WorldWideScience

Sample records for flux density relationship

  1. The effects of variability on the number-flux-density relationship for radio sources

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1981-01-01

    It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)

  2. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  3. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  4. Planck intermediate results - LII. Planet flux densities

    DEFF Research Database (Denmark)

    Akrami, Y.; Ashdown, M.; Aumont, J.

    2017-01-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates...... of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic...... errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best...

  5. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  6. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    International Nuclear Information System (INIS)

    Perley, R. A.; Butler, B. J.

    2013-01-01

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than ∼5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  7. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  8. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  9. Magnetic flux density in the heliosphere through several solar cycles

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, G. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, A., E-mail: erdos.geza@wigner.mta.hu [The Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  10. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  11. Calculation of flux density distribution on irradiation field of electron accelerator

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1977-03-01

    The simple equation of flux density distribution in the irradiation field of an ordinary electron accelerator is a function of the physical parameters concerning electron irradiation. Calculation is based on the mean square scattering angle derived from a simple multiple scattering theory, with the correction factors of air scattering, beam scanning and number transmission coefficient. The flux density distribution was measured by charge absorption in a graphite target set in the air. For the calculated mean square scattering angles of 0.089-0.29, the values of calculation agree with those by experiment within about 10% except at large scattering angles. The method is applicable to dose evaluation of ordinary electron accelerators and design of various irradiators for radiation chemical reaction. Applicability of the simple multiple scattering theory in calculation of the scattered flux density and periodical variation of the flux density of scanning beam are also described. (auth.)

  12. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    Science.gov (United States)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  13. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  14. A new empirical model to estimate hourly diffuse photosynthetic photon flux density

    Science.gov (United States)

    Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.

    2018-05-01

    Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.

  15. Investigating the impact of uneven magnetic flux density distribution on core loss estimation

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten; Wang, Yiren

    2017-01-01

    is calculated according to an effective flux density value and the macroscopic dimensions of the cores. However, the flux distribution in the core can alter by core shapes and/or operating conditions due to nonlinear material properties. This paper studies the element-wise estimation of the loss in magnetic......There are several approaches for loss estimation in magnetic cores, and all these approaches highly rely on accurate information about flux density distribution in the cores. It is often assumed that the magnetic flux density evenly distributes throughout the core and the overall core loss...

  16. Evaluation of neutron flux density and power density with SPN-detectors and micro calorimeters

    International Nuclear Information System (INIS)

    Gehre, G.; Rindelhardt, U.; Seidenkranz, T.; Hogel, J.; Jirousek, V.; Vazek, J.

    1983-02-01

    During investigations with a special equipped fuel assembly in the Rheinsberg nuclear power station the neutron flux and the power density were evaluated from measurements with SPN-detectors and micro calorimeters. The reliability of both detector types, their measurement accuracy under different physical conditions and the usefulness of the developed calculation models are discussed in detail. The thermal flux and the power density evaluated with SPND's agree well with theoretical results. The values obtained through micro calorimeter measurements are systematic lower by about 18%. This deviation is probably a result of differences in the used calculation models. (author)

  17. Flux density calibration in diffuse optical tomographic systems.

    Science.gov (United States)

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (Umeasured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  18. Monitoring of dose rates and radiation flux density in working rooms

    International Nuclear Information System (INIS)

    Krajtor, S.N.

    1980-01-01

    The problems of determining the neutron field characteristics (dose equivalent rate and flux density) in relation to the environmental monitoring by radiation protection services. The measurement devices used for measuring dose equivalent rate and neutron flux density RUS-U8 multi-purpose scintillation radiometer and RUP-1 multi-purpose transportable radiometer as well as measurement technique are described. Recommendations are given for checking measuring devices calibration, registering measurement results [ru

  19. Study of errors in absolute flux density measurements of Cassiopeia A

    International Nuclear Information System (INIS)

    Kanda, M.

    1975-10-01

    An error analysis for absolute flux density measurements of Cassiopeia A is discussed. The lower-bound quadrature-accumulation error for state-of-the-art measurements of the absolute flux density of Cas A around 7 GHz is estimated to be 1.71% for 3 sigma limits. The corresponding practicable error for the careful but not state-of-the-art measurement is estimated to be 4.46% for 3 sigma limits

  20. Neutron flux density data acquisition system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhao Yanhui; Zhao Xiuliang; Li Zonglun; Liang Fengyan; Liu Liyan

    2011-01-01

    In the LabVIEW software, combined with PCI-6251 data acquisition card, VI of neutron flux density data acquisition is realized by DAQmx data acquisition functions. VI is composed of front panel and block diagram. The data collected can be displayed in the forms of the data curve and the data control, and saved in the form of files. Test results show that the frequency of output signal in NI ELVIS can be accurately measured by the system, realizing neutron flux density data acquisition based on LabVIEW. (authors)

  1. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore...

  2. Influence of surface conditions in nucleate boiling--the concept of bubble flux density

    International Nuclear Information System (INIS)

    Shoukri, M.; Judd, R.L.

    1978-01-01

    A study of the influence of surface conditions in nucleate pool boiling is presented. The surface conditions are represented by the number and distribution of the active nucleation sites as well as the size and size distribution of the cavities that constitute the nucleation sites. The heat transfer rate during nucleate boiling is shown to be influenced by the surface condition through its effect on the number and distribution of the active nucleation sites as well as the frequency of bubble departure from each of these different size cavities. The concept of bubble flux density, which is a function of both the active site density and frequency of bubble departure, is introduced. A method of evaluating the bubble flux density is proposed and a uniform correlation between the boiling heat flux and the bubble flux density is found to exist for a particular solid-liquid combination irrespective of the surface finish within the region of isolated bubbles

  3. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  4. Understanding the Effect of Atmospheric Density on the Cosmic Ray Flux Variations at the Earth Surface

    OpenAIRE

    Dayananda, Mathes; Zhang, Xiaohang; Butler, Carola; He, Xiaochun

    2013-01-01

    We report in this letter for the first time the numerical simulations of muon and neutron flux variations at the surface of the earth with varying air densities in the troposphere and stratosphere. The simulated neutron and muon flux variations are in very good agreement with the measured neutron flux variation in Oulu and the muon flux variation in Atlanta. We conclude from this study that the stratosphere air density variation dominates the effects on the muon flux changes while the density...

  5. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Goumenaki, Eleni [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Fernandez, Ignacio Gonzalez [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); CIEMAT, Ecotoxicology of Air Pollution, Avda. Complutense 22, 28040 Madrid (Spain); Papanikolaou, Antigoni [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Papadopoulou, Despoina [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Askianakis, Christos [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Kouvarakis, George [Environmental and Chemical Processes Laboratory, Department of Chemistry, University of Crete, P.O. Box 1470, 71409 Heraklion (Greece); Barnes, Jeremy [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)]. E-mail: j.d.barnes@ncl.ac.uk

    2007-04-15

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P < 0.001) of the observed variation in stomatal conductance. Concentration-based indices were compared with flux-based indices. Analyses revealed a significant relationship between accumulated stomatal ozone flux and yield employing flux threshold cut-offs up to 4 nmol m{sup -2} s{sup -1}. Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining {approx}80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean.

  6. A High Torque Density Axial Flux SRM with Modular Stator

    Directory of Open Access Journals (Sweden)

    Y Ebrahimi

    2015-12-01

    Full Text Available A novel structure of switched reluctance motors (SRMs is proposed. The proposed structure uses the benefits of the axial flux path, short flux path, segmental rotor, and flux reversal free stator motors all together to improve the torque density of the SRMs. The main geometrical, electrical and physical specifications are presented. In addition, some features of the proposed structure are compared with those of a state-of-the-art radial flux SRM, considered as a reference motor. Then, the proposed structure is modified by employing a higher number of rotor segments than the stator modules and at the same time, reshaped stator modules tips. Achieved results reveal that, compared with the reference motor, the proposed and the modified proposed motors deliver about the same torque with 36.5% and 46.7% lower active material mass, respectively. The efficiency and torque production capability for the extended current densities are also retained. These make the proposed structures a potentially proper candidate for the electric vehicles (EVs and hybrid electric vehicles (HEVs as an in-wheel motor.

  7. Surface flux density distribution characteristics of bulk high-Tc superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Torii, S.; Yuasa, K.

    2004-01-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents

  8. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    Science.gov (United States)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  9. 47 CFR 25.208 - Power flux density limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power flux density limits. 25.208 Section 25.208 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE... emissions from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system...

  10. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    Science.gov (United States)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  11. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    International Nuclear Information System (INIS)

    Buzi, Luxherta; Temmerman, Greg De; Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker; Oost, Guido Van; Möller, Sören

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10 23 D + /m 2 s and low: 9 · 10 21 D + /m 2 s). Particle fluence and ion energy, respectively 10 26 D + /m 2 and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion

  12. High frequency characterization of Galfenol minor flux density loops

    Directory of Open Access Journals (Sweden)

    Ling Weng

    2017-05-01

    Full Text Available This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed.

  13. Practical difficulties in determining 222Rn flux density in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1991-01-01

    Radon-222 flux density, J, has been determined in a number of locations in an underground U mine. Measurements were conducted using the Two-Point Measurement (2PM) method, consisting of measuring the 222Rn concentration at two different points a distance apart within a given section of the mine. Several mine models were used for determining J by the above method. The 2PM method is sensitive to sources and sinks of 222Rn other than mine walls, as well as mining operations and mining activities of a diverse nature, and to local variations in airflow conditions. Because of this, J obtained by the 2PM method represents an 'apparent' flux density. Significant differences were found in the flux density calculated according to different mine models. In addition, J measurements using the flux 'can' method were also carried out in mine walls and compared with the values obtained by the 2PM method. Wide discrepancies between the two methods were found. The practical and theoretical difficulties in determining J are discussed

  14. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  15. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  16. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    International Nuclear Information System (INIS)

    Goumenaki, Eleni; Fernandez, Ignacio Gonzalez; Papanikolaou, Antigoni; Papadopoulou, Despoina; Askianakis, Christos; Kouvarakis, George; Barnes, Jeremy

    2007-01-01

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P -2 s -1 . Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining ∼80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean

  17. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  18. Negative density-distribution relationship in butterflies

    Directory of Open Access Journals (Sweden)

    Kotiaho Janne S

    2005-03-01

    Full Text Available Abstract Background Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention. Results We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals, we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship. Conclusion We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.

  19. Negative density-distribution relationship in butterflies.

    Science.gov (United States)

    Päivinen, Jussi; Grapputo, Alessandro; Kaitala, Veijo; Komonen, Atte; Kotiaho, Janne S; Saarinen, Kimmo; Wahlberg, Niklas

    2005-03-01

    Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention. We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals), we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship. We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.

  20. Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy

    Science.gov (United States)

    Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping

    2017-09-01

    We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8  ±  0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.

  1. Internal wave energy flux from density perturbations in nonlinear stratifications

    Science.gov (United States)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  2. Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2012-12-01

    Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian

  3. Surface flux density distribution characteristics of bulk high-T{sub c} superconductor in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S.; Yuasa, K

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  4. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Science.gov (United States)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 250 μJy and 1.5 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  5. Measuring neutron flux density in near-vessel space of a commercial WWER-1000 reactor

    International Nuclear Information System (INIS)

    Borodkin, G.I.; Eremin, A.N.; Lomakin, S.S.; Morozov, A.G.

    1987-01-01

    Distribution of neutron flux density in two experimental channels on the reactor vessel external surface and in ionization chamber channel of a commercial WWER-1000 reactor, is measured by the activation detector technique. Azimuthal distributions of fast and thermal neutron fluxes and height distributions of fast neutron flux density within energy range >1.2 and 2.3 MeV are obtained. Conclusion is made, that reactor core state and its structural peculiarities in the measurement range essentially affect space and energy distribution of neutron field near the vessel. It should be taken into account when determining permissible neutron fluence for the reactor vessel

  6. Exospheric density and escape fluxes of atomic isotopes on Venus and Mars

    International Nuclear Information System (INIS)

    Wallis, M.K.

    1978-01-01

    Energetic neutrals in dissociative recombinations near or above the exobase provided an important component of exospheric density and escape fluxes. Plasma thermal velocities provide the main contribution to the velocity spread and an exact integral for the escape flux applicable in marginal cases is found for a simple atmosphere and collisional cut-off. Atomic fragments from recombination of diatomic oxygen and nitrogen ions in the Venus and Mars atmospheres are examined and density integrals derived. The oxygen escape flux on Mars is half that previously estimated and there is very little isotope preference supplementing diffusive separation. However, escape of the heavier 15 N isotope is low by a factor two. Reinterpretation of its 75% enrichment as detected by Viking leads to a range 0.4-1.4 mbar for the primeval nitrogen content on Mars. (author)

  7. Flux density measurements of radio sources at 2.14 millimeter wavelength

    International Nuclear Information System (INIS)

    Cogdell, J.R.; Davis, J.H.; Ulrich, B.T.; Wills, B.J.

    1975-01-01

    Flux densities of galactic and extragalactic sources, and planetary temperatures, have been measured at 2.14 mm wavelength (140 GHz). Results are presented for OJ 287; the galactic sources DR 21, W3, and Orion A; the extragalactic sources PKS 0106plus-or-minus01, 3C 84, 3C 120, BL Lac, 3C 216, 3C 273, 3C 279, and NGC 4151; and the Sun, Venus, Mars, and Jupiter. Also presented is the first measurement of the 2.14-mm temperature of Uranus. The spectra of some of these sources are discussed. The flux density scale was calibrated absolutely. The measurements were made with a new continuum receiver on the 4.88-m radio telescope of The University of Texas

  8. Anomalous B-H behaviour of electrical steels at very low flux density

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Stan [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)], E-mail: ZurekS@cardiff.ac.uk; Al-Naemi, Faris; Moses, Anthony J.; Marketos, Philip [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2008-10-15

    The behaviour of ferromagnetic materials under very low magnetic field was investigated more than a century ago by Lord Rayleigh. However, it has been shown since that the so-called Rayleigh law fails for very low magnetic fields, although the explanation for this phenomenon was not given. An anomalous B-H behaviour at very low alternating peak flux density in conventional grain-oriented (GO) and non-oriented (NO) electrical steels is reported. It has been found that the initial permeability is constant for all the measured frequencies (from 20 to 400 Hz) at peak flux density below 0.1 mT, and in this region the magnetisation is almost reversible (for both GO and NO). At higher flux density the B-H loops become visibly irreversible, with a relatively narrow (for GO) or very wide (for NO) transition region. For GO the B-H loop becomes visibly 'distorted' for all frequencies at around 2 mT. The eddy current loss calculated from the so-called 'classical' equation gives values higher than the measured total losses at lower frequencies. Both these measured results are difficult to explain.

  9. Magnetic losses at high flux densities in nonoriented Fe-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appino, C.; Fiorillo, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Ragusa, C. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: carlo.ragusa@polito.it; Xie, B. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-10-15

    We present and discuss power loss measurements performed in Fe-(3.5 wt%)Si nonoriented laminations up to very high flux densities. The results are obtained on disk samples using a 1D/2D single-sheet tester, where the fieldmetric and the thermometric methods are applied upon overlapping polarization ranges. The power loss in the highest polarization regimes (e.g. J{sub p}>1.8 T) is measured, in particular, by the rate of rise of temperature method, both under controlled and uncontrolled flux density waveform, the latter case emulating the conditions met in practical unsophisticated experiments. Lack of control at such extreme J{sub p} levels is conducive to strong flux distortion, but the correspondingly measured loss figure can eventually be converted to the one pertaining to sinusoidal induction at the same J{sub p} values. This is demonstrated as a specific application of the statistical theory of magnetic losses, where the usual formulation for the energy losses in magnetic sheets under distorted induction is exploited in reverse fashion.

  10. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  11. Installation for the study of heat transfer with high flux density

    International Nuclear Information System (INIS)

    Robin, M.; Schwab, B.

    1957-01-01

    As a result of their very low vapor pressure, metals with a low fusion point (sodium, sodium-potassium alloys, etc.) can be used at high temperature, as heating fluids, in installations whose internal pressure is close to atmospheric pressure. Owing to the very high convection coefficients which can be reached with these fluids and to the large temperature differences utilizable, it is possible to produce through the exchange surfaces considerable heat flux densities, of the order of those which exist through the canning of fuel elements in nuclear reactors. The installation described allowed a flux density of more than 200 W/cm 2 to be obtained, the heating fluid being a Na-K alloy (containing 56 per cent by weight of potassium) brought to a temperature around 550 deg. C. (author) [fr

  12. Interpretation of a correlation between the flux densities of extended hard x-rays and microwave solar bursts

    International Nuclear Information System (INIS)

    Nelson, G.J.; Stewart, R.T.

    1979-01-01

    In a previous paper the authors showed that for extended bursts a good correlation exists between the observed 100 keV X-ray flux density and the 3.75 or 9.4 GHz microwave flux density. They now propose a source model for the extended bursts in which the microwave emission comes from thin shells at increasing heights for decreasing frequencies. This model with reasonable parameter values gives the observed microwave spectral characteristics and also explains why the X-ray and microwave flux densities are so well correlated

  13. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  14. Injection space charge: enlargements of flux density functioning point choice

    International Nuclear Information System (INIS)

    Ropert, A.

    In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection

  15. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  16. Local particle flux reversal under strongly sheared flow

    International Nuclear Information System (INIS)

    Terry, P.W.; Newman, D.E.; Ware, A.S.

    2003-01-01

    The advection of electron density by turbulent ExB flow with linearly varying mean yields a particle flux that can reverse sign at certain locations along the direction of magnetic shear. The effect, calculated for strong flow shear, resides in the density-potential cross phase. It is produced by the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively isolated. The reversed flux becomes negligible if the electron density response is governed by electron scales while the eigenmode is governed by ion scales. The relationship of these results to experimentally observe flux reversals is discussed

  17. Calculation of the magnetic flux density distribution in type-II superconductors with finite thickness and well-defined geometry

    International Nuclear Information System (INIS)

    Forkl, A.; Kronmueller, H.

    1995-01-01

    The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries

  18. Optimization of multiply acquired magnetic flux density Bz using ICNE-Multiecho train in MREIT

    International Nuclear Information System (INIS)

    Nam, Hyun Soo; Kwon, Oh In

    2010-01-01

    The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B z data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B z data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B z value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B z data by determining optimized weighting factors for the multiply acquired magnetic flux density data.

  19. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences

    Science.gov (United States)

    Niino, Yuu

    2018-05-01

    We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.

  20. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  1. Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment

    International Nuclear Information System (INIS)

    Greg J. Shott, Vefa Yucel, Lloyd Desotell Non-Nstec Authors: G. Pyles and Jon Carilli

    2007-01-01

    Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory

  2. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  3. On the relationship between finger width, velocity, and fluxes in thermohaline convection

    Science.gov (United States)

    Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.

    2009-02-01

    Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

  4. Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Hervé, A.; Loveless, R.

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/...

  5. Effects of magnetic flux densities on microstructure evolution and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe_3_0Ni_7_0 thin films

    International Nuclear Information System (INIS)

    Cao, Yongze; Wang, Qiang; Li, Guojian; Ma, Yonghui; Du, Jiaojiao; He, Jicheng

    2015-01-01

    Nanocrystalline Fe_3_0Ni_7_0 (in atomic %) thin films were prepared by molecular-beam-vapor deposition in magnetic fields with different magnetic flux densities. The microstructure evolution of these thin films was studied by atomic force microscopy, transmission electron microscopy, and high resolution transmission electron microscopy; the soft magnetic properties were examined by vibrating sample magnetometer at room temperature. The results show that all our Fe_3_0Ni_7_0 thin films feature an fcc single-phase structure. With increasing magnetic flux density, surface roughness, average particle size and grain size of the thin films decreased, and the short-range ordered clusters (embryos) of thin films increased. Additionally, the magnetic anisotropy in the in-plane and the coercive forces of the thin films gradually reduced with increasing magnetic flux density. - Highlights: • With increasing magnetic flux density, average particle size of films decreased. • With increasing magnetic flux density, surface roughness of thin films decreased. • With increasing magnetic flux density, short-range ordered clusters increased. • With increasing magnetic flux density, the coercive forces of thin films reduced. • With increasing magnetic flux density, soft magnetic properties are improved.

  6. Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Greg J. Shott, Vefa Yucel, Lloyd Desotell

    2007-06-01

    Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.

  7. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  8. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-11-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  9. Current density waves in open mesoscopic rings driven by time-periodic magnetic fluxes

    International Nuclear Information System (INIS)

    Yan Conghua; Wei Lianfu

    2010-01-01

    Quantum coherent transport through open mesoscopic Aharonov-Bohm rings (driven by static fluxes) have been studied extensively. Here, by using quantum waveguide theory and the Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic ring threaded by a time-periodic magnetic flux. We predicate that current density waves could be excited along such an open ring. As a consequence, a net current could be generated along the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop driven by the time-dependent flux. These phenomena could be explained by photon-assisted processes, due to the interaction between the transported electrons and the applied oscillating external fields. We also discuss how the time-average currents (along the ring and the lead) depend on the amplitude and frequency of the applied oscillating fluxes.

  10. Measurement of 2D vector magnetic properties under the distorted flux density conditions

    International Nuclear Information System (INIS)

    Urata, Shinya; Todaka, Takashi; Enokizono, Masato; Maeda, Yoshitaka; Shimoji, Hiroyasu

    2006-01-01

    Under distorted flux density condition, it is very difficult to evaluate the field intensity, because there is no criterion for the measurement. In the linear approximation, the measured field intensity waveform (MFI) is compared with the linear synthesis of field intensity waveform (LSFI) in each frequency, and it is shown that they are not in good agreement at higher induction. In this paper, we examined the 2D vector magnetic properties excited by distorted flux density, which consists of the 1st (fundamental frequency: 50 Hz), 3rd, and 5th harmonics. Improved linear synthesis of the field intensity waveform (ILSFI) is proposed as a new estimation method of the field intensity, instead of the conventional linear synthesis of field intensity waveform (LSFI). The usefulness of the proposed ILSFI is demonstrated in the comparison with the measured results

  11. Measurement of 2D vector magnetic properties under the distorted flux density conditions

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Shinya [Department of Electrical and Electronic Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan)]. E-mail: urata@mag.eee.oita-u.ac.jp; Todaka, Takashi [Department of Electrical and Electronic Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan); Enokizono, Masato [Department of Electrical and Electronic Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan); Maeda, Yoshitaka [Department of Electrical and Electronic Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan); Shimoji, Hiroyasu [Department of Electrical and Electronic Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan)

    2006-09-15

    Under distorted flux density condition, it is very difficult to evaluate the field intensity, because there is no criterion for the measurement. In the linear approximation, the measured field intensity waveform (MFI) is compared with the linear synthesis of field intensity waveform (LSFI) in each frequency, and it is shown that they are not in good agreement at higher induction. In this paper, we examined the 2D vector magnetic properties excited by distorted flux density, which consists of the 1st (fundamental frequency: 50 Hz), 3rd, and 5th harmonics. Improved linear synthesis of the field intensity waveform (ILSFI) is proposed as a new estimation method of the field intensity, instead of the conventional linear synthesis of field intensity waveform (LSFI). The usefulness of the proposed ILSFI is demonstrated in the comparison with the measured results.

  12. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  13. Precision flux density measurements of the giant planets at 8420 MHz

    Science.gov (United States)

    Turegano, J. A.; Klein, M. J.

    1981-01-01

    Precision measurements of the 3.56 cm flux densities of Jupiter, Saturn, Uranus, and Neptune are reported. The results are compared with previously published measurements as a means of: remotely sensing long-term changes in the microwave emission from the atmospheres of these planets and measuring the effects of Saturn's rings on the disk temperature as observed from earth at different ring inclination angles.

  14. Optimization of multiply acquired magnetic flux density B{sub z} using ICNE-Multiecho train in MREIT

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Soo; Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul (Korea, Republic of)

    2010-05-07

    The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B{sub z} data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B{sub z} data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B{sub z} value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B{sub z} data by determining optimized weighting factors for the multiply acquired magnetic flux density data.

  15. A study of influence of material properties on magnetic flux density induced in magneto rheological damper through finite element analysis

    Directory of Open Access Journals (Sweden)

    Gurubasavaraju T. M.

    2018-01-01

    Full Text Available Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod. The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case.

  16. Long-term Longitudinal Recurrences of the Open Magnetic Flux Density in the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dósa, M.; Erdős, G., E-mail: dosa.melinda@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós st 29-33 (Hungary)

    2017-04-01

    Open magnetic flux in the heliosphere is determined from the radial component of the magnetic field vector measured onboard interplanetary space probes. Previous Ulysses research has shown remarkable independence of the flux density from heliographic latitude, explained by super-radial expansion of plasma. Here we are investigating whether any longitudinal variation exists in the 50 year long OMNI magnetic data set. The heliographic longitude of origin of the plasma package was determined by applying a correction according to the solar wind travel time. Significant recurrent enhancements of the magnetic flux density were observed throughout solar cycle 23, lasting for several years. Similar, long-lasting recurring features were observed in the solar wind velocity, temperature and the deviation angle of the solar wind velocity vector from the radial direction. Each of the recurrent features has a recurrence period slightly differing from the Carrington rotation rate, although they show a common trend in time. Examining the coronal temperature data of ACE leads to the possible explanation that these long-term structures are caused by slow–fast solar wind interaction regions. A comparison with MESSENGER data measured at 0.5 au shows that these longitudinal magnetic modulations do not exist closer to the Sun, but are the result of propagation.

  17. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California

    Science.gov (United States)

    The seasonal trends and diurnal patterns of Photosynthetically Active Radiation (PAR) were investigated in the San Francisco Bay Area of Northern California from March through August in 2007 and 2008. During these periods, the daily values of PAR flux density (PFD), energy loading with PAR (PARE), a...

  18. Calculation of gamma-ray flux density above the Venus and Earth surfaces

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    Calculational results of dependence of flux density of nonscattered gamma-quanta on the height above the Venus and Earth planet surfaces are presented in the paper. Areas, where a certain part of gamma quanta is accumulated, are calaculted for each height. Spectra of scattered gamma quanta and their integral fluxes at different heights above the Venera planet surface are calculated. Effect of the atmosphere on gamma radiation recorded is considered. The results obtained allow to estimate optimal conditions for measuring gamma-fields above the Venus and Earth planet surfaces, to determine the area of the planet surface investigated. They are also necessary to determine the elementary composition of the rock according to the characteristic gamma radiation spectrum recorded

  19. Effect of Magnetic Flux Density and Applied Current on Temperature, Velocity and Entropy Generation Distributions in MHD Pumps

    Directory of Open Access Journals (Sweden)

    M. Kiyasatfar

    2011-01-01

    Full Text Available In the present study, simulation of steady state, incompressible and fully developed laminar flow has been conducted in a magneto hydrodynamic (MHD pump. The governing equations are solved numerically by finite-difference method. The effect of the magnetic flux density and current on the flow and temperature distributions in a MHD pump is investigated. The obtained results showed that controlling the flow and the temperature is possible through the controlling of the applied current and the magnetic flux. Furthermore, the effects of the magnetic flux density and current on entropy generation in MHD pump are considered. Our presented numerical results are in good agreement with the experimental data showed in literature.

  20. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  1. Initial density affects biomass – density and allometric relationships in self-thinning populations of Fagopyrum esculentum

    DEFF Research Database (Denmark)

    Li, Lei; Weiner, Jacob; Zhou, Daowei

    2013-01-01

    and the biomass–density trajectory, we grew Fagopyrum esculentum populations at three high densities and measured shoot biomass, density and the height and diameter of individual plants at six harvests. * Initial density did not affect the slope of the log biomass–log density relationship, but there was a clear...... by the biomass density: the relationship between mass and volume. Initial density could affect this by altering allometric growth in a way that influences architectural compactness. An alternative hypothesis is that competition at higher initial density is more size symmetric, which has been shown to reduce...

  2. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob

    2011-01-01

    Background and Aims Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal....... In self-thinning populations, the slope of the log (mean shoot biomass) vs. log density relationship was significantly steeper for the high AMF treatment (slope = –1·480) than for the low AMF treatment (–1·133). The canopy radius–biomass allometric exponents were not significantly affected by AMF level...

  3. Compilation of neutron flux density spectra and reaction rates in different neutron fields. V.3

    International Nuclear Information System (INIS)

    Ertek, C.

    1980-04-01

    Upon the recommendation of the International Working Group of Reactor Radiation Measurements (IWGRRM) a compilation of documents containing neutron flux density spectra and the reaction rates obtained by activiation and fission foils in different neutron fields is presented

  4. Compilation of neutron flux density spectra and reaction rates in different neutron fields

    International Nuclear Information System (INIS)

    Ertek, C.

    1979-07-01

    Upon the recommendation of International Working Group of Reactor Radiation Measurements (IWGRRM), the compilation of neutron flux density spectra and the reaction rates obtained by activation and fission foils in different neutron fields is presented. The neutron fields considered are as follows: 1/E; iron block; LWR core and pressure vessel; LMFBR core and blanket; CTR first wall and blanket; fission spectrum

  5. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  6. Spatial and temporal variations in sap flux density in Japanese cedar (Cryptomeria japonica) trees, central Taiwan

    Science.gov (United States)

    Tseng, Han; Chiu, Chen-Wei; Wey, Tsong-Huei; Kume, Tomonori

    2013-04-01

    Sap flow measurement method is a technique widely used for measuring forest transpiration. However, variations in sap flow distribution can make accurately estimating individual tree-scale transpiration difficult. Significant spatial variations in sap flow across the sapwood within tree have been reported in many studies. In contrast, few studies have discussed azimuthal variations in sap flow, and even fewer have examined their seasonal change characteristics. This study was undertaken to clarify within-tree special and temporal variations in sap flow, and to propose an appropriate design for individual-tree scale transpiration estimates for Japanese cedar trees. The measurement was conducted in a Japanese cedar plantation located in Central Taiwan. Spatial distribution of sap flux density through the sapwood cross-section was measured using Granier's thermal dissipation technique. Sensors were installed at 1.3 m high on the east, west, north and south sides of the stem at 0-2 cm in 8 trees, and at 2-4 cm in the 6 larger trees. We found, in radial profile analysis, that sap flux densities measured at the depth of 2-4 cm were 50 % in average of those measured at depth of 0-2 cm. In azimuthal profile analysis, we found significant azimuthal variations in sap flux density. In one individual tree, the ratio of sap flux density on one aspect to another could be approximately 40-190 %, with no dependency on directions. Both radial and azimuthal profiles in most sample trees were fairly consistent throughout the measurement period. We concluded that radial and azimuthal variations in sap flow across sapwood might introduce significant errors in individual tree-scale transpiration estimations based on single point sap flow measurement, and seasonal change of within-tree spatial variations in sap flow could have insignificant impacts on accuracy of long-term individual tree-scale transpiration estimates. Keywords: transpiration, sap flow measurement, scaling up, sap flow

  7. Relationship between thermodynamic driving force and one-way fluxes in reversible processes.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    Full Text Available Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and reverse fluxes and free energy for any chemical process operating in a steady state. This relationship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state in dilute solution, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

  8. Net ion fluxes and ammonia excretion during transport of Rhamdia quelen juveniles

    Directory of Open Access Journals (Sweden)

    Luciano de Oliveira Garcia

    2015-10-01

    Full Text Available The objective of this study was to verify net ion fluxes and ammonia excretion in silver catfish transported in plastic bags at three different loading densities: 221, 286 and 365g L-1 for 5h. A water sample was collected at the beginning and at the end of the transport for analysis of water parameters. There was a significant positive relationship between net ion effluxes and negative relationship between ammonia excretion and loading density, demonstrated by the following equations: Na+: y-24.5-0.27x, r2=0.99, Cl-: y=40.2-0.61x, r2=0.98, K+: y=8.0-27.6x, r2=0.94; ammonia excretion: y=-11.43+0.017x, r2=0.95, where y: net ion flux (mmol kg-1 h-1 or ammonia excretion (mg kg-1h-1 and x: loading density (g. Therefore, the increase of loading density increases net ion loss, but reduces ammonia excretion during the transport of silver catfish, indicating the possibility of ammonia accumulation

  9. Flux-profile relationships over a fetch limited beech forest

    DEFF Research Database (Denmark)

    Dellwik, E.; Jensen, N.O.

    2005-01-01

    The influence of an internal boundary layer and a roughness sublayer on flux-profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible...... heat flux and momentum (phi(h) and phi(m)) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above...... the canopy top for some wind sectors led to an increase in phi(m), a feature that has not previously been observed. For a fetch of 500 m over the beech forest during neutral atmospheric conditions, there is no height range at the site where profiles can be expected to be logarithmic with respect to the local...

  10. Installation for the study of heat transfer with high flux density; Installation d'etude de transmission de chaleur a densite de flux elevee

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Schwab, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    As a result of their very low vapor pressure, metals with a low fusion point (sodium, sodium-potassium alloys, etc.) can be used at high temperature, as heating fluids, in installations whose internal pressure is close to atmospheric pressure. Owing to the very high convection coefficients which can be reached with these fluids and to the large temperature differences utilizable, it is possible to produce through the exchange surfaces considerable heat flux densities, of the order of those which exist through the canning of fuel elements in nuclear reactors. The installation described allowed a flux density of more than 200 W/cm{sup 2} to be obtained, the heating fluid being a Na-K alloy (containing 56 per cent by weight of potassium) brought to a temperature around 550 deg. C. (author) [French] Par suite de leur tres faible pression de vapeur, les metaux a bas point de fusion (sodium, alliages sodium-potassium, etc.) peuvent etre utilises a haute temperature, comme fluides de chauffage, dans des installations dont la pression interne est voisine de la pression atmospherique. Grace aux coefficients de convection tres eleves que ces fluides permettent d'atteindre et aux importantes differences de temperature utilisables, il est possible de produire, a travers les surfaces d'echange, des densites de flux de chaleur considerables, de l'ordre de celles qui existent a travers les gaines des elements combustibles des reacteurs nucleaires. L'installation decrite a permis l'obtention d'une densite de flux de plus, de 200 W/cm{sup 2}, le fluide chauffant etant de l'alliage Na-K (a 56 pour cent en poids de potassium) porte a une temperature voisine de 550 deg. C. (auteur)

  11. Comparison between measured and computed magnetic flux density distribution of simulated transformer core joints assembled from grain-oriented and non-oriented electrical steel

    Directory of Open Access Journals (Sweden)

    Hamid Shahrouzi

    2018-04-01

    Full Text Available The flux distribution in an overlapped linear joint constructed in the central region of an Epstein Square was studied experimentally and results compared with those obtained using a computational magnetic field solver. High permeability grain-oriented (GO and low permeability non-oriented (NO electrical steels were compared at a nominal core flux density of 1.60 T at 50 Hz. It was found that the experimental results only agreed well at flux densities at which the reluctance of different paths of the flux are similar. Also it was revealed that the flux becomes more uniform when the working point of the electrical steel is close to the knee point of the B-H curve of the steel.

  12. The neutrons flux density calculations by Monte Carlo code for the double heterogeneity fuel

    International Nuclear Information System (INIS)

    Gurevich, M.I.; Brizgalov, V.I.

    1994-01-01

    This document provides the calculation technique for the fuel elements which consists of the one substance as a matrix and the other substance as the corn embedded in it. This technique can be used in the neutron flux density calculation by the universal Monte Carlo code. The estimation of accuracy is presented too. (authors). 6 refs., 1 fig

  13. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    Science.gov (United States)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  14. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  15. Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ding

    2015-06-01

    Full Text Available This paper presents a rigorous design and optimization of an axial flux microelectromechanical systems (MEMS brushless dc (BLDC micromotor with dual rotor improving both efficiency and power density with an external diameter of only around 10 mm. The stator is made of two layers of windings by MEMS technology. The rotor is developed by film permanent magnets assembled over the rotor yoke. The characteristics of the MEMS micromotor are analyzed and modeled through a 3-D magnetic equivalent circuit (MEC taking the leakage flux and fringing effect into account. Such a model yields a relatively accurate prediction of the flux in the air gap, back electromotive force (EMF and electromagnetic torque, whilst being computationally efficient. Based on 3-D MEC model the multi-objective firefly algorithm (MOFA is developed for the optimal design of this special machine. Both 3-D finite element (FE simulation and experiments are employed to validate the MEC model and MOFA optimization design.

  16. The Pressure and Magnetic Flux Density Analysis of Helical-Type DC Electromagnetic Pump

    International Nuclear Information System (INIS)

    Lee, Geun Hyeong; Kim, Hee Reyoung

    2016-01-01

    The developed pressure was made by only electromagnetic force eliminating probability of impurities contact, therefore the high reactivity materials such as alkali were best match to electromagnetic pump. The heavy ion accelerator facility by Rare Isotope Science Project (RISP) in Korea is trying to construct accelerator using liquid lithium for high efficiency of acceleration by decreasing charge state. The helical-type DC electromagnetic pump was employed to make a charge stripper that decrease charge state of heavy ion. The specification of electromagnetic pump was developed pressure of 15 bar with flowrate of 6 cc/s in the condition of 200℃. The pressure of DC electromagnetic pump was analyzed in the aspects of current and number of duct turns. The developed pressure was almost proportional to input current because relatively low flowrate made negligible of the electromotive force and hydraulic pressure drop. The pressure and magnetic flux density of helical-type DC electromagnetic pump were analyzed. The pressure was proportion to input current and number of duct turns, and magnetic flux density was higher when ferromagnet was applied at electromagnetic pump. It seems that number of duct turns could be increase and ferromagnet could be applied in order to increase pressure of DC electromagnetic pump with constant input current

  17. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2003-01-01

    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  18. A DETERMINATION OF THE FLUX DENSITY IN CORE OF DISTRIBUTION TRANSFORMERS, WHAT BUILT WITH THE COMMON USING OF GRAIN AND NON GRAIN ORIENTED MAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    I.V. Pentegov

    2015-12-01

    Full Text Available Purpose. The development of calculation method to determinate the flux densities in different parts of the magnetic cores of distribution transformers, what built from different types magnetic steel (mixed core. Methodology. The method is based on the scientific positions of Theoretical Electrical Engineering – the theory of the electromagnetic field in nonlinear mediums to determine the distribution of magnetic flux in mixed core of transformer, what are using different types of steel what have the different magnetic properties. Results. The developed method gives possible to make calculation of the flux density and influence of skin effect in different parts of the magnetic cores of distribution transformer, where are used mix of grain oriented (GO and non grain oriented (NGO steels. Was determinate the general basic conditions for the calculation of flux density in the laminations from grain and non grain oriented steels of the magnetic core: the strength of magnetic field for the laminations of particular part of mixed core is the same; the sum of the magnetic fluxes in GO and NGO steels in particular part of mixed core is equal with the designed magnetic flux in this part of mixed core. Discover, the magnetic flux in mixed core of the transformer has specific distribution between magnetic steels. The flux density is higher in laminations from GO steel and smaller in laminations from the NGO steel. That is happened because for magnetic flux is easier pass through laminations from GO steel, what has better magnetic conductance than laminations from NGO steel. Originality. The common using of different types of magnetic steels in cores for distribution transformers gives possibility to make design of transformer with low level of no load losses, high efficiency and with optimal cost. Practical value. The determination of the flux density in different parts of magnetic core with GO and NGO steels gives possibility make accurate calculation of

  19. The causal relation between turbulent particle flux and density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)

    2016-07-15

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.

  20. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  1. Thickness evaluation using a new relationship between film density and penetrated thickness in radiography

    International Nuclear Information System (INIS)

    Lee, Sung Sik; Kim, Young H.

    2005-01-01

    In order to improve the accuracies in the thickness evaluation using radiography, a new relationship between film density and penetrated thickness has been proposed, and experimental verification of the proposed relationship was carried out by using the X- and γ-ray radiographs of two carbon steel step wedges. A new parameter, the logarithmic gradient of film density, was defined in order to express the characteristics of the radiographic film for wider range of film density. A new relationship between the film density and the penetrated thickness were formulated using the logarithmic gradient of the film density. In experiment, the logarithmic gradient of the film density was independent on both the exposure and the film density and measured for the radiographic film used in the present work from the slope of the fitting lines for the same penetrated thickness. Experimental results verifies the accuracy of the proposed relationship between film density and the penetrated thickness for the range of film density from 1.0 to 3.5. The thickness can be more accurately determined by using the proposed relationship and the parameters determined by experiment. It is also found that the γ-ray having simple energy spectrum is more appropriate radiation source for the evaluation of the thickness from the film density of the radiograph

  2. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  3. On the secular decrease of radio emission flux densities of the supernova remnants of Cassiopeia A and Taurus A at frequency 927 MHz

    International Nuclear Information System (INIS)

    Vinyajkin, E.N.; Razin, V.A.

    1979-01-01

    Relative measurements of the radio emission flux densities of the supernova remnants of Cassiopeia A and Taurus A were made at the frequency 927 MHz to investigate the secular decrease of their intensity. Experiments were fulfilled in October-December 1977 at the 10-meter radio telescope of the radioastronomical station Staraya Pustyn' (NIRFI). The radio galaxied of Cygnus A, Virgo A and Orion Nebula were taken as the comparison sources. The comparison of the data obtained with the results of absolute measurements carried out in October 1962 permits to state that during 15 years the radio emission flux density of Cassiopeia A decreased by (14.2+-0.6)% (the average annual decrease amounts to (0.95+-O.04)%) and the radio emission flux density of Taurus A decreased by (2.7+-0.1)% (the annual decrease is (0.18+-0.01)%)

  4. Neutron metrology in the L.F.R. Neutron flux density spectrum in the inner graphite reflector of the L.F.R

    International Nuclear Information System (INIS)

    Zsolnay, E.M.

    1979-01-01

    The neutron spectrum in the vertical central plug of the Low Flux Reactor has been determined experimentally. Sets of activation and fission detectors have been irradiated, and the neutron spectrum has been unfolded with aid of 3 special computer programs SAND-II, RFSP-JUEL and CRYSTAL BALL. Using these 3 programs calculations are made on the improvement ratio, which is defined as the ratio of the variance of the input flux density to that of the output flux density. A Monte Carlo error analysis is made to examine the quality of the 3 solution spectra. The results obtained with the different computer codes were compared, and showed a general agreement. The experiment confirmed that the shape of the spectrum in the intermediate energy region is near the 1/E pattern. (author)

  5. A reference system for the measurement of low-strength magnetic flux density

    International Nuclear Information System (INIS)

    Fiorillo, F.; Durin, G.F.; Rocchino, L.

    2006-01-01

    Magnetic flux density standards traceable to the SI units have been developed at IEN-INRIM, by which dissemination for general measurement and testing activities can be pursued. The reference system covers a range of values extending from μ 0 H∼1T to μ 0 H∼10μT and is centered on the use of NMR magnetometers, calibrated coils, and stable current sources. The relative measuring uncertainty of the system is shown to increases with decreasing the field strength value and it is estimated to range between a few 10 -6 and some 10 -3

  6. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  7. Design of PCB search coils for AC magnetic flux density measurement

    Science.gov (United States)

    Ulvr, Michal

    2018-04-01

    This paper presents single-layer, double-layer and ten-layer planar square search coils designed for AC magnetic flux density amplitude measurement up to 1 T in the low frequency range in a 10 mm air gap. The printed-circuit-board (PCB) method was used for producing the search coils. Special attention is given to a full characterization of the PCB search coils including a comparison between the detailed analytical design method and the finite integration technique method (FIT) on the one hand, and experimental results on the other. The results show very good agreement in the resistance, inductance and search coil constant values (the area turns) and also in the frequency dependence of the search coil constant.

  8. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  9. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  10. Density-body mass relationships: Inconsistent intercontinental patterns among termite feeding-groups

    Science.gov (United States)

    Dahlsjö, Cecilia A. L.; Parr, Catherine L.; Malhi, Yadvinder; Meir, Patrick; Rahman, Homathevi; Eggleton, Paul

    2015-02-01

    Allometric relationships are useful for estimating and understanding resource distribution in assemblages with species of different masses. Damuth's law states that body mass scales with population density as M-0.75, where M is body mass and -0.75 is the slope. In this study we used Damuth's law (M-0.75) as a null hypothesis to examine the relationship between body mass and population density for termite feeding-groups in three different countries and regions (Cameroon, West Africa; Peru South America; and Malaysia SE Asia). We found that none of the feeding-groups had a relationship where M-0.75 while the data suggested that population density-body mass relationships for true soil-feeding termites in Cameroon (M2.7) and wood-feeding termites in Peru (M1.5) were significantly different from the expected values given by Damuth's law. The dominance of large-bodied true soil-feeding termites in Cameroon and the absence of fungus-growing termites from Peru suggest that these allometric patterns are due to heterogeneities in termite biogeographical evolution. Additionally, as these feeding-groups have higher population density than expected by their body masses it may be suggested that they also have a higher energy throughput than expected. The results presented here may be used to gain further understanding of resource distribution among termite feeding-groups across regions and an insight into the importance of evolutionary history and biogeography on allometric patterns. Further understanding of population density-body mass relationships in termite feeding-groups may also improve understanding of the role these feeding-groups play in ecosystem processes in different regions.

  11. Relationship between tea drinking and bone mineral density in Bushehr population

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri

    2011-09-01

    Full Text Available Background: Tea consumption is common throughout the world, especially in Iran and it was known as the most common beverages. Several studies evaluated negative effect of coffee and relationship between its caffeine content with bone density. But relationship between tea drinking and bone mineral density is less observed. Considering high amount of tea consumption and prevalence of osteoporosis in Iran, it is important to investigate this relationship.Materials and Method: Population study includes 1125 subjects (aged 20- 72 years randomly selected by cluster sampling in Bushehr, who participated in general project of prevention and treatment of osteoporosis. The participants were categorized based on degree of tea consumption: high tea drinkers (more than 4 cups of tea per day and low tea drinkers (equal or less than 4 cups of tea per day.Results: In high tea drinkers, mean score for bone density was significantly higher in neck and total femur. But this difference in isolated groups (according to sex, age and both of them was not seen.Conclusion: The result of this study indicates on a direct relationship between tea drinking and increasing of bone mineral density. Moreover, it shows the prevalence of osteoporosis is lower in people who have a regular daily habit of tea consumption

  12. Placed in a steady magnetic field, the flux density inside a permalloy-shielded volume decreases over hours and days

    Science.gov (United States)

    Feinberg, Benedict; Gould, Harvey

    2018-03-01

    Following the application of an external magnetic field to a thin-walled demagnetized Permalloy cylinder, the magnetic flux density at the center of the shielded volume decreases by roughly 20% over periods of hours to days. We measured this effect for applied magnetic fields from 0.48 A/m to 16 A/m, the latter being comparable to the Earths magnetic field at its weakest point. Delayed changes in magnetic flux density are also observed following alternating current demagnetization. We attribute these effects to delayed changes in magnetization, which have previously been observed in thin Permalloy films and small bulk samples of ferromagnetic materials. Phenomenological models of thermal activation are discussed. Some possible effects on experiments that rely on static shielding are noted.

  13. Evidence that cell surface charge reduction modifes capillary red cell velocity-flux relationships in hamster cremaster muscle

    NARCIS (Netherlands)

    Vink, H.; Wieringa, P. A.; Spaan, J. A.

    1995-01-01

    1. From capillary red cell velocity (V)-flux (F) relationships of hamster cremaster muscle a yield velocity (VF = 0) can be derived at which red cell flux is zero. Red cell velocity becomes intermittent and/or red blood cells come to a complete standstill for velocities close to this yield velocity,

  14. Power-spectral-density relationship for retarded differential equations

    Science.gov (United States)

    Barker, L. K.

    1974-01-01

    The power spectral density (PSD) relationship between input and output of a set of linear differential-difference equations of the retarded type with real constant coefficients and delays is discussed. The form of the PSD relationship is identical with that applicable to unretarded equations. Since the PSD relationship is useful if and only if the system described by the equations is stable, the stability must be determined before applying the PSD relationship. Since it is sometimes difficult to determine the stability of retarded equations, such equations are often approximated by simpler forms. It is pointed out that some common approximations can lead to erroneous conclusions regarding the stability of a system and, therefore, to the possibility of obtaining PSD results which are not valid.

  15. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    International Nuclear Information System (INIS)

    Alizadeh Pahlavani, M.R.; Shoulaie, A.

    2010-01-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann's equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor's mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  16. The relationship between fission track length and track density in apatite

    International Nuclear Information System (INIS)

    Laslett, G.M.; Gleadow, A.J.W.; Duddy, I.R.

    1984-01-01

    Fission track dating is based upon an age equation derived from a random line segment model for fission tracks. This equation contains the implicit assumption of a proportional relationship between the true mean length of fission tracks and their track density in an isotropic medium. Previous experimental investigation of this relationship for both spontaneous and induced tracks in apatite during progressive annealment model in an obvious fashion. Corrected equations relating track length and density for apatite, an anisotropic mineral, show that the proportionality in this case is between track density and a length factor which is a generalization of the mean track length combining the actual length and crystallographic orientation of the track. This relationship has been experimentally confirmed for induced tracks in Durango apatite, taking into account bias in sampling of the track lengths, and the effect of the bulk etching velocity. (author)

  17. Exploring the relationship between population density and maternal health coverage

    Directory of Open Access Journals (Sweden)

    Hanlon Michael

    2012-11-01

    Full Text Available Abstract Background Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. Methods We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total. Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score’s calculation discounts a nation’s uninhabited territory under the assumption those areas are irrelevant to service delivery. Results We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Conclusions Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations’ Millennial Development Goals.

  18. Concentration- and flux-based ozone dose–response relationships for five poplar clones grown in North China

    International Nuclear Information System (INIS)

    Hu, Enzhu; Gao, Feng; Xin, Yue; Jia, Huixia; Li, Kaihui; Hu, Jianjun; Feng, Zhaozhong

    2015-01-01

    Concentration- and flux-based O_3 dose–response relationships were developed for poplars in China. Stomatal conductance (g_s) of five poplar clones was measured to parameterize a Jarvis-type multiplicative g_s model. The maximum g_s and other model parameters varied between clones. The strongest relationship between stomatal O_3 flux and total biomass was obtained when phytotoxic ozone dose (POD) was integrated using an uptake rate threshold of 7 nmol m"−"2 s"−"1. The R"2 value was similar between flux-based and concentration-based dose–response relationships. Ozone concentrations above 28–36 nmol mol"−"1 contributed to reducing the biomass production of poplar. Critical levels of AOT_4_0 (accumulated O_3 exposure over 40 nmol mol"−"1) and POD_7 in relation to 5% reduction in total biomass for poplar were 12 μmol mol"−"1 h and 3.8 mmol m"−"2, respectively. - Highlights: • A stomatal conductance model was calibrated for poplar clones in China. • The stomatal O_3 flux–response relationship was developed for poplars. • O_3 concentrations > 28–36 nmol mol"−"1 contributed to poplar biomass reduction. • Current ambient O_3 level in most places of China has threatened poplar growth. • Ozone sensitivity of poplar is similar to that of birch/beech. - For the first time, dose–response relationships were developed for risk assessment of O_3 impacts on poplars in China.

  19. The density of states for the Bi-dimensional Anderson model in the presence of a magnetic field with quantum plaque flux

    International Nuclear Information System (INIS)

    Kuehl, N.M.

    1987-01-01

    The regularity properties of the integrated density of states and the state density of the Anderson bidimensional tight-binding model, in the presence of a uniform magnetic field, perpendicular to the plane of the system by means of quantum flux with plaques, are studied. (A.C.A.S.) [pt

  20. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data

    Science.gov (United States)

    David M. Bell; Eric J. Ward; A. Christopher Oishi; Ram Oren; Paul G. Flikkema; James S. Clark; David Whitehead

    2015-01-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as...

  1. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  2. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  3. Polycrystalline semiconductor probes for monitoring the density distribution of an intense thermal neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Graul, J.; Mueller, R.G.; Wagner, E.

    1975-05-01

    The applicability of semiconductor detectors for high thermal neutron flux densities is theoretically estimated and experimentally examined. For good thermal stability and low radiation capture rate silicon carbide is used as semiconductor material, produced in polycristalline layers to achieve high radiation resistance. The relations between crystallinity, photoelectric sensitivity and radiation resistance are shown. The radiation resistance of polycrystalline SiC-probes is approximately 100 times greater than that of conventional single crystal radiation detectors. For thermal neutron measurement they can be used in the flux range of approx. 10 10 13 (cm -2 sec -1 ) with operation times of 1.6 a >= tsub(b,max) >= 30 d, resp. (orig.) [de

  4. Effect of density distribution of cathode emission on the flux character in a strong-current electron gun

    International Nuclear Information System (INIS)

    Matora, I.M.; Merkulov, L.A.

    1975-01-01

    The effect is considered of two kinds of a dependence of the emission density from the electric field voltage on the emitter surface of a strong-current electron gun (the Schottky law and the ''3/2'' law) upon the choice of a form for the meridional cross section of this emitter at the condition of electron flux laminarity. A calculation example is given for electron gun with close to laminar flow assuming the validity of the Schottky law. The results of calculation of varying the laminar flux character are given which appears when varying parameters of the gun at the voltage 500 kV and current 250 A

  5. Influence of near-ultraviolet light enhancement and photosynthetic photon flux density during photoperiod extension on the morphology and lignin content of black spruce seedlings

    International Nuclear Information System (INIS)

    Margolis, H.; Vezina, L.P.; Bellefleur, P.

    1991-01-01

    When containerized black spruce seedlings (Picea mariana (Mill.) B.S.P.) are grown rapidly in greenhouse culture, they sometimes bend over, grow horizontally and become deformed. This phenomenon has been known to affect between 5% and 10% of a winter greenhouse crop. In this study, near-ultraviolet lamps were used to supplement the artificial light received from high-pressure sodium lamps and the effects on seedling morphology and lignin contents were examined. Neither height to diameter ratios nor lignin concentrations were significantly affected by UV radiation flux density. However, seedling biomass, height, root collar diameter, lignin content, and lignin to cellulose ratios of stems were significantly correlated with total photosynthetic photon flux density (PPFD) received during photoperiod extension. Height to diameter ratios were negatively correlated with PPFD during photoperiod enhancement because of a greater relative increase in diameter growth compared with height growth. Neither UV nor PAR flux density affected the percentage of black spruce seedlings having stem deformations greater than 30 ° from the vertical [fr

  6. POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at Millimetre Wavelengths - III. Characterization of total flux density and polarization variability of relativistic jets

    Science.gov (United States)

    Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.

    2018-01-01

    We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux

  7. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  8. Influence of soft ferromagnetic sections on the magnetic flux density profile of a large grain, bulk Y–Ba–Cu–O superconductor

    International Nuclear Information System (INIS)

    Philippe, M P; Wéra, L; Fagnard, J-F; Vanderheyden, B; Vanderbemden, P; Ainslie, M D; Dennis, A R; Shi, Y-H; Cardwell, D A

    2015-01-01

    Bulk, high temperature superconductors have significant potential for use as powerful permanent magnets in a variety of practical applications due to their ability to trap record magnetic fields. In this paper, soft ferromagnetic sections are combined with a bulk, large grain Y–Ba–Cu–O high temperature superconductor to form superconductor/ferromagnet hybrid structures. We study how the ferromagnetic sections influence the shape of the profile of the trapped magnetic induction at the surface of each structure and report the surface magnetic flux density measured by Hall probe mapping. These configurations have been modelled using a 2D axisymmetric finite element method based on the H-formulation and the results show excellent qualitative and quantitative agreement with the experimental measurements. The model has also been used to study the magnetic flux distribution and predict the behaviour for other constitutive laws and geometries. The results show that the ferromagnetic material acts as a magnetic shield, but the flux density and its gradient are enhanced on the face opposite to the ferromagnet. The thickness and saturation magnetization of the ferromagnetic material are important and a characteristic ferromagnet thickness d* is derived: below d*, saturation of the ferromagnet occurs, and above d*, a weak thickness-dependence is observed. The influence of the ferromagnet is observed even if its saturation magnetization is lower than the trapped flux density of the superconductor. Conversely, thin ferromagnetic discs can be driven to full saturation even though the outer magnetic field is much smaller than their saturation magnetization. (paper)

  9. International intercomparison on the neutron flux density spectrum just before the REAL-80 project

    International Nuclear Information System (INIS)

    Ertek, C.

    1981-06-01

    This work briefly presents the results of the international intercomparison on the neutron flux density spectrum just before the REAL-80 intercomparison project. Some of the results of this intercomparison with a smaller number of laboratories will be also reflected in the REAL-80 project, therefore, it has some significant issues. This work is performed within the IAEA programme on standardization of reactor radiation measurements, one of the important objectives of which is the assistance of laboratories in Member States to implement or intercompare the multiple foil activation techniques for different neutron field measurements

  10. Overview: Cross-habitat flux of nutrients and detritus

    Science.gov (United States)

    Vanni, M.J.; DeAngelis, D.L.; Schindler, D.E.; Huxel, G.R.; Polis, G.A.; Power, M.E.; Huxel, G.R.

    2004-01-01

    Ecologists have long known that all ecosystems receive considerable quantities of materials from outside their boundaries (e.g., Elton 1927), and quantifying the magnitude of such fluxes has long been a central tenet of ecosystem ecology (e.g., Odum 1971). Thus, one might think that the consequences of such fluxes for food webs would be well understood. However, food webs have traditionally been viewed as if they were isolated from surrounding habitats, a habit that has been particularly persistent in the modeling of food webs. When fluxes from the outside have been considered, they have largely been restricted to constant inputs directly affecting the base of the food web (e.g., solar energy or nutrients), and usually only such issues as their effects on equilibrium conditions have been considered (e.g., the well-known relationships between nutrient inputs and average densities of various food web members).

  11. Magnetic flux density distribution in superconducting cylinders of arbitrary cross section subjected to an axial magnetic field

    Science.gov (United States)

    Fournet, G.

    1982-07-01

    We show here how the application of the critical state model allows one to determine the magnetic flux density B⃗ in each point of a superconducting cylinder with an arbitrary cross section subjected to axial magnetic fields Hz; the B = 0 boundaries of the regions occupied by the vortices are so defined. We successively consider the cases where the critical current density Jc is either isotropic (constant or an arbitrary function of B) or tensorial, which means, for our problem, the use of two components Jcx and Jcy (either constant or depending on B but Jcx/Jcy remaining constant).

  12. Relationships between nutrient enrichment, pleurocerid snail density and trematode infection rate in streams

    Science.gov (United States)

    Ciparis, Serena; Iwanowicz, Deborah D.; Voshell, J. Reese

    2013-01-01

    Summary 1. Nutrient enrichment is a widespread environmental problem in freshwater ecosystems. Eutrophic conditions caused by nutrient enrichment may result in a higher prevalence of infection by trematode parasites in host populations, due to greater resource availability for the molluscan first intermediate hosts. 2. This study examined relationships among land use, environmental variables indicating eutrophication, population density of the pleurocerid snail, Leptoxis carinata, and trematode infections. Fifteen study sites were located in streams within the Shenandoah River catchment (Virginia, U.S.A.), where widespread nutrient enrichment has occurred. 3. Snail population density had a weak positive relationship with stream water nutrient concentration. Snail population density also increased as human activities within stream catchments increased, but density did not continue to increase in catchments where anthropogenic disturbance was greatest. 4. Cercariae from five families of trematodes were identified in L. carinata, and infection rate was generally low (<10%). Neither total infection rate nor the infection rate of individual trematode types showed a positive relationship with snail population density, nutrients or land use. 5. There were statistically significant but weak relationships between the prevalence of infection by two trematode families and physical and biological variables. The prevalence of Notocotylidae was positively related to water depth, which may be related to habitat use by definitive hosts. Prevalence of Opecoelidae had a negative relationship with orthophosphate concentration and a polynomial relationship with chlorophyll a concentration. Transmission of Opecoelid trematodes between hosts may be inhibited by eutrophic conditions. 6. Leptoxis carinata appears to be a useful species for monitoring the biological effects of eutrophication and investigating trematode transmission dynamics in lotic systems.

  13. New flux based dose-response relationships for ozone for European forest tree species.

    Science.gov (United States)

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Effect of magnetic flux-densities of up to 0.1 Tesla on copper electrodeposition

    International Nuclear Information System (INIS)

    Cifuentes, L.; Artigas, M.; Riveros, G.; Warczok, A.

    2003-01-01

    The effect of magnetic flux densities (B) between 0.0 and 0.1 Tesla on cathode and anode over potentials, cell voltage and electro deposit quality was determined fro a lab-scale copper electrowinning cell which operates at industrial current, density values. Cell voltage decreases with increasing B. The cathodic overpotential decreases by 30% when B increases from 0.0 to 0.1 T. The anodic overpotential also decreases with increasing B, but this effect is six times less than the corresponding effect on the cathodic overpotential. Cathodic effects can be predicted by an expression derived from electrochemical kinetics and magnetohydrodynamic theory. Anodic effects cannot be predicted in the same way. The size of grains and intergranular voids decreases and the surface of the electro deposit becomes smoother as B increases, which means that, in the studied conditions, the quality of the produced copper deposits improves. (Author) 26 refs

  15. Experimental study of the critical density of heat flux in open channels cooled with helium - II

    International Nuclear Information System (INIS)

    Pron'ko, V.G.; Gorokhov, V.V.; Saverin, V.N.

    1981-01-01

    Experimental values of the critical density of a heat flux qsub(cr) in uniformly heated open channels cooled with helium-2 are reported for the first time. The experimental test bench and experimental element are described. Experimental data are obtained in cylindrical channels of 12Kh18N1OT steel with inner diameter d=0.8, 1.8; 2.8 mm and ratio l/d=20.8, 44, 85. The channel orientation has varied from vertical to horizontal position, the immersion depth - from 100, to 600 mm. It has been found that the heat transfer crisis propagation over the whole length of the channel with He-2 occurs practically instantaneously. The qsub(cr) value depends essentially on the bath liquid temperature, angle of inclivnation and relative length (l/d) of the channel with qsub(cr) approximately (l/d)sup(-1.5) being independent of the depth of channel immersion. The obtained values of critical density of a heat flux in channels are papproximately by an order less than those found for a great bulk of He-2. The results presented may be used for designing various types of devices cooled with He-2 and development of heat exchange theory in it [ru

  16. A model for heliospheric flux-ropes

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  17. The Relationship Between Osteoporotic Risk Factors and Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Şule Şahin Onat

    2013-12-01

    Full Text Available Objective: Since osteoporosis is a preventable disease to some extent, risk factor determination and if possible modification is very important. The aim of this study is to identify the relationship between ostoporotic risk factors and bone mineral density results and emphasize the importance of risk factors. Materials and Methods: The study comprised 103 postmenopausal osteoporotic women. Demographic characteristics, osteoporortic risk factors, lumbar vertebrae and femur neck T scores were recorded. Relationships between lumbar vertebra and femur neck T scores and risk factors were statistically studied. Results: Advanced age, low physical activity status, inadequte dietary calcium intake and vertebral compression fractures were found to be associated with low bone mineral density results in postmenopausal osteoporotic women whereas marital status, occupation, education level and familial fracture history were not. Furthermore early menopause was found to be associated with low femoral T scores and smoking with low lumbar T scores. Tendency to fall and number of chronic diseases were irrelevant to bone mineral density. Conclusions: Risk factor assesment is still important for osteoporosis prevention. (Turkish Journal of Osteoporosis 2013;19:74-80

  18. Flux-gradient relationships and soil-water diffusivity from curves of water content versus time

    Energy Technology Data Exchange (ETDEWEB)

    Nofziger, D.L.; Ahuja, L.R.; Swartzendruber, D.

    Direct analysis of a family of curves of soil-water content vs. time at different fixed positions enables assessment of the flux-gradient relationship prior to the calculations of soil-water diffusivity. The method is evaluated on both smooth and random-error data generated from the solution of the horizontal soil-water intake problem with a known diffusivity function. Interpolation, differentiation, and intergration are carried out by least-squares curve fitting based on the 2 recently developed techniques of parabolic splines and sliding parabolas, with all computations performed by computer. Results are excellent for both smooth and random-error input data, whether in terms of recovering the original known diffusivity function, assessing the nature of the flux-gradient relationship, or in making the numerous checks and validations at various intermediate stages of computation. The method applies for any horizontal soil-wetting process independently of the specific boundary conditions, including water entry through a nonzero inlet resistance. It should be adaptable to horizontal dewatering, and extendable to vertical flow. (11 refs.)

  19. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  20. Relationships between Microbial Activities and Subduction-related Outgassing and Volatile Flux at Aleutian Arc Volcanoes

    Science.gov (United States)

    Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.

    2016-12-01

    Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon

  1. Relationships between brightness of nighttime lights and population density

    Science.gov (United States)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly

  2. Effect of stable-density stratification on counter gradient flux of a homogeneous shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Lida, Oaki; Nagano, Yasutaka [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan). Department of Mechanical Engineering

    2007-01-15

    We performed direct numerical simulations of homogeneous shear flow under stable-density stratification to study the buoyancy effects on the heat and momentum transfer. These numerical data were compared with those of a turbulent channel flow to investigate the similarity between the near-wall turbulence and the homogeneous shear flow. We also investigated the generation mechanism of the persistent CGFs (counter gradient fluxes) appearing at the higher wavenumbers of the cospectrum, and lasting over a long time without oscillation. Spatially, the persistent CGFs are associated with the longitudinal vortical structure, which is elongated in the streamwise direction and typically observed in both homogeneous shear flow and near-wall turbulence. The CGFs appear at both the top and bottom of this longitudinal vortical structure, and expand horizontally with an increase in the Richardson number. It was found that the production and turbulent-diffusion terms are responsible for the distribution of the Reynolds shear stress including the persistent CGFs. The buoyancy term, combined with the swirling motion of the vortex, contributes to expand the persistent CGF regions and decrease the down gradient fluxes. (author)

  3. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Science.gov (United States)

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  4. Effect of Photosynthetic Photon Flux Density on Carboxylation Efficiency 1

    Science.gov (United States)

    Weber, James A.; Tenhunen, John D.; Gates, David M.; Lange, Otto L.

    1987-01-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (∂A/∂C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of ∂A/∂C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  5. The determination of self-powered neutron detector sensitivity on thermal and epithermal neutron flux densities

    International Nuclear Information System (INIS)

    Erben, O.

    1980-01-01

    The coefficients of thermal and epithermal neutron flux density depression and self-shielding for the SPN detectors with vanadium, rhodium, silver and cobalt emitters are presented, (for cobalt SPN detectors the functions describing the absorbtion of neutrons along the emitter cross-section are also shown). Using these coefficients and previously published beta particle escape efficiencies, sensitivities are determined for the principal types of detectors produced by Les Cables de Lyon and SODERN companies. The experiments and their results verifying the validity of the theoretical work are described. (author)

  6. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.

    Science.gov (United States)

    Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S

    2015-07-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling

  7. Extracorporeal shock wave therapy with low-energy flux density inhibits hypertrophic scar formation in an animal model.

    Science.gov (United States)

    Zhao, Jing-Chun; Zhang, Bo-Ru; Hong, Lei; Shi, Kai; Wu, Wei-Wei; Yu, Jia-Ao

    2018-04-01

    Hypertrophic scar is characterized by excessive deposits of collagen during skin wound healing, which could become a challenge to clinicians. This study assessed the effects of the extracorporeal shock wave therapy (ESWT) on hypertrophic scar formation and the underlying gene regu-lation. A rabbit ear hypertrophic scar model was generated and randomly divided into three groups: L-ESWT group to receive L-ESWT (energy flux density of 0.1 mJ/mm2), H-ESWT (energy flux density of 0.2 mJ/mm2) and sham ESWT group (S-ESWT). Hypertrophic scar tissues were then collected and stained with hematoxylin and eosin (H&E) and Masson's trichrome staining, respectively, to assess scar elevation index (SEI), fibroblast density and collagen fiber arrangement. Expression of cell proliferation marker proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were assessed using RT-PCR and immunohistochemistry in hypertrophic scar tissues. H&E staining sections showed significant reduction of SEI and fibroblast density in both ESWT treatment groups compared to S-ESWT, but there was no dramatic difference between L-ESWT and H-ESWT groups. Masson's trichrome staining showed that collagen fibers were more slender and broader and oriented in parallel to skin surface after administration of ESWT compared to control tissues. At the gene level, PCNA‑positive fibroblasts and α-SMA-positive myofibroblasts were significantly decreased after L-ESWT or H-ESWT compared to the controls. Furthermore, there was no significant difference in expression of PCNA mRNA between L-ESWT or H-ESWT and S-ESWT, whereas expression of α-SMA mRNA significantly decreased in L-ESWT compared to that of H-ESWT and S-ESWT (P=0.002 and P=0.030, respectively). In conclusion, L-ESWT could be effective on suppression of hypertrophic scar formation by inhibition of scar elevation index and fibroblast density as well as α-SMA expression in hypertrophic scar tissues of the rabbit model.

  8. Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M.; Park, S.Y. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, R and D Center Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2014-03-15

    In an attempt to differentiate the impact of grain size and crystallographic texture on magnetic properties of non-oriented (NO) electrical steel sheets, samples with different grain sizes and textures were produced and analyzed regarding magnetic flux density B and core loss W. The textures of the NO electrical steel samples could be precisely quantified with the help of elliptical Gaussian distributions. In samples with identical textures, small grain sizes resulted in about 15% higher core loss W than larger grains, whereas grain size only moderately affected the magnetic flux density B. In samples having nearly the same grain size, a correlation of the magneto-crystalline anisotropic properties of B and W with texture was obtained via the anisotropy parameter A(h{sup →}). With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. - Highlights: • We produced electrical steel sheets having different grain size and texture. • Magnetic flux density B and core loss W were varied with grain size and texture. • Correlation of B and W with texture was established via anisotropy parameter A(h{sup →}). • With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. • Grain size mainly affected W with only minor impact on B.

  9. Calculation of the flux density of gamma rays above the surface of Venus and the Earth

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    In this article the authors present the results of calculating the flux density of unscattered gamma rays as a function of height above the surfaces of Venus and the Earth. At each height they calculate the areas which will collect a certain fraction of the gamma rays. The authors calculate the spectra of scattered gamma rays, as well as their integrated fluxes at various heights above the surface of Venus. They consider how the atmosphere will affect the recording of gamma rays. Their results enable them to evaluate the optimal conditions for measuring the gamma-ray fields above the surfaces of Venus and the Earth and to determine the area of the planet which can be investigated in this way. These results are also necessary if they are to determine the elemental composition of the rock from the characteristic recorded spectrum of gamma radiation

  10. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, Ludovic, E-mail: ludohumberto@gmail.com [Galgo Medical, Barcelona 08036 (Spain); Hazrati Marangalou, Javad; Rietbergen, Bert van [Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Río Barquero, Luis Miguel del [CETIR Centre Medic, Barcelona 08029 (Spain); Lenthe, G. Harry van [Biomechanics Section, KU Leuven–University of Leuven, Leuven 3001 (Belgium)

    2016-04-15

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the

  11. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    International Nuclear Information System (INIS)

    Humbert, Ludovic; Hazrati Marangalou, Javad; Rietbergen, Bert van; Río Barquero, Luis Miguel del; Lenthe, G. Harry van

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm"3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm"3), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm"3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm"3). A trend for the cortical thickness and

  12. Examining the occupancy–density relationship for a low-density carnivore

    Science.gov (United States)

    Linden, Daniel W.; Fuller, Angela K.; Royle, J. Andrew; Hare, Matthew P.

    2017-01-01

    The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools.For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions.Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution.We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous

  13. THE RELATIONSHIP BETWEEN BULK-DENSITY AND COMPACTIBILITY OF LACTOSE GRANULATIONS

    NARCIS (Netherlands)

    ZUURMAN, K; RIEPMA, KA; BOLHUIS, GK; VROMANS, H; LERK, CF

    1994-01-01

    The relationship between the bulk density and the compactibility of lactose granulations was studied. The granulations were prepared from different alpha-lactose monohydrate and roller dried beta-lactose powders by wet granulation, using different techniques with only water as a binder, or by

  14. Relationship of bone mineral density to progression of knee osteoarthritis

    Science.gov (United States)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  15. Multi-flux-tube system in the dual Ginzburg-Landau theory

    International Nuclear Information System (INIS)

    Ichie, H.; Suganuma, H.; Toki, H.

    1996-01-01

    We study the multi-flux-tube system in terms of the dual Ginzburg-Landau theory. We consider two periodic cases, where the directions of all the flux tubes are the same in one case and alternating in the other case for neighboring flux tubes. We formulate the multi-flux-tube system by regarding it as the system of two flux tubes penetrating through a two-dimensional spherical surface. We find the multi-flux-tube configuration becomes uniform above some critical flux-tube number density ρ c =1.3 endash 1.7 fm -2 . On the other hand, the inhomogeneity of the color electric distribution appears when the flux-tube density is smaller than ρ c . We study the inhomogeneity on the color electric distribution in relation with the flux-tube number density, and discuss the quark-gluon plasma formation process in ultrarelativistic heavy-ion collisions. copyright 1996 The American Physical Society

  16. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  17. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  18. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  19. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  20. Rubber mixing process and its relationship with bound rubber and crosslink density

    Science.gov (United States)

    Hasan, A.; Rochmadi; Sulistyo, H.; Honggokusumo, S.

    2017-06-01

    This research studied the relationship between bound rubber and crosslink density based on rubber mixing process. Bound rubber was obtained after natural rubber was masticated and mixed with rubber chemicals and filler while crosslink density was collected after rubber compound was vulcanized. Four methods are used and each method refers to four ways of incorporating carbon black during mixing. The first method, after rubber was masticated for 5 minutes, the addition of rubber chemicals and filler was done simultaneously. Rubber was masticated for 1 minute and continued mixing of rubber chemicals and filler where mixing was different from first method. This was the second method. The third method was the same as the second method but the filler used N 660 while in the second method N 330. The last method is not the same as the first and second, the rubber is only masticated for 3 minutes and then mixed with filler and followed by rubber chemicals sequentially. The results showed that bound rubber and crosslink density were influenced by mixing and mastication process. Bound rubber dropped and crosslink density was relatively stable in the first three mixing methods for increasing carbon black at the beginning of the mixing process. Bound rubber and crosslink density stated opposite results in the fourth mixing method. The higher the bound rubber the lower the crosslink density. Without regard to mixing methods, there is a non-linear relationship between bound rubber formation and crosslink density determination

  1. The influence of land surface parameters on energy flux densities derived from remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Tittebrand, A.; Schwiebus, A. [Inst. for Hydrology und Meteorology, TU Dresden (Germany); Berger, F.H. [Observatory Lindenberg, German Weather Service, Lindenberg (Germany)

    2005-04-01

    Knowledge of the vegetation properties surface reflectance, normalised difference vegetation index (NDVI) and leaf area index (LAI) are essential for the determination of the heat and water fluxes between terrestrial ecosystems and the atmosphere. Remote sensing data can be used to derive spatial estimates of the required surface properties. The determination of land surface parameters and their influence on radiant and energy flux densities is investigated with data of different remote sensing systems. Sensitivity studies show the importance of correctly derived land surface properties to estimate the key quantity of the hydrological cycle, the evapotranspiration (L.E), most exactly. In addition to variable parameters like LAI or NDVI there are also parameters which are can not be inferred from satellite data but needed for the Penman-Monteith approach. Fixed values are assumed for these variables because they have little influence on L.E. Data of Landsat-7 ETM+ and NOAA-16 AVHRR are used to show results in different spatial resolution. The satellite derived results are compared with ground truth data provided by the Observatory Lindenberg of the German Weather Service. (orig.)

  2. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region

    OpenAIRE

    Li, Xiaoyu; Liu, Lijuan; Yang, Huijin; Li, Yan

    2018-01-01

    Environmental factors and human activities play important roles in carbon fixation and emissions generated from croplands. Eddy covariance measurements in a drip-irrigated, film-mulched cotton field were used to analyze the relationships between carbon fluxes and environmental factors in Wulanwusu, northern Xinjiang, an arid region of Northwest China. Our results showed that the cumulative net carbon flux (NEE) was -304.8 g C m-2 (a strong sink) over the whole cotton growing season in 2012, w...

  3. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Devendranath Ramkumar, K., E-mail: ramdevendranath@gmail.com; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-06-25

    This research work articulated the effect of SiO{sub 2} flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO{sub 2} flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels.

  4. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-01-01

    This research work articulated the effect of SiO 2 flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO 2 flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels

  5. Flux distribution in single phase, Si-Fe, wound transformer cores

    International Nuclear Information System (INIS)

    Loizos, George; Kefalas, Themistoklis; Kladas, Antonios; Souflaris, Thanassis; Paparigas, Dimitris

    2008-01-01

    This paper shows experimental results of longitudinal flux density and its harmonics at the limb, the yoke and the corner as well as normal flux in the step lap joint of a single phase, Si-Fe, wound transformer core. Results show that the flux density as well as the harmonics content is higher in the inner (window) side of the core and reduces gradually towards the outer side. Variations of flux density distribution between the limb and the corner or the yoke of the core were observed. A full record of normal flux around the step lap region of the model core was also obtained. Longitudinal and normal flux findings will enable the development of more accurate numerical models that describe the magnetic behavior of magnetic cores

  6. The relationship between bone mineral density and adipose tissue of postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hwa [Dept. of Radiology, HwaMyeong Iisin christian Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological Science, Catholic University of Pusan, Busan (Korea, Republic of); Im, In Chul [Dept. of Radiological Science, Dong Eui University, Busan (Korea, Republic of)

    2017-06-15

    Postmenopausal women are at increased risk for osteoporosis and obesity due to changes in hormones. The relationship between osteoporosis and body weight is known, and its relation with body fat mass is discussed. The purpose of this study was to evaluate the bone mineral density(BMD) changes of epicardial adipose tissue(EAT) and abdominal subcutaneous fat. The subjects of this study were 160 postmenopausal women who underwent BMD and echocardiography. The thickness of the epicardial adipose tissue was measured in three sections and the BMD were meassured according to the diagnostic criteria. The results of this study that age increase the risk of osteoporosis increases, and as the weight and BMI decrease, the risk of osteoporosis increases(p<0.05). The relationship between changes in bone mineral density and adipose tissue in postmenopausal women, increased epicardial adipose tissue was negatively correlated with the bone mineral density(p<0.05). conversely, increased abdominal subcutaneous fat thickness was positively correlated with bone mineral density(p<0.05). In other words, the effect of bone mineral density on the location of adipose tissue was different. If Echocardiography is used to periodically examine changes in the thickness of the epicardial adipose tissue, it may be prevented before proceeding to osteoporosis.

  7. Absorption and Flux Density Measurements in an Iron Plug in R1

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ragnar; Braun, Josef

    1958-11-15

    Thermal, epithermal and fast neutron fluxes have been measured in a 60 cm long, 'sliced' iron plug, which has been placed in the lower iron lid of the Swedish reactor R1. Au foils, Cu foils, Mn foils, P packets, Cu wires and small Fe cylinders have been used. The gamma flux has been determined with film dosimeters. The measurements have shown that only in the first centimeters of the iron is the activation determined by the thermal flux, which decreases with a relaxation length {lambda}= (1.51 {+-} 0.02) cm. The epithermal flux is entirely predominant already after 10 cm ( {lambda} = 16 cm). The epithermal neutron flux decreases even more slowly than the fast flux ({lambda} = 6.2 cm)

  8. Absorption and Flux Density Measurements in an Iron Plug in R1

    International Nuclear Information System (INIS)

    Nilsson, Ragnar; Braun, Josef

    1958-11-01

    Thermal, epithermal and fast neutron fluxes have been measured in a 60 cm long, 'sliced' iron plug, which has been placed in the lower iron lid of the Swedish reactor R1. Au foils, Cu foils, Mn foils, P packets, Cu wires and small Fe cylinders have been used. The gamma flux has been determined with film dosimeters. The measurements have shown that only in the first centimeters of the iron is the activation determined by the thermal flux, which decreases with a relaxation length λ= (1.51 ± 0.02) cm. The epithermal flux is entirely predominant already after 10 cm ( λ = 16 cm). The epithermal neutron flux decreases even more slowly than the fast flux (λ = 6.2 cm)

  9. Electron thermal energy transport research based on dynamical relationship between heat flux and temperature gradient

    International Nuclear Information System (INIS)

    Notake, Takashi; Inagaki, Shigeru; Tamura, Naoki

    2008-01-01

    In the nuclear fusion plasmas, both of thermal energy and particle transport governed by turbulent flow are anomalously enhanced more than neoclassical levels. Thus, to clarify a relationship between the turbulent flow and the anomalous transports has been the most worthwhile work. There are experimental results that the turbulent flow induces various phenomena on transport processes such as non-linearity, transition, hysteresis, multi-branches and non-locality. We are approaching these complicated problems by analyzing not conventional power balance but these phenomena directly. They are recognized as dynamical trajectories in the flux and gradient space and must be a clue to comprehend a physical mechanism of arcane anomalous transport. Especially, to elucidate the mechanism for electron thermal energy transport is critical in the fusion plasma researches because the burning plasmas will be sustained by alpha-particle heating. In large helical device, the dynamical relationships between electron thermal energy fluxes and electron temperature gradients are investigated by using modulated electron cyclotron resonance heating and modern electron cyclotron emission diagnostic systems. Some trajectories such as hysteresis loop or line segments with steep slope which represent non-linear property are observed in the experiment. (author)

  10. User's guide for SLWDN9, a code for calculating flux-surfaced-averaging of alpha densities, currents, and heating in non-circular tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Miley, G.M.

    1980-03-01

    The code calculates flux-surfaced-averaged values of alpha density, current, and electron/ion heating profiles in realistic, non-circular tokamak plasmas. The code is written in FORTRAN and execute on the CRAY-1 machine at the Magnetic Fusion Energy Computer Center

  11. On the theory of critical currents and flux flow in superconductors by the mechanism of plastic deformation of the flux-line lattice

    International Nuclear Information System (INIS)

    Welch, D.O.

    1999-01-01

    In this paper the author will discuss how the nature of the stress state in the flux-line lattice (FLL) of superconductors arises from the distribution, density, geometry, and strength of pinning centers. Under certain conditions this stress causes the onset of plastic deformation in the FLL for values of the current density below that required for flux-flow by general depinning. He will describe an analytic framework, based on a theory of plasticity of the FLL, which describes the flux-flow characteristics, including the possibility of thermally-activated flow and flux creep

  12. Regional absolute conductivity reconstruction using projected current density in MREIT

    International Nuclear Information System (INIS)

    Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In

    2012-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a non-invasive technique for imaging the internal conductivity distribution in tissue within an MRI scanner, utilizing the magnetic flux density, which is introduced when a current is injected into the tissue from external electrodes. This magnetic flux alters the MRI signal, so that appropriate reconstruction can provide a map of the additional z-component of the magnetic field (B z ) as well as the internal current density distribution that created it. To extract the internal electrical properties of the subject, including the conductivity and/or the current density distribution, MREIT techniques use the relationship between the external injection current and the z-component of the magnetic flux density B = (B x , B y , B z ). The tissue studied typically contains defective regions, regions with a low MRI signal and/or low MRI signal-to-noise-ratio, due to the low density of nuclear magnetic resonance spins, short T 2 or T* 2 relaxation times, as well as regions with very low electrical conductivity, through which very little current traverses. These defective regions provide noisy B z data, which can severely degrade the overall reconstructed conductivity distribution. Injecting two independent currents through surface electrodes, this paper proposes a new direct method to reconstruct a regional absolute isotropic conductivity distribution in a region of interest (ROI) while avoiding the defective regions. First, the proposed method reconstructs the contrast of conductivity using the transversal J-substitution algorithm, which blocks the propagation of severe accumulated noise from the defective region to the ROI. Second, the proposed method reconstructs the regional projected current density using the relationships between the internal current density, which stems from a current injection on the surface, and the measured B z data. Combining the contrast conductivity distribution in the entire imaging

  13. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  14. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  15. Can live tree size-density relationships provide a mechanism for predicting down and dead tree resources?

    Science.gov (United States)

    Christopher Woodall; James Westfall

    2009-01-01

    Live tree size-density relationships in forests have long provided a framework for understanding stand dynamics. There has been little examination of the relationship between the size-density attributes of live and standing/down dead trees (e.g., number and mean tree size per unit area, such information could help in large-scale efforts to estimate dead wood resources...

  16. Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species.

    Science.gov (United States)

    Fajardo, A

    2018-05-01

    The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  17. Boiling transition and the possibility of spontaneous nucleation under high subcooling and high mass flux density flow in a tube

    International Nuclear Information System (INIS)

    Fukuyama, Y.; Kuriyama, T.; Hirata, M.

    1986-01-01

    Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated

  18. Relationship between lunar tidal enhancements in the equatorial electrojet and tropospheric eddy heat flux during stratospheric sudden warmings

    Science.gov (United States)

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.

    2017-12-01

    A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared

  19. Flux depression and the absolute measurement of the thermal neutron flux density

    International Nuclear Information System (INIS)

    Bensch, Friedrich.

    1977-01-01

    The thermal neutron flux depression in a diffusing medium by an absorbing foil has been treated in numerous papers. The results are re-examined in an attempt to find a uniform and physically meaningful representation of the 'activation correction'. This quantity can be split up into a combination of probabilities. Thus, it is possible to determine the activation correction for any moderator and foil material. Measurements confirm the utility of the concepts introduced

  20. Flux canceling in three-dimensional radiative magnetohydrodynamic simulations

    Science.gov (United States)

    Thaler, Irina; Spruit, H. C.

    2017-05-01

    We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.

  1. Flux-line-cutting losses in type-II superconductors

    International Nuclear Information System (INIS)

    Clem, J.R.

    1982-01-01

    Energy dissipation associated with flux-line cutting (intersection and cross-joining of adjacent nonparallel vortices) is considered theoretically. The flux-line-cutting contribution to the dissipation per unit volume, arising from mutual annihilation of transverse magnetic flux, is identified as J/sub parallel/xE/sub parallel/, where J/sub parallel/ and E/sub parallel/ are the components of the current density and the electric field parallel to the magnetic induction. The dynamical behavior of the magnetic structure at the flux-line-cutting threshold is shown to be governed by a special critical-state model similar to that proposed by previous authors. The resulting flux-line-cutting critical-state model, characterized in planar geometry by a parallel critical current density J/sub c/parallel or a critical angle gradient k/sub c/, is used to calculate predicted hysteretic ac flux-line-cutting losses in type-II superconductors in which the flux pinning is weak. The relation of the theory to previous experiments is discussed

  2. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  3. Characteristics of heat flux and particle flux to the divertor in H-mode of JT-60U

    International Nuclear Information System (INIS)

    Itami, K.; Hosogane, N.; Asakura, N.; Kubo, H.; Tsuji, S.; Shimada, M.

    1995-01-01

    Heat flux and particle flux behavior in H-mode is studied in a comparative manner. It was confirmed that the multiple peak structure of heat flux during ELM activity has a role in reducing the average value of a peak heat flux at the divertor. In order to characterize heat and particle flux during ELM activity, the ELM part and the steady state part of heat flux and particle flux were determined and statistically analyzed. A large in-out asymmetry of peak ELM heat flux density was found. The asymmetry is almost unaffected by the ion grad-B drift direction. In-out asymmetry of both ELM and steady-state parts of the particle flux were found to be similar. ((orig.))

  4. Responses of Sap Flux Density to Changing Atmospheric Humidity in Three Common Street Tree Species in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pantana Tor-ngern

    2016-09-01

    Full Text Available Efficient water management in urban landscape is imperative under the projected increases in drought stress under future climate. Because different tree species have different stomatal regulations to prevent water loss under water limitation, comparative study of species-specific responses of water use to changing weather conditions will benefit selective planting of urban trees for sustainable urban greening management. Here, we performed a simple and short-term investigation of water use characteristics of three common street tree species in Bangkok, a major city in Southeast Asia. Species included Pterocarpus indicus (Pi, Swietenia macrophylla (Sm and Lagerstroemia speciosa (Ls. We used self-constructed heat dissipation probes to track water uptake rates, expressed as sap flux density (JS, in stems of potted trees and examined their diurnal variations with changing atmospheric humidity, represented by vapor pressure deficit (D. The results implied that two of the three species: Pi and Sm, may be selected for planting because their Js was less sensitive to changing D compared to Ls. The sap flux density of Ls increased more rapidly with rising D, implying higher sensitivity to drought in Ls, compared to the other two species. Nevertheless, further study on large trees and under longer period of investigation, covering both dry and wet seasons, is required to confirm this finding.

  5. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  6. An Alternative Interpretation of the Relationship between the Inferred Open Solar Flux and the Interplanetary Magnetic Field

    Science.gov (United States)

    Riley, Pete

    2007-01-01

    Photospheric observations at the Wilcox Solar Observatory (WSO) represent an uninterrupted data set of 32 years and are therefore unique for modeling variations in the magnetic structure of the corona and inner heliosphere over three solar cycles. For many years, modelers have applied a latitudinal correction factor to these data, believing that it provided a better estimate of the line-of-sight magnetic field. Its application was defended by arguing that the computed open flux matched observations of the interplanetary magnetic field (IMF) significantly better than the original WSO correction factor. However, no physically based argument could be made for its use. In this Letter we explore the implications of using the constant correction factor on the value and variation of the computed open solar flux and its relationship to the measured IMF. We find that it does not match the measured IMF at 1 AU except at and surrounding solar minimum. However, we argue that interplanetary coronal mass ejections (ICMEs) may provide sufficient additional magnetic flux to the extent that a remarkably good match is found between the sum of the computed open flux and inferred ICME flux and the measured flux at 1 AU. If further substantiated, the implications of this interpretation may be significant, including a better understanding of the structure and strength of the coronal field and I N providing constraints for theories of field line transport in the corona, the modulation of galactic cosmic rays, and even possibly terrestrial climate effects.

  7. Angular dependence of energy and particle fluxes in a magnetized plasma

    International Nuclear Information System (INIS)

    Koch, B.; Bohmeyer, W.; Fussmann, G.

    2005-01-01

    A flat probe allowing simultaneous measurements of energy flux and current density as functions of a bias voltage was rotated in a spatially homogeneous plasma. The experiments were conducted at the PSI-2 facility, a linear divertor simulator with moderate magnetic field strength. Sheath parameters (ion current density j i , floating potential U f , energy flux density q, ion energy reflection coefficient R E and sheath energy transmission coefficient γ) were determined as functions of the angle α between the probe surface normal and the magnetic field. A geometric model has been developed to explain the ion flux density at grazing incidence

  8. Fluxes and concentrations of volatile organic compounds above central London, UK

    Directory of Open Access Journals (Sweden)

    B. Langford

    2010-01-01

    Full Text Available Concentrations and fluxes of eight volatile organic compounds (VOCs were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone and 0.2–1.3 ppb for the aromatics (benzene, toluene and C2-benzenes. Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25° C it is estimated that more than half the isoprene observed in central London is of biogenic origin.

  9. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.

    Science.gov (United States)

    Leight, A K; Hood, R; Wood, R; Brohawn, K

    2016-02-01

    Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of

  10. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities

    DEFF Research Database (Denmark)

    Baldocchi, D.; Falge, E.; Gu, L.

    2001-01-01

    FLUXNET is a global network of micrometeorological flux measurement site's that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes...... of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange......, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.oml.gov/FLUXNTET/.) Second...

  11. Critical current density, irreversibility line, and flux creep activation energy in silver-sheathed Bi2Sr2Ca2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Shi, D.; Wang, Z.; Sengupta, S.; Smith, M.; Goodrich, L.F.; Dou, S.X.; Liu, H.K.; Guo, Y.C.

    1992-08-01

    Transport data, magnetic hysteresis and flux creep activation energy experimental results are presented for silver-sheathed high-T c Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting tapes. The 110 K superconducting phase was formed by lead doping in a Bi-Sr-Ca-Cu-0 system. The transport critical current density was measured at 4.0 K to be 0.7 x 10 5 A/cm 2 (the corresponding critical current is 74 A) at zero field and 1.6 x 10 4 A/cm 2 at 12 T for H parallel ab. Excellent grain alignment in the a-b plane was achieved by a short-melting method, which considerably improved the critical current density and irreversibility line. Flux creep activation energy as a function of current is obtained based on the magnetic relaxation measurements

  12. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    Science.gov (United States)

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  13. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  14. Design and analysis of a 3D-flux flux-switching permanent magnet machine with SMC cores and ferrite magnets

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2017-05-01

    Full Text Available Since permanent magnets (PM are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM. The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.

  15. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    Science.gov (United States)

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  16. The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation

    Directory of Open Access Journals (Sweden)

    Kulish Vladimir V.

    2003-01-01

    Full Text Available The relationship between the local temperature and the local heat flux has been established for the homogeneous hyperbolic heat equation. This relationship has been written in the form of a convolution integral involving the modified Bessel functions. The scale analysis of the hyperbolic energy equation has been performed and the dimensionless criterion for the mode of energy transport, similar to the Reynolds criterion for the flow regimes, has been proposed. Finally, the integral equation, relating the local temperature and the local heat flux, has been solved numerically for those processes of surface heating whose time scale is of the order of picoseconds.

  17. A statistical model for horizontal mass flux of erodible soil

    International Nuclear Information System (INIS)

    Babiker, A.G.A.G.; Eltayeb, I.A.; Hassan, M.H.A.

    1986-11-01

    It is shown that the mass flux of erodible soil transported horizontally by a statistically distributed wind flow has a statistical distribution. Explicit expression for the probability density function, p.d.f., of the flux is derived for the case in which the wind speed has a Weibull distribution. The statistical distribution for a mass flux characterized by a generalized Bagnold formula is found to be Weibull for the case of zero threshold speed. Analytic and numerical values for the average horizontal mass flux of soil are obtained for various values of wind parameters, by evaluating the first moment of the flux density function. (author)

  18. Elliptic-cylindrical analytical flux-rope model for ICMEs

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  19. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  20. Force sensor using changes in magnetic flux

    Science.gov (United States)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  1. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices

    International Nuclear Information System (INIS)

    Kustas, W.P.; Daughtry, C.S.T.; Oevelen, P.J. van

    1993-01-01

    Relationships between leaf area index (LAI) and midday soil heat flux/net radiation ratio (G/R n ) and two more commonly used vegetation indices (VIs) were used to analytically derive formulas describing the relationship between G/R n and VI. Use of VI for estimating G/R n may be useful in operational remote sensing models that evaluate the spatial variation in the surface energy balance over large areas. While previous experimental data have shown that linear equations can adequately describe the relationship between G/Rn and VI, this analytical treatment indicated that nonlinear relationships are more appropriate. Data over bare soil and soybeans under a range of canopy cover conditions from a humid climate and data collected over bare soil, alfalfa, and cotton fields in an arid climate were used to evaluate model formulations derived for LAI and G/R n , LAI and VI, and VI and G/R n . In general, equations describing LAI-G/R n and LAI-VI relationships agreed with the data and supported the analytical result of a nonlinear relationship between VI and G/R n . With the simple ratio (NIR/Red) as the VI, the nonlinear relationship with G/R n was confirmed qualitatively. But with the normalized difference vegetation index (NDVI), a nonlinear relationship did not appear to fit the data. (author)

  2. Examinations for the determination of the flux density of sputtered iron using laser induced fluorescence

    International Nuclear Information System (INIS)

    Schweer, H.B.

    1983-11-01

    In this work investigations are described to measure the flux density of sputtered iron atoms by means of laser induced fluorescence. In a laboratory experiment an iron target (stainless steel 316, Inconel 600), was bombarded with 10 keV Ar + and 2.5 keV H + and the population distribution of the energy levels of the ground state a 5 D and the metastable state a 5 F was measured. In the plasma wall region in the ISX-B tokamak at the Oak Ridge National Laboratory (USA) neutral iron atoms were measured the first time by laser induced fluorescence. A detection limit of 10 6 atoms/cm 3 was found and sputtered iron atoms were observed in the first 15 ms of the discharge. (orig./BRB)

  3. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    Science.gov (United States)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  4. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  5. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  6. The influence of the number of activation detectors on the Seibersdorf - Milano intercomparison of neutron flux density spectra by WINDOWS code

    International Nuclear Information System (INIS)

    Ertek, C.

    1981-02-01

    This work is a continuation of the work performed within the IAEA programme on standardization of reactor radiation measurements, one of the important objectives of which is the assistance to laboratories in Member States to implement or intercompare the multiple foil activation techniques for different neutron field measurements. The importance of these techniques is well recognized. In CESNEF-FERMI Politecnico di Milano, Italy, they have installed near the core of a water boiler of 50kW, a neutron filter made of B 4 C in order to obtain a neutron flux density spectrum that could be of utility in intercalibration problems connected with irradiation in fast assemblies. Dr. V. Sangiust from CESNEF kindly sent the input guess neutron flux density spectrum and a series of measured reaction rates to be treated by the IAEA Seibersdorf laboratory using the SAND-II and the WINDOWS unfolding codes. The meaningful comparison using partly the same ENDF/B IV cross section data is performed. In the present work we extended the investiga tion using WINDOWS unfolding code for different numbers of activation fo ils or reaction rates

  7. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  8. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  9. Density profiles and particle fluxes of heavy impurities in the limiter shadow region of a tokamak

    International Nuclear Information System (INIS)

    Claassen, H.A.; Repp, H.

    1980-01-01

    For the case of low impurity concentration, transport calculations have been performed for heavy impurities, in the scrape-off layer plasma of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the various ionization states of the impurity ions taking due consideration of the convection and collision processes. The background plasma and the impurity sources from the torus wall and the limiter surface enter the theory as input parameters. The theory is developed for the first two orders of the drift approximation. Numerical results are given to zero order drift approximation for the radial profiles of density and particle fluxes parallel to the magnetic field. (orig.)

  10. Study on the relationship between serum testosterone level and forearm distal bone density in post-menopausal women

    International Nuclear Information System (INIS)

    Li Wenqi; Zhou Zhengli; Li Xin; Zhou Jiwen

    2002-01-01

    Objective: To study the relationship between the androgen level and bone density in post-menopausal women. Methods: Serum testosterone (T) level and forearm distal bone density (BMD) were measured in 39 past-menopausal women who had never taken any estrogen or calcium preparation. Their serum estradiol (E 2 ) levels were about the same. According to their BMD, the 39 subjects were divided into normal (n = 22) and osteoporotic (n = 17) groups. Results: The mean serum testosterone (T) level in the normal group was significantly higher than that in the osteoporotic group (p 1 = 0.72, r 2 0.75; p 1 and r 2 was 0.14, suggesting similarity of the positive cor-relationship for both groups (p > 0.05). Conclusion: Serum testosterone level seems to bear close relationship with bone density and osteoporosis

  11. Heat Flux Inhibition by Whistlers: Experimental Confirmation

    International Nuclear Information System (INIS)

    Eichler, D.

    2002-01-01

    Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)

  12. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    Energy Technology Data Exchange (ETDEWEB)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M. [Applied Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Li, Hui [Theoretical Division, Los Alamos National Laboratory, Mail Stop B227, Los Alamos, NM 87545 (United States); Li, Shengtai, E-mail: pwongwai@caltech.edu, E-mail: mhaw@caltech.edu [Mathematical Modeling and Analysis, Los Alamos National Laboratory, Mail Stop B284, Los Alamos, NM 87545 (United States)

    2017-10-20

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.

  13. High resolution isotope data and ensemble modelling reveal ecohydrological controls on catchment storage-discharge relationships and flux travel time distributions

    Science.gov (United States)

    Soulsby, C.; Kuppel, S.; Smith, A.; Tetzlaff, D.

    2017-12-01

    The dynamics of water storage in a catchment provides a fundamental insight into the interlinkages between input and output fluxes, and how these are affected by environmental change. Such dynamics also mediate, and help us understand, the fundamental difference of the rapid celerity of the rainfall-runoff (minutes to hours) response of catchments and the much slower velocity of water particles (months to decades) as they are transported through catchment systems. In this contribution we report an intensive, long-term (>10year), multi-scale isotope study in the Scottish Highlands that has sought to better understand these issues. We have integrated empirical data collection with diverse modelling approaches to quantify the dynamics and residence times of storage in different compartments of the hydrological system (vegetation canopies, soils, ground waters etc.) and their relationship between the magnitude and travel time distributions of output fluxes (stream flow, transpiration and evaporation). Use of conceptual, physically-based and probabilistic modelling approaches give broadly consistent perspectives on the storage-discharge relationships and the preferential selection of younger waters in runoff, evaporation and transpiration; while older waters predominate in groundwater. The work also highlighted the importance role vegetation plays in regulating fluxes in evaporation and transpiration and how this contributes to the differential ageing of water in mobile and bulk waters in the soil compartment. A separate case study shows how land use change can affect storage distributions in a catchment and radically change travel time distributions in output fluxes.

  14. Defining the Magnitude: Patterns, Regularities and Direct TOA-Surface Flux Relationships in the 15-Year Long CERES Satellite Data — Observations, Model and Theory

    Science.gov (United States)

    Zagoni, M.

    2017-12-01

    Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.

  15. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    Science.gov (United States)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  16. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  17. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    International Nuclear Information System (INIS)

    Clem, John R.

    2011-01-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ(parallel)) and flux flow (ρ(perpendicular)), and their ratio r = ρ(parallel)/ρ(perpendicular). When r c (φ) that makes the vortex arc unstable.

  18. Method of measuring surface density

    International Nuclear Information System (INIS)

    Gregor, J.

    1982-01-01

    A method is described of measuring surface density or thickness, preferably of coating layers, using radiation emitted by a suitable radionuclide, e.g., 241 Am. The radiation impinges on the measured material, e.g., a copper foil and in dependence on its surface density or thickness part of the flux of impinging radiation is reflected and part penetrates through the material. The radiation which has penetrated through the material excites in a replaceable adjustable backing characteristic radiation of an energy close to that of the impinging radiation (within +-30 keV). Part of the flux of the characteristic radiation spreads back to the detector, penetrates through the material in which in dependence on surface density or thickness of the coating layer it is partly absorbed. The flux of the penetrated characteristic radiation impinging on the face of the detector is a function of surface density or thickness. Only that part of the energy is evaluated of the energy spectrum which corresponds to the energy of characteristic radiation. (B.S.)

  19. A note on the effective evaluation height for flux-gradient relationships and its application to herbicide fluxes

    Science.gov (United States)

    Volatilization represents a significant loss pathway for many pesticides, herbicides and other agrochemicals. One common method for measuring the volatilization of agrochemicals is the flux-gradient method. Using this method, the chemical flux is estimated as the product of the vertical concentratio...

  20. Enhancement of magnetic flux distribution in a DC superconducting electric motor

    International Nuclear Information System (INIS)

    Hamid, N A; Ewe, L S; Chin, K M

    2013-01-01

    Most motor designs require an air gap between the rotor and stator to enable the armature to rotate freely. The interaction of magnetic flux from rotor and stator within the air gap will provide the thrust for rotational motion. Thus, the understanding of magnetic flux in the vicinity of the air gap is very important to mathematically calculate the magnetic flux generated in the area. In this work, a finite element analysis was employed to study the behavior of the magnetic flux in view of designing a synchronous DC superconducting electric motor. The analysis provides an ideal magnetic flux distribution within the components of the motor. From the flux plot analysis, it indicates that flux losses are mainly in the forms of leakage and fringe effect. The analysis also shows that the flux density is high at the area around the air gap and the rotor. The high flux density will provide a high force area that enables the rotor to rotate. In contrast, the other parts of the motor body do not show high flux density indicating low distribution of flux. Consequently, a bench top model of a DC superconducting motor was developed where by motor with a 2-pole type winding was chosen. Each field coil was designed with a racetrack-shaped double pancake wound using DI-BSCCO Bi-2223 superconducting tapes. The performance and energy efficiency of the superconducting motor was superior when compared to the conventional motor with similar capacity.

  1. Automated flux chamber for investigating gas flux at water-air interfaces.

    Science.gov (United States)

    Duc, Nguyen Thanh; Silverstein, Samuel; Lundmark, Lars; Reyier, Henrik; Crill, Patrick; Bastviken, David

    2013-01-15

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Representative measurements of GHG fluxes from aquatic ecosystems to the atmosphere are vital for quantitative understanding of relationships between biogeochemistry and climate. Fluxes occur at high temporal variability at diel or longer scales, which are not captured by traditional short-term deployments (often in the order of 30 min) of floating flux chambers. High temporal frequency measurements are necessary but also extremely labor intensive if manual flux chamber based methods are used. Therefore, we designed an inexpensive and easily mobile automated flux chamber (AFC) for extended deployments. The AFC was designed to measure in situ accumulation of gas in the chamber and also to collect gas samples in an array of sample bottles for subsequent analysis in the laboratory, providing two independent ways of CH(4) concentration measurements. We here present the AFC design and function together with data from initial laboratory tests and from a field deployment.

  2. Energy-flux characterization of conical and space-time coupled wave packets

    International Nuclear Information System (INIS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-01-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  3. Continuous magnetic flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.

  4. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  5. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  6. The relationship between anatomic noise and volumetric breast density for digital mammography

    International Nuclear Information System (INIS)

    Mainprize, James G.; Tyson, Albert H.; Yaffe, Martin J.

    2012-01-01

    Purpose: The appearance of parenchymal/stromal patterns in mammography have been characterized as having a Wiener power spectrum with an inverse power-law shape described by the exponential parameter, β. The amount of fibroglandular tissue, which can be quantified in terms of volumetric breast density (VBD), influences the texture and appearance of the patterns formed in a mammogram. Here, a large study is performed to investigate the variations in β in a clinical population and to indicate the relationship between β and breast density. Methods: From a set of 2686 cranio-caudal normal screening mammograms, the parameter β was extracted from log-log fits to the Wiener spectrum over the range 0.15–1 mm −1 . The Wiener spectrum was calculated from regions of interest in the compression paddle contact region of the breast. An in-house computer program, Cumulus V, was used to extract the volumetric breast density and identify the compression paddle contact regions of the breast. The Wiener spectra were calculated with and without modulation transfer function (MTF) correction to determine the impact of VBD on the intrinsic anatomic noise. Results: The mean volumetric breast density was 25.5% (±12.6%) over all images. The mean β following a MTF correction which decreased the β slightly (≈−0.08) was found to be 2.87. Varying the maximum of the spatial frequency range of the fits from 0.7 to 1.0, 1.25 or 1.5 mm −1 showing small decreases in the result, although the effect of the quantum noise power component on reducing β was clearly observed at 1.5 mm −1 . Conclusions: The texture parameter, β, was found to increase with VBD at low volumetric breast densities with an apparent leveling off at higher densities. The relationship between β and VBD measured here can be used to create probabilistic models for computer simulations of detectability. As breast density is a known risk predictor for breast cancer, the correlation between β and VBD suggests that

  7. Quantitative relationship between VLF phase deviations and 1-8 A solar X-ray fluxes during solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Y; Murata, H; Sato, T [Hyogo Coll. Of Medicine (Japan). Dept. of Physics

    1977-07-01

    An attempt is made to investigate the quantitative relationship between VLF phase deviations in SPA (sudden phase anomalies) events and associated solar X-ray fluxes in the 1 to 8 A band during solar flares. The phase deviations (..delta..phi) of the 18.6 kHz VLF wave transmitted from NLK, USA are used in this analysis which were recorded at Nishinomiya, Japan during the period June 1974 to May 1975. The solar X-ray fluxes (F/sub 0/) in the 1 to 8 A band are estimated from fsub(min) variations using the empirical expression given by Sato (J.Geomag.Geoelectr.;27: 95(1975)), because no observed data were available on the 1 to 8 a X-ray fluxes during the period of the VLF observation. The result shows that the normalized phase variation, ..delta..phi/coschisub(min), where chisub(min) represents the minimum solar zenith angle on the VLF propagation path, increases with increasing logF/sub 0/. A theoretical explanation for this is presented assuming that enhanced ionizations produced in the lower ionosphere by a monochromatic solar X-ray emission are responsible for the VLF phase deviations. Also it is found that a threshold X-ray flux to produce a detectable SPA effect is approximately 1.5 x 10/sup -3/ cm/sup -2/ sec/sup -1/ in the 1 to 8 a band.

  8. Reduced flux motion via flux creep annealing in high- Jc single-crystal Y1Ba2Cu3O7

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sun, Y.R.; Malozemoff, A.P.; Christen, D.K.; Kerchner, H.R.; Ossandon, J.G.; Marwick, A.D.; Holtzberg, F.

    1991-01-01

    We investigated the stabilization of magnetic flux in a high-temperature superconductor (a proton-irradiated Y 1 Ba 2 Cu 3 O 7 crystal), by operating with subcritical current density J. Using the thermal history to obtain an induced current density J≤J c , we observed a drastically reduced relaxation rate dM/dt (M=magnetization), after ''flux creep annealing.'' The results show that the field gradient ∼J∼M determined the relaxation rate, independent of the sample's H-T history, in agreement with recent theory

  9. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    Science.gov (United States)

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging

  10. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  11. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    Directory of Open Access Journals (Sweden)

    Hiroaki Kawamichi

    2016-11-01

    Full Text Available Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68. Furthermore, we also conducted a voxel-based morphometry (VBM study of the effects of being in a romantic relationship (N = 113. Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.

  12. Analytical Model-Based Design Optimization of a Transverse Flux Machine

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variables that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.

  13. Maximum size-density relationships for mixed-hardwood forest stands in New England

    Science.gov (United States)

    Dale S. Solomon; Lianjun Zhang

    2000-01-01

    Maximum size-density relationships were investigated for two mixed-hardwood ecological types (sugar maple-ash and beech-red maple) in New England. Plots meeting type criteria and undergoing self-thinning were selected for each habitat. Using reduced major axis regression, no differences were found between the two ecological types. Pure species plots (the species basal...

  14. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  15. The relationship of over density to overexposure each film/screen systems in chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Min; Huo Joon [Korea University, Seoul (Korea, Republic of); Taro, Hayash; Yuji, Ishida; Tatsuya, Sakurai [The Chemotherapeutic Istitute Hospital, Tokyo (Japan)

    1999-06-01

    This study is to calculate the exposed radiation dose using Bit method, NDD calculation method and monogram method without dosimeter. In addition,we can calculate the radiation dose from x-ray film density as a film badge. The authors examined the entrance skin dose from 2 {approx} 3 intercostal chest x-ray film density. We also studied the relationship between film density and equivalent dose in the each screen film system under the different radiation quality and the poor geometry condition of grid ratio. As results, we established the deductive method to define the entrance skin dose from chest x-ray film density. The error range was found in the range -13 percent {approx} +17 percent for between deductive entrance skin dose and the 2 {approx} 3 inter coastal chest x-ray film density to actual detective radiation dose with dosimeter. (author)

  16. The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites

    Directory of Open Access Journals (Sweden)

    G. N. Kervalishvili

    2013-03-01

    Full Text Available We present in a statistical study a comparison of thermospheric mass density enhancements (ρrel with electron temperature (Te, small-scale field-aligned currents (SSFACs, and vertical ion velocity (Vz at high latitudes around noon magnetic local time (MLT. Satellite data from CHAMP (CHAllenging Minisatellite Payload and DMSP (Defense Meteorological Satellite Program sampling the Northern Hemisphere during the years 2002–2005 are used. In a first step we investigate the distribution of the measured quantities in a magnetic latitude (MLat versus MLT frame. All considered variables exhibit prominent peak amplitudes in the cusp region. A superposed epoch analysis was performed to examine causal relationship between the quantities. The occurrence of a thermospheric relative mass density anomaly, ρrel >1.2, in the cusp region is defining an event. The location of the density peak is taken as a reference latitude (Δ MLat = 0°. Interestingly, all the considered quantities, SSFACs, Te, and Vz are co-located with the density anomaly. The amplitudes of the peaks exhibit different characters of seasonal variation. The average relative density enhancement of the more prominent density peaks considered in this study amounts to 1.33 during all seasons. As expected, SSFACs are largest in summer with average amplitudes equal to 2.56 μA m−2, decaying to 2.00 μA m−2 in winter. The event related enhancements of Te and Vz are both largest in winter (Δ Te =730 K, Vz =136 m s−1 and smallest in summer (Δ Te = 377 K, Vz = 57 m s−1. Based on the similarity of the seasonal behaviour we suggest a close relationship between these two quantities. A correlation analysis supports a linear relation with a high coefficient greater than or equal to 0.93, irrespective of season. Our preferred explanation is that dayside reconnection fuels Joule heating of the thermosphere causing air upwelling and at the same time heating of the electron gas that pulls up ions

  17. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  18. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  19. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  20. The influence of a spatial displacement of hydrogen on the reactivity and neutron flux density distribution in a ZrH-moderated reactor

    International Nuclear Information System (INIS)

    Doehler, J.; Bartsch, G.

    1975-08-01

    The effect of changes of the hydrogen concentration in uranium zirconium hydride resulting from spatially varying temperatures on the reactivity and neutron flux distribution of the BER-II core (power 2.2 MW) are shown. Furthermore, in general, the influence of the hydrogen concentration on important reactor parameters of a fuel cell of BER-II is calculated and presented. A comparison of the diffusion calculation with spatially constant hydrogen concentrations shows a decrease of the thermal neutron flux density in regions with a low hydrogen content (high temperature) and inversely an increase for high hydrogen concentrations. Furthermore, a change of the effective multiplication factor by 0.6% was found in the case of a spatially varying hydrogen concentration as compared with the calculation for a constant concentration. (orig.) [de

  1. Market Competition and Density in Liver Transplantation: Relationship to Volume and Outcomes.

    Science.gov (United States)

    Adler, Joel T; Yeh, Heidi; Markmann, James F; Nguyen, Louis L

    2015-08-01

    Liver transplantation centers are unevenly distributed within the Donor Service Areas (DSAs) of the United States. This study assessed how market competition and liver transplantation center density are associated with liver transplantation volume within individual DSAs. We conducted a retrospective cohort study of 53,156 adult liver transplants in 45 DSAs with 110 transplantation centers identified from the Scientific Registry of Transplant Recipients between 2003 and 2012. The following measures were derived annually for each DSA: market competition using the Herfindahl Hirschman Index, transplantation center density by the Average Nearest Neighbor method, liver quality by the Liver Donor Risk Index, and patient risk by the Model for End-Stage Liver Disease. A hierarchical mixed effects negative binomial regression model of the relationship between liver transplants and market factors was created annually. Patient and graft survival were investigated with a Cox proportional hazards model. Transplantation center density was associated with market competition (p market competition (IRR = 1.36; p = 0.02), increased listings (IRR = 1.14; p market variables were associated with increased mortality after transplantation. After controlling for demographic and market factors, a greater concentration of centers was associated with more liver transplants without impacting overall survival. These results warrant additional investigation into the relationship between geospatial factors and liver transplantation volume with consideration for the optimization of scarce resources. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. The relationship between ionospheric temperature, electron density and solar activity

    International Nuclear Information System (INIS)

    McDonald, J.N.; Williams, P.J.S.

    1980-01-01

    In studying the F-region of the ionosphere several authors have concluded that the difference between the electron temperature Tsub(e) and the ion temperature Tsub(i) is related to the electron density N. It was later noted that solar activity (S) was involved and an empirical relationship of the following form was established: Tsub(e)-Tsub(i) = A-BN+CS. The present paper extends this work using day-time data over a four year period. The results are given and discussed. A modified form of the empirical relation is proposed. (U.K.)

  3. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  4. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  5. Design Considerations of Permanent Magnet Transverse Flux Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    electrical machines. This paper addresses two important design considerations for PMTFM—the influence of permanent magnet leakage flux, which plays an important role in the determination of machine output torque, and the leakage inductance. A new simple method to provide a quick estimation of the armature......Permanent magnet transverse flux machine (PMTFM) is well known for its high torque density and is interested in various direct-drive applications. Due to its complicated 3-D flux components, design and design optimization of a PMTFM is more difficult and time consuming than for radial flux...

  6. Flux and energy dependence of methane production from graphite due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.; Stangeby, P.C.

    1986-06-01

    Carbon is in widespread use for limiter surfaces, as well as first wall coatings in current tokamaks. Chemical erosion via methane formation, due to energetic H + impact, is expected to contribute to the total erosion rate of carbon from these surfaces. Experimental results are presented for the methane yield from pyrolytic graphite due to H + exposure, using a mass analyzed ion beam. H + energies of 0.1-3 keV and flux densities of ∼ 5x10 13 to l0 16 H + /cm 2 s were used. The measured methane yield (CH 4 /H + ) initially increases with flux density, then reaches a maximum, which is followed by a gradual decrease. The magnitude of the maximum yield and the flux density at which it occurs depends on the graphite temperature. The yields obtained at temperatures corresponding to yield maxima at specific flux densities also show an initial increase, followed by a shallow maximum and a gradual decrease as a function of flux density; the maximum occurs at ∼10 15 H + /cm 2 s. Also presented are results on the methane production dependence on ion energy over the range 0.1 to 3 keV, and graphite temperature dependence measurements

  7. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  8. ON THE MAGNETIC AND ENERGY CHARACTERISTICS OF RECURRENT HOMOLOGOUS JETS FROM AN EMERGING FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Liu, Rui; Gou, Tingyu; Chen, Jun; Liu, Kai; Liu, Lijuan; Pan, Zonghao [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); McIntosh, Scott W., E-mail: ljj128@ustc.edu.cn [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2016-12-20

    In this paper, we present the detailed analysis of recurrent homologous jets originating from an emerging negative magnetic flux at the edge of an active region. The observed jets show multithermal features. Their evolution shows high consistence with the characteristic parameters of the emerging flux, suggesting that with more free magnetic energy, the eruptions tend to be more violent, frequent, and blowout-like. The average temperature, average electron number density, and axial speed are found to be similar for different jets, indicating that they should have been formed by plasmas from similar origins. Statistical analysis of the jets and their footpoint region conditions reveals a strong positive relationship between the footpoint region total 131 Å intensity enhancement and jets’ length/width. Stronger linearly positive relationships also exist between the total intensity enhancement/thermal energy of the footpoint regions and jets’ mass/kinetic/thermal energy, with higher cross-correlation coefficients. All the above results together confirm the direct relationship between the magnetic reconnection and the jets and validate the important role of magnetic reconnection in transporting large amounts of free magnetic energy into jets. It is also suggested that there should be more free energy released during the magnetic reconnection of blowout than of standard jet events.

  9. The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    International Nuclear Information System (INIS)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example, upon which the voltage—current relationships (VCRs) between two parallel memristive circuits — a parallel memristor and capacitor circuit (the parallel MC circuit), and a parallel memristor and inductor circuit (the parallel ML circuit) — are investigated. The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters, and the frequency and amplitude of the sinusoidal voltage stimulus. An equivalent circuit model of the memristor is built, upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed, and the results verify the theoretical analysis results

  10. ORDEM 3.0 and the Risk of High-Density Debris

    Science.gov (United States)

    Matney, Mark; Anz-Meador, Philip

    2014-01-01

    NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.

  11. Relationships between metacarpal morphometry, fore-arm and vertebral bone density and fractures in post-menopausal women

    International Nuclear Information System (INIS)

    Wishart, J.M.; Horowitz, M.; Bochner, M.; Need, A.G.; Nordin, B.E.C.

    1993-01-01

    The relationships between metacarpal morphometric, vertebral and forearm density measurement and the prevalence of vertebral and peripheral fractures were examined in 239 postmenopausal women (median age 63, range 32-84 years). Metacarpal cortical area/total area ratio (CA/TA) was measured with needle calipers forearm mineral density (FMD) by single photon absorptiometry and vertebral mineral density (VMD) by single energy quantitative computed tomography. The authors suggest that metacarpal morphometry, which is widely available at relatively low cost, yields cross-sectional information about bone density and fracture risk, comparable with that obtained by forearm and vertebral densitometry. (Author)

  12. The measurements of thermal neutron flux distribution in a paraffin

    Indian Academy of Sciences (India)

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of ...

  13. Influence of Sky Conditions on Estimation of Photosynthetic Photon Flux Density for Agricultural Ecosystem

    Science.gov (United States)

    Yamashita, M.; Yoshimura, M.

    2018-04-01

    Photosynthetic photon flux density (PPFD: µmol m-2 s-1) is indispensable for plant physiology processes in photosynthesis. However, PPFD is seldom measured, so that PPFD has been estimated by using solar radiation (SR: W m-2) measured in world wide. In method using SR, there are two steps: first to estimate photosynthetically active radiation (PAR: W m-2) by the fraction of PAR to SR (PF) and second: to convert PAR to PPFD using the ratio of quanta to energy (Q / E: µmol J-1). PF and Q/E usually have been used as the constant values, however, recent studies point out that PF and Q / E would not be constants under various sky conditions. In this study, we use the numeric data of sky-conditions factors such cloud cover, sun appearance/hiding and relative sky brightness derived from whole-sky image processing and examine the influences of sky-conditions factors on PF and Q / E of global and diffuse PAR. Furthermore, we discuss our results by comparing with the existing methods.

  14. Proposal of C-core Type Transverse Flux Motor for Ship Propulsion – Increasing Torque Density by Dense Stator Configuration –

    Directory of Open Access Journals (Sweden)

    Y. Yamamoto

    2014-02-01

    Full Text Available Electric ship propulsion system has been drawing attention as a solution for savings in energy and maintenance costs. The system is mainly composed of motor, converter and gearbox and required for high torque at low speed. In this situation, transverse flux motors (TFMs have been proposed to fulfill the low-speed high-torque characteristic due to suitable for short pole pitch and large number of poles to increase torque output. In this trend, we have proposed C-core type motors taking advantage of TFMs’ structure. In this manuscript, a simple design method based on the magnetic-circuit theory and simple modeling of the motor is proposed to search a design parameter for maximizing torque as a pre-process of numerical study. The method takes into consideration the effects of magnetic leakage flux, magnetic saturation and pole-core combination in accordance with the systematic theory. The simple modeling is conducted based on a dense armature structure in previous axial flux motors (AFMs applied to the new motor design. The validity of the method is verified by 3-D finite element analysis (FEA and relative error is at most 20%. The minimalist design is shown to be advantageous for effective use in 3-D FEA. As a detailed design by the FEA, high torque density and low cogging to output ratio can be achieved simultaneously in the proposed machine.

  15. Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra

    International Nuclear Information System (INIS)

    Bogdanov, A. G.; Gromushkin, D. M.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Trinchero, G.; Chernov, D. V.; Shutenko, V. V.; Yashin, I. I.

    2010-01-01

    A new method for studying extensive air showers is considered. The method is based on the phenomenology of the localmuon density. It is shown that measurement ofmuon-density spectra at various zenith angles makes it possible to obtain information about the energy spectrum, mass composition, and interaction of cosmic rays over a broad range of energies (10 15 -10 18 eV) by using a single array of comparatively small size. The results obtained from a comparison of experimental data on muon bundles from the DECOR coordinate detector with the results of simulation performed under various assumptions on the properties of the primary flux and for various hadron-interaction models are presented, and possible versions of the interpretation of these results are discussed.

  16. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  17. Relationship of cancer incidence to terrestrial radiation and population density in Connecticut, 1935-1974

    International Nuclear Information System (INIS)

    Walter, S.D.; Meigs, J.W.; Heston, J.F.

    1986-01-01

    The relationship of cancer incidence to terrestrial radiation and population density was investigated. Cancer incidence was obtained using 40 years of age-standardized data from the Connecticut Tumor Registry, and environmental radiation was estimated using data from an airborne gamma radiation survey of the entire state. These variables were examined ecologically, using the 169 towns of the state as the analytic units in a weighted regression analysis. The study design involves a large population base in a state having relatively high terrestrial radiation exposure levels overall and reasonable variation in exposure between towns. For all cancer combined, only one of the eight sex-specific analyses by decade yielded a significant radiation regression coefficient, and this was negative. In the sex- and site-specific analyses, almost all the coefficients for radiation were not significantly different from zero. In contrast, significant positive relationships of cancer incidence with population density were found for all cancer, for cancer of the lung for both sexes, for stomach, colonic, and prostatic cancer for males, and for lymphomas, thyroid, breast, and ovarian cancer for females. Both the radiation and population density relationships were adjusted for socioeconomic status. Socioeconomic status was significantly negatively associated with stomach and lung cancer in males and with cervical cancer in females; it was also positively associated with lymphomas and breast cancer in females. A power calculation revealed that, despite the relatively large size of this study, there was only a small probability of detecting a radiation effect of the strength anticipated from previous estimates

  18. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged

    Science.gov (United States)

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.

    2016-01-01

    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  19. Using plant biomonitors and flux modelling to develop O3 dose-response relationships in Catalonia

    International Nuclear Information System (INIS)

    Filella, Iolanda; Pen-tilde uelas, Josep; Ribas, Angela

    2005-01-01

    We used tobacco Bel-W3 biomonitoring data and ozone flux modelling (WINDEP model) with the aim of developing the absorbed dose-response relationship, and comparing this approach with the most commonly used AOT40 (the sum of hourly ozone concentrations above a cut-off of 40 ppb during daylight hours, when global radiation exceeds 50 W m -2 ) in the estimation of exposure-damage curves. Leaf damage values were more related to OAD 15days,potential (potential ozone absorbed dose calculated over 15 consecutive days) than to AOT40 in all the studied stations. An OAD 15days,potential of 180 mg m -2 was found to be the threshold for damage to the most sensitive species in this region under well watered conditions. The results show the applicability of the flux approach for risk assessment at the local scale, the improvement of the ozone damage estimation when the potential absorbed dose is modelled and used instead of just the ozone exposure, and finally, the possibilities opened by the use of biomonitoring networks. - Modelling of biomonitors ozone absorbed dose improves damage estimation in comparison with exposure indices such as AOT40

  20. Further studies on the relationship between platelet buoyant density and platelet age

    International Nuclear Information System (INIS)

    Boneu, B.; Vigoni, F.; Boneu, A.; Caranobe, C.; Sie, P.

    1982-01-01

    The relationship between platelet buoyant density and platelet age was investigated in eight human subjects submitted to an autologous chromium labeled platelet survival study. Platelets were isolated after isopycnic centrifugation using eight discontinuous isoosmotic stractan gradients (five subjects), or various continuous and linear isoosmolar gradients (three subjects). A paradoxical radioactivity enrichment of the dense platelets and a premature loss of radioactivity in the light platelets were observed. These results are explained by a shift of the radioactivity distribution curve toward higher densities during the 3-4 days after platelet injection, while the standard deviation of the distribution was conserved throughout the platelet life span. These results suggest that young platelets are heterogeneous and slightly less dense than the total platelet population

  1. Higher-order relationship between eigen-value separation and static flux tilts

    International Nuclear Information System (INIS)

    Beckner, W.D.

    1975-01-01

    Spatial kinetics phenomena in nuclear reactors, such as xenon-induced spatial flux oscillations, are currently being analyzed using the higher harmonic solutions to the static reactor balance equation. An important parameter in such an analysis is a global quantity called eigenvalue separation. It is desirable to be able to experimentally measure this parameter in power reactors in order to confirm design calculations. Since spatial distortions in the flux shape depend on the eigenvalue separation of the reactor, an attempt has been made previously to use this fact as a means of measuring the parameter. It was postulated that an induced flux distortion or ''static flux tilt'' could be measured and theoretically related to eigenvalue separation. Unfortunately, the behavior of experimental data did not exactly agree with theoretical predictions, and values of the parameter found using the original static flux tilt technique were consistently low. The theory has been re-evaluated here and the previously observed discrepancy eliminated. Techniques have been also developed to allow for more accurate interpretation of experimental data. In order to make the method applicable to real systems, the theory has been extended to two spatial dimensions; extension to three dimensions follows directly. Possible trouble areas have been investigated, and experimental procedures for use of the technique to measure the eigenvalue separation in power reactors are presented

  2. Testing joint inversion techniques of gravity data and cosmic ray muon flux at a well-characterized site for use in the detection of subsurface density structures beneath volcanoes.

    Science.gov (United States)

    Cosburn, K.; Roy, M.; Rowe, C. A.; Guardincerri, E.

    2017-12-01

    Obtaining accurate static and time-dependent shallow subsurface density structure beneath volcanic, hydrogeologic, and tectonic targets can help illuminate active processes of fluid flow and magma transport. A limitation of using surface gravity measurements for such imaging is that these observations are vastly underdetermined and non-unique. In order to hone in on a more accurate solution, other data sets are needed to provide constraints, typically seismic or borehole observations. The spatial resolution of these techniques, however, is relatively poor, and a novel solution to this problem in recent years has been to use attenuation of the cosmic ray muon flux, which provides an independent constraint on density. In this study we present a joint inversion of gravity and cosmic ray muon flux observations to infer the density structure of a target rock volume at a well-characterized site near Los Alamos, New Mexico, USA. We investigate the shallow structure of a mesa formed by the Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez volcano in New Mexico. Gravity measurements were made using a Lacoste and Romberg D meter on the surface of the mesa and inside a tunnel beneath the mesa. Muon flux measurements were also made at the mesa surface and at various points within the same tunnel using a muon detector having an acceptance region of 45 degrees from the vertical and a track resolution of several milliradians. We expect the combination of muon and gravity data to provide us with enhanced resolution as well as the ability to sense deeper structures in our region of interest. We use Bayesian joint inversion techniques on the gravity-muon dataset to test these ideas, building upon previous work using gravity inversion alone to resolve density structure in our study area. Both the regional geology and geometry of our study area is well-known and we assess the inferred density structure from our gravity-muon joint inversion within this known

  3. Landscape analysis of soil methane flux across complex terrain

    Science.gov (United States)

    Kaiser, Kendra E.; McGlynn, Brian L.; Dore, John E.

    2018-05-01

    Relationships between methane (CH4) fluxes and environmental conditions have been extensively explored in saturated soils, while research has been less prevalent in aerated soils because of the relatively small magnitudes of CH4 fluxes that occur in dry soils. Our study builds on previous carbon cycle research at Tenderfoot Creek Experimental Forest, Montana, to identify how environmental conditions reflected by topographic metrics can be leveraged to estimate watershed scale CH4 fluxes from point scale measurements. Here, we measured soil CH4 concentrations and fluxes across a range of landscape positions (7 riparian, 25 upland), utilizing topographic and seasonal (29 May-12 September) gradients to examine the relationships between environmental variables, hydrologic dynamics, and CH4 emission and uptake. Riparian areas emitted small fluxes of CH4 throughout the study (median: 0.186 µg CH4-C m-2 h-1) and uplands increased in sink strength with dry-down of the watershed (median: -22.9 µg CH4-C m-2 h-1). Locations with volumetric water content (VWC) below 38 % were methane sinks, and uptake increased with decreasing VWC. Above 43 % VWC, net CH4 efflux occurred, and at intermediate VWC net fluxes were near zero. Riparian sites had near-neutral cumulative seasonal flux, and cumulative uptake of CH4 in the uplands was significantly related to topographic indices. These relationships were used to model the net seasonal CH4 flux of the upper Stringer Creek watershed (-1.75 kg CH4-C ha-1). This spatially distributed estimate was 111 % larger than that obtained by simply extrapolating the mean CH4 flux to the entire watershed area. Our results highlight the importance of quantifying the space-time variability of net CH4 fluxes as predicted by the frequency distribution of landscape positions when assessing watershed scale greenhouse gas balances.

  4. The isotope density inverse problem in multigroup neutron transport

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1981-01-01

    The inverse problem for stationary multigroup anisotropic neutron transport is discussed in order to search for isotope densities in multielement medium. The spatial- and angular-integrated form of neutron transport equation, in terms of the flux in a group - density of an element spatial correlation, leads to a set of integral functionals for the densities weighted by the group fluxes. Some methods of approximation to make the problem uniquently solvable are proposed. Particularly P 0 angular flux information and the spherically-symetrical geometry of an infinite medium are considered. The numerical calculation using this method related to sooner evaluated direct problem data gives promising agreement with primary densities. This approach would be the basis for further application in an elemental analysis of a medium, using an isotopic neutron source and a moving, energy-dependent neutron detector. (author)

  5. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for ...

  6. Relationships between cone beam CT value and physical density in image guided radiation therapy

    International Nuclear Information System (INIS)

    Jiang Xiaoqin; Bai Sen; Zhong Renming; Tang Zhiquan; Jiang Qinfeng; Li Tao

    2007-01-01

    Objective: To evaluate the main factors affecting the relationship between physical density and CT value in cone-beam computed tomography(CBCT) for imaging guided radiation therapy(IGRT) by comparing the CT value in the image from cone-beam scanner and from fan-beam (FBCT) scanner of a reference phantom. Methods: A taking-park reference phantom with a set of tissue equivalent inserts was scanned at different energies different fields of view (FOV) for IGRT-CBCT and FBCT. The CT value of every insert was measured and compared. Results: The position of inserts in phantom, the size of phantom, the FOV of scanner and different energies had more effect on the relationships between physical density and the CT value from IGRT-CBCT than those from the normal FBCT. The higher the energy was, the less effect of the position of inserts in phantom, the size of phantom and the FOV of scanner on CT value, and the poorer density contrast was observed. Conclusion: At present, the CT value of IGRT-CBCT is not in the true HU value since the manufacturer has not corrected its number. Therefore, we are not able to use the CT value of CBCT for dose calculation in TPS. (authors)

  7. Comparison of depth-averaged concentration and bed load flux sediment transport models of dam-break flow

    Directory of Open Access Journals (Sweden)

    Jia-heng Zhao

    2017-10-01

    Full Text Available This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms (a depth-averaged concentration flux model, and shallow water equations with a fully coupled Exner equation (a bed load flux model. Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored (HLLC. A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a one-dimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model, Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.

  8. Influence of the flux density on the radiation damage of bipolar silicon transistors by protons and electrons

    International Nuclear Information System (INIS)

    Bannikov, Y.; Gorin, B.; Kozhevnikov, V.; Mikhnovich, V.; Gusev, L.

    1981-01-01

    It was found experimentally that the radiation damage of bipolar n-p-n transistors increased by a factor of 8--12 when the proton flux density was reduced from 4.07 x 10 10 to 2.5 x 10 7 cm -2 sec -1 . In the case of p-n-p transistors the effect was opposite: there was a reduction in the radiation damage by a factor of 2--3 when the dose rate was lowered between the same limits. A similar effect was observed for electrons but at dose rates three orders of magnitude greater. The results were attributed to the dependences of the radiation defect-forming reactions on the charge state of defects which was influenced by the formation of disordered regions in the case of proton irradiation

  9. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  11. Sunspots and the physics of magnetic flux tubes. II. Aerodynamic drag

    International Nuclear Information System (INIS)

    Parker, E.N.

    1979-01-01

    The aerodynamic drag on a slender flux tube stretched vertically across a convective cell may push the flux tube into the updrafts or into the downdrafts, depending on the density stratification of the convecting fluid and the asymmetry of the fluid motions. The drag is approximately proportional to the local kinetic energy density, so the density stratification weights the drag in favor of the upper layers where the density is low, tending to push the vertical tube into the downdrafts. If, however, the horizontal motions in the convective cell are concentrated toward the bottom of the cell, they may dominate over the upper layers, pushing the tube into the updrafts. In the simple, idealized circumstance of a vertical tube extending across a fluid of uniform density in a convective cell that is symmetric about its midplane, the net aerodynamic drag vanishes in lowest order. The higher order contributions, including the deflection of the tube, then provide a nonvanishing force pushing the tube into a stable equilibrium midway between the updraft and the downdraft.It is pointed out that in the strongly stratified convective zone of the Sun, a downdraft herds flux tubes together into a cluster, while an updraft disperses them. To account for the observed strong cohesion of the cluster of flux tubes that make up a sunspot, we propose a downdraft of the order 2 km s - 1 through the cluster of seprate tubes beneath the sunspot

  12. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    Science.gov (United States)

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  13. Modelling drug flux through microporated skin.

    Science.gov (United States)

    Rzhevskiy, Alexey S; Guy, Richard H; Anissimov, Yuri G

    2016-11-10

    A simple mathematical equation has been developed to predict drug flux through microporated skin. The theoretical model is based on an approach applied previously to water evaporation through leaf stomata. Pore density, pore radius and drug molecular weight are key model parameters. The predictions of the model were compared with results derived from a simple, intuitive method using porated area alone to estimate the flux enhancement. It is shown that the new approach predicts significantly higher fluxes than the intuitive analysis, with transport being proportional to the total pore perimeter rather than area as intuitively anticipated. Predicted fluxes were in good general agreement with experimental data on drug delivery from the literature, and were quantitatively closer to the measured values than those derived from the intuitive, area-based approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Γ p 10 23 m -3 s -1 , and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of ∼10 MW/m 2 . An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to ∼0.15 T. Maximum densities of 3x10 19 m -3 in He and 2.5x10 19 m -3 in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

  15. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  16. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.

    2009-01-01

    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  17. Plasma core electron density and temperature measurements using CVI line emissions in TCABR Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, F. do, E-mail: fellypen@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Componentes Semicondutores; Machida, M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Severo, J.H.F.; Sanada, E.; Ronchi, G. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-08-15

    In this work, we present results of electron temperature (T{sub e} ) and density (n {sub e} ) measurements obtained in Tokamak Chauffage Alfven Bresilien (TCABR) tokamak using visible spectroscopy from CVI line emissions which occurs mainly near the center of the plasma column. The presented method is based on a well-known relationship between the particle flux (Γ {sub ion}) and the photon flux (ø {sub ion}) emitted by an ion species combined with ionizations per photon atomic data provided by the atomic data and analysis structure (ADAS) database. In the experiment, we measured the photon fluxes of three different CVI spectral line emissions, 4685.2, 5290.5, and 6200.6 Å (one line per shot). Using this method it was possible to find out the temporal evolution of T{sub e} and n{sub e} in the plasma. The results achieved are in good agreement with T{sub e} and n{sub e} measurements made using other diagnostic tools. (author)

  18. Scaling of divertor heat flux profile widths in DIII-D

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Makowski, M.A.; Boedo, J.A.; Allen, S.L.; Brooks, N.H.; Hill, D.N.; Leonard, A.W.; Watkins, J.G.; West, W.P.

    2011-01-01

    New scalings of the dependence of divertor heat flux peak and profile width, important parameters for the design of future large tokamaks, have been obtained from recent DIII-D experiments. We find the peak heat flux depends linearly on input power, decreases linearly with increasing density, and increases linearly with plasma current. The profile width has a weak dependence on input power, is independent of density up to the onset of detachment, and is inversely proportional to the plasma current. We compare these results with previously published scalings, and present mathematical expressions incorporating these results.

  19. Heat Flux of a Transferred Arc Driven by a Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Naomi Matsumoto

    2009-01-01

    Full Text Available Theoretical consideration of a magnetically driven arc was performed to elucidate the variation of heat flux with an imposed DC magnetic field. Experiments were conducted to confirm the validity of the theoretical model. The heat flux decreased concomitantly with increased imposed magnetic flux density. Theoretical predictions agreed with experimental results.

  20. Relationship between habitat, densities and metabolic profile in brown hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-01-01

    Full Text Available Some habitat traits and haematic parameters were studied to understand the relationships between the hare densities, habitat characteristics and physiological and nutritional condition of the animals. A total of 33 protected areas, reserved for wild game reproduction, located in the Province of Florence (Central Italy, were monitored during a 2-year period. In each protected area the hares were submitted to census. The habitat features of the protected areas were studied and the following parameters were categorised: altitude; cleared-land/total-land ratio; main exposure; main ground composition; water availability; main slope; anthropogenic presence; predator presence; wooded borders; presence of trees and shrubs; surveillance against hunting; demographic predator control; kind of cultivation; unharvested crops for game. After the census the hares were captured for translocation outside in “free” hunting areas. During capture the hares were put in darkened, wooden capture-boxes and remained inside for a variable period of time (10min to 3h. A sample of 3 to 7 hares, captured per year and per each protected area, were removed from the boxes (physically restrained, with covered eyes for blood sample collection, sex, age and live weight determination. The following analyses were performed on frozen plasma samples: ALanine aminoTransferase (ALT, ASpartate aminoTransferase (AST, glucose, cholesterol, Blood Urea Nitrogen (BUN, Ca, P, Mg, Na, K, and Cl concentrations. The relationship between hare density and habitat characteristics was analysed by single regressions analysis. Then the habitat characteristics were subjected to multivariate analysis in relationship to hare body condition. The haematic parameters were analysed by least square means considering habitat traits, animal density, age and sex, as main categorical factors, interaction sex*age, and “pregnant and non-reproducing” nested within sex. Results showed that the highest density

  1. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    International Nuclear Information System (INIS)

    Bolle, C.A.; Gammel, P.L.; Grier, D.G.; Murray, C.A.; Bishop, D.J.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields

  2. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients

    OpenAIRE

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Background Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. Materials and Methods In this cross-sectional study, 43 hemodialysis patients wit...

  3. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

    2012-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

  4. Settling barium fluxes in the Arabian Sea: Critical evaluation of relationship with export production

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Ittekkot, V.; Shankar, R.; Guptha, M.V.S.

    observations show a strong linear correlation between Ba sub(excess) fluxes and biogenic opal and organic carbon (C sub(org)) fluxes, indicating a biogenic origin of particulate Ba. However, the correlation between biogenic and Ba sub(excess) fluxes...

  5. Heat transfer for ultrahigh flux reactor

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Lake, J.A.; Oh, C.H.

    1987-01-01

    The use of a uniquely designed nuclear reactor to supply neutrons for materials research is the focus of recent reactor design efforts. The biological, materials, and fundamental physics aspects of research require neutron fluxes much higher than present research and testing facilities can produce. The most advanced research using neutrons as probing detectors is being done in the High Flux Reactor at the Institut Laue Langeuin, France. The design of a reactor that can produce neutron fluxes of 1.0 x 10 16 n/cm 2 .s requires a relatively high power (300 MW range) and a small core volume (approximately 30 liters). This combination of power and volume leads to a high power density which places increased demands on thermal hydraulic margins

  6. Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications

    KAUST Repository

    Xiong, Jun Ying; Cheng, Zhen Lei; Wan, Chun Feng; Chen, Si Cong; Chung, Neal Tai-Shung

    2016-01-01

    in various behaviours of external performance indexes such as water flux, reverse salt flux, and power density. Then, the research is extended to investigate the effects of the growing bulk feed salinity due to the accumulated reverse salt flux along PRO

  7. Exploring the Relationship of Exit Flow and Jam Density in Panic Scenarios Using Animal Dynamics

    NARCIS (Netherlands)

    Sobhani, A.; Sarvi, M.; Duives, D.C.; Ejtemai, O.; Aghabayk, K.; Hoogendoorn, S.P.

    2014-01-01

    There are few studies investigating crowd dynamics in panic situations. They used measures such as exit flow rate to explore the exit performance in evacuation scenarios. However, there is limited research exploring the relationship of exit flow rate and density behind the exit for panic scenarios.

  8. The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship

    National Research Council Canada - National Science Library

    Lu, Yadong; Wong, S. C; Zhang, Mengping; Shu, Chi-Wang

    2007-01-01

    ...) traffic flow model with a flow-density relationship which is piecewise quadratic, concave, but not continuous at the junction points where two quadratic polynomials meet, and with piecewise linear...

  9. Turbulent flux and the diffusion of passive tracers in electrostatic turbulence

    DEFF Research Database (Denmark)

    Basu, R.; Jessen, T.; Naulin, V.

    2003-01-01

    The connection between the diffusion of passive tracer particles and the anomalous turbulent flux in electrostatic drift-wave turbulence is investigated by direct numerical solutions of the 2D Hasegawa-Wakatani equations. The probability density functions for the point-wise and flux surface...

  10. Relationship Between Collateral Status, Contrast Transit, and Contrast Density in Acute Ischemic Stroke.

    Science.gov (United States)

    Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Spratt, Neil J; Miteff, Ferdinand; Parsons, Mark W; Levi, Christopher R

    2016-03-01

    Collateral circulation is recognized to influence the life expectancy of the ischemic penumbra in acute ischemic stroke. The best method to quantify collateral status on acute imaging is uncertain. We aimed to determine the relationship between visual collateral status, quantitative collateral assessments, baseline computed tomographic perfusion measures, and tissue outcomes on follow-up imaging. Sixty-six consecutive patients with acute ischemic stroke clinically eligible for recanalization therapy and with M1 or M2 middle cerebral artery occlusion were evaluated. We compared the visual collateral scoring with measures of contrast peak time delay and contrast peak density. We also compared these measures for their ability to predict perfusion lesion and infarct core volumes, final infarct, and infarct growth. Shorter contrast peak time delay (P=0.041) and higher contrast peak density (P=0.002) were associated with good collateral status. Shorter contrast peak time delay correlated with higher contrast peak density (β=-4.413; P=0.037). In logistic regression analysis after adjustment for age, sex, onset-computed tomographic time, and occlusion site, higher contrast peak density was independently associated with good collateral status (P=0.009). Multiple regression analysis showed that higher contrast peak density was an independent predictor of smaller perfusion lesion volume (P=0.029), smaller ischemic core volume (P=0.044), smaller follow-up infarct volume (P=0.005), and smaller infarct growth volume (P=0.010). Visual collateral status, contrast peak density, and contrast peak time delay were inter-related, and good collateral status was strongly associated with contrast peak density. Contrast peak density in collateral vessel may be an important factor in tissue fate in acute ischemic stroke. © 2016 American Heart Association, Inc.

  11. Use of sup(233)U for high flux reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Liem, P.H.

    1991-01-01

    The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs

  12. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  13. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, Richard Howell; Biewer, Theodore M.; Caughman, John B.; Chen, Guangye; Owen, Larry W.; Sparks, Dennis O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  14. Multidimensional flux-limited advection schemes

    International Nuclear Information System (INIS)

    Thuburn, J.

    1996-01-01

    A general method for building multidimensional shape preserving advection schemes using flux limiters is presented. The method works for advected passive scalars in either compressible or incompressible flow and on arbitrary grids. With a minor modification it can be applied to the equation for fluid density. Schemes using the simplest form of the flux limiter can cause distortion of the advected profile, particularly sideways spreading, depending on the orientation of the flow relative to the grid. This is partly because the simple limiter is too restrictive. However, some straightforward refinements lead to a shape-preserving scheme that gives satisfactory results, with negligible grid-flow angle-dependent distortion

  15. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  16. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  17. Flux motion and dissipation in high temperature superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1991-01-01

    Two quite different motivations spark the study of flux motion and resistance in the new high-temperature superconductors. Achievement of usefully low resistance at usefully large current densities is the key to most practical applications, but conceptual understanding of the idealized resistive behavior in the O current limit motivates much theoretical work. Some analyses emphasize the pinning of individual flux lines to inhomogeneities in the underlying material; others emphasize the collective aspects of the interacting flux lines, whether liquid, solid, crystalline, or glassy; still others emphasize the concept of percolative Josephson coupling between grains. In this paper an overview is given of these various approaches, their interrelation, and the experiment evidence, including some new results on flux motion in large SNS arrays, treated as a model system

  18. Energy fluxes and their relations within energy plants

    International Nuclear Information System (INIS)

    Grazzini, Giuseppe; Milazzo, Adriano

    2007-01-01

    Analysing how energy is delivered from its primary sources to final users, it may be seen that the evolution of technology, driven by economic considerations, has mainly rewarded those systems that have intense energy fluxes through their main sections. On the other hand, renewable energy sources are prevented from being widespread by their low energy density. If a high energy flux is a recognized target for energy use, one may try to characterise the various devices encountered along the energy path according to the concentration obtained of the energy flow. In this way, apart from measuring the energy loss suffered within a given device, it can be decided if this loss is adequate with respect to the gain in terms of energy density

  19. Predicting radon flux from uranium mill tailings

    International Nuclear Information System (INIS)

    Freeman, H.D.; Hartley, J.N.

    1983-11-01

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, is developing technology for the design of radon barriers for uranium mill tailings piles. To properly design a radon cover for a particular tailings pile, the radon flux emanating from the bare tailings must be known. The tailings characteristics required to calculate the radon flux include radium-226 content, emanating power, bulk density, and radon diffusivity. This paper presents theoretical and practical aspects of estimating the radon flux from an uranium tailings pile. Results of field measurements to verify the calculation methodology are also discussed. 24 references, 4 figures, 4 tables

  20. The Study of Radio Flux Density Variations of the Quasar OJ 287 by the Wavelet and the Singular Spectrum Methods

    Directory of Open Access Journals (Sweden)

    Donskykh Ganna

    2016-06-01

    Full Text Available Flux density variations of the extragalactic radio source OJ 287 are studied by applying the wavelet and the singular spectrum methods to the long-term monitoring data at 14.5, 8.0 and 4.8 GHz acquired at the University of Michigan Radio Astronomy Observatory during 40 years. This monitoring significantly supplements the episodic VLBI data. The wavelet analysis at all three frequencies revealed the presence of quasiperiods within the intervals 6.0–7.4 and 1.2–1.8 years. The singular spectrum analysis revealed the presence of quasiperiods within the intervals 6–10 and 1.6–4.0 years. For each quasiperiod the time interval of its existence was determined.

  1. Neutron flux stabilization in the NG-150 neutron generators

    International Nuclear Information System (INIS)

    Kuz'min, L.E.; Makarov, S.A.; Pronman, I.M.

    1986-01-01

    Problem of metal tritium target lifetime increase and neutron flux stabilization in the NG-150 neutron generators is studied. Possibility on neutron flux stabilization using the mass analyzer for low-angle (4 deg and 41 deg) mass separation of a beam in thre components, which fall on a target simultaneously, is confirmed experimentally. Basic generator parameters are: accelerating voltage of 150 kV, total beam current on a target of 1.5 mA, beam current density of 0.3-1.6 mA/cm 2 , beam diameter of 8 mm. The initial neutron flux on the targets of 0.73 mg/cm 2 thick constituted 1.1x10 11 ssup(-1). The neutron flux monitoring was accomplished from recoil proton recording by a plastic scintillator. Flux decrease by more than 5% served as a signel for measuring mass analyzer magnetic field providing beam displacement on a target and restoration of the given flux. The NG-150 generator neutron flux stabilization was attained during 2h

  2. Edge plasma density convection during ICRH on Tore Supra

    International Nuclear Information System (INIS)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A.; Pecoul, S.; Heuraux, S.

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  3. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

    Science.gov (United States)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-12-01

    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  4. Determination of lead 210 atmospheric fluxes in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Shaik Khalil, H.

    2001-01-01

    Lead 210 atmospheric fluxes were determined by collecting 51 profiles from Syrian soil during 1998. Lead 210 fluxes in Syria calculated from lead 210 inventory in soil ranged from 15 Bq.m -2 .y -1 and 407 Bq.m -2 .y -1 with an average value of 128 Bq.m -2 .y -1 . the highest fluxes were found to be in Hama area due to the Gaab fault, which is considered as a radon source in the area. In addition, fluxes were also high in most sites, which are located in Syria valleys and around the lakes. Moreover, the study has indicated that there is no linear relation between lead 210 flux values and other parameters such as annual rainfall and bulk density of the soil. On the other hand, an effect, of those two factors on lead 210 distribution with depth has been observed. In addition, the results of variable lead 210 fluxes from site to another have proved that it is necessary, in order to obtain a representative mean value of lead 210 flux obtained in this study is within the worldwide range for lead 210 flux. (Author)

  5. Relationship between lens density measurements by Pentacam Scheimpflug imaging and torsional phacoemulsification parameters

    Directory of Open Access Journals (Sweden)

    Suleyman Demircan

    2014-10-01

    Full Text Available AIM: To evaluate the relationship between the density values of the lens nucleus measured using Pentacam Scheimpflug imaging and torsional phacoemulsification dynamics such as the level of ultrasound energy, as well as the duration and amount of fluid used in patients with age-related nuclear cataract. METHODS: This was a prospective observer-masked study. Pentacam Scheimpflug imaging was performed following pupil dilation. The cataracts were automatically graded from 1 to 5 using pentacam nucleus densitometry(PND, also known as Pentacam nucleus staging(PNSsoftware by the same observer. After phacoemulsification, total Ultrasound(U/Stime, Cumulative dissipated energy(CDE, Torsional U/S time, and Estimated fluid use were automatically calculated and displayed on the monitor of Infiniti OZiL IP phacoemulsification system. One-way analysis of variance(ANOVAwas used to assess differences between groups. The Tamhane test was used for multiple group analysis. Spearman correlation analysis was used to assess the relationship between lens density measured by PND and the dynamics of torsional phacoemulsification. P0.05 was considered statistically significant. RESULTS:In the present study, 125 eyes from 125 patients were evaluated. Mean age was 69.7±9.4y(range: 48-88y, and 61 men and 64 women were included. The highest and lowest values of U/S total time, torsional U/S time, CDE, and Estimated fluid use were 0.70 - 158.90s, 0.70-158.50s, 0.11-42.65, and 21-98 mL in groups, respectively. Significant differences were found among PND groups. When the relationship between phacoemulsification dynamics and PND values were evaluated, there were significant correlations between PND value and total ultrasound time(r=0.767; Pr=0.767; Pr=0.758; Pr=0.602; PCONCLUSION:An objective degree of nucleus density obtained by PND scoring before cataract surgery may allow antecedent determination of intraoperative phacoemulsification parameters. Thus, individualized

  6. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  7. Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density.

    Science.gov (United States)

    Barotto, Antonio José; Monteoliva, Silvia; Gyenge, Javier; Martinez-Meier, Alejandro; Fernandez, María Elena

    2018-02-01

    Wood density can be considered as a measure of the internal wood structure, and it is usually used as a proxy measure of other mechanical and functional traits. Eucalyptus is one of the most important commercial forestry genera worldwide, but the relationship between wood density and vulnerability to cavitation in this genus has been little studied. The analysis is hampered by, among other things, its anatomical complexity, so it becomes necessary to address more complex techniques and analyses to elucidate the way in which the different anatomical elements are functionally integrated. In this study, vulnerability to cavitation in two races of Eucalyptus globulus Labill. with different wood density was evaluated through Path analysis, a multivariate method that allows evaluation of descriptive models of causal relationship between variables. A model relating anatomical variables with wood properties and functional parameters was proposed and tested. We found significant differences in wood basic density and vulnerability to cavitation between races. The main exogenous variables predicting vulnerability to cavitation were vessel hydraulic diameter and fibre wall fraction. Fibre wall fraction showed a direct impact on wood basic density and the slope of vulnerability curve, and an indirect and negative effect over the pressure imposing 50% of conductivity loss (P50) through them. Hydraulic diameter showed a direct negative effect on P50, but an indirect and positive influence over this variable through wood density on one hand, and through maximum hydraulic conductivity (ks max) and slope on the other. Our results highlight the complexity of the relationship between xylem efficiency and safety in species with solitary vessels such as Eucalyptus spp., with no evident compromise at the intraspecific level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    Science.gov (United States)

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  9. Design of a PM Vernier Machine with Consideration for Modulation Flux and Comparison with Conventional PM motors

    Directory of Open Access Journals (Sweden)

    Byungtaek Kim

    2017-11-01

    Full Text Available This study deals with the core design of a PM vernier machine considering modulation flux effects, and the comparative investigation on volume and performance characteristics of the vernier over conventional PM machines are addressed. To these ends, for a PM vernier machine in operation at the base-speed, the flux density equations for teeth and yokes considering the flux modulation effects are derived, where the air gap harmonic permeance function is used. Using the derived equations, a PM vernier motor with specified yoke flux densities is designed. To identify the predicted flux yoke densities, the flux distribution and iron losses in core parts are analyzed through time-step finite element (FE simulations. Through Fourier series expansion of the air gap flux waves obtained by FE analysis at several specified times, the harmonic components constituting the flux waves are investigated and their speeds are also evaluated in numerical ways. Finally, to estimate the competitiveness of vernier machines versus conventional machines, the designed PM vernier motor is compared against two different conventional PM motors designed through the same design procedures in various aspects such as volume, torque capacity, efficiency, and power factor, in which, in particular, the core losses are included in efficiency calculation.

  10. Particle flux and temperature dependence of carbon impurity production from an inertially-cooled limiter in tore supra

    International Nuclear Information System (INIS)

    DeMichelis, C.; Monier-Garbet, P.; Guilhem, D.

    1998-01-01

    A visible endoscope system and an infrared camera system have been used to study the flux of carbon from an inertially-cooled graphite limiter in Tore Supra. From the variation in the carbon flux with plasma parameters new data have been obtained describing the dependence of radiation enhanced sublimation (RES) and chemical sputtering on incident ion flux. Other characteristics of RES under plasma operation conditions have also been studied. The dependence of RES on incident deuterium particle flux density is found to be in reasonable agreement with the expected particle flux scaling over a range of particle fluxes varying by a factor ∼ 25, extending the present scaling to higher flux density values. Chemical sputtering has been observed, but only in regions of the limiter with low incident deuterium fluxes. Values inferred for the chemical sputtering yield are similar to those measured with a temperature controlled test limiter in Textor. (author)

  11. Relationship between turbulence energy and density variance in the solar neighbourhood molecular clouds

    Science.gov (United States)

    Kainulainen, J.; Federrath, C.

    2017-11-01

    The relationship between turbulence energy and gas density variance is a fundamental prediction for turbulence-dominated media and is commonly used in analytic models of star formation. We determine this relationship for 15 molecular clouds in the solar neighbourhood. We use the line widths of the CO molecule as the probe of the turbulence energy (sonic Mach number, ℳs) and three-dimensional models to reconstruct the density probability distribution function (ρ-PDF) of the clouds, derived using near-infrared extinction and Herschel dust emission data, as the probe of the density variance (σs). We find no significant correlation between ℳs and σs among the studied clouds, but we cannot rule out a weak correlation either. In the context of turbulence-dominated gas, the range of the ℳs and σs values corresponds to the model predictions. The data cannot constrain whether the turbulence-driving parameter, b, and/or thermal-to-magnetic pressure ratio, β, vary among the sample clouds. Most clouds are not in agreement with field strengths stronger than given by β ≲ 0.05. A model with b2β/ (β + 1) = 0.30 ± 0.06 provides an adequate fit to the cloud sample as a whole. Based on the average behaviour of the sample, we can rule out three regimes: (i) strong compression combined with a weak magnetic field (b ≳ 0.7 and β ≳ 3); (ii) weak compression (b ≲ 0.35); and (iii) a strong magnetic field (β ≲ 0.1). When we include independent magnetic field strength estimates in the analysis, the data rule out solenoidal driving (b < 0.4) for the majority of the solar neighbourhood clouds. However, most clouds have b parameters larger than unity, which indicates a discrepancy with the turbulence-dominated picture; we discuss the possible reasons for this.

  12. Association of Beta-2 Microglobulin with Inflammation and Dislipidemia in High-Flux Membrane Hemodialysis Patients.

    Science.gov (United States)

    Topçiu-Shufta, Valdete; Miftari, Ramë; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend

    2016-10-01

    Higher than expected cardiovascular mortality in hemodialysis patients, has been attributed to dyslipidemia as well as inflammation. Beta2-Microglobulin (β2M) is an independent predictor of outcome for hemodialysis patients and a representative substance of middle molecules. In 40 patients in high-flux membrane hemodialysis, we found negative correlation of β2M with high density lipoprotein (r=-0.73, p<0.001) and albumin (r= -0.53, p<0.001) and positive correlation with triglycerides (r=0.69, p<0.001), parathyroid hormone (r=0.58, p < 0.05) and phosphorus (r= 0.53, p<0.001). There was no correlation of β2M with C- reactive protein (CRP) and interleukin-6 (IL-6). During the follow-up period of three years, 6 out of 40 patients have died from cardiovascular events. In high-flux membrane hemodialysis patients, we observed a significant relationship of β2M with dyslipidemia and mineral bone disorders, but there was no correlation with inflammation.

  13. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.

    Science.gov (United States)

    Shinohara, Yoshinori; Tsuruta, Kenji; Ogura, Akira; Noto, Fumikazu; Komatsu, Hikaru; Otsuki, Kyoichi; Maruyama, Toshisuke

    2013-05-01

    Understanding radial and azimuthal variation, and tree-to-tree variation, in sap flux density (Fd) as sources of uncertainty is important for estimating transpiration using sap flow techniques. In a Japanese cedar (Cryptomeria japonica D. Don.) forest, Fd was measured at several depths and aspects for 18 trees, using heat dissipation (Granier-type) sensors. We observed considerable azimuthal variation in Fd. The coefficient of variation (CV) calculated from Fd at a depth of 0-20 mm (Fd1) and Fd at a depth of 20-40 mm (Fd2) ranged from 6.7 to 37.6% (mean = 28.3%) and from 19.6 to 62.5% (mean = 34.6%) for the -azimuthal directions. Fd at the north aspect averaged for nine trees, for which azimuthal measurements were made, was -obviously smaller than Fd at the other three aspects (i.e., west, south and east) averaged for the nine trees. Fd1 averaged for the nine trees was significantly larger than Fd2 averaged for the nine trees. The error for stand-scale transpiration (E) estimates caused by ignoring the azimuthal variation was larger than that caused by ignoring the radial variation. The error caused by ignoring tree-to-tree variation was larger than that caused by ignoring both radial and azimuthal variations. Thus, tree-to-tree variation in Fd would be more important than both radial and azimuthal variations in Fd for E estimation. However, Fd for each tree should not be measured at a consistent aspect but should be measured at various aspects to make accurate E estimates and to avoid a risk of error caused by the relationship of Fd to aspect.

  14. LONGITUDINAL OSCILLATIONS IN DENSITY STRATIFIED AND EXPANDING SOLAR WAVEGUIDES

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Cardozo, M. [Instituto de Astronomia y Fisica del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Erdelyi, R., E-mail: mluna@iafe.uba.ar, E-mail: robertus@sheffield.ac.uk, E-mail: gary.verth@northumbria.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2012-04-01

    Waves and oscillations can provide vital information about the internal structure of waveguides in which they propagate. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It is our specific aim to understand what happens to these MHD waves generated in flux tubes with non-constant (e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical results. The relevance of these results for solar magneto-seismology is discussed.

  15. Edge plasma density convection during ICRH on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Pecoul, S.; Heuraux, S. [Nancy-1 Univ., 54 (France). Lab. de Physique des Milieux Ionises

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  16. Density control problems in large stellarators with neoclassical transport

    International Nuclear Information System (INIS)

    Maassberg, H.; Beidler, C.D.; Simmet, E.E.

    1999-01-01

    With respect to the particle flux, the off-diagonal term in the neoclassical transport matrix becomes crucial in the stellarator long-mean-free-path regime. Central heating with peaked temperature profiles can make an active density profile control by central particle refuelling mandatory. The neoclassical particle confinement can significantly exceed the energy confinement at the outer radii. As a consequence, the required central refuelling may be larger than the neoclassical particle fluxes at outer radii leading to the loss of the global density control. Radiative losses as well as additional 'anomalous' electron heat diffusivities further exacerbate this problem. In addition to the analytical formulation of the neoclassical link of particle and energy fluxes, simplified model simulations as well as time-dependent ASTRA code simulations are described. In particular, the 'low-' and 'high-mirror' W7-X configurations are compared. For the W7-X 'high-mirror' configuration especially, the appearance of the neoclassical particle transport barrier is predicted at higher densities. (author)

  17. Flux creep characteristics in high-temperature superconductors

    International Nuclear Information System (INIS)

    Zeldov, E.; Amer, N.M.; Koren, G.; Gupta, A.; McElfresh, M.W.; Gambino, R.J.

    1990-01-01

    We describe the voltage-current characteristics of YBa 2 Cu 3 O 7-δ epitaxial films within the flux creep model in a manner consistent with the resistive transition behavior. The magnitude of the activation energy, and its temperature and magnetic field dependences, are readily derived from the experimentally observed power law characteristics and show a (1-T/T c ) 3/2 type of behavior near T c . The activation energy is a nonlinear function of the current density and it enables the determination of the shape of the flux line potential well

  18. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  19. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  20. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  1. Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2

    International Nuclear Information System (INIS)

    Cheng, C H; Yang, Y; Munroe, P; Zhao, Y

    2007-01-01

    Doping effects of nano-diamond and carbon nanotubes (CNTs) on critical current density of bulk MgB 2 have been studied. CNTs are found prone to be doped into the MgB 2 lattice whereas nano-diamond tends to form second-phase inclusions in the MgB 2 matrix, leading to a more significant improvement of J c (H) by doping by nano-diamond than by CNTs in MgB 2 . TEM reveals tightly packed MgB 2 nanograins (50-100 nm) with a dense distribution of diamond nanoparticles (10-20 nm) inside MgB 2 grains in nano-diamond-doped samples. Such a unique microstructure leads to a flux pinning behaviour different from that in CNTs-doped MgB 2

  2. Theory of redeposition of sputtered flux on to surface asperities

    International Nuclear Information System (INIS)

    Belson, J.; Wilson, I.H.

    1981-01-01

    This paper models the topographical evolution of features on amorphous surfaces under ion bombardment. Specifically, evolution due to accretion of material sputtered from areas adjacent to a feature has been investigated in terms of the flux density redeposited on to an arbitrary profile y = f(xi) from a linear emitter. Analytical solutions have been found for the early ( first burst ) evolution of linear and sinusoidal surface features in cases where the emitter radiates isotropically or anisotropically (cosine law) from each point of its length. The predictions of models based on these two types of emitter are compared. Both types produce enhanced deposition near the foot of a linear slope but the effect is much greater for isotropic emission. Above the foot of a linear slope there is a point beyond which the redeposition due to an anisotropic emitter is greater than that due to an isotropic emitter of identical luminance. For a 90 0 slope (step or groove of rectangular section) the point is about 0.4 times the emitter length (i.e. 0.4 x groove width) above the base. Sinusoidal asperities which are present in a high surface density are expected to receive significant redeposited flux only near their bases. By contrast, widely separated asperities would receive flux over almost all or their profiles. In this latter situation the magnitude of the redeposited flux density is found to be relatively insensitive to position on a profile. (orig.)

  3. An Improved Seeding Algorithm of Magnetic Flux Lines Based on Data in 3D Space

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    2015-05-01

    Full Text Available This paper will propose an approach to increase the accuracy and efficiency of seeding algorithms of magnetic flux lines in magnetic field visualization. To obtain accurate and reliable visualization results, the density of the magnetic flux lines should map the magnetic induction intensity, and seed points should determine the density of the magnetic flux lines. However, the traditional seeding algorithm, which is a statistical algorithm based on data, will produce errors when computing magnetic flux through subdivision of the plane. To achieve higher accuracy, more subdivisions should be made, which will reduce efficiency. This paper analyzes the errors made when the traditional seeding algorithm is used and gives an improved algorithm. It then validates the accuracy and efficiency of the improved algorithm by comparing the results of the two algorithms with results from the equivalent magnetic flux algorithm.

  4. Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    International Nuclear Information System (INIS)

    Alford, Mark G.; Good, Gerald

    2008-01-01

    We analyze magnetic-flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient ('entrainment') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional κ≡λ/ξ=1/√(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical κ and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to 'type-II(n)' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical κ and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region but might be observed in condensed-matter systems

  5. Tracer kinetic studies of the low density lipoprotein metabolism in the fetal rat: An example for estimation of flux rates in the nonsteady state

    International Nuclear Information System (INIS)

    Plonne, D.; Schlag, B.; Winkler, L.; Dargel, R.

    1990-01-01

    To get insight into the low density lipoprotein (LDL)-apoB flux in the rat fetus near term and in the early postnatal period, homologous apoE-free 125I-labeled LDL was injected into the umbilical vein of the rat fetus immediately after Caesarean section. Since the serum LDL-apoB spontaneously declined after birth, a time-dependent two-pool model was used to calculate the flux rates in the neonate from the specific activities of LDL-apoB up to 15 h post partum. An approximate value of LDL-apoB flux in the fetus at birth was obtained by extrapolation of the kinetic data to the time of injection of the tracer. The data revealed that the turnover of LDL-apoB in the fetus (18.6 micrograms LDL-apoB/h per g body weight) exceeded that in the adult rat (0.4 microgram/h per g body weight) by at least one order of magnitude. Even 15 h after delivery, the LDL-apoB influx amounted to 2.5 micrograms/h per g body weight. The fractional catabolic rate of LDL-apoB in the fetus at term (0.39, h-1) slightly exceeded that in the adult animal (0.15, h-1) and reached the adult level within the first 3 h after birth and remained constant thereafter. In the rat fetus, LDL-apoB flux greatly exceeds that of VLDL-apoB. The data support the view of a direct synthesis and secretion of LDL, most probably by the fetal membranes

  6. A Particle-In-Cell approach to particle flux shaping with a surface mask

    Directory of Open Access Journals (Sweden)

    G. Kawamura

    2017-08-01

    Full Text Available The Particle-In-Cell simulation code PICS has been developed to study plasma in front of a surface with two types of masks, step-type and roof-type. Parameter scans with regard to magnetic field angle, electron density, and mask height were carried out to understand their influence on ion particle flux distribution on a surface. A roof-type mask with a small mask height yields short decay length in the flux distribution which is consistent with that estimated experimentally. A roof-type mask with a large height yields very long decay length and the flux value does not depend on a mask height or an electron density, but rather on a mask length and a biasing voltage of the surface. Mask height also changes the flux distribution apart from the mask because of the shading effect of the mask. Electron density changes the distribution near the mask edge according to the Debye length. Dependence of distribution on parameters are complicated especially for a roof-type mask, and simulation study with various parameters are useful to understand the physical reasons of dependence and also is useful as a tool for experiment studies.

  7. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.com [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-09-15

    Four different performance multi-seeded YBCO bulks as representatives. A coupling ratio to reflect the coupling quality of GBs inside multi-seeded bulks. An averaged trapped magnetic flux density parameter was introduced. The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  8. Forecast of solar proton flux profiles for well-connected events

    Science.gov (United States)

    Ji, Eun-Young; Moon, Yong-Jae; Park, Jinhye

    2014-12-01

    We have developed a forecast model of solar proton flux profiles (> 10 MeV channel) for well-connected events. Among 136 solar proton events (SPEs) from 1986 to 2006, we select 49 well-connected ones that are all associated with single X-ray flares stronger than M1 class and start to increase within 4 h after their X-ray peak times. These events show rapid increments in proton flux. By comparing several empirical functions, we select a modified Weibull curve function to approximate a SPE flux profile. The parameters (peak flux, rise time, and decay time) of this function are determined by the relationship between X-ray flare parameters (peak flux, impulsive time, and emission measure) and SPE parameters. For 49 well-connected SPEs, the linear correlation coefficient between the predicted and the observed proton peak fluxes is 0.65 with the RMS error of 0.55 log10(pfu). In addition, we determine another forecast model based on flare and coronal mass ejection (CME) parameters using 22 SPEs. The used CME parameters are linear speed and angular width. As a result, we find that the linear correlation coefficient between the predicted and the observed proton peak fluxes is 0.83 with the RMS error of 0.35 log10(pfu). From the relationship between error of model and CME acceleration, we find that CME acceleration is an important factor for predicting proton flux profiles.

  9. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  10. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  11. Accumulation of phosphorus in coastal marine sediments: relationship to benthic and diffusive fluxes

    Directory of Open Access Journals (Sweden)

    Rocio Ponce

    2010-11-01

    Full Text Available Sedimentary phosphorus was characterized in sediment cores from 3 coastal ecosystems of the Gulf of Cadiz. High spatial variability was observed in total phosphorus (from 445 to 20291 μg g.sed-1 and in the other phosphorus phases studied. This variability correlates with the proximity of the 10 sampling stations to sources of urban and/or industrial effluent in the zone. The benthic and diffusive fluxes were measured concurrently with sediment collection at these stations. The measured values of benthic fluxes range between –14 and 6 mmol m-2 d-1. Generally, stations that showed increased interstitial phosphate concentrations with increasing depth were characterized by positive values in phosphate benthic fluxes and by high percentages of reactive forms of sedimentary phosphorus. Negative benthic fluxes were associated with stations receiving more anthropogenic matter, which showed progressively decreasing phosphate concentrations in the interstitial water with depth. In these anthropogenic areas, the non-reactive forms of phosphorus (those associated with ferric oxyhydroxide and authigenic carbonate fluorapatite are abundant, and reach values exceeding 75% of total phosphorus in sediment.

  12. Effects of magnetizing on flux pinning force for sintered YBCO superconductor

    International Nuclear Information System (INIS)

    Ding, S.Y.; Yan, J.L.; Yu, Z.; Shi, K.X.; Tong, H.W.; Qiu, L.

    1989-01-01

    It is shown that magnitude and course of magnetizing field influence magnetization and transport current. Effective flux pinning force density with two types is extracted by an iterative procedure based on the critical state equation. One of the types is attributed to the weak links and the other is considered to be resulted from the intragrain flux pinning centers

  13. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  14. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  15. Using cloud ice flux to parametrise large-scale lightning

    Directory of Open Access Journals (Sweden)

    D. L. Finney

    2014-12-01

    Full Text Available Lightning is an important natural source of nitrogen oxide especially in the middle and upper troposphere. Hence, it is essential to represent lightning in chemistry transport and coupled chemistry–climate models. Using ERA-Interim meteorological reanalysis data we compare the lightning flash density distributions produced using several existing lightning parametrisations, as well as a new parametrisation developed on the basis of upward cloud ice flux at 440 hPa. The use of ice flux forms a link to the non-inductive charging mechanism of thunderstorms. Spatial and temporal distributions of lightning flash density are compared to tropical and subtropical observations for 2007–2011 from the Lightning Imaging Sensor (LIS on the Tropical Rainfall Measuring Mission (TRMM satellite. The well-used lightning flash parametrisation based on cloud-top height has large biases but the derived annual total flash density has a better spatial correlation with the LIS observations than other existing parametrisations. A comparison of flash density simulated by the different schemes shows that the cloud-top height parametrisation has many more instances of moderate flash densities and fewer low and high extremes compared to the other parametrisations. Other studies in the literature have shown that this feature of the cloud-top height parametrisation is in contrast to lightning observations over certain regions. Our new ice flux parametrisation shows a clear improvement over all the existing parametrisations with lower root mean square errors (RMSEs and better spatial correlations with the observations for distributions of annual total, and seasonal and interannual variations. The greatest improvement with the new parametrisation is a more realistic representation of the zonal distribution with a better balance between tropical and subtropical lightning flash estimates. The new parametrisation is appropriate for testing in chemistry transport and chemistry

  16. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10 18 cm -3 . Beyond this defect level, a sublinear relation is found i.e., not

  17. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  18. MAGNETIC FLUX EXPULSION IN STAR FORMATION

    International Nuclear Information System (INIS)

    Zhao Bo; Li Zhiyun; Nakamura, Fumitaka; Krasnopolsky, Ruben; Shang, Hsien

    2011-01-01

    Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known 'magnetic flux problem' demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in three dimensions, using a magnetohydrodynamic (MHD) version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in three-dimensional MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

  19. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship.

    Science.gov (United States)

    Shen, W; Chen, J; Gantz, M; Punyanitya, M; Heymsfield, S B; Gallagher, D; Albu, J; Engelson, E; Kotler, D; Pi-Sunyer, X; Shapses, S

    2012-09-01

    The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18-88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r = -0.533, -0.576, respectively; P BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premenopausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations.

  20. Crystal growth of emerald by flux method

    International Nuclear Information System (INIS)

    Inoue, Mikio; Narita, Eiichi; Okabe, Taijiro; Morishita, Toshihiko.

    1979-01-01

    Emerald crystals have been formed in two binary fluxes of Li 2 O-MoO 2 and Li 2 O-V 2 O 5 using the slow cooling method and the temperature gradient method under various conditions. In the flux of Li 2 O-MoO 3 carried out in the range of 2 -- 5 of molar ratios (MoO 3 /Li 2 O), emerald was crystallized in the temperature range from 750 to 950 0 C, and the suitable crystallization conditions were found to be the molar ratio of 3 -- 4 and the temperature about 900 0 C. In the flux of Li 2 O-V 2 O 5 carried out in the range of 1.7 -- 5 of molar ratios (V 2 O 5 /Li 2 O), emerald was crystallized in the temperature range from 900 to 1150 0 . The suitable crystals were obtained at the molar ratio of 3 and the temperature range of 1000 -- 1100 0 C. The crystallization temperature rised with an increase in the molar ratio of the both fluxes. The emeralds grown in two binary fluxes were transparent green, having the density of 2.68, the refractive index of 1.56, and the two distinct bands in the visible spectrum at 430 and 600nm. The emerald grown in Li 2 O-V 2 O 5 flux was more bluish green than that grown in Li 2 O-MoO 3 flux. The size of the spontaneously nucleated emerald grown in the former flux was larger than the latter, when crystallized by the slow cooling method. As for the solubility of beryl in the two fluxes, Li 2 O-V 2 O 5 flux was superior to Li 2 O-MoO 3 flux whose small solubility of SiO 2 caused an experimental problem to the temperature gradient method. The suitability of the two fluxes for the crystal growth of emerald by the flux method was discussed from the view point of various properties of above-mentioned two fluxes. (author)

  1. Upland Forest Linkages to Seasonal Wetlands: Litter Flux, Processing, and Food Quality

    Science.gov (United States)

    Brian J. Palik; Darold P. Batzer; Christel Kern

    2005-01-01

    The flux of materials across ecosystem boundaries has significant effects on recipient systems. Because of edge effects, seasonal wetlands in upland forest are good systems to explore these linkages. The purpose of this study was to examine flux of coarse particulate organic matter as litter fall into seasonal wetlands in Minnesota, and the relationship of this flux to...

  2. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    International Nuclear Information System (INIS)

    Koperwas, K.; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.

    2015-01-01

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition

  3. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Koperwas, K., E-mail: kkoperwas@us.edu.pl; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland)

    2015-07-14

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.

  4. Fast neutron fluxes distribution in Egyptian ilmenite concrete

    International Nuclear Information System (INIS)

    Megahed, R.M.; Abou El-Nasr, T.Z.; Bashter, I.I.

    1978-01-01

    This work is concerned with the study of the distribution of fast neutron fluxes in a new type of heavy concrete made from Egyptian ilmenite ores. The neutron source used was a collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements were carried-out using phosphorous activation detectors. Iso-flux curves were represented which give directly the shape and thickness required to attenuate the emitted fast neutron flux to a certain value. The relaxation lengths were also evaluated from the measured data for both disc monodirectional source and infinite plane monodirectional source. The obtained values were compared with that calculated using the derived values of relative number densities and microscopic removal cross-sections of the different constituents. The obtained data show that ilmenite concrete attenuates fast neutron flux more strongly than ordinary concrete. A semiemperical formula was derived to calculate the fast neutron flux at different thicknesses along the beam axis. Another semiemperical formula was also derived to calculate the fast neutron flux in ordinary concrete along the beam axis using the corresponding value in ilmenite concrete

  5. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  6. Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma

    Czech Academy of Sciences Publication Activity Database

    Popov, T.S.V.K.; Dimitrova, Miglena; Pedrosa, M. A.; López-Bruna, D.; Horáček, Jan; Kovačič, J.; Dejarnac, Renaud; Stöckel, Jan; Aftanas, Milan; Böhm, Petr; Bílková, Petra; Hidalgo, C.; Pánek, Radomír

    2015-01-01

    Roč. 57, č. 11 (2015), č. článku 115011. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : COMPASS tokamak, parallel power flux density * TJ-II stellarator * bi-Maxwellian EEDF * last closed flux surface * SOL * parallel power flux density Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  7. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  8. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  9. Relationship of Quantum Entanglement to Density Functional Theory

    OpenAIRE

    Rajagopal, A. K.; Rendell, R. W.

    2005-01-01

    The maximum von Neumann entropy principle subject to given constraints of mean values of some physical observables determines the density matrix. Similarly the stationary action principle in the case of time-dependent (dissipative) situations under similar constraints yields the density matrix. The free energy and measures of entanglement are expressed in terms of such a density matrix and thus define respective functionals of the mean values. In the light of several model calculations, it is...

  10. Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003

    Science.gov (United States)

    Jonard, F.; André, F.; Ponette, Q.; Vincke, C.; Jonard, M.

    2011-10-01

    SummarySap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density ( SFD) data, mean stomatal conductance of individual trees ( G s) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G s and on their sensitivity to environmental variables (vapour pressure deficit ( D), incoming solar radiation ( R G), and relative extractable water ( REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands ( P sapwood-to-leaf area ratio compared to oak. The sensitivity of G s to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G s to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.

  11. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    Science.gov (United States)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  12. Crystallinity and flux pinning properties of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Iwayama, I.; Horii, S.; Kishio, K.

    2006-01-01

    The relationship between flux pinning properties and crystallinity of MgB 2 bulks was systematically studied. Improved flux pinning properties under high fields were observed for samples with low crystallinity. Increased impurity scattering due to strain and defects in lattice corresponding to the degraded crystallinity was considered to enhance flux pinning strength at grain boundaries. Low-temperature synthesis and carbon substitution were confirmed to be effective for degrading crystallinity of MgB 2 bulks, resulting in high critical current properties under high fields

  13. Nonlinear performance characteristics of flux-switching PM motors

    NARCIS (Netherlands)

    Ilhan, E.; Kremers, M.F.J.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2013-01-01

    Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM) are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little

  14. Effect of magnetic flux-densities of up to 0.1 Tesla on copper electrodeposition

    Directory of Open Access Journals (Sweden)

    Cifuentes, L.

    2003-08-01

    Full Text Available The effect of magnetic flux densities (B between 0.0 and 0.1 Tesla on cathode and anode overpotentials, cell voltage and electrodeposit quality was determined for a lab-scale copper electrowinning cell which operates at industrial current density values. Cell voltage decreases with increasing B. The cathodic overpotential decreases by 30 % when B increases from 0.0 to 0.1 T The anodic overpotential also decreases with increasing B, but this effect is six times less than the corresponding effect on the cathodic overpotential. Cathodic effects can be predicted by an expression derived from electrochemical kinetics and magnetohydrodynamic theory. Anodic effects cannot be predicted in the same way. The size of grains and intergranular voids decreases and the surface of the electrodeposit becomes smoother as B increases, which means that, in the studied conditions, the quality of the produced copper deposits improves.

    Se determinó el efecto de densidades de flujo magnético (B de, hasta 0,1 Tesla, sobre los sobrepotenciales catódico y anódico, la tensión de celda y la calidad del electrodepósito en una celda de electroobtención de cobre que opera a valores industriales de densidad de corriente. La tensión de celda decrece al aumentar B. El sobrepotencial catódico disminuye en 30 % cuando B aumenta de 0,0 a 0,1 T El sobrepotencial anódico también disminuye al crecer B, pero este efecto es seis veces menor que en el caso catódico. Los efectos catódicos pueden predecirse por medio de una expresión deducida de la cinética electroquímica y la magnetohidrodinámica. No es posible realizar una predicción análoga de los efectos anódicos. El tamaño de los granos y de los huecos intergranulares decrece y la superficie del electrodepósito se hace más pareja al aumentar B, lo que implica que, en las condiciones estudiadas, la calidad del depósito de cobre mejora.

  15. A Study on the Design of PM Exited Transverse Flux Linear Motor for Ropeless Elevator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Hyun; Bang, Deok Je; Kim, Jong Moo; Jeong, Yeon Ho [Korea Electrotechnology Research Institute (Korea); Kim, Moon Hwan [Silla University (Korea)

    2000-03-01

    The topological investigations regarding magnetic circuit geometry and winding form of the transverse flux machine have brought up a variety of constructable arrangements with different features for several types of application[1, 2]. Here with, a novel PM-exited linear motor with inner mover, based on the transverse flux configuration leads to a considerable increase in power density for moving part. In this study we designed PM-exited transverse flux linear motor for ropeless elevator, whose output power density is higher and weight is lighter than conventional linear synchronous motors, When the designed motor in this study is applied to ropeless elevator, it is possible to increase power density more than 400% comparing with PM exited linear synchronous motor. The result of this study can be utilized for ropeless elevator or gearless direct linear moving system with high output[3]. (author). 8 refs., 9 figs., 4 tabs.

  16. Fusion neutron yield and flux calculation on HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Fu Yanzhang; Zhu Yubao; Chen Juequan

    2006-01-01

    Neutron yield and flux have been numerically estimated on HT-7 tokamak. The total fusion neutron yield and neutron flux distribution on different positions and azimuth angles of the device are presented. Analyses on the errors induced by ion temperature and density distribution factors are given in detail. The results of the calculations provide a useful database for neutron diagnostics and neutron radiation protection. (authors)

  17. Simulation of electron beam in a MET as charged particles flux

    International Nuclear Information System (INIS)

    Hernandez-Valle, Alberto; Valverde-Noguera, Vanessa; Lopez-Gomez, Ignacio; Chine-Polito, Bruno; Esquivel-Isern, Ricardo; Chaves-Noguera, Juan

    2015-01-01

    The behavior of an electron beam is simulated in a transmission electron microscope (TEM). The simulation is performed according to the acceleration voltage, the excitation current of the lenses and the relative permeability of the pole pieces, through the software COMSOL Multiphysics version 4.2a. The dispersed electrons filtered by diaphragms have showed a low vertical speed as result. Graphics have exposed an increase in the magnetic flux density, intensifying the magnetic permeability of the polar pieces, the angle of the divergent electrons and vertical velocity reduction. Observations have showed that the number of electrons in the system remains unaffected in the general behavior of the beam and the magnitude of the magnetic flux density. (Author) [es

  18. On the Partitioning of Wall Heat Flux in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Chu, In-Cheol; Hoang, Nhan Hien; Euh, Dong-Jin; Song, Chul-Hwa

    2015-01-01

    This region has been treated successfully by two-fluid model coupled with a population balance model or interfacial area transport equation (IATE). The second region is near-wall heat transfer which has been commonly described by a wall heat flux partitioning model coupled with models of nucleation site density (NSD), bubble departure diameter and bubble release frequency. Since the phase change process in the near-wall heat transfer is really complex, comprising different heat transfer mechanisms, bubble dynamics, bubble nucleation and thermal response of heated surface, the modeling of the second region is still a great challenge despite intensive efforts. Numerous models and correlations have been proposed to aim for computing the near-wall heat transfer. The models of nucleation site density, bubble departure diameter and bubble release frequency are used to quantify these components. The models closely related to each other. The heat flux partitioning model controls the wall and liquid temperatures. Then, it turns to control the boiling parameters, i.e. nucleation site density, bubble departure diameter and bubble release frequency. In this study, the partitioning of wall heat flux is taken into account. The existing issues occurred with previous models of the heat flux partitioning are pointed out and then a new model which considers the heat transfer caused by evaporation of superheated liquid at bubble boundary and the actual period of transient conduction term is formulated. The new model is then validated with a collected experimental database. This paper presented a new heat flux partitioning model in which the heat transfer by evaporation of the superheated liquid at the bubble boundary and the active period of the transient conduction were considered. The new model was validated with the experimental data of the subcooled flow boiling of water obtained by Phillips

  19. Association of Beta-2 Microglobulin with Inflammation and Dislipidemia in High-Flux Membrane Hemodialysis Patients

    Science.gov (United States)

    Topçiu–Shufta, Valdete; Miftari, Ramë; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend

    2016-01-01

    Background: Higher than expected cardiovascular mortality in hemodialysis patients, has been attributed to dyslipidemia as well as inflammation. Beta2-Microglobulin (β2M) is an independent predictor of outcome for hemodialysis patients and a representative substance of middle molecules. Results: In 40 patients in high-flux membrane hemodialysis, we found negative correlation of β2M with high density lipoprotein (r=-0.73, p<0.001) and albumin (r= -0.53, p<0.001) and positive correlation with triglycerides (r=0.69, p<0.001), parathyroid hormone (r=0.58, p < 0.05) and phosphorus (r= 0.53, p<0.001). There was no correlation of β2M with C- reactive protein (CRP) and interleukin-6 (IL-6). During the follow-up period of three years, 6 out of 40 patients have died from cardiovascular events. Conclusion: In high-flux membrane hemodialysis patients, we observed a significant relationship of β2M with dyslipidemia and mineral bone disorders, but there was no correlation with inflammation. PMID:27994294

  20. Effect of Paste Flux Concentration on Adhesion Behavior

    Directory of Open Access Journals (Sweden)

    DU Quan-bin

    2017-11-01

    Full Text Available In view of the problem that paste flux is difficult to spread uniformly on the surface of filler metal, the adhesion behavior of the different concentrations of paste flux on the surface of filler metal was studied by the equipment of OM, wetting angle tester and surface tensiometer. The results show that adhesive layer is gradually thickened with the increase of the concentration of paste flux. A small amount of shrinkage appears in the thin adhesive layer. however, mass paste flux slides off filler metal when adhesive layer is thicker, accompanying by severe aggregation and shrinkage. For the ideal surface, the adhesive tension of paste flux with different concentrations of paste flux is the same. For the actual surface, the stripe groove additional pressure is formed when paste flux wets stripe groove, and the additional pressure is the main reason for the lagging phenomenon of the shrinkage of the adhesive layer. With the increase of paste flux concentration, the additional pressure decreases, the hysteresis resistance decreases, and the shrinkage increases. A relationship is satisfied when the shrinkage takes place in thin adhesive layer, this is ΔWC ≥ A+ΔP. Whether the shrinkage occurs mainly depends on the adhesion tension and the additional pressure.

  1. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    Full Text Available Environmental factors and human activities play important roles in carbon fixation and emissions generated from croplands. Eddy covariance measurements in a drip-irrigated, film-mulched cotton field were used to analyze the relationships between carbon fluxes and environmental factors in Wulanwusu, northern Xinjiang, an arid region of Northwest China. Our results showed that the cumulative net carbon flux (NEE was -304.8 g C m-2 (a strong sink over the whole cotton growing season in 2012, which was more than that in cotton cropland without plastic film mulching and drip-irrigation. Moreover, when time is scaled up from a half-hour to a month, the correlations of gross primary production (GPP to air temperature (Tair, net solar radiation (Rn and soil water content (SWC gradually become stronger due to ecosystem resistance and resilience as well as the protection of plastic film mulching. The GPP is more strongly correlated with Rn than Tair at time scales from minutes to days, while it reverses at time scales from days to weeks. This outcome is largely determined by the biochemical characteristics of photosynthesis. SWC and vapor pressure deficit (VPD at all time scales are weakly correlated with GPP because plastic film mulching and regularly drip-irrigation allow soil to maintain sufficient water.

  2. Flux pinning characteristics of Sn-doped YBCO film by the MOD process

    International Nuclear Information System (INIS)

    Choi, S.M.; Shin, G.M.; Yoo, S.I.

    2013-01-01

    Highlights: ► The pinning effects of undoped and Sn-doped YBCO films by MOD were characterized. ► Sn-containing nanoparticles were trapped in Sn-doped YBCO films by MOD. ► Sn-containing nanoparticles were identified as the YBa 2 SnO 5.5 (YBSO) phase by TEM. ► The YBSO nanoparticles are responsible for improved flux pinning effect. ► We report the orientation relationship between YBSO nanoparticles and YBCO matrix. -- Abstract: Compared with the undoped YBa 2 Cu 3 O 7−δ (YBCO) film, 10 mol% Sn-doped YBCO film exhibited significantly enhanced critical current densities (J c ) in magnetic fields up to 5 T at 65 and 77 K for H//c, indicating that the Sn-doped YBCO film possesses more effective flux pinning centers. Both samples were grown on the SrTiO 3 (STO) (1 0 0) single crystal substrates by the metal-organic deposition (MOD) process. Larger J c (77 K, 1 T) values of Sn-doped YBCO film are observed over a wide field-orientation angle (θ) except the field-orientations close to the ab-plane of YBCO (85° c values for 85° 2 SnO 5.5 (YBSO) phase by STEM (scanning transmission electron microscopy)-EDS (energy dispersive X-ray spectroscopy) analysis. Further analyses by HR-TEM (high resolution-transmission electron microscopy) revealed that YBSO nanoparticles completely surrounded by the YBCO matrix had random orientation with YBCO while those located at the interface of YBCO/STO substrate had epitaxial relationship with YBCO

  3. The Responses of Ozone Density to Solar Activity in the Mesopause Region and the Mutual Relationship Based on SABER Measurements During 2002-2016

    Science.gov (United States)

    Tang, Chaoli; Wu, Bo; Wei, Yuanyuan; Qing, Chun; Dai, Congming; Li, Jianyu; Wei, Heli

    2018-04-01

    This paper is aimed to investigate the mutual relationship between ozone-density at cold-point mesopause (O3-CPM) and solar activity globally using Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements and the 10.7 cm-solar-radio-flux (F10.7) data set. For this purpose, the global latitude regions are divided into 16 latitude bins. The global changes of O3-CPM are presented in mesopause region during 2002-2016. SABER has documented dramatic variability in O3-CPM on time scale of the 11-year solar cycle. The observed changes in the global O3-CPM correlate well with the changes in solar activity during 2002-2016 with correlation coefficient of 0.92, and the global solar response of O3-CPM is (20.18 ± 2.24)%/100 solar flux units in mesopause. Then, the latitudinal distribution of O3-CPM and its solar cycle dependence are presented for 16 latitude bins. The latitudinal correlation analysis shows that the O3-CPM is significantly correlated to the solar cycle at or above the 95% confidence level for each latitude bin from 84°S to 70°N, and the correlation coefficients are remarkably higher in the southern hemisphere than for corresponding latitudes in the northern hemisphere. The latitudinal distribution of O3-CPM takes on a W shape on a global scale, and the distribution of solar response of O3-CPM is seen in a strong south-north asymmetry between the two hemispheres. The solar response of O3-CPM in latitudinal distribution decreases gradually from the southern hemisphere to the northern hemisphere, and the standard deviation of solar response increases gradually from the equator to the pole in each hemisphere.

  4. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  5. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  6. Experimental detection of upward-going cosmic particles and consequences for correction of density radiography of volcanoes

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele

    2014-05-01

    Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Three acquisitions with different sights of view were made at la soufrière de Guadeloupe. All of them show important density fluctuations and reveal the volcano phreatic system. The telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. We give experimental evidences ofa so far never described source of noise caused by a flux of upward-going particles. Data acquired on La soufrière of Guadeloupe and Mount Etna reveal that upward-going particles are detected only when the rear side of the telescope is exposed to a wide volume of atmosphere located below the altitude of the telescope and with a rock obstruction less than several tens of meters. Biases produced on density muon radiographies by upward-going fluxes are quantified and correction procedures are applied to radiographies of la soufrière.

  7. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    Science.gov (United States)

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (Pmyostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  8. Hamiltonian boundary term and quasilocal energy flux

    International Nuclear Information System (INIS)

    Chen, C.-M.; Nester, James M.; Tung, R.-S.

    2005-01-01

    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasilocal expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant

  9. Aspects of six-dimensional flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dierigl, Markus

    2017-08-15

    In this thesis we investigate various aspects of flux compactifications in six-dimensional quantum field theories. After introducing the internal geometries, i.e. the two-dimensional torus T{sup 2} and one of its orbifolds T{sup 2}/Z{sub 2}, we classify possible gauge backgrounds including continuous and discrete Wilson lines with emphasis on a non-vanishing flux density. An operator analogy with the quantum harmonic oscillator allows for an explicit derivation of the mode functions of charged fields and demonstrates the advantage of our interpretation of discrete Wilson lines in terms of localized fractional gauge fluxes. We then derive a globally supersymmetric action which captures the D-term supersymmetry breaking induced by the internal magnetic field and reproduces the Landau level mass spectrum of the charged four-dimensional degrees of freedom. In this context we show that, even though supersymmetry is broken at the compactification scale, the inclusion of the whole tower of charged states leads to vanishing quantum corrections for the Wilson line effective potential on T{sup 2}. This result is supported by a symmetry breaking argument in which the Wilson line appears as a Goldstone boson. After that, we additionally include gravitational effects within a supergravity effective action of the lightest modes in four dimensions. The dynamics of the moduli fields arising after compactification can be encoded in the setup of N=1 supergravity augmented with anomaly cancellation by the Green-Schwarz mechanism. This leads to a non-trivial transformation behavior for two axion fields under gauge variations in the low-energy effective action. As an application, we discuss an SO(10) x U(1) grand unified theory which uses the multiplicity of fermionic zero modes in the flux background to induce the number of matter generations. Finally, we investigate a novel mechanism for generating de Sitter vacua in N=1 supergravity based on a flux-induced positive definite D

  10. Aspects of six-dimensional flux compactifications

    International Nuclear Information System (INIS)

    Dierigl, Markus

    2017-08-01

    In this thesis we investigate various aspects of flux compactifications in six-dimensional quantum field theories. After introducing the internal geometries, i.e. the two-dimensional torus T"2 and one of its orbifolds T"2/Z_2, we classify possible gauge backgrounds including continuous and discrete Wilson lines with emphasis on a non-vanishing flux density. An operator analogy with the quantum harmonic oscillator allows for an explicit derivation of the mode functions of charged fields and demonstrates the advantage of our interpretation of discrete Wilson lines in terms of localized fractional gauge fluxes. We then derive a globally supersymmetric action which captures the D-term supersymmetry breaking induced by the internal magnetic field and reproduces the Landau level mass spectrum of the charged four-dimensional degrees of freedom. In this context we show that, even though supersymmetry is broken at the compactification scale, the inclusion of the whole tower of charged states leads to vanishing quantum corrections for the Wilson line effective potential on T"2. This result is supported by a symmetry breaking argument in which the Wilson line appears as a Goldstone boson. After that, we additionally include gravitational effects within a supergravity effective action of the lightest modes in four dimensions. The dynamics of the moduli fields arising after compactification can be encoded in the setup of N=1 supergravity augmented with anomaly cancellation by the Green-Schwarz mechanism. This leads to a non-trivial transformation behavior for two axion fields under gauge variations in the low-energy effective action. As an application, we discuss an SO(10) x U(1) grand unified theory which uses the multiplicity of fermionic zero modes in the flux background to induce the number of matter generations. Finally, we investigate a novel mechanism for generating de Sitter vacua in N=1 supergravity based on a flux-induced positive definite D-term potential. The

  11. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    Science.gov (United States)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  12. Performance analysis of a new radial-axial flux machine with SMC cores and ferrite magnets

    Science.gov (United States)

    Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo

    2017-05-01

    Soft magnetic composite (SMC) is a popular material in designing of new 3D flux electrical machines nowadays for it has the merits of isotropic magnetic characteristic, low eddy current loss and high design flexibility over the electric steel. The axial flux machine (AFM) with the extended stator tooth tip both in the radial and circumferential direction is a good example, which has been investigated in the last years. Based on the 3D flux AFM and radial flux machine, this paper proposes a new radial-axial flux machine (RAFM) with SMC cores and ferrite magnets, which has very high torque density though the low cost low magnetic energy ferrite magnet is utilized. Moreover, the cost of RAFM is quite low since the manufacturing cost can be reduced by using the SMC cores and the material cost will be decreased due to the adoption of the ferrite magnets. The 3D finite element method (FEM) is used to calculate the magnetic flux density distribution and electromagnetic parameters. For the core loss calculation, the rotational core loss computation method is used based on the experiment results from previous 3D magnetic tester.

  13. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  14. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  15. VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)

    Science.gov (United States)

    Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.

    2016-10-01

    The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).

  16. Plasmas fluxes to surfaces for an oblique magnetic field

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D α , He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ''Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface

  17. Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest

    Science.gov (United States)

    Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.

    1999-01-01

    The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival

  18. Flow-excursion-induced dryout at low-heat-flux

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    Flow-excursion-induced dryout at low-heat-flux natural-convection boiling, typical of liquid-metal fast-breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow-regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high-heat-flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 17 figures

  19. Phase density of neutrons emitted by an atmosphereless planet

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Isakov, A.I.; Lin'kova, N.V.

    1986-01-01

    An approach to calculation of small planet neutron emission characteristics is developed. Using artificial satellites and space probes information on the planet surface may be obtained by analyzing neutron emission being the result of cosmic rays effect. Available calculation methods permit to calculate angular distribution and neutron flux F 0 from planet surface as a function of its surface layer chemical composition. Neutron flux measured by a sattelite and F 0 flux may be connected by a function describing neuton phase density near the planet

  20. Flux and Hall states in ABJM with dynamical flavors

    Energy Technology Data Exchange (ETDEWEB)

    Bea, Yago [Departamento de Física de Partículas and Instituto Galego de Física de Altas Enerxías,Universidade de Santiago de Compostela,E-15782 Santiago de Compostela (Spain); Jokela, Niko [Department of Physics and Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FIN-00014 (Finland); Lippert, Matthew [Institute for Theoretical Physics, University of Amsterdam,1098XH Amsterdam (Netherlands); Ramallo, Alfonso V. [Departamento de Física de Partículas and Instituto Galego de Física de Altas Enerxías,Universidade de Santiago de Compostela,E-15782 Santiago de Compostela (Spain); Zoakos, Dimitrios [Centro de Física do Porto and Departamento de Física e Astronomia,Faculdade de Ciências da Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2015-03-02

    We study the physics of probe D6-branes with quantized internal worldvolume flux in the ABJM background with unquenched massless flavors. This flux breaks parity in the (2+1)-dimensional gauge theory and allows quantum Hall states. Parity breaking is also explicitly demonstrated via the helicity dependence of the meson spectrum. We obtain general expressions for the conductivities, both in the gapped Minkowski embeddings and in the compressible black hole ones. These conductivities depend on the flux and contain a contribution from the dynamical flavors which can be regarded as an effect of intrinsic disorder due to quantum fluctuations of the fundamentals. We present an explicit, analytic family of supersymmetric solutions with nonzero charge density, electric, and magnetic fields.

  1. Flux and Hall states in ABJM with dynamical flavors

    Science.gov (United States)

    Bea, Yago; Jokela, Niko; Lippert, Matthew; Ramallo, Alfonso V.; Zoakos, Dimitrios

    2015-03-01

    We study the physics of probe D6-branes with quantized internal worldvolume flux in the ABJM background with unquenched massless flavors. This flux breaks parity in the (2+1)-dimensional gauge theory and allows quantum Hall states. Parity breaking is also explicitly demonstrated via the helicity dependence of the meson spectrum. We obtain general expressions for the conductivities, both in the gapped Minkowski embeddings and in the compressible black hole ones. These conductivities depend on the flux and contain a contribution from the dynamical flavors which can be regarded as an effect of intrinsic disorder due to quantum fluctuations of the fundamentals. We present an explicit, analytic family of supersymmetric solutions with nonzero charge density, electric, and magnetic fields.

  2. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural network

    DEFF Research Database (Denmark)

    Papale, D.; Black, T Andrew; Carvalhais, Nuno

    2015-01-01

    -output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion...

  3. Energy conversion loops for flux-switching PM machine analysis

    NARCIS (Netherlands)

    Ilhan, E.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2012-01-01

    Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching

  4. Relationship between breast sound speed and mammographic percent density

    Science.gov (United States)

    Sak, Mark; Duric, Nebojsa; Boyd, Norman; Littrup, Peter; Myc, Lukasz; Faiz, Muhammad; Li, Cuiping; Bey-Knight, Lisa

    2011-03-01

    Despite some shortcomings, mammography is currently the standard of care for breast cancer screening and diagnosis. However, breast ultrasound tomography is a rapidly developing imaging modality that has the potential to overcome the drawbacks of mammography. It is known that women with high breast densities have a greater risk of developing breast cancer. Measuring breast density is accomplished through the use of mammographic percent density, defined as the ratio of fibroglandular to total breast area. Using an ultrasound tomography (UST) prototype, we created sound speed images of the patient's breast, motivated by the fact that sound speed in a tissue is proportional to the density of the tissue. The purpose of this work is to compare the acoustic performance of the UST system with the measurement of mammographic percent density. A cohort of 251 patients was studied using both imaging modalities and the results suggest that the volume averaged breast sound speed is significantly related to mammographic percent density. The Spearman correlation coefficient was found to be 0.73 for the 175 film mammograms and 0.69 for the 76 digital mammograms obtained. Since sound speed measurements do not require ionizing radiation or physical compression, they have the potential to form the basis of a safe, more accurate surrogate marker of breast density.

  5. Magnetic flux reconstruction methods for shaped tokamaks

    International Nuclear Information System (INIS)

    Tsui, Chi-Wa.

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p' and FF' functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising

  6. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  7. Resistive flux saving and current profile control during lower hybrid waves assisted current rise in TORE SUPRA

    International Nuclear Information System (INIS)

    van Houtte, D.; Hoang, G.T.; Joffrin, E.; Lecoustey, P.; Moreau, D.; Parlange, F.; Tonon, G.; Vallet, J.C.

    1992-01-01

    Resistive flux saving at densities n e = (1 - 2) x 10 19 m -3 has been studied. High flux saving efficiency (0.7 x 10 13 Wb/J/m -1 ) can be achieved for a low rf power (P LH = 0.5 MW) due to the beneficial effect of the electric field on the suprathermal electrons. However for power higher than 1 MW, the efficiency is 0.25 x 10 13 Wb/J/m -1 . This flux saving efficiency is comparable to the one obtained during the flat top phase. The application of the LH power during a low density current ramp-up tends to peak the electron temperature and current density profiles. The rf power level, the parallel wavenumber and the current ramp rate allow to control the trajectories of the plasma discharges during the current rise inside the MHD stable domain

  8. Uncertainties in (E)UV model atmosphere fluxes

    Science.gov (United States)

    Rauch, T.

    2008-04-01

    Context: During the comparison of synthetic spectra calculated with two NLTE model atmosphere codes, namely TMAP and TLUSTY, we encounter systematic differences in the EUV fluxes due to the treatment of level dissolution by pressure ionization. Aims: In the case of Sirius B, we demonstrate an uncertainty in modeling the EUV flux reliably in order to challenge theoreticians to improve the theory of level dissolution. Methods: We calculated synthetic spectra for hot, compact stars using state-of-the-art NLTE model-atmosphere techniques. Results: Systematic differences may occur due to a code-specific cutoff frequency of the H I Lyman bound-free opacity. This is the case for TMAP and TLUSTY. Both codes predict the same flux level at wavelengths lower than about 1500 Å for stars with effective temperatures (T_eff) below about 30 000 K only, if the same cutoff frequency is chosen. Conclusions: The theory of level dissolution in high-density plasmas, which is available for hydrogen only should be generalized to all species. Especially, the cutoff frequencies for the bound-free opacities should be defined in order to make predictions of UV fluxes more reliable.

  9. A finite element calculation of flux pumping

    Science.gov (United States)

    Campbell, A. M.

    2017-12-01

    A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.

  10. Measurement of mass flux in two-phase flow using combinations of Pitot tubes and gamma densitometers

    International Nuclear Information System (INIS)

    Hau, K.F.F.L.; Banerjee, S.

    1981-01-01

    New experimental data indicate that mass flux in cocurrent gas-liquid flows may be determined by the use of Pitot tubes in conjunction with a local mixture density measurement technique. The data were taken over a wide range of flow regimes in a horizontal pipe and included separated patterns such as stratified and annular flows. Local mixture densities were obtained by a computer-assisted algebraic reconstruction technique that used chordal average densities measured by traversing gamma beam attenuation. The results extend the applicability of this mass flux measurement technique well beyond the relatively homogeneous, high-pressure, steam-water flow situations originally studied by S. Banerjee and D.M. Nguyen. 13 refs

  11. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  12. Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China

    Science.gov (United States)

    Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.

    2014-03-01

    The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree

  13. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    Science.gov (United States)

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-12-12

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.

  14. Ozone exposure- and flux-based response relationships with photosynthesis of winter wheat under fully open air condition.

    Science.gov (United States)

    Feng, Zhaozhong; Calatayud, Vicent; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-04-01

    Five winter wheat cultivars were exposed to ambient (A-O 3 ) and elevated (E-O 3 , 1.5 ambient) O 3 in a fully open-air fumigation system in China. Ozone exposure- and flux based response relationships were established for seven physiological variables related to photosynthesis. The performance of the fitting of the regressions in terms of R 2 increased when second order regressions instead of first order ones were used, suggesting that effects of O 3 were more pronounced towards the last developmental stages of the wheat. The more robust indicators were those related with CO 2 assimilation, Rubisco activity and RuBP regeneration capacity (A sat , J max and Vc max ), and chlorophyll content (Chl). Flux-based metrics (POD y , Phytotoxic O 3 Dose over a threshold ynmolO 3 m -2 s -1 ) predicted slightly better the responses to O 3 than exposure metrics (AOTX, Accumulated O 3 exposure over an hourly Threshold of X ppb) for most of the variables. The best performance was observed for metrics POD 1 ( A sat , J max and Vc max ) and POD 3 (Chl). For this crop, the proposed response functions could be used for O 3 risk assessment based on physiological effects and also to include the influence of O 3 on yield or other variables in models with a photosynthetic component. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dynamic ignition regime of condensed system by radiate heat flux

    International Nuclear Information System (INIS)

    Arkhipov, V A; Zolotorev, N N; Korotkikh, A G; Kuznetsov, V T

    2017-01-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20–50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions. (paper)

  16. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  17. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  18. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M.

    2011-09-01

    The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  19. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  20. Heat flux dropouts in the solar wind and Coulomb scattering effects

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Ogilvie, K.W.

    1992-01-01

    Measurements of solar wind electrons at ISEE 3 located 0.01 AU upstream from the Earth indicate periods of time when the flux of antisunward suprathermal electrons decreases suddenly, leaving the velocity distribution nearly isotropic and causing the solar wind heat flux to drop. These heat flux dropouts (HFDs) are usually found in regions of increased plasma density and decreased electron temperature, and they are associated with sector boundaries. It has been suggested that HFDs may be due either to disconnection from the Sun of the magnetic flux tube in which they are found, or to enhanced Coulomb scattering of halo electrons in transit from the Sun to the Earth. Using the vector electron spectrometer on ISEE 1, the authors have found eight intervals of greatly reduced heat flux which appear to be associated with HFDs at ISEE 3. Five of the eight events were delayed by an appropriate convection time and had approximately the same duration as the corresponding ISEE 3 event. Velocity distributions during HFDs at ISEE 1 show that the depletion of halo electrons traveling away from the Sun is most pronounced in the 100-eV range, while there is essentially no depletion in the 1-keV range, and that in four cases the magnitude of the halo depletion and its upper velocity limit both depend on the density increase in the HFD. These results are shown to be in agreement with the υ -3 dependence of the Coulomb collision frequency. Thus the authors conclude that Coulomb scattering effects play a substantial role in at least some heat flux dropout events

  1. Rapid reconnection of flux lines

    International Nuclear Information System (INIS)

    Samain, A.

    1982-01-01

    The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)

  2. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  3. Flux Trapping Properties of Bulk HIGH-TC Superconductors in Static Field-Cooling Magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2013-06-01

    The trapping process and saturation effect of trapped magnetic flux of bulk high-temperature superconductors by static field-cooling magnetization (FCM) are reported in the paper. With a cryogenic Bell Hall sensor attached on the center of the bulk surface, the synchronous magnetic signals were recorded during the whole magnetization process. It enables us to know the flux trapping behavior since the removal of the excitation field, as well as the subsequent flux relaxation phenomenon and the flux dissipation in the quench process of the bulk sample. With the help of flux mapping techniques, the relationship between the trapped flux and the applied field was further investigated; the saturation effect of trapped flux was discussed by comparing the peak trapped field and total magnetic flux of the bulk sample. These studies are useful to understand the basic flux trapping properties of bulk superconductors.

  4. Two-component scattering model and the electron density spectrum

    Science.gov (United States)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  5. The Fourier transform of tubular densities

    International Nuclear Information System (INIS)

    Prior, C B; Goriely, A

    2012-01-01

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. (paper)

  6. The Fourier transform of tubular densities

    KAUST Repository

    Prior, C B

    2012-05-18

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.

  7. Carbon dioxide fluxes from an urban area in Beijing

    Science.gov (United States)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  8. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  9. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  10. The relationship between microvessels density and CT enhancement of the peripheral lung cancer

    International Nuclear Information System (INIS)

    Liu Shiyuan; Zhou Kangrong; Xiao Xiangsheng; Ye Tingjun; Zhang Zhiyong

    1999-01-01

    Objective: To investigate the relationship between microvessel density (MVD), clinical prognosis and CT enhancement of the peripheral lung cancer. Methods: 127 cases of peripheral lung cancer were examined with CT (87 cases retrospectively and 40 cases prospectively), and MVD were measured with immunohistochemical method by factor VIII on the specimens of the resected tumors. The results were analyzed and compared with CT enhancement, metastasis and prognosis. Results: The MVD was higher in the peripheral junction zone and interstitial areas than that in the parenchymal areas and necrotic zones of the tumors. Patients with nodal metastasis had higher MVD than those without nodal metastasis (56.9 +- 18.1 versus 43.8 +- 23.6, P 0.05); but the enhancement of the lung cancer correlated well with MVD (r 0.8874). Conclusions: Measurement of the microvessel density of tumor can determine the degree of angiogenesis of neoplasm and predict the metastasis or prognosis of the lung cancer. Angiogenesis not only constitutes the basis of enhancement of the tumor, but also determine the various degrees and patterns of enhancement. Spiral dynamic CT is the technique ideal to demonstrate the enhancement features, which might be helpful in making differential diagnosis of pulmonary nodules

  11. Fabrication of Anodic Aluminum Oxide Membrane for High Heat Flux Evaporation

    OpenAIRE

    McGrath, Kristine

    2016-01-01

    As electronics become more powerful and have higher energy densities, it is becoming more and more necessary to find solutions to dissipate these high heat fluxes. One solution to this problem is nanopore evaporative cooling. Based on current literature, the experimental data is far below what is expected from the theoretical calculations.In this thesis, the experimental results produced heat fluxes much closer to the theoretical values. Experimentally, a maximum heat dissipation of 103 W was...

  12. Drift-Alfven wave mediated particle transport in an elongated density depression

    International Nuclear Information System (INIS)

    Vincena, Stephen; Gekelman, Walter

    2006-01-01

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii ρ s =c s /ω ci . The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k perpendicular ρ s ∼0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles

  13. Magnetic flux concentration methods for magnetic energy harvesting module

    Directory of Open Access Journals (Sweden)

    Wakiwaka Hiroyuki

    2013-01-01

    Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an air­core Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the air­core coil, our designed magnetic core makes the harvested energy ten­fold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.

  14. Generalized drift-flux correlation

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.

    1991-01-01

    A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve

  15. Developing a forecast model of solar proton flux profiles for well-connected events

    Science.gov (United States)

    Ji, E. Y.; Moon, Y. J.; Park, J.

    2014-12-01

    We have developed a forecast model of solar proton flux profile (> 10 MeV channel) for well-connected events. Among 136 solar proton events (SPEs) from 1986 to 2006, we select 49 well-connected ones that are all associated with single X-ray flares stronger than M1 class and start to increase within four hours after their X-ray peak times. These events show rapid increments in proton flux. By comparing several empirical functions, we select a modified Weibull curve function to approximate a SPE flux profile, which is similar to the particle injection rate. The parameters (peak value, rise time and decay time) of this function are determined by the relationship between X-ray flare parameters (peak flux, impulsive time, and emission measure) and SPE parameters. For 49 well-connected SPEs, the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.65 with the RMS error of 0.55 pfu in the log10. In addition, we have developed another forecast model based on flare and CME parameters using 22 SPEs. The used CME parameters are linear speed and angular width. As a result, we find that the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.83 with the RMS error of 0.35 pfu in the log10. From the relationship between the model error and CME acceleration, we find that CME acceleration is also an important factor for predicting proton flux profiles.

  16. Role of recycling flux in gas fuelling in the Large Helical Device

    International Nuclear Information System (INIS)

    Miyazawa, J.; Masuzaki, S.; Yamada, H.

    2004-01-01

    The 'effective' fuelling efficiency of hydrogen gas puffing ranges from 10% to 50% in the Large Helical Device. A local increase in neutral particle pressure at the gas puff port was measured in the experiment. The pressure increase rate corresponds to ∼ 10% of the gas puff flux. The other 90% of the gas puff flux increases the density and/or the plasma outflow. A particle balance model reveals that the recycling flux estimated from the particle flux on the divertor plates increases during the gas puffing. It is shown that the high effective fuelling efficiency is possibly due to the large recycling flux. At the limit of small recycling flux, the effective fuelling efficiency decreases to ∼10%. In the helium gas puff discharge, the effective fuelling efficiency is larger than the hydrogen gas puffing and approaches 100%. This can be related to the large recycling coefficient of more than 0.95. (author)

  17. The relationships of irisin with bone mineral density and body composition in PCOS patients.

    Science.gov (United States)

    Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu

    2016-05-01

    Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Dependence of radar auroral scattering cross section on the ambient electron density and the destabilizing electric field

    International Nuclear Information System (INIS)

    Haldoupis, C.; Nielsen, E.; Schlegel, K.

    1990-01-01

    By using a data set that includes simultaneous STARE and EISCAT measurements made at a common magnetic flux tube E region in the ionosphere, we investigate the dependence of relative scattering cross section of 1-meter auroral irregularities on the destabilizing E x B electron drift, or alternatively the electric field, and the E region ambient electron density. The analysis showed that both, the E field and mean electron density are the decisive factors in determining the strength of radar auroral echoes at magnetic aspect angles near perpendicularity. We have found that at instability threshold, i.e., when the E field strength is in the 15 to 20 mV/m range, the backscatter power level is affected strongly by the mean electron density. Above threshold, the wave saturation amplitudes are determined mainly by the combined action of electron drift velocity magnitude, V d , and mean electron density, N e , in a way that the scattering cross section, or the electron density fluctuation level, increases with electric field magnitude but at a rate which is larger when the ambient electron density is lower. The analysis enabled us to infer an empirical functional relationship which is capable of predicting reasonably well the intensity of STARE echoes from EISCAT E field and electron density data. In this functional relationship, the received power at threshold depends on N e 2 whereas, from threshold to perhaps more than 50 mV/m, the power increases nonlinearly with drift velocity as V d n where the exponent n is approximately proportional to N e -1/2 . The results support the Farley-Bunemann instability as the primary instability mechanism, but the existing nonlinear treatment of the theory, which includes wave-induced cross field diffusion, cannot account for the observed role of electron density in the saturation of irregularity amplitudes

  19. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    International Nuclear Information System (INIS)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-01-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter–Gummel scheme to non-Boltzmann (e.g. Fermi–Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  20. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    Science.gov (United States)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  1. A cross-sectional analysis of the relationship between tobacco and alcohol outlet density and neighbourhood deprivation.

    Science.gov (United States)

    Shortt, Niamh K; Tisch, Catherine; Pearce, Jamie; Mitchell, Richard; Richardson, Elizabeth A; Hill, Sarah; Collin, Jeff

    2015-10-05

    There is a strong socio-economic gradient in both tobacco-and alcohol-related harm. One possible factor contributing to this social gradient may be greater availability of tobacco and alcohol in more socially-deprived areas. A higher density of tobacco and alcohol outlets is not only likely to increase supply but also to raise awareness of tobacco/alcohol brands, create a competitive local market that reduces product costs, and influence local social norms relating to tobacco and alcohol consumption. This paper examines the association between the density of alcohol and tobacco outlets and neighbourhood-level income deprivation. Using a national tobacco retailer register and alcohol licensing data this paper calculates the density of alcohol and tobacco retail outlets per 10,000 population for small neighbourhoods across the whole of Scotland. Average outlet density was calculated for neighbourhoods grouped by their level of income deprivation. Associations between outlet density and deprivation were analysed using one way analysis of variance. There was a positive linear relationship between neighbourhood deprivation and outlets for both tobacco (p sales alcohol (p sales and on-sales alcohol outlets. The social gradient evident in alcohol and tobacco supply may be a contributing factor to the social gradient in alcohol- and tobacco-related disease. Policymakers should consider such gradients when creating tobacco and alcohol control policies. The potential contribution to public health, and health inequalities, of reducing the physical availability of both alcohol and tobacco products should be examined in developing broader supply-side interventions.

  2. Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator

    Science.gov (United States)

    Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian

    Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.

  3. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    Science.gov (United States)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water

  4. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  5. Expansion Of The Magnetic Flux Density Field In Toroidal Harmonics

    CERN Document Server

    AUTHOR|(CDS)2290414; Bottura, Luca; Felcini, Enrico

    CERN (Conseil Européen pour la Recherche Nucléaire) is recognized worldwide as the main research laboratory in the field of particle physics. Inevitably, all this requires the use of the most advanced technologies, both from the point of view of the instruments and the analytical descriptive methods. One of the numerous potentials of the work carried out at CERN concerns the possibility of exploiting the aforementioned technologies even in contexts distant from the physics of particles, with the result of influencing the technological advancement of many areas. For example, one of the most widely employed theories at CERN, regarding the analytical description of the magnetic flux density inside solenoidal magnets (or approximable as such under suitable assumptions) for the acceleration of particles, is the so-called multipole expansion. This is a two-dimensional or three-dimensional analysis of the distribution of the magnetic flux density generated by the windings of a magnet. The magnet in question ca...

  6. The epoxy resin variation effect on microstructure and physical properties to improve bonded NdFeB flux magnetic density

    International Nuclear Information System (INIS)

    Rusnaeni, N.; Sarjono, Priyo; Muljadi; Noer, Nasrudin

    2016-01-01

    NdFeB magnets have been fabricated from a mixture of powder NdFeB (MPQ-B+) and epoxy resins (ER) with a variation of 0% wt, 2% wt, 4% wt and 6% wt. The pellets samples were made by pressing 4 tons of the mixture powder at room temperature before curing at 100°C for 1 hour. The SEM-EDX results showed the microstructure with ER were evenly smeared the NdFeB magnetic particles due to higher percent C and lower transition metals value. Sample with 2% wt epoxy resin was able to achieve the highest density of 5.35 g/cm 3 and the highest magnetic flux of 2121 Gauss. The magnetic properties characterization using the permagraph indicates that the sample pellets with 2% wt epoxy resin has a value of remanence (Br) = 4.92 kG, coercivity (Hc) = 7.76 kOe, and energy product (Bhmax) = 4.58 MGOe. Despite low remanence value in the pellet samples, the resistance to demagnetization value was still acceptable. (paper)

  7. The epoxy resin variation effect on microstructure and physical properties to improve bonded NdFeB flux magnetic density

    Science.gov (United States)

    Rusnaeni, N.; Sarjono, Priyo; Muljadi; Noer, Nasrudin

    2016-11-01

    NdFeB magnets have been fabricated from a mixture of powder NdFeB (MPQ-B+) and epoxy resins (ER) with a variation of 0% wt, 2% wt, 4% wt and 6% wt. The pellets samples were made by pressing 4 tons of the mixture powder at room temperature before curing at 100°C for 1 hour. The SEM-EDX results showed the microstructure with ER were evenly smeared the NdFeB magnetic particles due to higher percent C and lower transition metals value. Sample with 2% wt epoxy resin was able to achieve the highest density of 5.35 g/cm3 and the highest magnetic flux of 2121 Gauss. The magnetic properties characterization using the permagraph indicates that the sample pellets with 2% wt epoxy resin has a value of remanence (Br) = 4.92 kG, coercivity (Hc) = 7.76 kOe, and energy product (Bhmax) = 4.58 MGOe. Despite low remanence value in the pellet samples, the resistance to demagnetization value was still acceptable.

  8. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    Science.gov (United States)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation

  9. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km.

    The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  10. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km. The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  11. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  12. Insect density-plant density relationships: a modified view of insect responses to resource concentrations.

    Science.gov (United States)

    Andersson, Petter; Löfstedt, Christer; Hambäck, Peter A

    2013-12-01

    Habitat area is an important predictor of spatial variation in animal densities. However, the area often correlates with the quantity of resources within habitats, complicating our understanding of the factors shaping animal distributions. We addressed this problem by investigating densities of insect herbivores in habitat patches with a constant area but varying numbers of plants. Using a mathematical model, predictions of scale-dependent immigration and emigration rates for insects into patches with different densities of host plants were derived. Moreover, a field experiment was conducted where the scaling properties of odour-mediated attraction in relation to the number of odour sources were estimated, in order to derive a prediction of immigration rates of olfactory searchers. The theoretical model predicted that we should expect immigration rates of contact and visual searchers to be determined by patch area, with a steep scaling coefficient, μ = -1. The field experiment suggested that olfactory searchers should show a less steep scaling coefficient, with μ ≈ -0.5. A parameter estimation and analysis of published data revealed a correspondence between observations and predictions, and density-variation among groups could largely be explained by search behaviour. Aphids showed scaling coefficients corresponding to the prediction for contact/visual searchers, whereas moths, flies and beetles corresponded to the prediction for olfactory searchers. As density responses varied considerably among groups, and variation could be explained by a certain trait, we conclude that a general theory of insect responses to habitat heterogeneity should be based on shared traits, rather than a general prediction for all species.

  13. Using thermalizers in measuring 'Ukryttia' object's FCM neutron fluxes

    CERN Document Server

    Krasnyanskaya, O G; Odinokin, G I; Pavlovich, V N

    2003-01-01

    The results of research of a thermalizer (heater) width influence on neutron thermalization efficiency during FCM neutron flux measuring in the 'Ukryttia' are described. The calculations of neutron flux densities were performed by the Monte-Carlo method with the help of computer code MCNP-4C for FCM different models.Three possible installations of detectors were considered: on FCM surface,inside the FCM, and inside the concrete under the FCM layer. It was shown,that in order to increase the sensitivity of neutron detectors in intermediate and fast neutrons field,and consequently, to decrease the dependence of the readings of spectral distribution of neutron flux,it is necessary to position the detector inside the so-called thermalizer or heater. The most reasonable application of thick 'heaters' is the situation, when the detector is placed on FCM surface.

  14. Interplay of dendritic avalanches and gradual flux penetration in superconducting MgB2 films

    International Nuclear Information System (INIS)

    Shantsev, D V; Goa, P E; Barkov, F L; Johansen, T H; Kang, W N; Lee, S I

    2003-01-01

    Magneto-optical imaging was used to study a zero-field-cooled MgB 2 film at 9.6 K where in a slowly increasing field the flux penetrates by an abrupt formation of large dendritic structures. Simultaneously, a gradual flux penetration takes place, eventually covering the dendrites, and a detailed analysis of this process is reported. We find an anomalously high gradient of the flux density across a dendrite branch, and a peak value that decreases as the applied field increases. This unexpected behaviour is reproduced by flux creep simulations based on the non-local field-current relation in the perpendicular geometry. The simulations also provide indirect evidence that flux dendrites are formed at an elevated local temperature, consistent with a thermo-magnetic mechanism of the instability

  15. Brilliance and flux reduction in imperfect inclined crystals

    International Nuclear Information System (INIS)

    Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.

    1996-01-01

    The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS

  16. Advective and diapycnal diffusive oceanic flux in Tenerife - La Gomera Channel

    Science.gov (United States)

    Marrero-Díaz, A.; Rodriguez-Santana, A.; Hernández-Arencibia, M.; Machín, F.; García-Weil, L.

    2012-04-01

    During the year 2008, using the commercial passenger ship Volcán de Tauce of the Naviera Armas company several months, it was possible to obtain vertical profiles of temperature from expandable bathythermograph probes in eight stations across the Tenerife - La Gomera channel. With these data of temperature we have been estimated vertical sections of potential density and geostrophic transport with high spatial and temporal resolution (5 nm between stations, and one- two months between cruises). The seasonal variability obtained for the geostrophic transport in this channel shows important differences with others Canary Islands channels. From potential density and geostrophic velocity data we estimated the vertical diffusion coefficients and diapycnal diffusive fluxes, using a parameterization that depends of Richardson gradient number. In the center of the channel and close to La Gomera Island, we found higher values for these diffusive fluxes. Convergence and divergence of these fluxes requires further study so that we can draw conclusions about its impact on the distribution of nutrients in the study area and its impact in marine ecosystems. This work is being used in research projects TRAMIC and PROMECA.

  17. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores

    International Nuclear Information System (INIS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-01-01

    Nanocrystalline Fe–Si–B–P–Cu alloys exhibit high saturation magnetic flux density (B s ) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe–Si–B–P–Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 ribbons exhibit low coercivity (H c )~4.5 A/m, high B s ~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60–100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors - Highlights: • Minor addition of C in FeSiBPCu alloy increases amorphous-forming ability. • The FeSiBPCuC alloy exhibits B s close to Si-steel and Core loss lower than it. • Excellent soft magnetic properties were obtained for 120 mm wide ribbons. • Nanocrystalline FeSiBPCuC alloy can be produced at industrial scale with low cost. • The alloy is suitable for making low energy loss power transformers and motors.

  18. INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration

    International Nuclear Information System (INIS)

    Simmons, C.S.; McKeon, T.J.

    1984-04-01

    The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures

  19. The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange?

    Directory of Open Access Journals (Sweden)

    S. Widdicombe

    2009-10-01

    Full Text Available Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7 and 2300 (pH 7.3, plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.

  20. Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2

    International Nuclear Information System (INIS)

    Kallel, Abdelaziz

    2012-01-01

    As an approximation, the forest could be assumed a discrete media composed of three main components: trees, understory vegetation and soil background. To describe the reflectance of such a canopy in the optical wavelength domain, it is necessary to develop a radiative transfer model which considers two vegetation layers (understory and trees). In this article, we propose a new model, FDM-2, an extension of the flux decomposition model (FDM), to take into account such a canopy architecture. Like FDM, FDM-2 models the diffuse flux anisotropy and takes into account the hot spot effect as well as conserves energy. The hot spot which corresponds to an increase of the probability of photon escape after first collision close to the backscattering direction is modeled as a decrease of “the effective vegetation density” encountered by the diffuse flux (E + 1 ) and the radiance both created by first order scattering of the direct sun radiation. Compared to the turbid case (for which our model is equivalent to SAIL++ and therefore accurately conserving energy), such a density variation redistributes energy but does not affect the budget. Energy remains well conserved in the discrete case as well. To solve the RT problem, FDM-2 separates E + 1 from the high order diffuse flux. As E + 1 corresponding effective density is not constant function of the altitude (when traveling along the canopy) therefore it is decomposed into sub-fluxes of constant densities. The sub-flux RT problems are linear and simply solved based on SAIL++ formalism. The global RT solution is obtained summing the contribution of the sub-fluxes. Simulation tests confirm that FDM-2 conserves energy (i.e., radiative budget closes to zero in the purist corner case with an error due to the discretization less than 0.5%). Compared to the Rayspread model (among the best 3-D models of the RAMI Exercise third phase), our model provides similar performance.

  1. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    Science.gov (United States)

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  2. Flux line patterns in Bi2Sr2Ca1Cu2Ox

    International Nuclear Information System (INIS)

    Weiss, F.; Hardy, V.; Provost, J.; Ruyter, A.; Simon, C.

    1994-01-01

    Results of the defect influence on the flux line lattice in Bi 2 Sr 2 Ca 1 Cu 2 O x single crystals are presented. These crystals, non irradiated or irradiated at GANIL with heavy ions (Pb 56+ , 6 GeV) have been decorated with Ni particles in the superconducting state using the Bitter technique. The defects involved are columnar defects. Resulting decorated flux line patterns have been characterized using scanning electron microscopy and computer image analysis. Disorder of the decorated flux line networks has been found to be strongly dependent on the defect density, which results from the irradiation. In order to characterize this disorder, a method for determining elastic energy terms in the deformation of flux line patterns has been investigated. This method can be applied if Fourier transforms of the decorated flux line patterns exhibit distinct reflections. (orig.)

  3. Dosimetry of mixed gamma - neutron fluxes in the active zone of working reactor and gamma-flux after quenching

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Zinov'ev, V.; Ibragimova, E.M.; Muminov, M.I.

    2006-01-01

    Full text: For carrying out experiments in the channels of nuclear reactor, it is necessary to know the distribution of neutron flux and the intensity of accompanying gamma-radiation both in the working and quenched regimes. Dosimetric parameter of transparent dielectrics is based on the effect of monotonous changing of optical absorption or luminescence under neutrons and/or gamma-radiation. While the radioactivity induced in an element monitor is proportional only to a neutron fluence beginning from a threshold energy. Therefore the aim of this work was to determine the values of neutron and gamma-component fluxes separately and evaluate the contribution of each into the defect production in dielectrics. We used very pure quartz glass of KU-1 type, produced in Russian State Optical Institute by fusion from SiCl 4 in the mixed flow of O 2 +H 2 (impurities of Cl and OH up to 10 -2 % and the rest - below 10 -4 %), SiO 2 glasses with 30 % Ba, and also pure Ni wire. Since under irradiation in the working reactor samples were undergone mixed neutron and gamma fluxes, we suggested determination of intensity of gamma-radiation from radio-nuclides (products of uranium fission) after quenching the reactor by the current of ionization chamber and glass dosimeters. Samples of SiO 2 -BaO together with Ni monitors were irradiated for 1 hour in 18 channels of the active zone of the working reactor both in the sealed ampoules and in the contact with water of the 1-st cooling circuit at 40 deg C. The linear dependence of the induced optical density on the absorbed dose of n 0 + γ-radiation was obtained. Ni -monitors not sensitive to γ-radiation gained the induced radioactivity proportional to the absorbed energy of neutron flux above 1 MeV. Neutron fluxes in the 18 channels varied from 9.53·10 11 to 1.21·10 13 cm -2 s -1 corresponding to fluences from 3.43·10 15 to 4.3·10 16 cm -2 . Optical density of band 215 nm ascertained to E ' - center, which is ≡ Si * near oxygen

  4. Magnetic flux periodicities and finite momentum pairing in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian

    2009-12-22

    This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)

  5. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  6. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  7. Density response to central electron heating: theoretical investigations and experimental observations in ASDEX Upgrade

    Science.gov (United States)

    Angioni, C.; Peeters, A. G.; Garbet, X.; Manini, A.; Ryter, F.; ASDEX Upgrade Team

    2004-08-01

    Theory of ion temperature gradient (ITG) and trapped electron modes (TEMs) is applied to the study of particle transport in experimental conditions with central electron heating. It is shown that in the unstable domain of TEMs, the electron thermodiffusive flux is directed outwards. By means of such a flux, a mechanism is identified likely to account for density flattening with central electron heating. Theoretical predictions are compared with experimental observations in ASDEX Upgrade. A parameter domain (including L- and H-mode plasmas) is identified, in which flattening with central electron heating is observed in the experiments. In general, this domain turns out to be the same domain in which the dominant plasma instability is a TEM. On the contrary, the dominant instability is an ITG in plasmas whose density profile is not affected significantly by central electron heating. The flattening predicted by quasi-linear theory for low density L-mode plasmas is too small compared to the experimental observations. At very high density, even when the dominant instability is an ITG, electron heating can provide density flattening, via the coupling with the ion heat channel. In these conditions the anomalous diffusivity increases in response to the increased ion heat flux, while the large collisionality makes the anomalous pinch small and the Ware pinch important.

  8. Fluxon density waves in long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig

    1993-01-01

    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....

  9. Glycolysis-respiration relationships in a neuroblastoma cell line.

    Science.gov (United States)

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Self-generated magnetic flux in YBa$_2$Cu$_3$O$_{7-x}$ grain boundaries

    OpenAIRE

    Mints, R. G.; Papiashvili, Ilya

    2000-01-01

    Grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films are considered as Josephson junctions with a critical current density $j_c(x)$ alternating along the junction. A self-generated magnetic flux is treated both analytically and numerically for an almost periodic distribution of $j_c(x)$. We obtained a magnetic flux-pattern similar to the one which was recently observed experimentally.

  11. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  12. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  13. Review in Transverse Flux Permanent Magnet Generator Design

    Directory of Open Access Journals (Sweden)

    A. Ejlali

    2016-12-01

    Full Text Available Recently, Transverse Flux Permanent Magnet Generators (TFPMGs have been proposed as a possible generator in direct drive variable speed wind turbines due to their unique merits. Generally, the quality of output power in these systems is lower than multi stage fixed speed systems, because of removing the gears, so it’s important to design these kinds of generators with low ripple and lowest harmful harmonics and cogging torque that is one of the most important terms in increasing the quality of output power of generator. The objective of this paper is introducing a simple design method and optimization of high power TFPMG applied in vertical axis direct drive wind turbine system by lowest possible amplitude of cogging torque and highest possible power factor, efficiency and power density.  In order to extract the output values of generator and sensitivity analysis for design and optimization, 3D-Finite element model, has been used. This method has high accuracy and gives us a better insight of generator performance and presents back EMF, cogging torque, flux density and FFT of this TFPMG. This study can help designers in design approach of such motors.

  14. The effect of density on divertor conditions in ASDEX-Upgrade

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Bosch, H.-S.; Buechl, K.; Field, A.; Fuchs, C.; Haas, G.; Junker, W.; Neu, R.; Neuhauser, J.; Wenzel, U.

    1995-01-01

    Detailed experimental divertor data are presented on the profiles of density and temperature in the inner and outer divertor fans, the radiated power distribution, the gas pressure and the spectroscopically derived particle fluxes, all as a function of the discharge density. At low and medium density, the inner divertor is cold and dense compared to the outer divertor. At high density, strong X-point MARFE and separatrix radiation partially detaches the inner divertor. Probe measurements which penetrate into the X-point MARFE at the outer divertor are presented. ((orig.))

  15. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    Science.gov (United States)

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, pBMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  16. On the energy flux of a signal in a moving magnetized plasma

    International Nuclear Information System (INIS)

    Gavrilenko, V.G.; Zelekson, L.A.

    1980-01-01

    Energy exchange of an electromagnetic signal with a homogeneous plasma moving along a strong magnetic field, provided that the initial signal is given in a plane parallel or normal to the drift velocity, has been analyzed. In the first case expressions for the fields excited in the long-range zone are obtained by the stationary phase method. It follows from the expressions that starting from some moment of time the direction of the energy flux and the sign of the energy density change into opposite. This is caused by the fact that the fast harmonic components (with a phase velocity exceeding the drift velocity) of the initial signal reach first the point of observation, and then the slow ones do, the energy density of the show waves being negative. On longitudinal propagation of perturbations excited by a quasimonochromatic source, the averaged flux and energy density in the weakly relativistic approximation have been shown to be zero. In conclusion electromagnetic waves moving with a superlight velocity in a non-dispersive medium are studied, the energy of the waves changing the sign with time [ru

  17. Discrimination of relationships with the same degree of kinship using chromosomal sharing patterns estimated from high-density SNPs.

    Science.gov (United States)

    Morimoto, Chie; Manabe, Sho; Fujimoto, Shuntaro; Hamano, Yuya; Tamaki, Keiji

    2018-03-01

    Distinguishing relationships with the same degree of kinship (e.g., uncle-nephew and grandfather-grandson) is generally difficult in forensic genetics by using the commonly employed short tandem repeat loci. In this study, we developed a new method for discerning such relationships between two individuals by examining the number of chromosomal shared segments estimated from high-density single nucleotide polymorphisms (SNPs). We computationally generated second-degree kinships (i.e., uncle-nephew and grandfather-grandson) and third-degree kinships (i.e., first cousins and great-grandfather-great-grandson) for 174,254 autosomal SNPs considering the effect of linkage disequilibrium and recombination for each SNP. We investigated shared chromosomal segments between two individuals that were estimated based on identity by state regions. We then counted the number of segments in each pair. Based on our results, the number of shared chromosomal segments in collateral relationships was larger than that in lineal relationships with both the second-degree and third-degree kinships. This was probably caused by differences involving chromosomal transitions and recombination between relationships. As we probabilistically evaluated the relationships between simulated pairs based on the number of shared segments using logistic regression, we could determine accurate relationships in >90% of second-degree relatives and >70% of third-degree relatives, using a probability criterion for the relationship ≥0.9. Furthermore, we could judge the true relationships of actual sample pairs from volunteers, as well as simulated data. Therefore, this method can be useful for discerning relationships between two individuals with the same degree of kinship. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Flux consumption, current ramp-up and current diffusion in Tore Supra non-inductive Lower Hybrid scenarios

    International Nuclear Information System (INIS)

    Kazarian, F.; Litaudon, X.; Moreau, D.; Arslanbekov, R.; Hoang, G.T.; Joffrin, E.; Peysson, Y.; Allibert, J.P.; Ane, J.M.; Bremond, S.

    1995-01-01

    The main objective of the Lower Hybrid (LH) experiments performed on Tore Supra is to provide large flux savings for long pulse operation while controlling the plasma current density profile. This goal will be best achieved by applying LH wave directly during the current ramp-up phase. Experiments have been performed where a large fraction of the current is driven non-inductively during the ramp-up phase. A theoretical flux consumption scaling is presented and compared to experimental data. The time evolutions of the current density profiles are analysed with a new current diffusion code (CRONOS). In view to achieve fully non-inductive current drive discharges in a fast, systematic and reproducible way, experiments where the primary voltage is imposed have been carried out. In a complementary approach, an appropriate transformer flux feedback scheme has been also studied. (author) 6 refs.; 6 figs

  19. Comparison between Evapotranspiration Fluxes Assessment Methods

    Science.gov (United States)

    Casola, A.; Longobardi, A.; Villani, P.

    2009-11-01

    Knowledge of hydrological processes acting in the water balance is determinant for a rational water resources management plan. Among these, the water losses as vapour, in the form of evapotranspiration, play an important role in the water balance and the heat transfers between the land surface and the atmosphere. Mass and energy interactions between soil, atmosphere and vegetation, in fact, influence all hydrological processes modificating rainfall interception, infiltration, evapotraspiration, surface runoff and groundwater recharge.A numbers of methods have been developed in scientific literature for modelling evapotranspiration. They can be divided in three main groups: i) traditional meteorological models, ii) energy fluxes balance models, considering interaction between vegetation and the atmosphere, and iii) remote sensing based models. The present analysis preliminary performs a study of fluxes directions and an evaluation of energy balance closure in a typical Mediterranean short vegetation area, using data series recorded from an eddy covariance station, located in the Campania region, Southern Italy. The analysis was performed on different seasons of the year with the aim to assess climatic forcing features impact on fluxes balance, to evaluate the smaller imbalance and to highlight influencing factors and sampling errors on balance closure. The present study also concerns evapotranspiration fluxes assessment at the point scale. Evapotranspiration is evaluated both from empirical relationships (Penmann-Montheit, Penmann F AO, Prestley&Taylor) calibrated with measured energy fluxes at mentioned experimental site, and from measured latent heat data scaled by the latent heat of vaporization. These results are compared with traditional and reliable well known models at the plot scale (Coutagne, Turc, Thorthwaite).

  20. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    Science.gov (United States)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  1. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  2. Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity.

    Science.gov (United States)

    Shin, Joong Won; Lee, Jiyun; Kwon, Junki; Choi, Jaewan; Kook, Michael S

    2017-12-01

    To study whether there are global and regional relationships between peripapillary vascular density (pVD) assessed by optical coherence tomography angiography (OCT-A) and visual field (VF) mean sensitivity at different glaucoma stages. Microvascular images and peripapillary retinal nerve fibre layer (pRNFL) thicknesses were obtained using a Cirrus OCT-A device in 91 glaucoma subjects. The pVD was measured at various spatial locations according to the Garway-Heath map, using a MATLAB software (The MathWorks, Natick, Massachusetts). VF mean sensitivity (VFMS) was recorded in the 1/L scale. Global and regional vasculature-function (pVD vs VFMS) relationships were assessed in separate patient groups at mild and moderate-to-advanced stages of glaucoma. The pVDs at superotemporal and inferotemporal regions were significantly associated with corresponding VFMS in mild glaucoma (pglaucoma, there were significant associations between pVD and VFMS, regardless of location. The association between global pVD and VFMS was significantly stronger than that between global pRNFL thickness and VFMS in moderate-to-advanced stage glaucoma (p glaucoma. OCT-A may be useful in monitoring glaucoma at various stages. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Simulating AIA observations of a flux rope ejection

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2014-08-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope

  4. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  5. Chapter 7: High-Density H-Mode Operation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Stober, Joerg Karl; Lang, Peter Thomas; Mertens, Vitus

    2003-01-01

    Recent results are reported on the maximum achievable H-mode density and the behavior of pedestal density and central density peaking as this limit is approached. The maximum achievable H-mode density roughly scales as the Greenwald density, though a dependence on B t is clearly observed. In contrast to the stiff temperature profiles, the density profiles seem to allow more shape variation and especially with high-field-side pellet-injection, strongly peaked profiles with good confinement have been achieved. Also, spontaneous density peaking at high densities is observed in ASDEX Upgrade, which is related to the generally observed large time constants for the density profile equilibration. The equilibrated density profile shapes depend strongly on the heat-flux profile in the sense that central heating leads to significantly flatter profiles

  6. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  7. Drift-Alfvén wave mediated particle transport in an elongated density depression

    Science.gov (United States)

    Vincena, Stephen; Gekelman, Walter

    2006-06-01

    Cross-field particle transport due to drift-Alfvén waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28ρs=cs/ωci. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k ⊥ρs˜0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.

  8. THE RELATIONSHIP BETWEEN FOVEAL AVASCULAR ZONE AREA, VESSEL DENSITY, AND CYSTOID CHANGES IN DIABETIC RETINOPATHY, AN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY STUDY.

    Science.gov (United States)

    Tarassoly, Kia; Miraftabi, Arezoo; Soltan Sanjari, Mostafa; Parvaresh, Mohammad Mehdi

    2017-06-29

    To measure the foveal avascular zone (FAZ) areas and vessel densities of patients with diabetic retinopathy and to study their relationship with diabetic cystoid changes and retinal thickness. Prospective case series of 51 eyes of 31 patients with diabetic retinopathy. The eyes were grouped based on the presence or absence of cystoid edema and evaluated using optical coherence tomography angiography. The FAZ areas and vessel density were compared. The FAZ area at the superficial capillary plexus level was equal between the eyes with and without cystoid edema. Vessel density did not differ as well. There was no correlation with retinal thickness. In eyes with cystoid changes, FAZ area changes at the deep capillary plexus level were difficult to interpret. The FAZ area and vessel density at the superficial capillary plexus level are reproducible and independent of the presence of cystoid edema.

  9. Origin and Reduction of 1 /f Magnetic Flux Noise in Superconducting Devices

    Science.gov (United States)

    Kumar, P.; Sendelbach, S.; Beck, M. A.; Freeland, J. W.; Wang, Zhe; Wang, Hui; Yu, Clare C.; Wu, R. Q.; Pappas, D. P.; McDermott, R.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1 /fα, with α ≲1 , and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of 1 /f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.

  10. The Effect of the Heat Flux on the Self-Ignition of Oriented Strand Board

    Science.gov (United States)

    Hirle, Siegfried; Balog, Karol

    2017-06-01

    This article deals with the initiation phase of flaming and smouldering burning of oriented strand board. The influence of heat flux on thermal degradation of OSB boards, time to ignition, heat release rate and mass loss rate using thermal analysis and vertical electrical radiation panel methods were studied. Significant information on the influence of the heat flux density and the thickness of the material on time to ignition was obtained.

  11. Heterotic Hyper-Kähler flux backgrounds

    Science.gov (United States)

    Halmagyi, Nick; Israël, Dan; Sarkis, Matthieu; Svanes, Eirik Eik

    2017-08-01

    We study Heterotic supergravity on Hyper-Kähler manifolds in the presence of non-trivial warping and three form flux with Abelian bundles in the large charge limit. We find exact, regular solutions for multi-centered Gibbons-Hawking spaces and Atiyah-Hitchin manifolds. In the case of Atiyah-Hitchin, regularity requires that the circle at infinity is of the same order as the instanton number, which is taken to be large. Alternatively there may be a non-trivial density of smeared five branes at the bolt.

  12. Configuration of gun-generated spheromak in effectively closed metal flux conserver

    International Nuclear Information System (INIS)

    Kato, Yushi; Nishikawa, Masahiro; Honda, Yoshihide; Satomi, Norio; Watanabe, Kenji

    1988-01-01

    In the CTCC-II spheromak experiment, the gun-generated plasma is confined in a spheroidal aluminum flux conserver (FC) with a choking coil. This coil produces the additional magnetic field to close perfectly all magnetic surfaces into the FC, i.e. the entrance hole for plasma injection is enable to be closed by magnetic field. Hence the plasma is confined in the effectively closed metal FC. In this experiment the average life time is 1.2 msec, and electron density and temperature are n e = 2 x 10 13 /cc, T e = 30 eV, respectively. The configuration with a flux hole region in which the toroidal magnetic field vanishes around the geometrical axis has been observed in the FC. The radius of the flux hole depends on the condition how the external choking field is applied. The flux hole enhances the magnetic shear near the plasma surfaces and, therefore, has a stabilizing effect even without inserting the central conducting pole. (author)

  13. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  14. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  15. Energy and flux variations across thin auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2011-10-01

    Full Text Available Two discrete auroral arc filaments, with widths of less than 1 km, have been analysed using multi-station, multi-monochromatic optical observations from small and medium field-of-view imagers and the EISCAT radar. The energy and flux of the precipitating electrons, volume emission rates and local electric fields in the ionosphere have been determined at high temporal (up to 30 Hz and spatial (down to tens of metres resolution. A new time-dependent inversion model is used to derive energy spectra from EISCAT electron density profiles. The energy and flux are also derived independently from optical emissions combined with ion-chemistry modelling, and a good agreement is found. A robust method to obtain detailed 2-D maps of the average energy and number flux of small scale aurora is presented. The arcs are stretched in the north-south direction, and the lowest energies are found on the western, leading edges of the arcs. The large ionospheric electric fields (250 mV m−1 found from tristatic radar measurements are evidence of strong currents associated with the region close to the optical arcs. The different data sets indicate that the arcs appear on the boundaries between regions with different average energy of diffuse precipitation, caused by pitch-angle scattering. The two thin arcs on these boundaries are found to be related to an increase in number flux (and thus increased energy flux without an increase in energy.

  16. Analysis of the Effect of Osteon Diameter on the Potential Relationship of Osteocyte Lacuna Density and Osteon Wall Thickness

    Science.gov (United States)

    Skedros, John G.; Clark, Gunnar C.; Sorenson, Scott M.; Taylor, Kevin W.; Qiu, Shijing

    2011-01-01

    An important hypothesis is that the degree of infilling of secondary osteons (Haversian systems) is controlled by the inhibitory effect of osteocytes on osteoblasts, which might be mediated by sclerostin (a glycoprotein produced by osteocytes). Consequently, this inhibition could be proportional to cell number: relatively greater repression is exerted by progressively greater osteocyte density (increased osteocytes correlate with thinner osteon walls). This hypothesis has been examined, but only weakly supported, in sheep ulnae. We looked for this inverse relationship between osteon wall thickness (On.W.Th) and osteocyte lacuna density (Ot.Lc.N/B.Ar) in small and large osteons in human ribs, calcanei of sheep, deer, elk, and horses, and radii and third metacarpals of horses. Analyses involved: (1) all osteons, (2) smaller osteons, either ≤150μm diameter or ≤ the mean diameter, and (3) larger osteons (>mean diameter). Significant, but weak, correlations between Ot.Lc.N/B.Ar and On.W.Th/On.Dm (On.Dm = osteon diameter) were found when considering all osteons in limb bones (r values −0.16 to −0.40, psheep ulnae: r= −0.39, pbone types) or very weak (two/seven bone types). In ribs, a negative relationship was only found in smaller osteons (r= −0.228, p<0.01); this inverse relationship in smaller osteons did not occur in elk calcanei. These results do not provide clear or consistent support for the hypothesized inverse relationship. However, correlation analyses may fail to detect osteocyte-based repression of infilling if the signal is spatially non-uniform (e.g., increased near the central canal). PMID:21809466

  17. Density-dependent effects of non-native brown trout Salmo trutta on the species-area relationship in stream fish assemblages.

    Science.gov (United States)

    Hasegawa, K; Mori, T; Yamazaki, C

    2017-01-01

    The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.

  18. Fueling with edge recycling to high-density in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A.W., E-mail: leonard@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Elder, J.D. [University of Toronto Institute of Aerospace Studies, Toronto, Canada M3H 5T6 (Canada); Canik, J.M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Groebner, R.J.; Osborne, T.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2013-07-15

    Pedestal fueling through edge recycling is examined with the interpretive OEDGE code for high-density discharges in DIII-D. A high current, high-density discharge is found to have a similar radial ion flux profile through the pedestal to a lower current, lower density discharge. The higher density discharge, however, has a greater density gradient indicating a pedestal particle diffusion coefficient that scales near linear with 1/I{sub p}. The time dependence of density profile is taken into account in the analysis of a discharge with low frequency ELMs. The time-dependent analysis indicates that the inferred neutral ionization source is inadequate to account for the increase in the density profile between ELMs, implying an inward density convection, or density pinch, near the top of the pedestal.

  19. Effects of flux conservation on the field configuration in Scyllac

    International Nuclear Information System (INIS)

    Van der Laan, P.C.T.

    1977-04-01

    Flux conservation in Scyllac-type experiments shows up in two ways. First of all the poloidal flux between the outside edge of the plasma and the inside of the coil is conserved. This requires a net longitudinal current in the plasma, to cancel the poloidal flux caused by the helical stellarator fields. An expression for this net current is derived, and effects that could occur in sector experiments are discussed. The flux conservation inside the conducting plasma leads to a conservation of the local rotational transform. Since the pinch itself is surrounded by a well-conducting low-density plasma, the rotational transform is conserved in a wide region. Depending on the time history of the applied fields, volume currents are induced in this region, as is shown for two examples. Although an additional capacitor bank can be used to cancel the net current, a cancellation of all the volume currents is extremely difficult. The resulting equilibrium configurations differ considerably from the Scyllac equilibria without volume currents, which are used in stability calculations

  20. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method

    Science.gov (United States)

    Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis

    2011-01-01

    Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.

  1. Effects of triangularity on confinement, density limit and profile stiffness of H-modes on ASDEX upgrade

    International Nuclear Information System (INIS)

    Stober, J.; Gruber, O.; Kallenbach, A.; Mertens, V.; Ryter, F.; Staebler, A.; Suttrop, W.; Treutterer, W.

    2000-01-01

    At ASDEX Upgrade the influence of triangularity on the H-mode performance has been studied intensively. It has been found that confinement increases with δ for a fixed line-averaged density. Though confinement decreases with increasing density for all analysed values of δ, H-factors (ITERH-98P) at the Greenwald density could be raised to 1 for the highest δ values achieved so far. The H-mode density limit could be increased by approx. 20%. There is a scatter of about 30% on the confinement data, which is anti-correlated to the average density in the scrape-off layer or the neutral fluxes outside the plasma. For nearly all discharges analysed so far, the temperature profiles are self-similar. This indication of profile stiffness could be verified by changing the heat-flux profile by changing the beam-voltage of the neutral-beam injection (NBI) at high density. At low density, first results indicate a deviation from this stiff behaviour. (author)

  2. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    Science.gov (United States)

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  3. Regional Scaling of Airborne Eddy Covariance Flux Observation

    Science.gov (United States)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  4. Distribution of flux vacua around singular points in Calabi-Yau moduli space

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Tachikawa, Yuji

    2006-01-01

    We study the distribution of type-IIB flux vacua in the moduli space near various singular loci, e.g. conifolds, ADE singularities on P 1 , Argyres-Douglas point etc, using the Ashok-Douglas density det (R+ω). We find that the vacuum density is integrable around each of them, irrespective of the type of the singularities. We study in detail an explicit example of an Argyres-Douglas point embedded in a compact Calabi-Yau manifold

  5. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  6. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    International Nuclear Information System (INIS)

    Mo, S.C.

    1991-01-01

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed

  7. Design and analysis of a flux intensifying permanent magnet embedded salient pole wind generator

    Science.gov (United States)

    Guo, Yujing; Jin, Ping; Lin, Heyun; Yang, Hui; Lyu, Shukang

    2018-05-01

    This paper presents an improved flux intensifying permanent magnet embedded salient pole wind generator (FI-PMESPWG) with mirror symmetrical magnetizing directions permanent magnet (PM) for improving generator's performances. The air-gap flux densities, the output voltage, the cogging torque and the d- and q-axis inductances of FI-PMESPWG are all calculated and analyzed by using the finite element method (FEM). To highlight the advantages of the proposed FI-PMESPWG, an original permanent magnet embedded salient pole wind generator (PMESPWG) model is adopted for comparison under the same operating conditions. The calculating results show that the air-gap flux densities of FI-PMESPWG are intensified with the same magnet amounts because the PMs are set in a form of V shape in each pole. The difference between d-axis inductance and q-axis inductance of the proposed FI-PMESPWG is reduced. Thus, the output power of the proposed FI-PMESPWG reaches a higher value than that of the original PMESPWG at the same current phase angle. The cogging torque is diminished because the flux path is changed. All the analysis results indicate that the electromagnetic characteristics of the proposed FI-PMESPWG are significantly better than that of the original PMESPWG.

  8. Small compression modulus of the flux line lattice and large density fluctuations at high fields may explain peak effect

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1976-01-01

    The elastic properties of the flux line lattice in Type II superconductors as calculated from the Ginsburg-Landau theory are discussed. They are non-local on a length scale much larger than the flux line distance and divergent at Hsub(c2). The compression modulus may become much smaller than its long-wavelength limit, B 2 /4π, and if the deformation is not homogeneous, at Hsub(c2) the modulus vanishes as (Hsub(c2) - B) 2 . At arbitrary induction the compression modulus of strain waves with wavelengths of several flux line distances is of the order of the (small) shear modulus. (author)

  9. Energy flux to the TEXTOR limiters during disruptions

    International Nuclear Information System (INIS)

    Finken, K.H.; Baek, W.Y.; Dippel, K.H.; Boedo, J.A.; Gray, D.S.

    1992-01-01

    Rapidly changing heat fluxes deposited on the limiter blades are observed during disruptions by infrared (IR) scanners. These scanners are a suitable tool for the analysis of these heat fluxes because they provide both spatial and temporal information with sufficient resolution. Several new features of the power flux to the plasma facing surfaces during a disruption have been found. The disruptive heat flux occurs on three different time-scales. The fastest ones are for heat bursts with a duration of ≤0.1 ms; several of these bursts form a thermal quench of about one millisecond duration, and some of these thermal quenches are found to occur during the current decay phase. Power flux densities of the order of 50 MW/m 2 have been observed during a burst. The spatial extent of the area on which this power is deposited during a burst is larger than or equal to the size of half an ALT-II blade, i.e. about 1 m in the toroidal direction. Simultaneous measurements with two cameras show that the correlation length of a single burst is smaller than half the toroidal circumference, probably of the order of half a blade or a full blade length. This is consistent with plasma islands of low mode number. The typical heat deposition patterns at the limiter blades for normal discharges are preserved during a disruption. The magnetic structure near the plasma surface can therefore not be destroyed completely during the thermal quench. The power flux follows the field lines. However, the power e-folding length is about a factor of two to three times larger than under normal discharge conditions. (author). 27 refs, 9 figs

  10. Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code

    Science.gov (United States)

    Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST

    2018-05-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.

  11. Technical note: cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    NARCIS (Netherlands)

    Humbert, L.; Hazrati Marangalou, J.; Del Río Barquero, L.M.; van Lenthe, G.H.; van Rietbergen, B.

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical

  12. Analyzing distinctive rotor poles of the axial flux PM motors by using 3D-FEA in view of the magnetic equivalent circuit

    Directory of Open Access Journals (Sweden)

    Emrah Cetin

    2017-10-01

    Full Text Available Higher efficiency is always a desire for the electric machines researchers. One serious candidate is the axial flux permanent magnet motor to achieve that. These machines have advantages on power and torque density profile. This study aims to analyse the performances of the different rotor poles’ characteristics of the axial flux permanent magnet machines. The magnetic equivalent circuit designed and placed into the single gap axial flux permanent magnet machine to fathom the machine characteristic. The proposed rotors magnet poles are investigated in the view of the torque ripple reduction, back EMF waveforms and flux density distribution by using finite element analysis. Four different designs are compared. 3D analysis is used for FEA simulations. Torque ripple, back emf and magnetic flux distribution waveforms are obtained from the 3D FEA analysis. As a result, the proposed rotors are practicable and situated for higher performance.

  13. The Effect of the Heat Flux on the Self-Ignition of Oriented Strand Board

    Directory of Open Access Journals (Sweden)

    Hirle Siegfried

    2017-06-01

    Full Text Available This article deals with the initiation phase of flaming and smouldering burning of oriented strand board. The influence of heat flux on thermal degradation of OSB boards, time to ignition, heat release rate and mass loss rate using thermal analysis and vertical electrical radiation panel methods were studied. Significant information on the influence of the heat flux density and the thickness of the material on time to ignition was obtained.

  14. Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope

    Science.gov (United States)

    von der Linden, J.; Sears, J.; Intrator, T.; You, S.

    2017-12-01

    Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426

  15. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  16. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  17. Trivial constraints on orbital-free kinetic energy density functionals

    Science.gov (United States)

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  18. Effects of slotting and unipolar flux on magnetic pull in a two-pole induction motor with an extra four-pole stator winding

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, A.

    2013-06-01

    This thesis is about the radial magnetic forces between the rotor and stator in twopole induction machines. The magnetic forces arise from rotor eccentricity. The asymmetric air-gap makes the flux density on one side of the rotor stronger than on the opposite side. This produces magnetic pull. The magnetic flux density distribution in the air-gap can be expressed with spatial harmonics, i.e. flux densities with different pole-pair numbers. In two-pole machines, the main part of the magnetic force is produced by the interaction of two- and fourpole flux unless the four-pole flux is damped by parallel paths in the stator winding or an extra four-pole stator winding. The rest of the force comes from the interaction of two-pole and unipolar flux and from the higher harmonics of the air-gap flux of which the slot harmonics are a major part. The force caused by the higher harmonics and the unipolar flux is studied in the case where a four-pole stator winding is used to reduce the four-pole flux. The higher harmonics are found to produce, in addition to the traditional unbalanced magnetic pull, a force similar to the effect of the unipolar flux and the two can be distinguished only by measuring the unipolar flux. In measurements at various operation points, the higher harmonics are found to produce much more force than the unipolar flux and two-pole flux but the unipolar flux is still significant. The four-pole winding also is used to actively control the four-pole flux and the magnetic forces. Designing the controller requires a low order model of the system. Such a model is derived and the effect of the slot harmonics and the unipolar flux are included in the model. Different measurements techniques and methods are presented to identify and validate the control model. The operation point dependence of the system dynamics is studied via measurements. All results are obtained from a 30 kW test motor. The rotor of the test machine has a long flexible shaft on external

  19. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  20. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)