of concept may be extended to other steam generator tube degradation modes. (author)

  1. Categorising YouTube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  2. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  3. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  4. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  5. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.; Stipan, L.

    1992-03-01

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  6. Correlation between abnormal deuterium flux and heat flow in a D/Pd system

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Tian Jian; Wei Qingming; Zhou Rui; Yu Zhiwu

    2003-01-01

    Deuterium flux through the thin wall of a palladium tube has been studied by monitoring gas pressure and temperature. A high-precision calorimeter (Calvet) was used to detect heat flow when the heater was shut down and the palladium tube was cooling down slowly. At certain temperatures an abnormal deuterium flux appeared. This deuterium flux reached a peak when the temperature of the palladium was decreasing. This abnormal deuterium flux differs from the monotonic feature of a normal diffusive flux and is accompanied by a heat flow

  7. Rejection index for pressure tubes

    International Nuclear Information System (INIS)

    Mitchell, A.B.; Meneley, D.

    1989-10-01

    The objective of the present study was to establish a set of criteria (or Rejection Index) which could be used to decide whether a zirconium-2 1/2 w/o niobium pressure tube in a CANDU reactor should be removed from service due to in-service degradation. A critique of key issues associated with establishing a realistic rejection index was prepared. Areas of uncertainty in available information were identified and recommendations for further analysis and laboratory testing made. A Rejection Index based on the following limits has been recommended: 1) Limits related to design intent and normal operation: any garter spring must remain within the tolerance band specified for its design location; the annulus gas system must normally be operated in a circulating mode with a procedure in place for purging to prevent accumulation of deuterium. It must remain sensitive to leaks into any part of the systems; and pressure tube dimensions and distortions must be limited to maintain the fuel channels within the original design intent; 2) Limits related to defect tolerance: adequate time margins between occurrence of a leaking crack and unstable failure must be demonstrated for all fuel channels; long lap-type flaws are unacceptable; crack-like defects of any size are unacceptable; and score marks, frat marks and other defects with contoured profiles must fall below certain depth, length and stress intensity limits; and 3) Limits related to property degradation: at operating temperature each pressure tube must be demonstrated to have a critical length in excess of a stipulated value; the maximum equivalent hydrogen level in any pressure tube should not exceed a limit which should be defined taking into account the known history of that tube; the maximum equivalent hydrogen level in any rolled joint should not exceed a limit which is presently recommended as 200 ppm equivalent hydrogen; and the maximum diametral creep strain should be limited to less than 5%

  8. Tension Pneumothorax and Subcutaneous Emphysema Complicating Insertion of Nasogastric Tube

    Directory of Open Access Journals (Sweden)

    Narjis AL Saif

    2015-01-01

    Full Text Available Nasogastric tube has a key role in the management of substantial number of hospitalized patients particularly the critically ill. In spite of the apparent simple insertion technique, nasogastric tube placement has its serious perhaps fatal complications which need to be carefully assessed. Pulmonary misplacement and associated complications are commonplace during nasogastric tube procedure. We present a case of tension pneumothorax and massive surgical emphysema in critically ill ventilated patient due to inadvertent nasogastric tube insertion and also discussed the risk factors, complication list, and arrays of techniques for safer tube placement.

  9. Extending service life of steam generators by sleeving tubes

    International Nuclear Information System (INIS)

    Gutzwiller, J.E.

    1982-01-01

    Steam generator tubes that are failing due to IGA in the tubesheet crevice can be kept in service by using the basic sealable sleeve design developed by BandW. Variations of the present sleeve design could significantly reduce the number of tubes that must be plugged each year. Sleeving had the potential of keeping 28 percent more tubes in service during 1979. Lowering the overall rate at which tubes are removed from service by plugging will reduce the probability of having to derate the plant or replace the steam generator. Considering tomorrow's replacement power costs, sleeving to keep tubes in service is a practical and sound investment

  10. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  11. Due diligence

    International Nuclear Information System (INIS)

    Sanghera, G.S.

    1999-01-01

    The Occupational Health and Safety (OHS) Act requires that every employer shall ensure the health and safety of workers in the workplace. Issues regarding the practices at workplaces and how they should reflect the standards of due diligence were discussed. Due diligence was described as being the need for employers to identify hazards in the workplace and to take active steps to prevent workers from potentially dangerous incidents. The paper discussed various aspects of due diligence including policy, training, procedures, measurement and enforcement. The consequences of contravening the OHS Act were also described

  12. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Science.gov (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  13. Micrometeorological flux measurements of aerosol and gases above Beijing

    Science.gov (United States)

    Nemitz, Eiko; Langford, Ben; Mullinger, Neil; Cowan, Nicholas; Coyle, Mhairi; Acton, William Joe; Lee, James; Fu, Pingqing

    2017-04-01

    Air pollution is estimated to cause 1.6 million premature deaths in China every year and in the winter 2016/17 Beijing had to issue health alerts and put in place ad hoc limitations on industrial and vehicular activity. Much of this pollution is attributed to emissions from industrial processes and in particular coal combustion. By contrast, the diffuse pollutant sources within the city are less well understood. This includes, e.g., emissions from the Beijing traffic fleet, the sewage system, food preparation, solid fuel combustion in the streets and small industrial processes. Within the framework of a major UK-Chinese collaboration to study air pollution and its impact on human health in Beijing, we therefore measured fluxes of a large range of pollutants from a height of 102 m on the 325 m meteorological tower at the Institute of Atmospheric Physics. Several instruments were mounted at 102 m: fluxes of CO2 and H2O were measured with an infrared gas analyser (LiCOR 7500) and fluxes of ozone with a combination of a relative fast-response ozone analyser (ROFI) and a 2B absolute O3 instrument. Total particle number fluxes were measured with a condensation particle counter (TSI CPC 3785), and size-segregated fluxes over the size range 0.06 to 20 μm with a combination of an optical Ultrafine High Sensitivity Aerosol Spectrometer (UHSAS) and an Aerodynamic Particle Sizer Spectrometer (TSI APS3321). Ammonia (NH3) fluxes were measured for the first time above the urban environment using an Aerodyne compact quantum cascade laser (QCL). In addition, composition resolved aerosol fluxes were measured with an Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), operated in a measurement container at the bottom of the tower, which subsampled from a 120 m long copper tube (15 mm OD). The analysis so far suggests that, due to often low wind speeds, fluxes were at times de-coupled from the surface. Fluxes normalised by CO2, a tracer for the amount of fossil fuel consumed, should be

  14. Specification of ROP flux shape

    International Nuclear Information System (INIS)

    Min, Byung Joo; Gray, A.

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs

  15. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  16. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  17. Pyrotechnic Tubing Connector

    Science.gov (United States)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  18. Subcooled Pool Boiling from Two Tubes of 6 Degree Included Angle in Vertical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2015-05-15

    One of the major issues in the design of a heat exchanger is the heat transfer in a tube bundle. The passive condensation heat exchanger (PCHX) adopted in APR+ has U-type tube. The PCHX is submerged in the passive condensation cooling tank (PCCT). The heat exchanging tubes are in vertical alignment and inclined at 3 degrees to prevent water hammer as shown in Fig. 1. For the cases, the upper tube is affected by the lower tube. Therefore, the results for a single tube are not applicable to the design of the PCHX. However, the passive heat exchangers are submerged in the subcooled water under atmospheric pressure. The water temperature in the PCCT rises according to the PAFS actuation and reaches the saturation temperature after more than 2.5 hours. Since this period is very important to maintain reactor integrity, the exact evaluation of heat transfer on the tube bundle is indispensable. Although an experimental study on both subcooled and saturated pool boiling of water was performed to obtain local heat transfer coefficients on a 3 degree inclined tube at atmospheric pressure by Kang, no previous results were treating the bundle effect in the subcooled liquid. The heat transfer on the upper tube is enhanced compared with the single tube. The enhancement of the heat transfer on the upper tube is estimated by the bundle effect ( h{sub r} ). It is defined as the ratio of the heat transfer coefficient ( h{sub b} ) for an upper tube in a bundle with lower tubes activated to that for the same tube activated alone in the bundle. The upper tube within a tube bundle can significantly increase nucleated boiling heat transfer compared to the lower tubes at moderate heat fluxes. Summarizing the published results, it is still necessary to identify effects of liquid subcooling on inclined tubes for application to the PCHX design. Therefore, the present study is aimed to study the variations of pool boiling heat transfer on a tube bundle having a 6 degree included angle in

  19. Properties of Flux Tubes and the Relation with Solar Irradiance ...

    Indian Academy of Sciences (India)

    tribpo

    with variations on time-scales of minutes up to the length of the solar cycle. Most prominent is a .... Frutiger et al. 1999). To bypass the difficulties arising from such multi dimensional or multi component ... The fractional coverage of the solar ...

  20. A Laboratory Astrophysical Jet to Study Canonical Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    You, Setthivoine [Univ. of Washington, Seattle, WA (United States)

    2017-12-20

    Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficient with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.

  1. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  2. CHF prediction in rod bundles using round tube data

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Wallen F.; Veloso, Maria A.F.; Pereira, Cláubia; Costa, Antonella L., E-mail: wallenfds@yahoo.com.br, E-mail: mdora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The present work concerns the use of 1995 CHF table for uniformly heated round tubes, developed jointly by Canadian and Russian researchers, for the prediction of critical heat fluxes in rod bundles geometries. Comparisons between measured and calculated critical heat fluxes indicate that this table could be applied to rod bundles provided that a suitable correction factor is employed. The tolerance limits associated with the departure from nucleate boiling ratio (DNBR) are evaluated by using statistical analysis. (author)

  3. A model for correlating burnout in round tubes

    International Nuclear Information System (INIS)

    Kirby, G.J.

    1966-09-01

    A model is presented which represents the film flow rate in the climbing film regime of boiling two phase flow. By calculating the dryout point burnout heat fluxes for round tubes both uniformly and non-uniformly heated axially have been predicted with accuracies as good as the best empirical correlations. The model is used to investigate the effect of varying flux profile as well as the other system describing parameters. (author)

  4. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  5. Ferromagnetic material inspection for feedwater heater and condenser tubes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In recent years, special ferritic stainless steels, such as AL29-4C/sup TM/, Sea-Cure/sup TM/, E-Brite/sup TM/, 439, and similar alloys have been introduced as tube material in condensers, feedwater heaters, moisture separator/reheaters, and other heat exchangers. In addition, carbon steel tubes are widely used in feedwater heaters and heat exchangers in chemical plants. The main problem with the in-service inspection of these ferritic alloys and carbon steel tubes lies in their highly ferromagnetic properties. These properties severely limit the application of the standard eddy current techniques. The effort was undertaken under EPRI sponsorship to develop a reliable technique for in-service inspection of ferromagnetic tubes. The new method combines the measurement of magnetic flux leakage generated around the defects with measurement of total flux in the tube wall. The heart of the inspection system is a special ID probe that magnetizes the tube and generates signals for any tube defect. A permanent record of inspection is provided with a strip-chart or magnetic tape recorder. The laboratory and field evaluation of this new system demonstrated its very good sensitivity to small defects, its reliability, and its ruggedness. Defects as small as 10% external wall loss in heavy wall carbon steel tube were detected. Tubes in the power plant were inspected at a rate of 300-500 tubes per eight-hour shift. The other advantages of this newly developed technique are its simplicity, low cost of instrumentation, easy data interpretation, and full portability

  6. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  7. Studies on defect detectability in banded stainless steel tubes

    International Nuclear Information System (INIS)

    Shyamsunder, M.T.; Rao, B.P.C.; Babu Rao, C.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    During inspection of one batch of stainless steel cladding tubes, a few of the tubes gave rise to continuous large amplitude indications throughout the length of the tube. It was observed that the presence of any defects in such tubes would be impossible to detect, due to the poor signal-to-noise ratio. Detailed investigations regarding the surface profile of the tubes were carried out using a novel technique called the projected interferometry method revealed periodic diametral variations and the same were further confirmed by cross sectional profiling. The feasibility of detecting defects in such banded tubes, using eddy current testing were carried out on tubes with artificial defects. This paper discusses the use of three different eddy current methods and their relative performances for inspection. The specific advantages of the phased array eddy current testing method in unambiguous defect detection in situations similar to the one encountered during the present investigations are also discussed. (author)

  8. The root caused analysis of leakaged heat exchanger tube

    International Nuclear Information System (INIS)

    Shamsudin, Shaiful Rizam; Salleh, M.A.A. Mohd; Rahmat, Azmi; Anuar, Mohd Arif; Harun, Mohd; Zayid, Hafizal; Noor, Mazlee Mohd

    2015-01-01

    AISI type 316L stainless steel was used as a heat exchanger tube material in an inter-cooler column. After less than a year of operation, severe corrosion failures occurred and a transverse opening leakage was observed on one of the heat exchanger tubes. The failed tube was carefully analyzed using various metallurgical laboratory equipments. The root cause of the tube leakage was believed due to the presence of horizontal micro and macro pores as a hydrogen gas entrapment during casting of the parent ingot. The overlapped and gaping pores formed notch on the shell side of the tube surface, and it increasingly evident when the use of a high-energy water-jet and metal brush as cleaning procedure results in an establishment of pitting type local-action corrosion cells penetrated the tube wall. As a result, corrosive fluid in the tube side dissolved into the cooling water, accelerating the corrosion process.

  9. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  10. Sensitive technique for detecting outer defect on tube with remote field eddy current testing

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Nagai, Satoshi; Ochiai, Makoto; Jimbo, Noboru; Komai, Masafumi

    2008-01-01

    In the remote field eddy current testing, we proposed the method of enhancing the magnetic flux density in the vicinity of an exciter coil by controlling the magnetic flux direction for increasing the sensitivity of detecting outer defects on a tube and used the flux guide made of a magnetic material for the method. The optimum structural shape of the flux guide was designed by the magnetic field analysis. On the experiment with the application of the flux guide, the magnetic flux density increased by 59% and the artificial defect detection signal became clear. We confirmed the proposed method was effective in a high sensitivity. (author)

  11. Formability of Micro-Tubes in Hydroforming

    International Nuclear Information System (INIS)

    Hartl, Christoph; Anyasodor, Gerald; Lungershausen, Joern

    2011-01-01

    Micro-hydroforming is a down-scaled metal forming process, based on the expansion of micro-tubes by internal pressurization within a die cavity. The objective of micro-hydroforming is to provide a technology for the economic mass production of complex shaped hollow micro-components. Influence of size effects in metal forming processes increases with scaling down of metal parts. Investigations into the change in formability of micro-tubes due to metal part scaling down constituted an important subject within the conducted fundamental research work. Experimental results are presented, concerning the analysis of the formability of micro-tubes made from stainless steel AISI 304 with an outer diameter of 800 μm and a wall thickness of 40 μm. An average ratio of tube wall thickness to grain size of 1.54 of up to 2.56 was analyzed. Miniaturised mechanical standard methods as well as bulge tests with internal hydrostatic pressurization of the tubular specimens were applied to analyze the influence of size-dependent effects. A test device was developed for the bulge experiments which enabled the pressurization of micro-tubes with internal pressures up to 4000 bar. To determine the attainable maximum achievable expansion ratio the tubes were pressurized in the bulge tests with increasing internal pressure until instability due to necking and subsequent bursting occurred. Comparisons with corresponding tests of macro-tubes, made from the here investigated material, showed a change in formability of micro-tubes which was attributed to the scaling down of the hydroforming process. In addition, a restricted applicability of existing theoretical correlations for the determination of the maximum pressure at bursting was observed for down-scaled micro-hydroforming.

  12. Generalized drift-flux correlation

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.

    1991-01-01

    A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve

  13. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  14. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  15. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  16. Neutron flux enhancement in the NRAD reactor

    International Nuclear Information System (INIS)

    Weeks, A.A.; Heidel, C.C.; Imel, G.R.

    1988-01-01

    In 1987 a series of experiments were conducted at the NRAD reactor facility at Argonne National Laboratory - West (ANL-W) to investigate the possibility of increasing the thermal neutron content at the end of the reactor's east beam tube through the use of hydrogenous flux traps. It was desired to increase the thermal flux for a series of experiments to be performed in the east radiography cell, in which the enhanced flux was required in a relatively small volume. Hence, it was feasible to attempt to focus the cross section of the beam to a smaller area. Two flux traps were constructed from unborated polypropylene and tested to determine their effectiveness. Both traps were open to the entire cross-sectional area of the neutron beam (as it emerges from the wall and enters the beam room). The sides then converged such that at the end of the trap the beam would be 'focused' to a greater intensity. The differences in the two flux traps were primarily in length, and hence angle to the beam as the inlet and outlet cross-sectional areas were held constant. The experiments have contributed to the design of a flux trap in which a thermal flux of nearly 10 9 was obtained, with an enhancement of 6.61

  17. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  18. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  19. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.

    2011-03-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.

  20. Contribution to the heat transfer analysis of substitute refrigerants in evaporator tubes with smooth or enhanced tube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, N

    1997-12-31

    The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, requests a good knowledge of heat transfer properties of substitute fluids. A new test facility has been built at the Laboratory for Industrial Energy Systems (LENI) to contribute to this international effort. It consists of two sets of concentric tubes allowing either annular or inside tube convective boiling with a counter current water flow heating to be studied. A new data base including heat transfer coefficients and pressure drop measurements for four new refrigerants (R123, R134A, R402A and R404A) and three older refrigerants (R11, R12 and R502) has been collected. Flow boiling measurements covered a broad range of mass velocities, vapor qualities and heat fluxes. Some of the tests included plain tubes and others enhanced surface tubes (microfilms from Wieland) in horizontal and vertical orientations. An improved Wilson plot technique, that covers both the transition and turbulent flow regimes of the water flowing in the annular channel for the inside tube boiling tests, is proposed to overcome the severe limitations of conventional Wilson plots, to improve accuracy and to facilitate data processing. Mean flow boiling heat transfer coefficients were measured for R12 and R134A evaporating inside a horizontal plain tube and for R11 and R123 evaporating inside a horizontal plain tube. Local flow boiling heat transfer coefficients were measured for : R134A, R123, R404A and R502 evaporating inside a horizontal plain tube, for R134A and R123 evaporating inside a horizontal microfin tube and for R134 evaporating inside a vertical microfin tube. In addition microfin heat transfer augmentation relative to plain tube test data was investigated. The measured heat transfer coefficients were compared to different existing inside tube flow boiling correlations. (author) figs., tabs., refs.

  1. Burnout heat flux in natural flow boiling

    International Nuclear Information System (INIS)

    Helal, M.M.; Darwish, M.A.; Mahmoud, S.I.

    1978-01-01

    Twenty runs of experiments were conducted to determine the critical heat flux for natural flow boiling with water flowing upwards through annuli of centrally heated stainless steel tube. The test section has concentric heated tube of 14mm diameter and heated lengthes of 15 and 25 cm. The outside surface of the annulus was formed by various glass tubes of 17.25, 20 and 25.9mm diameter. System pressure is atmospheric. Inlet subcooling varied from 18 to 5 0 C. Obtained critical heat flux varied from 24.46 to 62.9 watts/cm 2 . A number of parameters having dominant influence on the critical heat flux and hydrodynamic instability (flow and pressure oscillations) preceeding the burnout have been studied. These parameters are mass flow rate, mass velocity, throttling, channel geometry (diameters ratio, length to diameter ratio, and test section length), and inlet subcooling. Flow regimes before and at the moments of burnout were observed, discussed, and compared with the existing physical model of burnout

  2. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  3. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  4. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  5. Bull Moose Tube Company

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against the Bull Moose Tube Company, a business located at 1819 Clarkson Road, Chesterfield, MO, 63017, for alleged violations at the facility located at 406 East Industrial Drive,

  6. Tracheostomy tube - eating

    Science.gov (United States)

    Trach - eating ... take your first bites. Certain factors may make eating or swallowing harder, such as: Changes in the ... easier to swallow. Suction the tracheostomy tube before eating. This will keep you from coughing while eating, ...

  7. Thermomechanical behavior and modeling of zircaloy cladding tubes from an unirradiated state to high burn-up

    International Nuclear Information System (INIS)

    Schaeffler-Le Pichon, I.; Geyer, P.; Bouffioux, P.

    1997-01-01

    Creep laws are nowadays commonly used to simulate the fuel rod response to the solicitations it faces during its life. These laws are sufficient for describing the base operating conditions (where only creep appears), but they have to be improved for power ramp conditions (where hardening and relaxation appear). The modification due to a neutronic irradiation of the thermomechanical behavior of stress-relieved Zircaloy 4 fuel tubes that have been analysed for five different fluences ranging from a non-irradiated material to a material for which the combustion rate was very high is presented. In the second part, a viscoplastic model able to simulate, for different isotherms, out-of-flux anisotropic mechanical behavior of the cladding tubes irradiated until high burn-up is proposed. Finally, results of numerical simulations show the ability of the model to reproduce the totality of the thermomechanical experiments. (author)

  8. Streak tube development

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Estrella, R.M.

    1979-01-01

    A research program for the development of a high-speed, high-resolution streak image tube is described. This is one task in the development of a streak camera system with digital electronic readout, whose primary application is for diagnostics in underground nuclear testing. This program is concerned with the development of a high-resolution streak image tube compatible with x-ray input and electronic digital output. The tube must be capable of time resolution down to 100 psec and spatial resolution to provide greater than 1000 resolution elements across the cathode (much greater than presently available). Another objective is to develop the capability to make design changes in tube configurations to meet different experimental requirements. A demountable prototype streak tube was constructed, mounted on an optical bench, and placed in a vacuum system. Initial measurements of the tube resolution with an undeflected image show a resolution of 32 line pairs per millimeter over a cathode diameter of one inch, which is consistent with the predictions of the computer simulations. With the initial set of unoptmized deflection plates, the resolution pattern appeared to remain unchanged for static deflections of +- 1/2-inch, a total streak length of one inch, also consistent with the computer simulations. A passively mode-locked frequency-doubled dye laser is being developed as an ultraviolet pulsed light source to measure dynamic tube resolution during streaking. A sweep circuit to provide the deflection voltage in the prototype tube has been designed and constructed and provides a relatively linear ramp voltage with ramp durations adjustable between 10 and 1000 nsec

  9. Researching YouTube

    OpenAIRE

    Arthurs, Jane; Drakopoulou, Sophia; Gandini, Alessandro

    2018-01-01

    ‘Researching YouTube’ introduces the special issue of Convergence which arose out of an international academic conference on YouTube that was held in London at Middlesex University in September 2016. The conference aimed to generate a robust overview of YouTube’s changing character and significance after its first ten years of development by creating a productive dialogue between speakers from different disciplines and cultures, and between YouTube-specific research and wider debates in media...

  10. Tubing crimping pliers

    Science.gov (United States)

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  11. Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs

  12. Sudden endotracheal tube block in a patient of Achalasia Cardia

    Directory of Open Access Journals (Sweden)

    Ajit Gupta

    2012-01-01

    Full Text Available Endotracheal tube block due to various mechanical causes such as mucous, blood clot, denture, and ampoules have been reported. A patient of achalasia cardia with chronic passive aspiration pneumonitis developed mucoid mass in the respiratory passage which dislodged during the surgical procedure. The episode occurred almost an hour after induction of anesthesia and the dislodged mucoid mass blocked the lumen of endotracheal tube, leading to hypoxia and impending cardiac arrest. However, the patient was salvaged by replacing the tube.

  13. Usage of information safety requirements in improving tube bending process

    Science.gov (United States)

    Livshitz, I. I.; Kunakov, E.; Lontsikh, P. A.

    2018-05-01

    This article is devoted to an improvement of the technological process's analysis with the information security requirements implementation. The aim of this research is the competition increase analysis in aircraft industry enterprises due to the information technology implementation by the example of the tube bending technological process. The article analyzes tube bending kinds and current technique. In addition, a potential risks analysis in a tube bending technological process is carried out in terms of information security.

  14. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  15. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    Scheidl, H.

    1976-01-01

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures

  16. Dryout in sodium-heated helically-coiled steam generator tubes

    International Nuclear Information System (INIS)

    Tomita, Y.; Kosugi, T.; Kubota, J.; Nakajima, K.; Tsuchiya, T.

    1984-01-01

    Experimental research on the dryout phenomenon in sodium heated, helically coiled steam generator tubes was carried out. The fluctuation of the tube wall temperature caused by dryout was measured with thermocouples installed in the center of the tube wall. Empirical correlations of dryout quality were developed as functions of critical heat flux, water mass velocity and saturation pressure. These correlations confirmed that the design criterion of the MONJU steam generator was reasonable. (author)

  17. Set-up for steam generator tube bundle washing after explosion expanding the tubes

    International Nuclear Information System (INIS)

    Osipov, S.I.; Kal'nin, A.Ya.; Mazanenko, M.F.

    1985-01-01

    Set-up for steam generator tube bundle washing after the explosion expanding of tubes is described. Washing is accomplished by distillate. Steam is added to distillate for heating, and compersed air for preventing hydraulic shock. The set-up is equiped by control equipment. Set-up performances are presented. Time for one steam generator washing constitutes 8-12 h. High economic efficiency is realized due to the set-up introduction

  18. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  19. Creeping gaseous flows through elastic tube and annulus micro-configurations

    Science.gov (United States)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  20. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    Science.gov (United States)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  1. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  2. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  3. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Infante Ferreira, C A [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control

    2003-06-01

    Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m{sup -2} s{sup -}2{sup 1} and a quality range from approximately 10-80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18{sup o} helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile. (author)

  4. Effect of power variations across a fuel bundle and within a fuel element on fuel centerline temperature in PHWR bundles in uncrept and crept pressure tubes

    International Nuclear Information System (INIS)

    Onder, E.N.; Roubtsov, D.; Rao, Y.F.; Wilhelm, B.

    2017-01-01

    Highlights: • Pressure tube creep effect on fuel pin power and temperatures was investigated. • Noticeable effects were observed for 5.1% crept pressure tube. • Bundle eccentricity effect on power variations was insignificant for uncrept channels. • Difference of 112 °C was observed between top & bottom elements in 5.1% crept channel. • Not discernible fission gas release was expected with temperature difference of 112 °C. - Abstract: The neutron flux and fission power profiles through a fuel bundle and across a fuel element are important aspects of nuclear fuel analysis in multi-scale/multi-physics modelling of Pressurized Heavy Water Reactors (PHWRs) with advanced fuel bundles. Fuel channels in many existing PHWRs are horizontal. With ageing, pressure tubes creep and fuel bundles in these pressure tubes are eccentrically located, which results in an asymmetric coolant flow distribution between the top and bottom of the fuel bundles. The diametral change of the pressure tube due to creep is not constant along the fuel channel; it reaches a maximum in the vicinity of the maximum neutron flux location. The cross-sectional asymmetric positioning of fuel bundles in a crept pressure tube contributes to an asymmetric power distribution within a ring of fuel elements. Modern reactor physics lattice codes (such as WIMS-AECL) are capable of predicting the details of power distribution from basic principles. Thermalhydraulics subchannel codes (such as ASSERT-PV) use models to describe inhomogeneous power distribution within and across fuel elements (e.g., flux tilt model, different powers in different ring elements, or radial power profiles). In this work, physics and thermalhydraulics codes are applied to quantify the effect of eccentricity of a fuel bundle on power variations across it and within a fuel element, and ultimately on the fuel temperature distribution and fuel centerline temperature, which is one of the indicators of fuel performance under normal

  5. Laminar mixed convection heat transfer in a vertical circular tube under buoyancy-assisted and opposed flows

    International Nuclear Information System (INIS)

    Mohammed, Hussein A.

    2008-01-01

    Laminar mixed convection heat transfer for assisted and opposed air flows in the entrance region of a vertical circular tube with the using of a uniform wall heat flux boundary condition has been experimentally investigated. The experimental setup was designed for determining the effect of flow direction and the effect of tube inclination on the surface temperature, local and average Nusselt numbers with Reynolds number ranged from 400 to 1600 and Grashof number from 2.0 x 10 5 to 6.2 x 10 6 . It was found that the circumferential surface temperature along the dimensionless tube length for opposed flow would be higher than that both of assisted flow and horizontal tube [Mohammed HA, Salman YK. Experimental investigation of combined convection heat transfer for thermally developing flow in a horizontal circular cylinder. Appl Therm Eng 2007;27(8-9):1522-33] due to the stronger free convective currents within the cross-section. The Nusselt number values would be lower for opposed flow than that for assisted flow. It was inferred that the behaviour of Nu x for opposed flow to be strongly dependent on the combination of Re and Gr numbers. Empirical equations expressing the average Nusselt numbers in terms of Grashof and Reynolds numbers were proposed for both assisted and opposed flow cases. The average heat transfer results were compared with previous literature and showed similar trend and satisfactory agreement

  6. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry

    Science.gov (United States)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram

    1990-01-01

    Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.

  7. Flux trapping during field reversal in a field reversed theta pinch

    International Nuclear Information System (INIS)

    Milroy, R.D.; Hoffman, A.L.; Slough, J.T.; Harding, D.G.

    1983-01-01

    In this paper we present new results from both numerical and experimental studies of the formation of the conducting sheath near the tube wall and its effectiveness in trapping bias flux during field reversal

  8. LHC tubes near the end of their journey

    CERN Multimedia

    2004-01-01

    Production of the heat exchanger tubes, which will cool down the LHC magnets, and of the cold bore tubes, in which the proton beams will circulate, is due to be completed around the end of 2004. These essential components of the LHC magnets are receiving their finishing touches at CERN.

  9. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  10. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  11. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  12. Flow induced pulsations caused by corrugated tubes

    NARCIS (Netherlands)

    Shatto, D.P.; Belfroid, S.P.C.; Peters, M.C.A.M.

    2007-01-01

    Corrugated tubes can produce a tonal noise when used for gas transport, for instance in the case of flexible risers. The whistling sound is generated by shear layer instability due to the boundary layer separation at each corrugation. This whistling is examined by investigating the frequency,

  13. Flow induced pulsations generated in corrugated tubes

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Swindell, R.; Tummers, R.

    2008-01-01

    Corrugated tubes can produce a tonal noise when used for gas transport, for instance in the case of flexible risers. The whistling sound is generated by shear layer instability due to the boundary layer separation at each corrugation. This whistling is examined by investigating the frequency,

  14. Failure analysis of tubes with wastages

    International Nuclear Information System (INIS)

    Prachuktam, S.; Reich, M.; Rajan, J.

    1979-01-01

    A finite element method for large strain calculation using the constitutive relation due to Hill was developed. This constitutive relation relates the co-rotational rate of the Kirchoff stress and deformation rate tensor which leads to a symmetric structure stiffness. This method is used to calculate failure pressures of degraded tubes

  15. Liquid Oscillations in a U-Tube

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2018-01-01

    In hydrostatics, pressure measurement with U-gauges and their relationship to density is a well-known experiment. Very little is studied or experimented with the dynamics of the movement of a liquid in a U-tube probably due to its theoretical complexity but, after all, it is a simple damped oscillating system. In this paper we present a relatively…

  16. Dynamic Response and Fracture of Composite Gun Tubes

    Directory of Open Access Journals (Sweden)

    Jerome T. Tzeng

    2001-01-01

    Full Text Available The fracture behavior due to dynamic response in a composite gun tube subjected to a moving pressure has been investigated. The resonance of stress waves result in very high amplitude and frequency strains in the tube at the instant and location of pressure front passage as the velocity of the projectile approaches a critical value. The cyclic stresses can accelerate crack propagation in the gun tube with an existing imperfection and significantly shorten the fatigue life of gun tubes. The fracture mechanism induced by dynamic amplification effects is particularly critical for composite overwrap barrels because of a multi-material construction, anisotropic material properties, and the potential of thermal degradation.

  17. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  18. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  19. Advanced evacuated tube collectors

    Science.gov (United States)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  20. Square through tube

    International Nuclear Information System (INIS)

    Akita, Junji; Honma, Toei.

    1975-01-01

    Object: To provide a square through tube involving thermal movement in pipelines such as water supply pump driving turbine exhaust pipe (square-shaped), which is wide in freedom with respect to shape and dimension thereof for efficient installation at site. Structure: In a through tube to be airtightly retained for purpose of decontamination in an atomic power plant, comprising a seal rubber plate, a band and a bolt and a nut for securing said plate, the seal rubber plate being worked into the desired shape so that it may be placed in intimate contact with the concrete floor surface by utilization of elasticity of rubber, thereby providing airtightness at a corner portion of the square tube. (Kamimura, M.)

  1. SG tube identification

    International Nuclear Information System (INIS)

    Hoogstraten, P. van

    1994-01-01

    A ''Tracker'' system is described which is designed to identify any tube in a reactor steam generator quickly and safely. Occupational radiation doses to maintenance workers are reduced by using a Tracker and emergency down times are shortened. The system employs a television camera and light source in a stainless steel box with a large window. Both the camera and spotlight can be panned and tilted to reach any point on the tubesheet and are remotely controlled. An operator at a safe working distance can identify any tube visible on a real time video by comparison with the tubesheet pattern stored earlier in the computer memory. The identified tube can then be spotlighted and dealt with quickly by a maintenance worker inside the channel head. (UK)

  2. Visual beam tube inspection at the TRIGA reactor Vienna

    International Nuclear Information System (INIS)

    Boeck, H.; Musilek, A.; Villa, M.

    2006-01-01

    Of the four TRIGA beam tubes two have been visually inspected in 1985. Prior to the inspection the reactor was shut down for 3 weeks. The fuel elements around the beam tubes were removed. Stainless steel dummy elements were inserted in the fuel positions to shield the core radiation. The active part of the Fast Rabbit Tube was removed into the beam tube loading device and transferred to an interim storage: Front dose rate was ∼ 50 mSv/h. Generally the beam tube was very clean, after the last inspection about 30 years ago. A1 cm cut was observed at the beam tube front end. A rigid endoscope was used to check the beam tube's inner surface using a 90 degree deflection objective and photo- and video equipment. The direct dose rate in front of the beam tube was about 30 mSv/h. The beam tube was vacuum cleaned. A corroded shielding tank containing boric acid has leaked. A wooden collimator partially disintegrating due to extreme temperature was removed from beam tube D. Documentation of the inspection for visible defects is produced for later comparison

  3. First Research Coordination Meeting on Prediction of Axial and Radial Creep in HWR Pressure Tubes. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    Pressure tube deformation is a critical aging issue in operating Heavy Water Reactors (HWRs). According to the service year, horizontal pressure tubes have three kinds of deformation: diametral creep leading to the flow bypass and the penalty to critical heat flux for fuel rods, longitudinal creep leading to the interference of feeder pipes and/or with fuelling machine, and sagging leading to the interference with in-core components and potential contact between the pressure tube and calandria tube. The CRP scope includes the establishment of a database for pressure tube deformation, microstructure characterization of pressure tube materials collected from HWRs currently operating in Member States and development of a prediction model for pressure tube deformation

  4. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  5. Clinical application of transnasal feeding tube placement under fluoroscopic guidance

    International Nuclear Information System (INIS)

    Ge Kunyuan; Ni Caifang; Liu Yizhi; Zhu Xiaoli; Zou Jianwei; Jin Yonghai; Chen Long; Sun Ge; Sun Lingfang; Zhang Dong

    2008-01-01

    Objective: To evaluate the feasibility and effectiveness of duodenal feeding tube placement under fluoroscopic guidance and its clinical application. Methods: The transnasal duodenal nutriment tubes placement under fluoroscopic guidance were performed in 59 patients from June 3th, 2003 to August 17th, 2007. The successful placement of the feeding tube was defined as that of the tube tip was fixed at or distal to the duodenojejunal junction. Results: 57 out of 59 patients were successfully managed by feeding tube placement, with primary successful rate of 96.6% (57/59). The remaining two failures were due to overdistention of the stomach and were further managed after gastrointestinal decompression thoroughly. The mean fluoroscopy time of the procedure was 17.8 minutes with no severe immediate or delayed complications. Conclusion: The transnasal duodenal nutrient feeding tube placement under fluoroscopic guidance is a safe,economic, and effective management for enteral nutrition, providing extensive clinical utilization. (authors)

  6. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  7. PRODUCTION OF URANIUM TUBING

    Science.gov (United States)

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  8. Guide tube sleeve

    International Nuclear Information System (INIS)

    Attix, D.J.

    1983-01-01

    The invention increases the operating capacity of a nuclear reactor by causing a modification in the flow pattern of the coolant which enhances the coolant's effectiveness. The apparatus provides a thin-walled tubular sleeve closely surrounding but not attached to the exterior surface of a guide tube in a fuel assembly. The wall of the sleeve has tabs projecting outwardly into adjacent flow channels. The sleeve is attached to the wall of a cellular void through which passes the guide tube associated with said sleeve. The tabs increase the flow of water in the channel and thus increase the heat transfer

  9. Digital Radiography Qualification of Tube Welding

    Science.gov (United States)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  10. Heat flux dropouts in the solar wind and Coulomb scattering effects

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Ogilvie, K.W.

    1992-01-01

    Measurements of solar wind electrons at ISEE 3 located 0.01 AU upstream from the Earth indicate periods of time when the flux of antisunward suprathermal electrons decreases suddenly, leaving the velocity distribution nearly isotropic and causing the solar wind heat flux to drop. These heat flux dropouts (HFDs) are usually found in regions of increased plasma density and decreased electron temperature, and they are associated with sector boundaries. It has been suggested that HFDs may be due either to disconnection from the Sun of the magnetic flux tube in which they are found, or to enhanced Coulomb scattering of halo electrons in transit from the Sun to the Earth. Using the vector electron spectrometer on ISEE 1, the authors have found eight intervals of greatly reduced heat flux which appear to be associated with HFDs at ISEE 3. Five of the eight events were delayed by an appropriate convection time and had approximately the same duration as the corresponding ISEE 3 event. Velocity distributions during HFDs at ISEE 1 show that the depletion of halo electrons traveling away from the Sun is most pronounced in the 100-eV range, while there is essentially no depletion in the 1-keV range, and that in four cases the magnitude of the halo depletion and its upper velocity limit both depend on the density increase in the HFD. These results are shown to be in agreement with the υ -3 dependence of the Coulomb collision frequency. Thus the authors conclude that Coulomb scattering effects play a substantial role in at least some heat flux dropout events

  11. An advanced tube wear and fatigue workstation to predict flow induced vibrations of steam generator tubes

    International Nuclear Information System (INIS)

    Gay, N.; Baratte, C.; Flesch, B.

    1997-01-01

    Flow induced tube vibration damage is a major concern for designers and operators of nuclear power plant steam generators (SG). The operating flow-induced vibrational behaviour has to be estimated accurately to allow a precise evaluation of the new safety margins in order to optimize the maintenance policy. For this purpose, an industrial 'Tube Wear and Fatigue Workstation', called 'GEVIBUS Workstation' and based on an advanced methodology for predictive analysis of flow-induced vibration of tube bundles subject to cross-flow has been developed at Electricite de France. The GEVIBUS Workstation is an interactive processor linking modules as: thermalhydraulic computation, parametric finite element builder, interface between finite element model, thermalhydraulic code and vibratory response computations, refining modelling of fluid-elastic and random forces, linear and non-linear dynamic response and the coupled fluid-structure system, evaluation of tube damage due to fatigue and wear, graphical outputs. Two practical applications are also presented in the paper; the first simulation refers to an experimental set-up consisting of a straight tube bundle subject to water cross-flow, while the second one deals with an industrial configuration which has been observed in some operating steam generators i.e., top tube support plate degradation. In the first case the GEVIBUS predictions in terms of tube displacement time histories and phase planes have been found in very good agreement with experiment. In the second application the GEVIBUS computation showed that a tube with localized degradation is much more stable than a tube located in an extended degradation zone. Important conclusions are also drawn concerning maintenance. (author)

  12. French steam generator tubes: an overview of degradations

    International Nuclear Information System (INIS)

    Buisine, D.; Bouvier, O. de; Rupa, N.; Thebault, Y.; Barbe, V.; Pitner, P.

    2011-01-01

    The various damages (corrosion, fatigue cracks, wear, ...) observed on steam generator (SG) tubes are presented here as well as the techniques used to characterize these damages. The SG are equipped with tubes of 3 materials: 600 MA, 600 TT and 690 TT. Concerning PWSCC of 600 MA and 600 TT tubes, beyond the damages usually observed (corrosion in expansion transition zone and in 600 MA tubes small radius U-bend zone), a new event is to be noted: the phenomenon of denting (presumably induced by the deposit of sludge on the tubesheet) has induced circumferential cracking of the tube expansion transition zone. Concerning ODSCC of 600 MA tubes, beyond the classically observed damages (IGA and IGSCC in expansion transition zone and in TSP crevice), a new event is to be noted: the occurrence of circumferential cracks in tube- TSP crevice. Concerning fatigue cracking, two events have to be noted at upper TSP level in Cruas 1 and Cruas 4 units and in Fessenheim 2 unit. The first (Cruas) was due to the blockage in the broached hole tube support plate which can create critical velocity ratios for some tubes and the second (Fessenheim) to high-cycle fatigue. Concerning wear damage, beyond what is usually observed in the U-bend zone facing the anti-vibration bars (AVB), a new event is to be noted: a wear at TSP level is observed on SG equipped with an economizer, the wear indications being located at TSP 7 and 8 level, on outer tubes close to the central lane. The number of tubes plugged for ODSCC has declined due to the progressive replacement of SG with Alloy 600 MA tubing. Starting in 2004, the increasing plugging of 690 tubing is mainly due to AVB wear. Since 2006, extensive preventive plugging campaigns for tubes at risk of high-cycle fatigue at the upper support plate are performed. Risk of high-cycle fatigue has consequently become the dominant mechanism inducing plugging. PWSCC is the second dominant mechanism which affects 600 MA and 600 TT tube bundles: extensive

  13. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  14. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    Jeong-Ha You

    2006-01-01

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after

  15. Biocompatibility of Tygon® tubing in microfluidic cell culture.

    Science.gov (United States)

    Jiang, Xiao; Jeffries, Rex E; Acosta, Miguel A; Tikunov, Andrey P; Macdonald, Jeffrey M; Walker, Glenn M; Gamcsik, Michael P

    2015-02-01

    Growth of the MDA-MB-231 breast cancer cell line in microfluidic channels was inhibited when culture media was delivered to the channels via microbore Tygon® tubing. Culture media incubated within this tubing also inhibited growth of these cells in conventional 96-well plates. These detrimental effects were not due to depletion of critical nutrients due to adsorption of media components onto the tubing surface. A pH change was also ruled out as a cause. Nuclear magnetic resonance spectroscopy of the cell growth media before and after incubation in the tubing confirmed no detectable loss of media components but did detect the presence of additional unidentified signals in the aliphatic region of the spectrum. These results indicate leaching of a chemical species from microbore Tygon® tubing that can affect cell growth in microfluidic devices.

  16. Tube-dwelling invertebrates

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  17. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  18. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  19. Tracheostomy tube - speaking

    Science.gov (United States)

    ... with others. However, you can learn how to speak with a tracheostomy tube. It just takes practice. There ... If it is hard to speak with a trach in place, special devices can help you learn to create sounds. One-way valves, called speaking valves, are placed ...

  20. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators