WorldWideScience

Sample records for flux climatologies derived

  1. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    Science.gov (United States)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  2. Climatology

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1994-01-01

    Climatology is an important field of continuing interest in nearly all fields of science and beyond. In view of this interdisciplinary role, the textbook gives an accurate and intelligible introduction to the fundamentals and modern aspects of general climatology. It covers the basic concepts of climate elements, the physical processes, atmospheric circulation and further components of the ''climate system'' (ocean, ice, continents), as well as an explanation of the observed field characteristics of the climate, problems of climate modelling fundamentals of bioclimatology, and, last but not least, key aspects of climate history and anthropogenic effects on climate. (orig.) [de

  3. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-09-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  4. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    Science.gov (United States)

    Lana, A.; Bell, T. G.; Simó, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-03-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-to-air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1-7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state-of-the-art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6-34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.

  5. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  6. The global climatology of an interannually varying air-sea flux data set

    Energy Technology Data Exchange (ETDEWEB)

    Large, W.G.; Yeager, S.G. [National Center for Atmospheric Research, Boulder, CO (United States)

    2009-08-15

    The air-sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 at frequencies ranging from 6-hourly to monthly. All fluxes are computed over the 23 years from 1984 to 2006, but radiation prior to 1984 and precipitation before 1979 are given only as climatological mean annual cycles. The input data are based on NCEP reanalysis only for the near surface vector wind, temperature, specific humidity and density, and on a variety of satellite based radiation, sea surface temperature, sea-ice concentration and precipitation products. Some of these data are adjusted to agree in the mean with a variety of more reliable satellite and in situ measurements, that themselves are either too short a duration, or too regional in coverage. The major adjustments are a general increase in wind speed, decrease in humidity and reduction in tropical solar radiation. The climatological global mean air-sea heat and freshwater fluxes (1984-2006) then become 2 W/m{sup 2} and -0.1 mg/m{sup 2} per second, respectively, down from 30 W/m{sup 2} and 3.4 mg/m{sup 2} per second for the unaltered data. However, decadal means vary from 7.3 W/m{sup 2} (1977-1986) to -0.3 W/m{sup 2} (1997-2006). The spatial distributions of climatological fluxes display all the expected features. A comparison of zonally averaged wind stress components across ocean sub-basins reveals large differences between available products due both to winds and to the stress calculation. Regional comparisons of the heat and freshwater fluxes reveal an alarming range among alternatives; typically 40 W/m{sup 2} and 10 mg/m{sup 2} per second, respectively. The implied ocean heat transports are within the uncertainty of estimates from ocean observations in both the Atlantic and Indo-Pacific basins. They show about 2.4 PW of tropical heating, of which 80% is transported to the north, mostly in the Atlantic. There is similar good agreement in freshwater transport at many latitudes in both

  7. Climatology of the northern hemisphere stratosphere derived from Berlin analyses. Pt. 1. Monthly means

    Energy Technology Data Exchange (ETDEWEB)

    Pawson, S; Labitzke, K; Lenschow, R; Naujokat, B; Rajewski, B; Wiesner, M; Wohlfart, R C

    1933-01-01

    This work presents a climatology of the northern hemisphere lower and middle stratosphere derived from daily radiosonde observations subjectively analysed in the Stratospheric Research Group of the 'Meteorologisches Institut der Freien Universitaet Berlin'. Previous climatologies from these data were presented by Labitzke (1972), van Loon et al. (1972), and by Labitzke and Goretzki (1982). Although some more recent climatological fields have been presented in several works by members of the group, no complete atlas has been compiled for some time. The work is intended to serve as a reference for people interested in the stratosphere and, particularly, the climate analysis and modelling communities, which require contemporary analyses of the available data in order to interpret their products. In this first part of the climatological atlas, monthly mean data are presented. (orig./KW)

  8. Climatology of the northern hemisphere stratosphere derived from Berlin analyses. Pt. 1. Monthly means

    International Nuclear Information System (INIS)

    Pawson, S.; Labitzke, K.; Lenschow, R.; Naujokat, B.; Rajewski, B.; Wiesner, M.; Wohlfart, R.C.

    1993-01-01

    This work presents a climatology of the northern hemisphere lower and middle stratosphere derived from daily radiosonde observations subjectively analysed in the Stratospheric Research Group of the 'Meteorologisches Institut der Freien Universitaet Berlin'. Previous climatologies from these data were presented by Labitzke (1972), van Loon et al. (1972), and by Labitzke and Goretzki (1982). Although some more recent climatological fields have been presented in several works by members of the group, no complete atlas has been compiled for some time. The work is intended to serve as a reference for people interested in the stratosphere and, particularly, the climate analysis and modelling communities, which require contemporary analyses of the available data in order to interpret their products. In this first part of the climatological atlas, monthly mean data are presented. (orig./KW)

  9. A European satellite-derived UV climatology available for impact studies

    International Nuclear Information System (INIS)

    Verdebout, J.

    2004-01-01

    This paper presents a satellite-derived climatology of the surface UV radiation, intended to support impact studies on the environment and human health. As of today, the dataset covers the period from 1 January 1984 to 31 August 2003, with daily dose maps covering Europe with a spatial resolution of 0.05 deg.. A comparison between the modelled erythemal daily dose and measurements in Ispra yields an r.m.s value with a relative difference of 29% and a bias of 3%. The seemingly large dispersion is, however, due to a restricted number of days for which the relative difference is very high. The climatological dataset documents systematic patterns in the geographical distribution of the surface UV radiation due to cloudiness, altitude and snow. It also shows a large year-to-year variability in monthly doses of up to ±50% in spring and ±30% in summer. (authors)

  10. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  11. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  12. Unexpected Climatological Behavior of MLT Gravity Wave Momentum Flux in the Lee of the Southern Andes Hot Spot

    Science.gov (United States)

    DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  13. Surface Turbulent Fluxes, 1x1 deg Monthly Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  14. Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  15. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  16. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  17. Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Nelkin, Eric J.; Huffman, George J.

    1994-01-01

    Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil

  18. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    NARCIS (Netherlands)

    Lana, A.; Bell, T. G.; Simo, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-01-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from

  19. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data

    Directory of Open Access Journals (Sweden)

    J. Guo

    2016-10-01

    Full Text Available The important roles of the planetary boundary layer (PBL in climate, weather and air quality have long been recognized, but little is known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLHs derived from observations and reanalysis, on average, shows good agreement, despite the pronounced inconsistence in some regions. The BLH, derived from soundings conducted three or four times daily in summer, tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western subregions of China than other subregions. The meteorological influence on the annual cycle of BLH is investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. In addition, cloud tends to suppress the development of PBL, particularly in the early afternoon. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps to understand the roles that the PBL plays in the air pollution, weather and climate of China.

  20. A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000–2013

    Directory of Open Access Journals (Sweden)

    Weijiao Huang

    2017-06-01

    Full Text Available The urban heat island is generally conducted based on ground observations of air temperature and remotely sensing of land surface temperature (LST. Satellite remotely sensed LST has the advantages of global coverage and consistent periodicity, which overcomes the weakness of ground observations related to sparse distributions and costs. For human related studies and urban climatology, canopy layer urban heat island (CUHI based on air temperatures is extremely important. This study has employed remote sensing methodology to produce monthly CUHI climatology maps during the period 2000–2013, revealing the spatiotemporal characteristics of daytime and nighttime CUHI during this period of rapid urbanization in Shanghai. Using stepwise linear regression, daytime and nighttime air temperatures at the four overpass times of Terra/Aqua were estimated based on time series of Terra/Aqua-MODIS LST and other auxiliary variables including enhanced vegetation index, normalized difference water index, solar zenith angle and distance to coast. The validation results indicate that the models produced an accuracy of 1.6–2.6 °C RMSE for the four overpass times of Terra/Aqua. The models based on Terra LST showed higher accuracy than those based on Aqua LST, and nighttime air temperature estimation had higher accuracy than daytime. The seasonal analysis shows daytime CUHI is strongest in summer and weakest in winter, while nighttime CUHI is weakest in summer and strongest in autumn. The annual mean daytime CUHI during 2000–2013 is 1.0 and 2.2 °C for Terra and Aqua overpass, respectively. The annual mean nighttime CUHI is about 1.0 °C for both Terra and Aqua overpass. The resultant CUHI climatology maps provide a spatiotemporal quantification of CUHI with emphasis on temperature gradients. This study has provided information of relevance to urban planners and environmental managers for assessing and monitoring urban thermal environments which are constantly

  1. Estimating daily climatologies for climate indices derived from climate model data and observations

    Science.gov (United States)

    Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof

    2015-01-01

    Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192

  2. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    Science.gov (United States)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  3. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    Directory of Open Access Journals (Sweden)

    M. K. Osman

    2016-08-01

    Full Text Available A three-dimensional gridded climatology of carbon monoxide (CO has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012, are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO data set is archived monthly from 2001 to 2012 on a grid of 5° longitude  ×  5° latitude  ×  1 km altitude, from the surface to 14 km altitude.The mapping product has been carefully evaluated, firstly by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less and found to be less than 30 % for almost all cases. Secondly, the method has been validated by comparing profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Finally, the mapping product is compared with global MOZAIC-IAGOS cruise-level data, which were not included in the trajectory-mapped data set, and with independent data from the NOAA aircraft flask sampling program. The trajectory-mapped MOZAIC-IAGOS CO values show generally good agreement with both independent data sets.Maps are also compared with version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument

  4. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  5. Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c (GSSTFYC) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  6. Surface Turbulent Fluxes, 1x1 deg Monthly Climatology, Set1 and NCEP V2c (GSSTFMC) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  7. Chain Rule Approach for Calculating the Time-Derivative of Flux

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Booker, Jane M. [Booker Scientific, Fredericksburg, TX (United States)

    2017-10-03

    The reaction history (gamma-flux observable) is mathematically studied by using the chain rule for taking the total-time derivatives. That is, the total time-derivative of flux is written as the product of the ion temperature derivative with respect to time and the derivative of the flux with respect to ion temperature. Some equations are derived using the further simplification that the fusion reactivity is a parametrized function of ion temperature, T. Deuterium-tritium (D-T) fusion is used as the application with reactivity calculations from three established reactivity parametrizations.

  8. NASA GLDAS Evapotranspiration Data and Climatology

    Science.gov (United States)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  9. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  10. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    Science.gov (United States)

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  11. Profile derived fluxes above inhomogeneous terrain : a numerical approach

    NARCIS (Netherlands)

    Kroon, L.J.M.

    1985-01-01

    In Chapter 1 the goals of the present study were presented. These goals are (i) the estimation and analysis of the errors introduced in the standard flux determination methods when they are applied above non-homogeneous terrain
    (ii) providing simple techniques for estimating these errors,

  12. On Diffusive Climatological Models.

    Science.gov (United States)

    Griffel, D. H.; Drazin, P. G.

    1981-11-01

    A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.

  13. Variationally derived coarse mesh methods using an alternative flux representation

    International Nuclear Information System (INIS)

    Wojtowicz, G.; Holloway, J.P.

    1995-01-01

    Investigation of a previously reported variational technique for the solution of the 1-D, 1-group neutron transport equation in reactor lattices has inspired the development of a finite element formulation of the method. Compared to conventional homogenization methods in which node homogenized cross sections are used, the coefficients describing this system take on greater spatial dependence. However, the methods employ an alternative flux representation which allows the transport equation to be cast into a form whose solution has only a slow spatial variation and, hence, requires relatively few variables to describe. This alternative flux representation and the stationary property of a variational principle define a class of coarse mesh discretizations of transport theory capable of achieving order of magnitude reductions of eigenvalue and pointwise scalar flux errors as compared with diffusion theory while retaining diffusion theory's relatively low cost. Initial results of a 1-D spectral element approach are reviewed and used to motivate the finite element implementation which is more efficient and almost as accurate; one and two group results of this method are described

  14. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  15. Northeast Pacific Regional Climatology (NCEI Accession 0163799)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northeast Pacific (NEP) new regional climatology is derived from the NCEI World Ocean Database archive of temperature and salinity and covers a time period from...

  16. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    Science.gov (United States)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  17. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    International Nuclear Information System (INIS)

    Goumenaki, Eleni; Fernandez, Ignacio Gonzalez; Papanikolaou, Antigoni; Papadopoulou, Despoina; Askianakis, Christos; Kouvarakis, George; Barnes, Jeremy

    2007-01-01

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P -2 s -1 . Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining ∼80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean

  18. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  19. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Goumenaki, Eleni [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Fernandez, Ignacio Gonzalez [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); CIEMAT, Ecotoxicology of Air Pollution, Avda. Complutense 22, 28040 Madrid (Spain); Papanikolaou, Antigoni [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Papadopoulou, Despoina [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Askianakis, Christos [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Kouvarakis, George [Environmental and Chemical Processes Laboratory, Department of Chemistry, University of Crete, P.O. Box 1470, 71409 Heraklion (Greece); Barnes, Jeremy [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)]. E-mail: j.d.barnes@ncl.ac.uk

    2007-04-15

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P < 0.001) of the observed variation in stomatal conductance. Concentration-based indices were compared with flux-based indices. Analyses revealed a significant relationship between accumulated stomatal ozone flux and yield employing flux threshold cut-offs up to 4 nmol m{sup -2} s{sup -1}. Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining {approx}80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean.

  20. HNO3 fluxes to a deciduous forest derived using gradient and REA methods

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Jensen, B.

    2002-01-01

    Summertime nitric acid concentrations over a deciduous forest in the midwestern United States are reported, which range between 0.36 and 3.3 mug m(-3). Fluxes to the forest are computed using the relaxed eddy accumulation technique and gradient methods. In accord with previous studies, the results...... indicate substantial uncertainties in the gradient-based calculations. The relaxed eddy accumulation (REA) derived fluxes are physically reasonable and are shown to be of similar magnitude to dry deposition estimates from gradient sampling. The REA derived mean deposition velocity is approximately 3 cm s......(-1), which is also comparable to growing season estimates derived by Meyers et al. for a similar deciduous forest. Occasional inverted concentration gradients and fluxes are observed but most are not statistically significant. Data are also presented that indicate substantial through canopy...

  1. Derivation of a well-posed and multidimensional drift-flux model for boiling flows

    International Nuclear Information System (INIS)

    Gregoire, O.; Martin, M.

    2005-01-01

    In this note, we derive a multidimensional drift-flux model for boiling flows. Within this framework, the distribution parameter is no longer a scalar but a tensor that might account for the medium anisotropy and the flow regime. A new model for the drift-velocity vector is also derived. It intrinsically takes into account the effect of the friction pressure loss on the buoyancy force. On the other hand, we show that most drift-flux models might exhibit a singularity for large void fraction. In order to avoid this singularity, a remedy based on a simplified three field approach is proposed. (authors)

  2. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.

    2012-12-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  3. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  4. The role of land surface fluxes in Saudi-KAU AGCM: Temperature climatology over the Arabian Peninsula for the period 1981-2010

    Science.gov (United States)

    Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed

    2018-02-01

    A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.

  5. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  6. Preliminary Monthly Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary Local Climatological Data, recorded since 1970 on Weather Burean Form 1030 and then National Weather Service Form F-6. The preliminary climate data pages...

  7. Reference Climatological Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in areas...

  8. OW Levitus Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of global temperature and salinity climatologies with a spatial resolution of 1x1 degree, and consists of 19 levels (surface - 5000m). It was...

  9. Climatological Data National Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDNS was published from 1950 - 1980. Monthly and annual editions contain summarized climatological information from the following publications: Local...

  10. Historical Climatology Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Historical Climatology Series (HCS) is a set of climate-related publications published by NOAA's National Climatic Data Center beginning in 1978. HCS is...

  11. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  12. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  13. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations.

    Science.gov (United States)

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; Bian, Xindi; Doubler, Dana; Yu, Lejiang; Walters, Claudia

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereas current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. The choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.

  14. Hydro-climatology

    DEFF Research Database (Denmark)

    The hydro-climatological approach of this volume illustrates the scientific and practical value of considering hydrological phenomena and processes in a climate context to improve understanding of controls, process interaction, and past and future variability/change. Contributions deal with under......The hydro-climatological approach of this volume illustrates the scientific and practical value of considering hydrological phenomena and processes in a climate context to improve understanding of controls, process interaction, and past and future variability/change. Contributions deal...... considered. The interdisciplinary approach reveals information and perspective that go beyond the study of cli ate and hydro gy alone...

  15. The influence of land surface parameters on energy flux densities derived from remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Tittebrand, A.; Schwiebus, A. [Inst. for Hydrology und Meteorology, TU Dresden (Germany); Berger, F.H. [Observatory Lindenberg, German Weather Service, Lindenberg (Germany)

    2005-04-01

    Knowledge of the vegetation properties surface reflectance, normalised difference vegetation index (NDVI) and leaf area index (LAI) are essential for the determination of the heat and water fluxes between terrestrial ecosystems and the atmosphere. Remote sensing data can be used to derive spatial estimates of the required surface properties. The determination of land surface parameters and their influence on radiant and energy flux densities is investigated with data of different remote sensing systems. Sensitivity studies show the importance of correctly derived land surface properties to estimate the key quantity of the hydrological cycle, the evapotranspiration (L.E), most exactly. In addition to variable parameters like LAI or NDVI there are also parameters which are can not be inferred from satellite data but needed for the Penman-Monteith approach. Fixed values are assumed for these variables because they have little influence on L.E. Data of Landsat-7 ETM+ and NOAA-16 AVHRR are used to show results in different spatial resolution. The satellite derived results are compared with ground truth data provided by the Observatory Lindenberg of the German Weather Service. (orig.)

  16. Climatological determinants of woody cover in Africa.

    Science.gov (United States)

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  17. Teaching Climatology and Meterology

    OpenAIRE

    Waddington, Shelagh B.

    1997-01-01

    Climatology and meteorology are often regarded as very difficult to teach by teachers and very hard to learn by students. This paper presents simple practical exercises which will enable teachers to make the topic of greater interest and easier for students to understand some of the basic ideas.

  18. Evaluating short-term hydro-meteorological fluxes using GRACE-derived water storage changes

    Science.gov (United States)

    Eicker, A.; Jensen, L.; Springer, A.; Kusche, J.

    2017-12-01

    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. In this contribution we will investigate the closure of the water balance for short-term fluxes, i.e. the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. Missing river runoff observations will be extrapolated using the calibrated rainfall-runoff model GR2M. We will perform a global analysis and will additionally focus on selected river basins in West Africa. The investigations will be carried out for various temporal scales, focusing on short-term fluxes down to daily variations to be detected in daily GRACE time series.

  19. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  20. General Climatology 3

    Science.gov (United States)

    Hartmann, Dennis L.

    General Climatology 3 is volume 3 of the series World Survey of Climatology, which consists of 15 volumes containing review articles on a broad range of topics. General Climatology 3 contains four chapters: ‘Human Bioclimatology,’ ‘Agricultural Climatology,’ ‘City Climate,’ and ‘Technical Climatology.’ Each of these chapters will be briefly described here.‘Human Bioclimatology,’ the first chapter, was authored by E. Flach and provides a survey of the effects on the human organism of the physical conditions at the earth's surface. It contains four main sections. A section entitled ‘Light and Life’ deals with the effects of solar radiation on man and contains much interesting information on the response of the human eye and human skin to radiation at various frequencies. ‘Air and Life’ discusses the composition of air and its effect on human health and performance, including discussions of the effects of altitude, aerosols, and noxious trace gases. ‘Temperature and Life’ discusses how the body responds to temperature and how it maintains its heat budget under the variety of conditions to which it falls subject and considerable discussion is given to objective ways to characterize air conditions that give an accurate measure of their impact on the body. This discussion leads naturally into the final section, ‘Bioclimatological Evaluation Systems,’ which addresses the problem of how to classify a particular site according to its overall suitability to human habitation.

  1. Novel polymer derived ceramic-high temperature heat flux sensor for gas turbine environment

    International Nuclear Information System (INIS)

    Nagaiah, N R; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of a novel High Temperature Heat Flux (HTHF) sensor for gas turbine environment. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present the design and development of a HTHF sensor based on PDC material, and show that such a sensor is indeed feasible. The PDC-HTHF sensor is fabricated using newly developed polymer derived SiCN, whose conductivity is controlled by proper composition and treatment condition. Direct measurements and characterization of the relevant material properties are presented. Electrical conductivity can be varied from 0 (insulator) to 100 (ohm.cm) -1 ; in addition a value of 4000 ppm/ 0 C (at 600 K) is obtained for temperature coefficient of resistance. This novel sensor is found to perform quite satisfactorily at about 1400 0 C for long term as compared to conventional heat flux sensors available commercially. This type of PDC-HTHF sensor can be used in harsh environments due to its high temperature resistance and resistance to oxidation. This paper also discusses lithography as a microfabrication technique to manufacture the proposed PDC-HTHF sensor. In our current design, the sensor dimensions are 2.5mm in diameter and 250 μm thickness

  2. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    Science.gov (United States)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Joana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    Processes driving methane (CH4) emissions in wetland ecosystems are highly complex. Especially, the separation of CH4 emissions into ebullition and diffusion derived flux components, a perquisite for the mechanistic process understanding and identification of potential environmental driver is rather challenging. We present a simple calculation algorithm, based on an adaptive R-script, which separates open-water, closed chamber CH4 flux measurements into diffusion- and ebullition-derived components. Hence, flux component specific dynamics are revealed and potential environmental driver identified. Flux separation is based on a statistical approach, using ebullition related sudden concentration changes obtained during high resolution CH4 concentration measurements. By applying the lower and upper quartile ± the interquartile range (IQR) as a variable threshold, diffusion dominated periods of the flux measurement are filtered. Subsequently, flux calculation and separation is performed. The algorithm was verified in a laboratory experiment and tested under field conditions, using flux measurement data (July to September 2013) from a flooded, former fen grassland site. Erratic ebullition events contributed 46% to total CH4 emissions, which is comparable to values reported by literature. Additionally, a shift in the diurnal trend of diffusive fluxes throughout the measurement period, driven by the water temperature gradient, was revealed.

  3. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  4. First space-based derivation of the global atmospheric methanol emission fluxes

    Directory of Open Access Journals (Sweden)

    T. Stavrakou

    2011-05-01

    is unaccounted for in the MEGANv2.1 inventory. The most significant error reductions achieved by the optimization concern the derived biogenic emissions over the Amazon and over the Former Soviet Union. The robustness of the derived fluxes to changes in convective updraft fluxes, in methanol removal processes, and in the choice of the biogenic a priori inventory is assessed through sensitivity inversions. Detailed comparisons of the model with a number of aircraft and surface observations of methanol, as well as new methanol measurements in Europe and in the Reunion Island show that the satellite-derived methanol emissions improve significantly the agreement with the independent data, giving thus credence to the IASI dataset.

  5. Situational Lightning Climatologies

    Science.gov (United States)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  6. The Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite Data (HOAPS): A climatological atlas of satellite-derived air-sea interaction parameters over the world oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Grassl, H.; Jost, V.; Schulz, J.; RameshKumar, M.R.; Bauer, P.; Schluessel, P.

    and the corresponding atmospheric circulation over this region has profound influence on the global weather and climate. In the past, several authors have made important contributions in the form of atlases mostly using ship data (Baumgartner and Reichel, 1975... available to interested users for non-commercial scientific research. For details of how to access the fields see: http:// www.mpimet.mpg.de/Depts/Physik/HOAPS. 1 Chapter I Introduction Oceans play a very important role in the global climate system...

  7. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  8. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  9. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  10. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  11. Advances in tourism climatology

    Energy Technology Data Exchange (ETDEWEB)

    Matzarakis, A.; Freitas, C.R. de; Scott, D. (eds.)

    2004-11-01

    This publication grew out of the Second International Workshop of the International Society of Biometeorology, Commission on Climate Tourism and Recreation (ISB-CCTR) that took place at the Orthodox Academy of Crete in Kolimbari, Greece, 8-11 June 2004. The aim of the meeting was to (a) bring together a selection of researchers and tourism experts to review the current state of knowledge of tourism and recreation climatology and (b) explore possibilities for future research and the role of the ISB-CCTR in this. A total of 40 delegates attended the June 2004 ISB-CCTR Workshop. Their fields of expertise included biometeorology, bioclimatology, thermal comfort and heat balance modelling, tourism marketing and planning, urban and landscape planning, architecture, climate change, emission reduction and climate change impact assessment. Participants came from universities and research institutions in Australia, Austria, Canada, Croatia, France, Germany, Greece, Hungary, Italy, the Netherlands, New Zealand, Portugal, Slovenia, United Kingdom and United States of America. Business conducted at the Workshop was divided between five sessions: assessment of climatic resources; climate change; health; weather, sports and risk forecasts; and behaviour and perception. However, the content of this publication is organised so that it reflects the new perspectives and methods that have evolved since the ISB-CCTR was established. (orig.)

  12. Global Synoptic Climatology Network (GSCN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dataset DSI-9290 is the result of a joint effort to create a Global Synoptic Climatology Network among the Meteorological Service of Canada (Downsview, Ontario and...

  13. Local Climatological Data (LCD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Local Climatological Data (LCD) contains summaries from major airport weather stations that include a daily account of temperature extremes, degree days,...

  14. Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors

    Science.gov (United States)

    Liu, W. T.; Tang, W.

    2001-01-01

    preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.

  15. Quantifying the Fluxes of Atmospherically Derived Trace Elements in the Arctic Ocean/Ice System using 7Be

    Science.gov (United States)

    Landing, W. M.; Kadko, D. C.; Shelley, R.; Galfond, B.

    2016-02-01

    Aerosol deposition is an important pathway for delivering biologically-essential and anthropogenically-derived trace elements to the Arctic Ocean. Limited field study in the harsh Arctic environment has forced a reliance on poorly constrained models for the atmospheric deposition of trace elements. Here we use the cosmic ray produced radioisotope 7Be to link aerosol concentrations to flux to the Arctic water/ice system. Seawater, ice, snow, melt pond, and aerosol samples were collected during late summer 2011 as part of the RV Polarstern ARK-XXVI/3 campaign. The average 7Be aerosol loading was 0.018 dpm m-3 and we determined an average 7Be flux of 125 dpm m-2 d-1, consistent with results from previous studies in the region. None of the lithogenic aerosol elements showed any significant enrichment above crustal composition, while the pollution-type elements showed varying degrees of enrichment relative to crustal values. In addition to our own measurements, we use two years of continuous aerosol 7Be and trace element data from the Alert (Canada) monitoring site to generate seasonal and annual estimates for the fluxes of 7Be and trace elements to the Arctic water/ice system. Fluxes of 7Be are 30% higher in Winter (Nov-May) than in Summer (Jun-Oct) due to the strong seasonality in aerosol 7Be concentrations. Fluxes of lithogenic elements (Al, Mn, Fe) are 2-3 times higher in Summer, possibly due to local dust sources on Ellesmere Island. Fluxes of V and Pb are strongly correlated and are 2-3 times higher in Winter, while fluxes of Ni, Cu, and Zn are relatively uniform for both seasons.

  16. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: Implications for constancy in d37Cl- A statistical inference

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Sarkar, A.; Dalal, S.G.; Chivas, A.R.

    WE, Ehrlich R, Klovan JE. J Math Geol 1981;13:331–4. Grassl H, Jost V, Ramesh Kumar MR, Schulz J, Bauer P, Schluessel P. The Hamburg Ocean atmosphere parameters and fluxes from satellite data (HOAPS): a climatological atlas of satellite derived air...

  17. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    Directory of Open Access Journals (Sweden)

    Wenquan Zhu

    Full Text Available Carbon Flux Phenology (CFP can affect the interannual variation in Net Ecosystem Exchange (NEE of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands, using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU by more than 70% and End of Carbon Uptake (ECU by more than 60%. The Root Mean Square Error (RMSE of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  19. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    Science.gov (United States)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  20. Transport methods: general. 6. A Flux-Limited Diffusion Theory Derived from the Maximum Entropy Eddington Factor

    International Nuclear Information System (INIS)

    Yin, Chukai; Su, Bingjing

    2001-01-01

    The Minerbo's maximum entropy Eddington factor (MEEF) method was proposed as a low-order approximation to transport theory, in which the first two moment equations are closed for the scalar flux f and the current F through a statistically derived nonlinear Eddington factor f. This closure has the ability to handle various degrees of anisotropy of angular flux and is well justified both numerically and theoretically. Thus, a lot of efforts have been made to use this approximation in transport computations, especially in the radiative transfer and astrophysics communities. However, the method suffers numerical instability and may lead to anomalous solutions if the equations are solved by certain commonly used (implicit) mesh schemes. Studies on numerical stability in one-dimensional cases show that the MEEF equations can be solved satisfactorily by an implicit scheme (of treating δΦ/δx) if the angular flux is not too anisotropic so that f 32 , the classic diffusion solution P 1 , the MEEF solution f M obtained by Riemann solvers, and the NFLD solution D M for the two problems, respectively. In Fig. 1, NFLD and MEEF quantitatively predict very close results. However, the NFLD solution is qualitatively better because it is continuous while MEEF predicts unphysical jumps near the middle of the slab. In Fig. 2, the NFLD and MEEF solutions are almost identical, except near the material interface. In summary, the flux-limited diffusion theory derived from the MEEF description is quantitatively as accurate as the MEEF method. However, it is more qualitatively correct and user-friendly than the MEEF method and can be applied efficiently to various steady-state problems. Numerical tests show that this method is widely valid and overall predicts better results than other low-order approximations for various kinds of problems, including eigenvalue problems. Thus, it is an appealing approximate solution technique that is fast computationally and yet is accurate enough for a

  1. A North American regional reanalysis climatology of the Haines Index

    Science.gov (United States)

    Wei Lu; Joseph J. (Jay) Charney; Sharon Zhong; Xindi Bian; Shuhua. Liu

    2011-01-01

    A warm-season (May through October) Haines Index climatology is derived using 32-km regional reanalysis temperature and humidity data from 1980 to 2007. We compute lapse rates, dewpoint depressions, Haines Index factors A and B, and values for each of the low-, mid- and high-elevation variants of the Haines Index. Statistical techniques are used to investigate the...

  2. A Climatology of Nocturnal Low-Level Jets at Cabauw

    NARCIS (Netherlands)

    Baas, P.; Bosveld, F.C.; Baltink, H.K.; Holtslag, A.A.M.

    2009-01-01

    A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw

  3. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    Science.gov (United States)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and

  4. Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2012-03-01

    Full Text Available The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.

  5. U.S. Local Climatological Data (LCD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The...

  6. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  7. A climatology of visible surface reflectance spectra

    International Nuclear Information System (INIS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-01-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290–740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment–2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes. - Highlights: • Our goals was visible surface reflectance for satellite trace gas measurements. • Captured the range of surface reflectance spectra through EOF analysis. • Used satellite surface reflectance products for each given scene to anchor EOFs. • Generated a climatology of time/geometry dependent surface reflectance spectra. • Demonstrated potential to

  8. Active Learning in Introductory Climatology.

    Science.gov (United States)

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  9. Fossil Fuel-Derived Polycyclic Aromatic Hydrocarbons in the Taiwan Strait, China, and Fluxes across the Air-Water Interface.

    Science.gov (United States)

    Ya, Miaolei; Xu, Li; Wu, Yuling; Li, Yongyu; Zhao, Songhe; Wang, Xinhong

    2018-06-14

    On the basis of the application of compound-specific radiocarbon analysis (CSRA) and air-water exchange models, the contributions of fossil fuel and biomass burning derived polycyclic aromatic hydrocarbons (PAHs) as well as their air-water transport were elucidated. The results showed that fossil fuel-derived PAHs (an average contribution of 89%) presented the net volatilization process at the air-water interface of the Taiwan Strait in summer. Net volatile fluxes of the dominant fluorene and phenanthrene (>58% of the total PAHs) were 27 ± 2.8 μg m -2 day -1 , significantly higher than the dry deposition fluxes (average 0.43 μg m -2 day -1 ). The Δ 14 C contents of selected PAHs (fluorene, phenanthrene plus anthracene, fluoranthene, and pyrene) determined by CSRA in the dissolved seawater ranged from -997 ± 4‰ to -873 ± 6‰, indicating that 89-100% (95 ± 4%) of PAHs were supplied by fossil fuels. The South China Sea warm current originating from the southwest China in summer (98%) and the Min-Zhe coastal current originating from the north China in winter (97%) input more fossil fuel PAHs than the Jiulong River estuary (90%) and Xiamen harbor water (93%). The more radioactive decayed 14 C of fluoranthene (a 4-ring PAH) than that of phenanthrene and anthracene (3-ring PAHs) represented a greater fossil fuel contribution to the former in dissolved seawater.

  10. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  11. Up-to-date probabilistic temperature climatologies

    International Nuclear Information System (INIS)

    Krakauer, Nir Y; Devineni, Naresh

    2015-01-01

    With ongoing global warming, climatologies based on average past temperatures are increasingly recognized as imperfect guides for current conditions, yet there is no consensus on alternatives. Here, we compare several approaches to deriving updated expected values of monthly mean temperatures, including moving average, exponentially weighted moving average, and piecewise linear regression. We go beyond most previous work by presenting updated climate normals as probability distributions rather than only point estimates, enabling estimation of the changing likelihood of hot and cold extremes. We show that there is a trade-off between bias and variance in these approaches, but that bias can be mitigated by an additive correction based on a global average temperature series, which has much less interannual variability than a single-station series. Using thousands of monthly temperature time series from the Global Historical Climatology Network (GHCN), we find that the exponentially weighted moving average with a timescale of 15 years and global bias correction has good overall performance in hindcasting temperatures over the last 30 years (1984–2013) compared with the other methods tested. Our results suggest that over the last 30 years, the likelihood of extremely hot months (above the 99th percentile of the temperature probability distribution as of the early 1980s) has increased more than fourfold across the GHCN stations, whereas the likelihood of very cold months (under the 1st percentile) has decreased by over two-thirds. (letter)

  12. Monthly Summaries of the Global Historical Climatology Network - Daily (GHCN-D)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly Summaries of Global Historical Climatology Network (GHCN)-Daily is a dataset derived from GHCN-Daily. The data are produced by computing simple averages or...

  13. Hurricane Satellite (HURSAT) from International Satellite Cloud Climatology Project (ISCCP) B1, Version 6

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from derived International Satellite Cloud Climatology Project (ISCCP) B1 observations of tropical cyclones worldwide. The B1 data...

  14. Deriving Daytime Variables From the AmeriFlux Standard Eddy Covariance Data Set

    Energy Technology Data Exchange (ETDEWEB)

    van Ingen, Catharine [Berkeley Water Center. Berkeley, CA (United States); Microsoft. San Francisco, CA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berkeley Water Center. Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Humphrey, Marty [Univ. of Virginia, Charlottesville, VA (United States); Li, Jie [Univ. of Virginia, Charlottesville, VA (United States)

    2008-12-06

    A gap-filled, quality assessed eddy covariance dataset has recently become available for the AmeriFluxnetwork. This dataset uses standard processing and produces commonly used science variables. This shared dataset enables robust comparisons across different analyses. Of course, there are many remaining questions. One of those is how to define 'during the day' which is an important concept for many analyses. Some studies have used local time — for example 9am to 5pm; others have used thresholds on photosynthetic active radiation (PAR). A related question is how to derive quantities such as the Bowen ratio. Most studies compute the ratio of the averages of the latent heat (LE) and sensible heat (H). In this study, we use different methods of defining 'during the day' for GPP, LE, and H. We evaluate the differences between methods in two ways. First, we look at a number of statistics of GPP. Second, we look at differences in the derived Bowen ratio. Our goal is not science per se, but rather informatics in support of the science.

  15. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand

    International Nuclear Information System (INIS)

    Nunn, A.J.; Cieslik, S.; Metzger, U.; Wieser, G.; Matyssek, R.

    2010-01-01

    Stomatal O 3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O 3 flux was 33% of the total O 3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O 3 flux and reflected stomatal regulation rather than O 3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O 3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O 3 risk assessment in forests from O 3 exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O 3 flux as 33% in total stand flux.

  16. A climatology of potential severe convective environments across South Africa

    Science.gov (United States)

    Blamey, R. C.; Middleton, C.; Lennard, C.; Reason, C. J. C.

    2017-09-01

    Severe thunderstorms pose a considerable risk to society and the economy of South Africa during the austral summer months (October-March). Yet, the frequency and distribution of such severe storms is poorly understood, which partly stems out of an inadequate observation network. Given the lack of observations, alternative methods have focused on the relationship between severe storms and their associated environments. One such approach is to use a combination of covariant discriminants, derived from gridded datasets, as a probabilistic proxy for the development of severe storms. These covariates describe some key ingredient for severe convective storm development, such as the presence of instability. Using a combination of convective available potential energy and deep-layer vertical shear from Climate Forecast System Reanalysis, this study establishes a climatology of potential severe convective environments across South Africa for the period 1979-2010. Results indicate that early austral summer months are most likely associated with conditions that are conducive to the development of severe storms over the interior of South Africa. The east coast of the country is a hotspot for potential severe convective environments throughout the summer months. This is likely due to the close proximity of the Agulhas Current, which produces high latent heat fluxes and acts as a key moisture source. No obvious relationship is established between the frequency of potential severe convective environments and the main large-scale modes of variability in the Southern Hemisphere, such as ENSO. This implies that several factors, possibly more localised, may modulate the spatial and temporal frequency of severe thunderstorms across the region.

  17. Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146.

    Directory of Open Access Journals (Sweden)

    Fabien Coze

    Full Text Available Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2 strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and (13C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest.

  18. TRMM-Based Lightning Climatology

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  19. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  20. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  1. Climatology of lightning in the Czech Republic

    Science.gov (United States)

    Novák, Petr; Kyznarová, Hana

    2011-06-01

    The Czech Hydrometeorological Institute (CHMI) has utilized lightning data from the Central European Lightning Detection Network (CELDN) since 1999. The CELDN primarily focuses on the detection of cloud-to-ground (CG) lightning but intra-cloud (IC) lightning detection is also available. Lightning detection is used by the CHMI forecasters as an additional source to radar and satellite data for nowcasting of severe storms. Lightning data are also quantitatively used in automatic nowcasting applications. The quality of lightning data can be evaluated using their climatological characteristics. Climatological characteristics are also useful for defining decision thresholds that are valuable for human forecasters as well as for automatic nowcasting applications. The seven-year period from 2002 to 2008, which had relatively even-quality lightning data, was used to calculate the spatial and temporal distributions of lightning. The monthly number of CG strokes varies depending on the season. The highest number of CG strokes occurs during summer, with more than 20 days of at least five detected CG strokes on the Czech Republic territory in June and July. The least number of CG stokes occurs in winter, with less than three days per month having at least five detected CG stokes. The mean diurnal distribution of CG strokes peaks between 1500 and 1600 UTC and reaches a minimum between 0500 and 0800 UTC. The average spatial distribution of CG strokes shows sharp local maxima corresponding with the locations of the TV broadcast towers. The average spatial distribution of CG flash density, calculated on a 20 × 20 km grid, shows the maximum (3.23 flashes km - 2 year - 1 ) in the western part of Czech Republic and the minimum (0.92 flashes km - 2 year - 1 ) in the south-southeast of the Czech Republic. In addition, lightning characteristics related to the identified convective cells, such as distribution of the lightning stroke rates or relation to the radar derived by Vertically

  2. Climatology, storm morphologies, and environments of tornadoes in the British Isles: 1980–2012

    OpenAIRE

    Mulder, Kelsey J.; Schultz, David M.

    2015-01-01

    A climatology is developed for tornadoes during 1980–2012 in the British Isles, defined in this article as England, Scotland, Wales, Northern Ireland, Republic of Ireland, Channel Islands, and the Isle of Man. The climatology includes parent storm type, interannual variability, annual and diurnal cycles, intensities, oc- currence of outbreaks (defined as three or more tornadoes in the same day), geographic distribution, and environmental conditions derived from proximity soundings of tornadoe...

  3. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    Science.gov (United States)

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.

  4. On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

    NARCIS (Netherlands)

    Pandey, S.

    2015-01-01

    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the

  5. Climatological features of blocking anticyclones

    International Nuclear Information System (INIS)

    Lupo, A.R.; Smith, P.J.; Oglesby, R.J.

    1994-01-01

    Several climatological studies have been previously performed using large observational data sets (i.e., 10 years or longer) in order to determine the predominant characteristics of blocking anticyclones, including favored development regions, duration, preferred seasonal occurrence, and frequency of occurrence. These studies have shown that blocking anticyclones occur most frequently from October to April over the eastern Atlantic and Pacific oceans downstream from both the North American and Asian continental regions and the storm track regions to the east of these continents. Some studies have also revealed the presence of a third region block formation in western Russia near 40 degrees E which is associated with another storm track region over the Mediterranean and western Asia

  6. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  7. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Beverly E. Law; Jiquan Chen; Dennis D. Baldocchi; David R. Cook; Ram Oren; Andrew D. Richardson; Sonia Wharton; Siyan Ma; Tomothy A. Martin; Shashi B. Verma; Andrew E. Suyker; Russel L. Scott; Russel K. Monson; Marcy Litvak; David Y. Hollinger; Ge Sun; Kenneth J. Davis; Paul V. Bolstad; Sean P. Burns; Peter S. Curtis; BErt G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; Gabriel G. Katul; Roser Matamala; Steve McNulty; Tilden P. Meyers; J. William Munger; Asko Noormets; Walter C. Oechel; Kyaw Tha U Paw; Hans Peter Schmid; Gregory Starr; Margaret S. Torn; Steven C. Wofsy

    2010-01-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales....

  8. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    M. C. Honda

    2013-06-01

    Full Text Available At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the Fukushima Daiichi Nuclear Power Plant (FNPP1 accident occurred on 11 March 2011. Radiocesium (134Cs and 137Cs derived from the FNPP1 accident was detected in sinking particles collected at 500 m in late March 2011 and at 4810 m in early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 22 to 71 m day−1 between the surface and 500 m and >180 m day−1 between 500 m and 4810 m. 137Cs concentrations varied from 0.14 to 0.25 Bq g−1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs inventory by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m−2 at both depths. Compared with 137Cs input from both stations by April 2011, estimated from the surface 137Cs concentration and mixed-layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer was 0.3 to 1.5% yr−1 (68 to 312 yr. The estimated removal rates and residence times are comparable to previously reported values after the Chernobyl accident (removal rate: 0.2–1%, residence time: 130–390 yr.

  9. Introduction to Global Urban Climatology

    Science.gov (United States)

    Varquez, A. C. G.; Kanda, M.; Kawano, N.; Darmanto, N. S.; Dong, Y.

    2016-12-01

    Urban heat island (UHI) is a widely investigated phenomenon in the field of urban climate characterized by the warming of urban areas relative to its surrounding rural environs. Being able to understand the mechanism behind the UHI formation of a city and distinguish its impact from that of global climate change is indispensable when identifying adaptation and mitigation strategies. However, the lack of UHI studies many cities especially for developing countries makes it difficult to generalize the mechanism for UHI formation. Thus, there is an impending demand for studies that focus on the simultaneous analyses of UHI and its trends throughout the world. Hence, we propose a subfield of urban climatology, called "global urban climatology" (GUC), which mainly focuses on the uniform understanding of urban climates across all cities, globally. By using globally applicable methodologies to quantify and compare urban heat islands of cities with diverse backgrounds, including their geography, climate, socio-demography, and other factors, a universal understanding of the mechanisms underlying the formation of the phenomenon can be established. The implementation of GUC involves the use of globally acquired historical observation networks, gridded meteorological parameters from climate models, global geographic information system datasets; the construction of a distributed urban parameter database; and the development of techniques necessary to model the urban climate. Research under GUC can be categorized into three approaches. The collaborative approach (1st) relies on the collection of data from micro-scale experiments conducted worldwide with the aid or development of professional social networking platforms; the analytical approach (2nd) relies on the use of global weather station datasets and their corresponding objectively analysed global outputs; and the numerical approach (3rd) relies on the global estimation of high-resolution urban-representative parameters as

  10. Ozone climatology over western Mediterranean Sea

    International Nuclear Information System (INIS)

    Pibiri, G.; Randaccio, P.; Serra, A.; Sollai, A.

    1984-01-01

    A preliminary climatology of atmospheric ozone over Western Mediterranean Sea is given by analysis of the upper observations of O 3 carried out at Cagliari-Elmas station from 1968 to 1976. Some peculiarities are here illustrated and discussed

  11. Global Daily Climatology Network: Kazakhstan subset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily meteorological observations for Kazakhstan within the framework of joint efforts to create Global Daily Climatology...

  12. Northwest Atlantic Regional Climatology (NCEI Accession 0155889)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Northwest Atlantic Ocean, NCEI Regional Climatology Team...

  13. U.S. Annual Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual Climatological Summary contains historical monthly and annual summaries for over 8000 U.S. locations. Observing stations are located in the United States of...

  14. Quality Controlled Local Climatological Data (QCLCD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quality Controlled Local Climatological Data (QCLCD) contains summaries from major airport weather stations that include a daily account of temperature extremes,...

  15. Climatology of the Savannah River Plant site

    International Nuclear Information System (INIS)

    Hoel, D.D.

    1984-06-01

    This document contains information on the climatological characteristics of the SRP site, as well as information on relative concentrations and deposition for specific radionuclides. 42 references, 42 figures, 45 tables

  16. A satellite and model based flood inundation climatology of Australia

    Science.gov (United States)

    Schumann, G.; Andreadis, K.; Castillo, C. J.

    2013-12-01

    To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.

  17. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    Science.gov (United States)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  18. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  19. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  20. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    Science.gov (United States)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  1. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  2. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  3. The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2015-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our

  4. SeaWiFS Deep Blue Aerosol Optical Thickness Monthly Level 3 Climatology Data Gridded at 0.5 Degrees V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The SeaWiFS Deep Blue Level 3 Monthly Climatology Product contains monthly global climatology gridded (0.5 x 0.5 deg) data derived from SeaWiFS Deep Blue Level 3...

  5. Impact of Land Cover Change Induced by a Fire Event on the Surface Energy Fluxes Derived from Remote Sensing

    Directory of Open Access Journals (Sweden)

    Juan M. Sánchez

    2015-11-01

    Full Text Available Forest fires affect the natural cycle of the vegetation, and the structure and functioning of ecosystems. As a consequence of defoliation and vegetation mortality, surface energy flux patterns can suffer variations. Remote sensing techniques together with surface energy balance modeling offer the opportunity to explore these changes. In this paper we focus on a Mediterranean forest ecosystem. A fire event occurred in 2001 in Almodóvar del Pinar (Spain affecting a pine and shrub area. A two-source energy balance approach was applied to a set of Landsat 5-TM and Landsat 7-EMT+ images to estimate the surface fluxes in the area. Three post-fire periods were analyzed, six, seven, nine, and 11 years after the fire event. Results showed the regeneration of the shrub area in 6–7 years, in contrast to the pine area, where an important decrease in evapotranspiration, around 1 mm·day−1, remained. Differences in evapotranspiration were mitigated nine and 11 years after the fire in the pine area, whereas significant deviations in the rest of the terms of the energy balance equation were still observed. The combined effect of changes in the vegetation structure and surface variables, such as land surface temperature, albedo, or vegetation coverage, is responsible for these variations in the surface energy flux patterns.

  6. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  7. A climatological model for risk computations incorporating site- specific dry deposition influences

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.

    1991-07-01

    A gradient-flux dry deposition module was developed for use in a climatological atmospheric transport model, the Multimedia Environmental Pollutant Assessment System (MEPAS). The atmospheric pathway model computes long-term average contaminant air concentration and surface deposition patterns surrounding a potential release site incorporating location-specific dry deposition influences. Gradient-flux formulations are used to incorporate site and regional data in the dry deposition module for this atmospheric sector-average climatological model. Application of these formulations provide an effective means of accounting for local surface roughness in deposition computations. Linkage to a risk computation module resulted in a need for separate regional and specific surface deposition computations. 13 refs., 4 figs., 2 tabs

  8. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most

  9. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, T. H.; van der Sluijs, F. H.; Wiegman, C. H.; Baller, J. F.; Gustafson, L. A.; Burger, H. J.; Herling, A. W.; Kuipers, F.; Meijer, A. J.; Reijngoud, D. J.

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  10. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  11. U.S. West Coast MODIS Aqua High Resolution SST Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  12. U.S. West Coast MODIS Aqua High Resolution CHLA Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  13. Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability

    Directory of Open Access Journals (Sweden)

    B. Langford

    2017-12-01

    Full Text Available Biogenic emission algorithms predict that oak forests account for ∼ 70 % of the total European isoprene budget. Yet the isoprene emission potentials (IEPs that underpin these model estimates are calculated from a very limited number of leaf-level observations and hence are highly uncertain. Increasingly, micrometeorological techniques such as eddy covariance are used to measure whole-canopy fluxes directly, from which isoprene emission potentials can be calculated. Here, we review five observational datasets of isoprene fluxes from a range of oak forests in the UK, Italy and France. We outline procedures to correct the measured net fluxes for losses from deposition and chemical flux divergence, which were found to be on the order of 5–8 and 4–5 %, respectively. The corrected observational data were used to derive isoprene emission potentials at each site in a two-step process. Firstly, six commonly used emission algorithms were inverted to back out time series of isoprene emission potential, and then an average isoprene emission potential was calculated for each site with an associated uncertainty. We used these data to assess how the derived emission potentials change depending upon the specific emission algorithm used and, importantly, on the particular approach adopted to derive an average site-specific emission potential. Our results show that isoprene emission potentials can vary by up to a factor of 4 depending on the specific algorithm used and whether or not it is used in a big-leaf or canopy environment (CE model format. When using the same algorithm, the calculated average isoprene emission potential was found to vary by as much as 34 % depending on how the average was derived. Using a consistent approach with version 2.1 of the Model for Emissions of Gases and Aerosols from Nature (MEGAN, we derive new ecosystem-scale isoprene emission potentials for the five measurement sites: Alice Holt, UK (10 500 ± 2500

  14. Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability

    Science.gov (United States)

    Langford, Ben; Cash, James; Acton, W. Joe F.; Valach, Amy C.; Hewitt, C. Nicholas; Fares, Silvano; Goded, Ignacio; Gruening, Carsten; House, Emily; Kalogridis, Athina-Cerise; Gros, Valérie; Schafers, Richard; Thomas, Rick; Broadmeadow, Mark; Nemitz, Eiko

    2017-12-01

    Biogenic emission algorithms predict that oak forests account for ˜ 70 % of the total European isoprene budget. Yet the isoprene emission potentials (IEPs) that underpin these model estimates are calculated from a very limited number of leaf-level observations and hence are highly uncertain. Increasingly, micrometeorological techniques such as eddy covariance are used to measure whole-canopy fluxes directly, from which isoprene emission potentials can be calculated. Here, we review five observational datasets of isoprene fluxes from a range of oak forests in the UK, Italy and France. We outline procedures to correct the measured net fluxes for losses from deposition and chemical flux divergence, which were found to be on the order of 5-8 and 4-5 %, respectively. The corrected observational data were used to derive isoprene emission potentials at each site in a two-step process. Firstly, six commonly used emission algorithms were inverted to back out time series of isoprene emission potential, and then an average isoprene emission potential was calculated for each site with an associated uncertainty. We used these data to assess how the derived emission potentials change depending upon the specific emission algorithm used and, importantly, on the particular approach adopted to derive an average site-specific emission potential. Our results show that isoprene emission potentials can vary by up to a factor of 4 depending on the specific algorithm used and whether or not it is used in a big-leaf or canopy environment (CE) model format. When using the same algorithm, the calculated average isoprene emission potential was found to vary by as much as 34 % depending on how the average was derived. Using a consistent approach with version 2.1 of the Model for Emissions of Gases and Aerosols from Nature (MEGAN), we derive new ecosystem-scale isoprene emission potentials for the five measurement sites: Alice Holt, UK (10 500 ± 2500 µg m-2 h-1); Bosco Fontana, Italy (1610

  15. Hanford Site Climatological Data Summary 1999 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J; Burk, Kenneth W; Ramsdell, Jim V

    2000-01-01

    This document presents the climatological data measured at the Hanford Site for calendar year 1999. The information contained includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation and other meteorological parameters

  16. Gulf of Mexico Regional Climatology (NCEI Accession 0123320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Mexico Regional Climatology is a set of objectively analyzed climatological fields of temperature, salinity, oxygen, phosphate, silicate, and nitrate at...

  17. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    Science.gov (United States)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  18. Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model

    Science.gov (United States)

    Liu, M.; Vecchi, G. A.; Smith, J. A.

    2015-12-01

    The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.

  19. Climatological variability in regional air pollution

    International Nuclear Information System (INIS)

    Shannon, J.D.; Trexler, E.C. Jr.

    1995-01-01

    Although some air pollution modeling studies examine events that have already occurred (e.g., the Chernobyl plume) with relevant meteorological conditions largely known, most pollution modeling studies address expected or potential scenarios for the future. Future meteorological conditions, the major pollutant forcing function other than emissions, are inherently uncertain although much relevant information is contained in past observational data. For convenience in our discussions of regional pollutant variability unrelated to emission changes, we define meteorological variability as short-term (within-season) pollutant variability and climatological variability as year-to-year changes in seasonal averages and accumulations of pollutant variables. In observations and in some of our simulations the effects are confounded because for seasons of two different years both the mean and the within-season character of a pollutant variable may change. Effects of climatological and meteorological variability on means and distributions of air pollution parameters, particularly those related to regional visibility, are illustrated. Over periods of up to a decade climatological variability may mask or overstate improvements resulting from emission controls. The importance of including climatological uncertainties in assessing potential policies, particularly when based partly on calculated source-receptor relationships, is highlighted

  20. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    Science.gov (United States)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  1. A 19-Month Climatology of Marine Aerosol-Cloud-Radiation Properties Derived From DOE ARM AMF Deployment at the Azores: Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert

    2013-01-01

    A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.

  2. Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line.

    Directory of Open Access Journals (Sweden)

    Pannabecker Thomas L

    2002-03-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 channels are constitutively active water channels that allow rapid transmembrane osmotic water flux, and also serve as cyclic-GMP-gated ion channels. Tetraethylammonium chloride (TEA; 0.05 to 10 mM was shown previously to inhibit the osmotic water permeability of human AQP1 channels expressed in Xenopus oocytes. The purpose of the present study was to determine if TEA blocks osmotic water flux of native AQP1 channels in kidney, and recombinant AQP1 channels expressed in a kidney derived MDCK cell line. We also demonstrate that TEA does not inhibit the cGMP-dependent ionic conductance of AQP1 expressed in oocytes, supporting the idea that water and ion fluxes involve pharmacologically distinct pathways in the AQP1 tetrameric complex. Results TEA blocked water permeability of AQP1 channels in kidney and kidney-derived cells, demonstrating this effect is not limited to the oocyte expression system. Equivalent inhibition is seen in MDCK cells with viral-mediated AQP1 expression, and in rat renal descending thin limbs of Henle's loops which abundantly express native AQP1, but not in ascending thin limbs which do not express AQP1. External TEA (10 mM does not block the cGMP-dependent AQP1 ionic conductance, measured by two-electrode voltage clamp after pre-incubation of oocytes in 8Br-cGMP (10–50 mM or during application of the nitric oxide donor, sodium nitroprusside (2–4 mM. Conclusions TEA selectively inhibits osmotic water permeability through native and heterologously expressed AQP1 channels. The pathways for water and ions in AQP1 differ in pharmacological sensitivity to TEA, and are consistent with the idea of independent solute pathways within the channel structure. The results confirm the usefulness of TEA as a pharmacological tool for the analysis of AQP1 function.

  3. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local

  4. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    Science.gov (United States)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  5. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 Monthly Harmonic Climatologies (1982-2008) (NODC Accession 0075098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km monthly sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  6. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 5-day Harmonic Climatologies (1982-2008) (NODC Accession 0071182)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km 5-day sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  7. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 Daily Harmonic Climatologies (1982-2008) (NODC Accession 0071181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km daily sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  8. 4 km NODC/RSMAS AVHRR Pathfinder Cloud Screened Version 5.0 Monthly Climatologies (1985-2006) (NODC Accession 0110657)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km monthly sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 sea surface...

  9. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  10. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  11. Regional and applied climatology-contributions

    International Nuclear Information System (INIS)

    Endlicher, W.; Gossmann, H.

    1991-01-01

    The first three articles of this book, which is dedicated to Wolfgang Weischet, are closely related to his work on unban climatology: - A comprehensive research programme on urban climatology for the example of a medium-sized Swiss town; - A wind tunnel test in preparation of a large-scale urban construction project; - Modelling of human thermal comfort in different urban environments on the basis of comprehensive data sets of geofactors. At the same time, they provide a survey of the status and methods of modern urban climate research. The second group of contributions comprises texts which discuss the effects of individual climate elements in the biosphere and pedosphere. The third group consists of two contributions on the stability of tropical environments. Both of them discuss the semiarid regions of northern Kenia. Finally, there is a group of contributions stimulated and influenced by W. Weischet's work in Latin America. (orig./KW) [de

  12. Correlation and multifractality in climatological time series

    International Nuclear Information System (INIS)

    Pedron, I T

    2010-01-01

    Climate can be described by statistical analysis of mean values of atmospheric variables over a period. It is possible to detect correlations in climatological time series and to classify its behavior. In this work the Hurst exponent, which can characterize correlation and persistence in time series, is obtained by using the Detrended Fluctuation Analysis (DFA) method. Data series of temperature, precipitation, humidity, solar radiation, wind speed, maximum squall, atmospheric pressure and randomic series are studied. Furthermore, the multifractality of such series is analyzed applying the Multifractal Detrended Fluctuation Analysis (MF-DFA) method. The results indicate presence of correlation (persistent character) in all climatological series and multifractality as well. A larger set of data, and longer, could provide better results indicating the universality of the exponents.

  13. Climatology of local flow patterns around Basel

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Recently a method has been developed to classify local-scale flow patterns from the wind measurements at a dense network of stations. It was found that in the MISTRAL area around Basel a dozen characteristic flow patterns occur. However, as the dense network of stations ran only during one year, no reliable climatology can be inferred from these data, especially the annual cycle of the flow patterns is not well determined from a single year of observations. As there exist several routinely operated stations in and near the MISTRAL area, a method was searched to identify the local flow patterns from the observations at the few routine stations. A linear discriminant analysis turned out to be the best method. Based of data from 11 stations which were simultaneously operated during 1990-1995 a six-year climatology of the flow patterns could be obtained. (author) 1 fig., 1 tab., 3 refs.

  14. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    Science.gov (United States)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  15. Results of large scale wind climatologically estimations

    Directory of Open Access Journals (Sweden)

    Andrea Kircsi

    2008-05-01

    Full Text Available The aim of this article is to describe theparticular field of climatology which analyzes airmovement characteristics regarding utilization of windfor energy generation. The article describes features ofwind energy potential available in Hungary compared towind conditions in other areas of the northern quartersphere in order to assist the wind energy use developmentin Hungary. Information on wind climate gives a solidbasis for financial and economic decisions ofstakeholders in the field of wind energy utilization.

  16. Climatology of the Savannah River Plant site

    International Nuclear Information System (INIS)

    Hoel, D.D.

    1983-01-01

    This document is intended as a reference for those involved in environmental research, and preparing environmental and safety analysis reports about aspects of operations of production and support facilities at the Savannah River Plant (SRP). The information in this document is drawn from appropriate references and from the extensive meteorological data base collected on SRP. This document contains information on the climatological characteristics of the SRP site, as well as information on relative concentrations and deposition for specific radionuclides

  17. Climatological determinants of woody cover in Africa

    OpenAIRE

    Good, Stephen P.; Caylor, Kelly K.

    2011-01-01

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent....

  18. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    Science.gov (United States)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  19. Assessment of Optical Turbulence Profiles Derived From Probabilistic Climatology

    Science.gov (United States)

    2007-03-01

    654.3.1 Transformed Data Results . . . . . . . . . . . . 664.3.2 Untransformed Data Results . . . . . . . . . . . 704.4 Application of ...the needed repower to destroy surface based enemy targets.Courtesy of Boeing Corporation. http://www.boeing.com/news/ fea-ture/aa2004/backgrounders...medium is cornerstone to successful employ-ment of these HELs. 1.3 Introduction to Optical Turbulence Lethal application of directed energy repower

  20. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    Science.gov (United States)

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  1. The reactivity of plant-derived organic matter in the Amazon River and implications on aquatic carbon fluxes to the atmosphere and ocean

    Science.gov (United States)

    Ward, N. D.; Sawakuchi, H. O.; Keil, R. G.; da Silva, R.; Brito, D. C.; Cunha, A. C.; Gagne-Maynard, W.; de Matos, A.; Neu, V.; Bianchi, T. S.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    The remineralization of terrestrially-derived organic carbon (OC), along with direct CO2 inputs from autochthonous plant respiration in floodplains, results in an evasive CO2 gas flux from inland waters that is an order of magnitude greater than the flux of OC to the ocean. This phenomenon is enhanced in tropical systems as a result of elevated temperatures and productivity relative to temperate and high-latitude counterparts. Likewise, this balance is suspected to be influenced by increasing global temperatures and alterations to hydrologic and land use regimes. Here, we assess the reactivity of terrestrial and aquatic plant-derived OM near the mouth of the Amazon River. The stable isotopic signature of CO2 (δ13CO2) was monitored in real-time during incubation experiments performed in a closed system gas phase equilibration chamber connected to a Picarro Cavity Ring-Down Spectrometer. Incubations were performed under natural conditions and with the injection of isotopically labeled terrestrial macromolecules (e.g. lignin) and algal fatty acids. Under natural conditions, δ13CO2 became more depleted, shifting from roughly -23‰ to -27‰ on average, suggesting that C3 terrestrial vegetation was the primary fuel for CO2 production. Upon separate injections of 13C-labeled lignin and algal fatty acids, δ13CO2 increased near instantaneously and peaked in under 12 hours. Roughly 75% of the labeled lignin was converted to CO2 at the peak in δ13CO2, whereas less than 20% of the algal fatty acids were converted to CO2 (preliminary data subject to change). The rate of labeled-OC remineralization was enhanced by the addition of a highly labile substrate (e.g. ethyl acetate). Likewise, constant measurements of O2/pCO2 along the lower river revealed anomalously high CO2 and low O2 levels near the confluence of the mainstem and large tributaries with high algal productivity. These collective results suggest that the remineralization of complex terrestrial macromolecules is

  2. A climatology of the California Current System from a network of underwater gliders

    Science.gov (United States)

    Rudnick, Daniel L.; Zaba, Katherine D.; Todd, Robert E.; Davis, Russ E.

    2017-05-01

    Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350-500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Niño, the 2010-2011 La Niña, the warm anomaly of 2014-2015, and the 2015-2016 El Niño.

  3. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  4. Precipitation Climatology on Titan-like Exomoons.

    Science.gov (United States)

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.

  5. Multi-satellite climatologies of fundamental atmospheric variables from Radio Occulation and their validation

    International Nuclear Information System (INIS)

    Pirscher, B.

    2010-01-01

    Monitoring of global climate change requires high quality observations not only on the Earths surface but also in the free atmosphere. Global Positioning System (GPS) Radio Occultation (RO) observations are known to have the potential to deliver very accurate, precise, and long-term stable measurements between about 8 km and 30 km altitude.This thesis investigates the suitability of RO observations to serve as climate benchmark record by validating the consistency of RO data provided by different satellites. The main focus lies on systematic differences of RO climatologies, originating from different data processing, data quality, spatio-temporal sampling, and particular orbit characteristics. Data of six RO satellite missions (including one multi-satellite constellation) are analyzed. Largest disagreements of RO climatologies are observed when comparing data provided by different processing centers. Mean absolute temperature differences between 8 km and 30 km altitude amount to 0.5 K, while climate time series of temperature changes agree much closer.Utilizing RO data from the same data center and considering space-temporal sampling yields remarkable consistency of temperature climatologies with mean differences being smaller than 0.1 K. Disagreements are found to be largest at 35 km, where they exceed 0.2 K. This results from different data quality and its utilization within the processing scheme. Climatologies, which are derived from data with the same quality agree to within 0.02 K also at high altitudes. The measurements local time, which depends on the satellites orbit, has a minor but clearly understandable influence on differences in RO climatologies. The results underline the utility of RO data for long-term monitoring of the global climate. (author) [de

  6. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    Science.gov (United States)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-11-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE.The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster‟s spatial domain and used to estimate climatological values of key optical and microphysical parameters.The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  7. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  8. SPATIOTEMPORAL VISUALIZATION OF TIME-SERIES SATELLITE-DERIVED CO2 FLUX DATA USING VOLUME RENDERING AND GPU-BASED INTERPOLATION ON A CLOUD-DRIVEN DIGITAL EARTH

    Directory of Open Access Journals (Sweden)

    S. Wu

    2017-10-01

    Full Text Available The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  9. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales.

    Science.gov (United States)

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E

    2015-05-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.

  10. Comparison of high-latitude thermospheric meridional winds II: combined FPI, radar and model climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Aruliah, A.; Mueller-Wodarg, I.C.F.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4 N, 20.4 E) has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM) (Hedin et al., 1988) and the numerical coupled thermosphere and ionosphere model (CTIM) are compared to the measured behaviour at kiruna, as a single site example. The empirical International Reference Ionosphere (IRI) model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using fabry-perot interferometers (FPI), together with 2 separate techniques applied to the European incoherent scatter radar (EISCAT) database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR) derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. (orig.)

  11. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  12. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  13. Long-term changes in climatological calendar

    International Nuclear Information System (INIS)

    Jaagus, J.

    1997-01-01

    Trends in time series of climatic seasons in Tartu, Estonia, during 1891-1995 are analysed using regression analysis. Two intermediate seasons between autumn and winter (late autumn, early winter), and two ones between winter and spring (late winter and early spring) are determined. The climatic seasons correspond quite well to individual stages of annual cycling of nature. Results of linear regression analysis demonstrate changes in climatological calendar reflecting the influence of global warming. Climatic seasons of spring period have moved to earlier time, and seasons of autumn period to later time. Statistically significant trends were observed for beginning date of early spring (12 days earlier), summer (11 days earlier) and late autumn (8 days later). Beginning date of winter has shifted 12 days later. Duration of summer season has increased by two weeks and duration of winter season has decreased by the same time. (author)

  14. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    The EU-NORSEWInD project www.norsewind.eu has taken place from August 2008 to July 2012 (4 years). NORSEWInD is short for Northern Seas Wind Index database. In the project ocean surface wind observations from space have been retrieved, processed and analysed. The overall aim of the work...... is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450...... in the Irish Sea to more than 1200 in most of the Baltic Sea. Wind resource statistics include maps at 2 km spatial resolution of mean wind speed, Weibull A and k, and energy density at 10 m above sea level. Uncertainty estimates on the number of available samples for each of the four parameters are presented...

  15. The Global Climatology Network Precipitation data

    International Nuclear Information System (INIS)

    Peterson, T.C.; Easterling, D.R.; Eischeid, J.K.

    1993-01-01

    Several years ago, in response to growing concern about global climate change, the US National Climatic Data Center and the Carbon Dioxide Information Analysis Center undertook an effort to create a baseline global land surface climate data set called the Global Historical Climatology Network (GHCN, Vose et al., 1992). GHCN was created by merging several large existing climate data sets into one data base. Fifteen separate data sets went into the creation of the GHCN version 1.0. GHCN version 1.0 was released in 1992. It has 7,533 precipitation stations, but the number of stations varies with time. A slight majority (55%) have records in excess of 50 years, and a significant proportion (13%) have records in excess of 100 years. The longest period of record for any given station is 291 years (1697--1987 for Kew, United Kingdom)

  16. Climatological study of Saclay site from 1958 to 1966. General climatology

    International Nuclear Information System (INIS)

    Levrard, Andre

    1969-03-01

    This document complements the CEA-N--0463 note with additional climatological measurements performed between 1963 and 1966 at the CEA Saclay centre, extending this survey over the 1958 to 1966 period. The duration, height, number of days and intensity of precipitations, the temperatures and vertical thermal gradient, the fog/mist and the wind direction and speed are reported monthly, seasonally and annually and presented in tables and diagrams

  17. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  18. 4 km NODC/RSMAS AVHRR Pathfinder v5 Seasonal and Annual Day-Night Sea Surface Temperature Climatologies for 1982-2009 for the Gulf of Mexico (NODC Accession 0072888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a set of sea surface temperature climatologies for the Gulf of Mexico (GOM), derived from the AVHRR Pathfinder Version 5 sea surface...

  19. Situational Lightning Climatologies for Central Florida: Phase V

    Science.gov (United States)

    Bauman, William H., III

    2011-01-01

    The AMU added three years of data to the POR from the previous work resulting in a 22-year POR for the warm season months from 1989-2010. In addition to the flow regime stratification, moisture and stability stratifications were added to separate more active from less active lighting days within the same flow regime. The parameters used for moisture and stability stratifications were PWAT and TI which were derived from sounding data at four Florida radiosonde sites. Lightning data consisted of NLDN CG lightning flashes within 30 NM of each airfield. The AMU increased the number of airfields from nine to thirty-six which included the SLF, CCAFS, PAFB and thirty-three airfields across Florida. The NWS MLB requested the AMU calculate lightning climatologies for additional airfields that they support as a backup to NWS TBW which was then expanded to include airfields supported by NWS JAX and NWS MFL. The updated climatologies of lightning probabilities are based on revised synoptic-scale flow regimes over the Florida peninsula (Lambert 2007) for 5-, 10-, 20- and 30-NM radius range rings around the thirty-six airfields in 1-, 3- and 6-hour increments. The lightning, flow regime, moisture and stability data were processed in S-PLUS software using scripts written by the AMU to automate much of the data processing. The S-PLUS data files were exported to Excel to allow the files to be combined in Excel Workbooks for easier data handling and to create the tables and charts for the Gill. The AMU revised the Gill developed in the previous phase (Bauman 2009) with the new data and provided users with an updated HTML tool to display and manipulate the data and corresponding charts. The tool can be used with most web browsers and is computer operating system independent. The AMU delivered two Gills - one with just the PWAT stratification and one with both the PWAT and TI stratifications due to insufficient data in some of the PWATITI stratification combinations. This will allow

  20. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    International Nuclear Information System (INIS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Liu Li; Remer, Lorraine

    2004-01-01

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis

  1. Tower Mesonetwork Climatology and Interactive Display Tool

    Science.gov (United States)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  2. An empirical framework for tropical cyclone climatology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam-Young [Korea Meteorological Administration, Seoul (Korea, Republic of); Florida State University, Tallahassee, FL (United States); Elsner, James B. [Florida State University, Tallahassee, FL (United States)

    2012-08-15

    An empirical approach for analyzing tropical cyclone climate is presented. The approach uses lifetime-maximum wind speed and cyclone frequency to induce two orthogonal variables labeled ''activity'' and ''efficiency of intensity''. The paired variations of activity and efficiency of intensity along with the opponent variations of frequency and intensity configure a framework for evaluating tropical cyclone climate. Although cyclone activity as defined in this framework is highly correlated with the commonly used exponent indices like accumulated cyclone energy, it does not contain cyclone duration. Empirical quantiles are used to determine threshold intensity levels, and variant year ranges are used to find consistent trends in tropical cyclone climatology. In the western North Pacific, cyclone activity is decreasing despite increases in lifetime-maximum intensity. This is due to overwhelming decreases in cyclone frequency. These changes are also explained by an increasing efficiency of intensity. The North Atlantic shows different behavior. Cyclone activity is increasing due to increasing frequency and, to a lesser extent, increasing intensity. These changes are also explained by a decreasing efficiency of intensity. Tropical cyclone trends over the North Atlantic basin are more consistent over different year ranges than tropical cyclone trends over the western North Pacific. (orig.)

  3. Hanford Site Climatological Summary 2004 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J.; Ramsdell, James V.; Burk, Kenneth W.; Shaw, William J.

    2005-01-01

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation

  4. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Climatology Network - Daily (GHCN-Daily) dataset integrates daily climate observations from approximately 30 different data sources. Version 3...

  5. Global Precipitation Climatology Project (GPCP) - Daily, Version 1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 1.2 Daily product covers the period October 1998 to the present,...

  6. AFSC/ABL: Auke Bay Climatology 1959-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set includes available climatological and related physical environmental records for Auke Bay, Auke Creek and Auke Lake beginning in 1959. Daily high and low...

  7. Global Precipitation Climatology Project (GPCP) - Pentad, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 2.2 Pentad product covers the period January 1979 to the present,...

  8. Global Historical Climatology Network - Monthly (GHCN-M), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Please note, GHCN-Monthly provides climatological observations for four elements; monthly mean maximum temperature, minimum temperature, mean temperature, and...

  9. Simulating a 40-year flood event climatology of Australia with a view to ocean-land teleconnections

    Science.gov (United States)

    Schumann, Guy J.-P.; Andreadis, Konstantinos; Stampoulis, Dimitrios; Bates, Paul

    2015-04-01

    We develop, for the first time, a proof-of-concept version for a high-resolution global flood inundation model to generate a flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent at a native 1 km resolution. The objectives of our study includes (1) deriving an inundation climatology for a continent (Australia) as a demonstrator case to understand the requirements for expanding globally; (2) developing a test bed to assess the potential and value of current and future satellite missions (GRACE, SMAP, ICESat-2, AMSR-2, Sentinels and SWOT) in flood monitoring; and (3) answering science questions such as the linking of inundation to ocean circulation teleconnections. We employ the LISFLOOD-FP hydrodynamic model to generate a flood inundation climatology. The model will be built from freely available SRTM-derived data (channel widths, bank heights and floodplain topography corrected for vegetation canopy using ICESat canopy heights). Lakes and reservoirs are represented and channel hydraulics are resolved using actual channel data with bathymetry inferred from hydraulic geometry. Simulations are run with gauged flows and floodplain inundation climatology are compared to observations from GRACE, flood maps from Landsat, SAR, and MODIS. Simulations have been completed for the entire Australian continent. Additionally, changes in flood inundation have been correlated with indices related to global ocean circulation, such as the El Niño Southern Oscillation index. We will produce data layers on flood event climatology and other derived (default) products from the proposed model including channel and floodplain depths, flow direction, velocity vectors, floodplain water volume, shoreline extent and flooded area. These data layers will be in the form of simple vector and raster formats. Since outputs will be large in size we propose to upload them onto Google Earth under the GEE API license.

  10. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination.

    Science.gov (United States)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.

    2005-12-01

    The Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB) is related to subduction of the Cocos and Rivera plates underneath the North American plate. Non-parallelism of the magmatic arc with respect to the trench can be explained by oblique subduction and changes of dip angle. In this contribution we compare geochemical and Sr-Nd-Pb isotope data of five TMVB stratovolcanoes (from east to west: Colima Volcano, Nevado de Toluca, Popocatepetl, La Malinche, and Pico de Orizaba) and associated cinder cones. Volcanic products range in stratovolcanoes from andesites (e.g. Colima, Popocatepetl) to rhyolites (e.g. Pico de Orizaba), and from basalts to andesites in the monogenetic cones. Concentrations of incompatible elements correlate positively with Sr-Nd-Pb isotope ratios from east to west along the arc. 87Sr/86Sr, eNd, and 206Pb/204Pb range from 0.7034-0.7050, +6.9 to minus 1.8, and 18.57-18.78, respectively, displaying considerable differences. In the central TMVB, REE patterns of closely spaced high-Mg basaltic andesites differ substantially. This cannot be explained by fractional crystallization processes or differential partial melting of a homogeneous mantle source. Instead, it points towards small-scale mantle heterogeneities. LILE (e.g. Cs, Rb, Ba, Pb) and HFSE (e.g. Ta, Nb, Zr) display variations of orders in magnitude at different segments along the arc. These variations might correlate with amounts of slab-derived aqueous fluids and intensity of metasomatic reactions between the subducting lithosphere and the overlying mantle wedge. Isotopic ratios of mid-lower crustal xenoliths found in nearly all stratovolcano products reflect the nature of the underlying crust beneath the TMVB. Tertiary-Cretaceous plagiogranites (Colima), Cretaceous limestones (Popocatepetl), and Grenvillian quartzites (Pico de Orizaba)and their increasing radiogenic isotope ratios match well with the observed isotopic signatures of the stratovolcanoes. Moreover, elevated CO2 amounts in

  11. Does SW Monsoon Influence Total Suspended Matter Flux into the Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    Raghavan, B.R.; Chauhan, O.S.

    Seasonal enhancement in the flux of total suspended matter (TSM) has been attributed to climatology of the SW monsoon (SWM) in time-series trap experiments conducted in the Arabian Sea. To determine the influence of climate on TSM flux, synoptic...

  12. Uncertainties in Climatological Seawater Density Calculations

    Science.gov (United States)

    Dai, Hao; Zhang, Xining

    2018-03-01

    In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.

  13. Fog and dew climatology over Hisar, India

    International Nuclear Information System (INIS)

    Surender, S.; Diwan, S.; Rao, V.U.M.

    2006-05-01

    In many arid and semi-arid areas, pumped ground water and the water from streams, rivers and reservoirs is no longer sufficient to cover the ever increasing water demand. Therefore new interest in 'marginal' water resources like fog and dew harvesting are to be developed after studying climatology of these parameters in a region. The observations on dew and fog events recorded at Hisar, representing semi-arid region of India during winter season (October to March) for the period 1980 to 2005 have been analyzed. The total annual dew amount in winter season ranged between 33 mm (1987-88) and 79 mm (1981-82) during the period under study. The seasonal dewfall showed a decreasing trend of 1.4 mm during the period under investigation. Average maximum dew events (26.1) were recorded during November and average minimum dew events were recorded in February. In a particular season, the highest dew events (168) were observed during the winter seasons of 1982-83 and 1983-84, whereas, the minimum number of dew events (97) was reported during 1998-99. Interestingly, an increasing trend (1.3 day/season) in occurrence of fog events was seen. Average maximum foggy events (8.7) recorded in a month were observed in January. In a particular season, the maximum foggy events (41) were recorded during 2002-03 and the minimum (2) during 1983-84. To achieve the objective of alternate source of water and to assess the impact of dew and fog on agricultural crops for their growth and development, inputs from various specialized disciplines and allied sciences engaged in meteorological applications along with forecasting skills from non scientific quarters are needed to predict the weather parameter accurately, thus the active cooperation between meteorological/remote sensing agencies, agricultural organizations and farming community is needed for sustainable agricultural development in scarce/limited water availability regions. (author)

  14. Southern Hemisphere Upper Thermospheric Wind Climatology

    Science.gov (United States)

    Dhadly, M. S.; Emmert, J. T.; Drob, D. P.

    2017-12-01

    This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.

  15. A Seasonal Air Transport Climatology for Kenya

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  16. A Radar Climatology for Germany - a 16-year high resolution precipitation data and its possibilities

    Science.gov (United States)

    Walawender, Ewelina; Winterrath, Tanja; Brendel, Christoph; Hafer, Mario; Junghänel, Thomas; Klameth, Anna; Weigl, Elmar; Becker, Andreas

    2017-04-01

    range of spatial analyses: from country to city scale. Multiple events can be investigated in details, depending on the user needs, as temporal resolution differs from 15 years to 1 hour. Apart from standard products such as precipitation sum, the radar climatology will provide its derivatives as well e.g. extreme precipitation characteristics and rain erosivity potential (R factor) map. Employing GIS functionalities into the Radar Climatology dataset has made it universal and interoperable - suitable for integration with a wide range of other geodata formats or services. It can be treated also as input layer for further analyses which demand spatially continuous data on precipitation and for building more integrated products tailored to the user needs. One of the most important concepts may be an application of the Radar Climatology data as a key factor in risk assessment analysis and developing strategies for risk management in urban planning, hydrology, agriculture etc.

  17. High-resolution nested model simulations of the climatological circulation in the southeastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. Brenner

    2003-01-01

    Full Text Available As part of the Mediterranean Forecasting System Pilot Project (MFSPP we have implemented a high-resolution (2 km horizontal grid, 30 sigma levels version of the Princeton Ocean Model for the southeastern corner of the Mediterranean Sea. The domain extends 200 km offshore and includes the continental shelf and slope, and part of the open sea. The model is nested in an intermediate resolution (5.5 km grid model that covers the entire Levantine, Ionian, and Aegean Sea. The nesting is one way so that velocity, temperature, and salinity along the boundaries are interpolated from the relevant intermediate model variables. An integral constraint is applied so that the net mass flux across the open boundaries is identical to the net flux in the intermediate model. The model is integrated for three perpetual years with surface forcing specified from monthly mean climatological wind stress and heat fluxes. The model is stable and spins up within the first year to produce a repeating seasonal cycle throughout the three-year integration period. While there is some internal variability evident in the results, it is clear that, due to the relatively small domain, the results are strongly influenced by the imposed lateral boundary conditions. The results closely follow the simulation of the intermediate model. The main improvement is in the simulation over the narrow shelf region, which is not adequately resolved by the coarser grid model. Comparisons with direct current measurements over the shelf and slope show reasonable agreement despite the limitations of the climatological forcing. The model correctly simulates the direction and the typical speeds of the flow over the shelf and slope, but has difficulty properly re-producing the seasonal cycle in the speed.Key words. Oceanography: general (continental shelf processes; numerical modelling; ocean prediction

  18. The Adaptive Ecosystem Climatology (AEC): Design and Development

    Science.gov (United States)

    deRada, S.; Penta, B.; McCarthy, S.; Gould, R. W., Jr.

    2016-02-01

    The concept of ecosystem-based management (EBM), recently introduced to rectify the shortcomings of single-species management policies, has been widely accepted as a basis for the conservation and management of natural resources. In line with NOAA's Integrated Ecosystem Assessment (IEA) Program, EBM is an integrated approach that considers the entire ecosystem and the interactions among species rather than focusing on individual components. This integrative approach relies on heterogeneous data, physical as well as biogeochemical data, among many others. Relative to physical data, however, marine biogeochemical records, also critical in IEA and EBM, are still lacking, both in terms of mature models and in terms of observational data availability. TheAdaptive Ecosystem Climatology (AEC) was conceived as a novel approach to address these limitations, mitigating the shortcomings of the individual components and combining their strengths to enhance decision-making activities. AEC is designed on the concept that a high-frequency climatology can be used as a baseline into which available observational data can be ingested to produce a higher accuracy product. In the absence of observations, the climatology acts as a best estimate. AEC was developed using a long-term simulation of a coupled biophysical numerical model configured for the Gulf of Mexico. Using the model results, we constructed a three-dimensional, dynamically balanced, gridded, static climatology for each calendar day. Using this `static' climatology as a background `first guess', observations from a particular date are ingested via optimal interpolation to `nudge' the climatology toward current conditions, thus providing representative fields for that date (adaptive climatology). With this adaptive approach, AEC can support a variety of EBM objectives, from fisheries, to resource management, to coastal resilience.

  19. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our

  20. Transportable lidar for the measurement of ozone concentration and flux profiles in the lower troposphere

    International Nuclear Information System (INIS)

    Zhao, Yanzeng; Howell, J.N.; Hardesty, R.M.

    1992-01-01

    In many areas of the United States, as well as in other industrial areas (such as Europe), elevated and potentially harmful levels of ozone are being measured during summer. Most of this ozone is photochemically produced. The relatively long lifetime of ozone allows industrially produced ozone to be transported on a hemispheric scale. Since the trends of tropospheric ozone are very likely dependent on the source strengths and distributions of the pollutants and the chemical/ transport process involved, a predictive understanding of tropospheric ozone climatology requires a focus on the chemical and transport processes that link regional emissions to hemispheric ozone trends and distributions. Of critical importance to these studies is a satisfactory data base of tropospheric ozone distribution from which global and regional tropospheric ozone climatology can be derived, and the processes controlling tropospheric ozone can be better understood. A transportable lidar for measuring ozone concentration and flux profiles in the lower troposphere is needed. One such system is being developed at the National Oceanic and Atmospheric Administration/Earth Resources Laboratory (NOAA/ERL) Wave Propagation Laboratory (WPL)

  1. A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2010-10-01

    Full Text Available This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10° in latitude-1 month. Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003–2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions,a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to allow for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements.

  2. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated

  3. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    Science.gov (United States)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  4. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    Science.gov (United States)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  5. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    Science.gov (United States)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  6. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    Science.gov (United States)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  7. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  8. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    Science.gov (United States)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  9. Towards a generalization procedure for WRF mesoscale wind climatologies

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Casso, P.; Campmany, E.

    We present a method for generalizing wind climatologies generated from mesoscale model output (e.g. the Weather, Research and Forecasting (WRF) model.) The generalization procedure is based on Wind Atlas framework of WAsP and KAMM/WAsP, and been extensively in wind resources assessment in DTU Wind...... generalized wind climatologies estimated by the microscale model WAsP and the methodology presented here. For the Danish wind measurements the mean absolute error in the ‘raw’ wind speeds is 9.2%, while the mean absolute error in the generalized wind speeds is 4.1%. The generalization procedure has been...

  10. Wind Climate Analyses for SRTC's Central Climatology Site

    International Nuclear Information System (INIS)

    Weber, A.H.

    2003-01-01

    This report was written to present climatological summaries of the wind data at the Central Climatology (CC) tower in a convenient format and to point out some features of the wind speed and direction that have not been widely appreciated in the past. Short-term (two-week) wind roses provide a means to demonstrate the temporal and spatial relationships that wind speed and direction undergo using a ten-year database from the CC tower. These relationships are best demonstrated by examining the figures provided in this report or looking at loops of computer-generated images provided by the authors

  11. Deposition flux of Zn and Cr at the Cisadane estuary derived from 210Pb unsupported profile and 5 years flood-storm cycle

    International Nuclear Information System (INIS)

    Barokah Aliyanta and Ali Arman Lubi

    2007-01-01

    The measurement of the depth profile of 210 Pb unsupported and heavy metals within the core sediment samples were conducted at the Cisadane estuary at 2002 year. The two sediment cores were taken at the Tanjung Burung and Tiang Sampan estuary; respectively. The 210 Pb unsupported depth profile could be used for estimating the sedimentation rate, and for estimating deposition flux of Zn and Cr based on 5 years cycle of time. The sedimentation rates of dry sediment at the Tanjung Burung estuary were 4.142 g/cm 2 /yr, 2.518 g/cm 2 /yr and 1.27 g/cm 2 /yr in periods of 1997- 2002, 1992-1997 and 1987-1992; respectively. The sedimentation rates of dry sediment at the Tiang Sampan estuary were 3.626 g/cm 2 /yr, 2.8 g/cm 2 /yr and 1.41 g/cm 2 /yr in periods of 1997-2002, 1992-1997 and 1987-1992. Deposition flux of Zn : Cr at the Tanjung Burung estuary were 4.867 g/m 2 /yr : 0.9 g/m 2 /yr, 3.515 g/m 2 /yr : 0.69 g/m 2 /yr and 1.363 g/m 2 /yr : 0.2 g/m 2 /yr; in periods of 1997- 2002, 1992-1997 and 1987-1992; respectively. Deposition flux of Zn:Cr at the Tiang Sampan estuary were 3.368 g/m 2 /yr : 0.703 g/m 2 /yr, 2.814 g/m 2 /yr : 0.574 g/m 2 /yr and 1.593 g/m 2 /yr : 0.303 g/m 2 /yr; in periods of 1997- 2002, 1992-1997 and 1987-1992; respectively. (author)

  12. Some Spatial Aspects of Southeastern United States Climatology.

    Science.gov (United States)

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  13. Are climatological correlations with the Hale double sunspot cycle meaningful

    International Nuclear Information System (INIS)

    Goldberg, R.A.; Herman, J.R.

    1975-09-01

    A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A.D. is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepency can be resolved by suitable observations during the upcoming half decade

  14. Climatology and Landfall of Tropical Cyclones in the South- West ...

    African Journals Online (AJOL)

    Abstract—The climatology of cyclone formation and behaviour in the South-West Indian Ocean, including landfall in Mozambique and Madagascar, has been investigated. The records used were obtained by merging track data from the Joint Typhoon Warning Centre with data from La Reunion – Regional Specialised ...

  15. Cluster analysis for validated climatology stations using precipitation in Mexico

    NARCIS (Netherlands)

    Bravo Cabrera, J. L.; Azpra-Romero, E.; Zarraluqui-Such, V.; Gay-García, C.; Estrada Porrúa, F.

    2012-01-01

    Annual average of daily precipitation was used to group climatological stations into clusters using the k-means procedure and principal component analysis with varimax rotation. After a careful selection of the stations deployed in Mexico since 1950, we selected 349 characterized by having 35 to 40

  16. Climatology and trends of summer high temperature days in India ...

    Indian Academy of Sciences (India)

    patterns, there is clear change in climatological mean and coefficient of variation of HT days in a ... regions of India probably from mid 1990s. ... in extreme climate events are more sensitive to cli- ... C since mid-1990s in south, east, north.

  17. climatology of air mass trajectories and aerosol optical thickness ...

    African Journals Online (AJOL)

    George

    We present in this paper a climatological study of back trajectories of air masses ... obtained by inversion of photometric measurements of AERONET network. ... the arid Sahel region adjacent in the north to the Sahara ... the city a strategic position in the study of the .... atmospheric emergencies, diagnostic case studies and.

  18. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    Science.gov (United States)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; hide

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  19. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2011-03-01

    Full Text Available A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm. To date, a relatively coarse resolution (1° × 1° surface reflectance dataset from GOME (Global Ozone Monitoring Experiment Lambert-equivalent reflectivity (LER is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80 and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006 of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric

  20. Climatological aspects of drought in Ohio

    International Nuclear Information System (INIS)

    Rogers, J.C.

    1993-01-01

    Precipitation and Palmer hydrological drought index (PHDI) data have been used to identify past occurrences of Ohio drought, to illustrate the temporal variability occurring statewide within dry periods, and to compare some of the key dry spells to those of 1987-88 and 1991-92. Periods of hydrologic drought and low precipitation generally persist for 2 to 5 years and tend to cluster in time, such as occurred from 1930-1966. It is not uncommon for precipitation to return to normal or near normal conditions while short-term drought persists in terms of streamflow, ground water supply, and runoff, as measured by the PHDI. The period April 1930 to March 1931 is the driest on record in Ohio although longer periods of low precipitation have occurred from 1893-1896, 1952-1955, and 1963-1965. The temporal clusters of droughts are separated by prolonged wet periods, including those extending roughly from 1875-1893, 1905-1924, and 1966-1987. Correlations between Ohio monthly precipitation and mean air temperature suggest that drought is linked to unusually high summer temperatures through mechanisms such as increased evapotranspiration, leading to increased fluxes of sensible heat from dry soil surfaces. In winter, warm conditions tend to favor higher precipitation, soil recharge, and runoff. Variations in mean temperature and atmospheric circulation may also be linked to other observed climatic features such as long-term trends in soil-water recharge season (October-March) precipitation

  1. The modification of the typhoon rainfall climatology model in Taiwan

    Directory of Open Access Journals (Sweden)

    C.-S. Lee

    2013-01-01

    Full Text Available This study is focused on the modification of a typhoon rainfall climatological model, by using the dataset up to 2006 and including data collected from rain gauge stations established after the 921 earthquake (1999. Subsequently, the climatology rainfall models for westward- and northward-moving typhoons are established by using the typhoon track classification from the Central Weather Bureau. These models are also evaluated and examined using dependent cases collected between 1989 and 2006 and independent cases collected from 2007 to 2011. For the dependent cases, the average total rainfall at all rain gauge stations forecasted using the climatology rainfall models for westward- (W-TRCM12 and northward-moving (N-TRCM12 typhoons is superior to that obtained using the original climatological model (TRCM06. Model W-TRCM12 significantly improves the precipitation underestimation of model TRCM06. The independent cases show that model W-TRCM12 provides better accumulated rainfall forecasts and distributions than model TRCM06. A climatological model for accompanied northeastern monsoons (A-TRCM12 for special typhoon types has also been established. The current A-TRCM12 model only contains five historical cases and various typhoon combinations can cause precipitation in different regions. Therefore, precipitation is likely to be significantly overestimated and high false alarm ratios are likely to occur in specific regions. For example, model A-TRCM12 significantly overestimates the rainfall forecast for Typhoon Mitag, an independent case from 2007. However, it has a higher probability of detection than model TRCM06. From a disaster prevention perspective, a high probability of detection is much more important than a high false alarm ratio. The modified models can contribute significantly to operational forecast.

  2. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli

    2013-06-01

    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  3. Analysis of freshwater flux climatology over the Indian Ocean using the HOAPS data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Schulz, J.

    uses the three lower frequencies of the SSM/I where the main predictor is the polarisation difference at 37 GHz. The other frequencies are used to correct for atmospheric influences. The method distinguishes between rain free, light rain, and heavy rain... and the cloud top temperature. Arkin (1979) and Arkin and Meisner (1987) applied this technique to measure- ments of the Geostationary Operational Environmental Satellite (GOES) satellite series and were able to produce eight maps per day of the so called GOES...

  4. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  5. Climatological background for the utilization of energy from the sun

    International Nuclear Information System (INIS)

    Alterio, S.; Barabaro, S.; Coppolino, S.

    1983-01-01

    Information on the main climatological factors characterizing a given place or area is fundamental for the utilization of energy from the Sun and for other applications. This paper collects and analyses the daily, monthly and yearly average climatic data (insolation, sunshine, state of the sky, air temperature and relative humidity) provided by sixty thermopluviometric stations variously distributed in the territory of Sicily. The analysis is here performed both with a purely applicative view and in order to point out the connection between climate and physical environment. It leads to a better knowledge of solar climate and constitutes the basis for equally interesting further developments in the various fields of applied climatology: geomorfology, agriculture, biology, ecology, bioclimatology, etc

  6. Climatology of surface ultraviolet-radiation in Valparaiso, Chile

    International Nuclear Information System (INIS)

    Cordero, Raul R.; Roth, Pedro; Georgiev, Aleksandar; Silva, Luis da

    2005-01-01

    Despite the lack of long-term records, it is possible to describe many of the short term characteristics, dependencies and climatology of surface UV irradiance. This paper describes the climatology of on ground UV irradiance at Valparaiso (33.05 deg. S, 71.63 deg. W, sea level), Chile. The dependence of UV-B irradiance on ozone and on other climate variables is discussed with reference to our observations conducted during the last four years. Special attention was paid to detect 'ozone events' by surface UV irradiance measurements. By analyzing time series of the UV-B/UV-A ratio, we suppressed the cloud variability effect and detected events that implied ozone column changes of about 15%. According to our measurements, during the last four years, the ozone column over Valparaiso was not affected negatively by the Antarctic ozone hole phenomenon

  7. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    Science.gov (United States)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  8. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  9. Radar-based summer precipitation climatology of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Kašpar, Marek; Müller, Miloslav

    2018-01-01

    Roč. 38, č. 2 (2018), s. 677-691 ISSN 0899-8418 R&D Projects: GA ČR GA17-23773S; GA MZe QJ1520265 Institutional support: RVO:68378289 Keywords : weather radar * rain gauges * adjustment * precipitation climatology * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5202/full

  10. The mathematics of models for climatology and environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ildefonso Diaz, J. [ed.] [Universidad Complutense de Madrid (Spain). Facultad de Ciencas Matematicas

    1997-12-31

    This book presents a coherent survey of modelling in climatology and the environment and the mathematical treatment of those problems. It is divided into 4 parts containing a total of 16 chapters. Parts I, II and III are devoted to general models and part IV to models related to some local problems. Most of the mathematical models considered here involve systems of nonlinear partial differential equations.

  11. A Climatological Study of Hurricane Force Extratropical Cyclones

    OpenAIRE

    Laiyemo, Razaak O.

    2012-01-01

    Using data compiled by the National Weather Service Ocean Prediction Center, a hurricane force extratropical cyclone climatology is created for three cold seasons. Using the criteria of Sanders and Gyakum (1980), it is found that 75% of the 259 storms explosively deepened. The frequency maximum in the Atlantic basin is located to the southeast of Greenland. In the Pacific, two maxima to the east of Japan are identified. These results are in good agreement with previous studies, despite differ...

  12. Situational Lightning Climatologies for Central Florida: Phase IV

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-,20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  13. Spatial relationship between climatologies and changes in global vegetation activity.

    Science.gov (United States)

    de Jong, Rogier; Schaepman, Michael E; Furrer, Reinhard; de Bruin, Sytze; Verburg, Peter H

    2013-06-01

    Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982-2008). We demonstrate an additive spatial model with 0.5° resolution, consisting of a regression component representing climate-associated effects and a spatially correlated field representing the combined influence of other factors, including land-use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large-scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land-cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology). © 2013 Blackwell Publishing Ltd.

  14. Effects of undetected data quality issues on climatological analyses

    Directory of Open Access Journals (Sweden)

    S. Hunziker

    2018-01-01

    Full Text Available Systematic data quality issues may occur at various stages of the data generation process. They may affect large fractions of observational datasets and remain largely undetected with standard data quality control. This study investigates the effects of such undetected data quality issues on the results of climatological analyses. For this purpose, we quality controlled daily observations of manned weather stations from the Central Andean area with a standard and an enhanced approach. The climate variables analysed are minimum and maximum temperature and precipitation. About 40 % of the observations are inappropriate for the calculation of monthly temperature means and precipitation sums due to data quality issues. These quality problems undetected with the standard quality control approach strongly affect climatological analyses, since they reduce the correlation coefficients of station pairs, deteriorate the performance of data homogenization methods, increase the spread of individual station trends, and significantly bias regional temperature trends. Our findings indicate that undetected data quality issues are included in important and frequently used observational datasets and hence may affect a high number of climatological studies. It is of utmost importance to apply comprehensive and adequate data quality control approaches on manned weather station records in order to avoid biased results and large uncertainties.

  15. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    Science.gov (United States)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  16. The influence of grazing on surface climatological variables of tallgrass prairie. Final Technical Report

    International Nuclear Information System (INIS)

    Seastedt, T.R.; Dyer, M.I.; Turner, C.L.

    1992-01-01

    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables

  17. Mars Sample Return: The Next Step Required to Revolutionize Knowledge of Martian Geological and Climatological History

    Science.gov (United States)

    Mittlefehldt, D. W.

    2012-01-01

    The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic

  18. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  19. Flux vacua and supermanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Pietro Antonio [CERN, Theory Unit, CH-1211 Geneva, 23 (Switzerland); Marescotti, Matteo [Dipartimento di Fisica Teorica, Universita di Torino, Via Giuria 1, I-10125, Turin (Italy)

    2007-01-15

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds.

  20. Flux vacua and supermanifolds

    International Nuclear Information System (INIS)

    Grassi, Pietro Antonio; Marescotti, Matteo

    2007-01-01

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds

  1. Climatology of salt transitions and implications for stone weathering

    International Nuclear Information System (INIS)

    Grossi, C.M.; Brimblecombe, P.; Menendez, B.; Benavente, D.; Harris, I.; Deque, M.

    2011-01-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: → We introduce the notion of salt climatology for heritage conservation. → Climate affects salt thermodynamics on building materials. → We associate Koeppen-Geiger climate types with potential salt weathering. → We offer future projections of salt damage in Western Europe due to climate change. → Humid climate areas may change to

  2. Climatology of salt transitions and implications for stone weathering

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C.M., E-mail: c.grossi-sampedro@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Brimblecombe, P. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Menendez, B. [Geosciences et Environnement Cergy, Universite de Cergy-Pontoise 95031 Cergy-Pontoise cedex (France); Benavente, D. [Lab. Petrologia Aplicada, Unidad Asociada UA-CSIC, Dpto. Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante 03080 (Spain); Harris, I. [Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Deque, M. [Meteo-France/CNRM, CNRS/GAME, 42 Avenue Coriolis, F-31057 Toulouse, Cedex 01 (France)

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: {yields} We introduce the notion of salt climatology for heritage conservation. {yields} Climate affects salt thermodynamics on building materials. {yields} We associate Koeppen-Geiger climate types with potential salt weathering. {yields} We offer future projections of salt damage in Western Europe due to climate change. {yields} Humid

  3. An A-Train Climatology of Extratropical Cyclone Clouds

    Science.gov (United States)

    Posselt, Derek J.; van den Heever, Susan C.; Booth, James F.; Del Genio, Anthony D.; Kahn, Brian; Bauer, Mike

    2016-01-01

    Extratropical cyclones (ETCs) are the main purveyors of precipitation in the mid-latitudes, especially in winter, and have a significant radiative impact through the clouds they generate. However, general circulation models (GCMs) have trouble representing precipitation and clouds in ETCs, and this might partly explain why current GCMs disagree on to the evolution of these systems in a warming climate. Collectively, the A-train observations of MODIS, CloudSat, CALIPSO, AIRS and AMSR-E have given us a unique perspective on ETCs: over the past 10 years these observations have allowed us to construct a climatology of clouds and precipitation associated with these storms. This has proved very useful for model evaluation as well in studies aimed at improving understanding of moist processes in these dynamically active conditions. Using the A-train observational suite and an objective cyclone and front identification algorithm we have constructed cyclone centric datasets that consist of an observation-based characterization of clouds and precipitation in ETCs and their sensitivity to large scale environments. In this presentation, we will summarize the advances in our knowledge of the climatological properties of cloud and precipitation in ETCs acquired with this unique dataset. In particular, we will present what we have learned about southern ocean ETCs, for which the A-train observations have filled a gap in this data sparse region. In addition, CloudSat and CALIPSO have for the first time provided information on the vertical distribution of clouds in ETCs and across warm and cold fronts. We will also discuss how these observations have helped identify key areas for improvement in moist processes in recent GCMs. Recently, we have begun to explore the interaction between aerosol and cloud cover in ETCs using MODIS, CloudSat and CALIPSO. We will show how aerosols are climatologically distributed within northern hemisphere ETCs, and how this relates to cloud cover.

  4. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    Science.gov (United States)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  5. ?Strange Attractors (chaos) in the hydro-climatology of Colombia?

    International Nuclear Information System (INIS)

    Poveda Jaramillo, German

    1997-01-01

    Inter annual hydro-climatology of Colombia is strongly influenced by extreme phases of ENSO, a phenomenon exhibiting many features of chaotic non-linear system. The possible chaotic nature of Colombian hydrology is examined by using time series of monthly precipitation at Bogota (1866-1992) and Medellin (1908-1995), and average stream flows of the Magdalena River at Puerto Berrio. The power spectrum, the Haussdorf-Besikovich (fractal) dimension, the correlation dimension, and the largest Lyapunov exponent are estimated for the time series. Ideas of hydrologic forecasting and predictability are discussed in the context of nonlinear dynamical systems exhibit chaotic behavior

  6. Climatological effects on heliohydroelectric (HHE) power generation. [Based on evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kettani, M A

    1973-12-01

    Large scale conversion of solar energy into electricity can be efficiently made by transforming first the solar energy into hydraulic energy by evaporation. This concept has been presented at the International Conference of 1971. Since then work has been done to correlate the power generated by an HHE plant to the climatological variables of a region. The effects of such variables as air temperature, relative humidity, station pressure, and wind speed on the generated power are discussed. The Dawhat Salwah area is being emphasized; however, the results could be generalized to other arid zones.

  7. Climatology in support of climate risk management : a progress report.

    OpenAIRE

    McGregor, G.R.

    2015-01-01

    Climate risk management has emerged over the last decade as a distinct area of activity within the wider field of climatology. Its focus is on integrating climate and non-climate information in order to enhance the decision-making process in a wide range of climate-sensitive sectors of society, the economy and the environment. Given the burgeoning pure and applied climate science literature that addresses a range of climate risks, the purpose of this progress report is to provide an overview ...

  8. Black Sea Mixed Layer Sensitivity to Various Wind and Thermal Forcing Products on Climatological Time Scales

    National Research Council Canada - National Science Library

    Kara, A. B; Jurlburt, Harley; Wallcraft, Alan; Bourassa, Mark

    2005-01-01

    This study describes atmospheric forcing parameters constructed from different global climatologies, applied to the Black Sea, and investigates the sensitivity of HYbrid Coordinate Ocean Model (HYCOM...

  9. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  10. Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes.

    Directory of Open Access Journals (Sweden)

    David C Stoner

    Full Text Available The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004-2011. Regionally, both the start and peak of growing season ("Start" and "Peak", respectively are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual

  11. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  12. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  13. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  14. Summarizing metocean operating conditions as a climatology of marine hazards

    Science.gov (United States)

    Reid, Heather; Finnis, Joel

    2018-03-01

    Marine occupations are plagued by some of the highest accident and mortality rates of any occupation, due in part to the variety and severity of environmental hazards presented by the ocean environment. In order to better study and communicate the potential impacts of these hazards on occupational health and safety, a semi-objective, hazard-focused climatology of a particularly dangerous marine environment (Northwestern Atlantic) has been developed. Specifically, climate has been summarized as the frequency with which responsible government agencies are expected to issue relevant warnings or watches, couching results in language relevant to marine stakeholders. Applying cluster analysis to warning/watch frequencies identified seven distinct `hazard climatologies', ranging from near-Arctic conditions to areas dominated by calm seas and warm waters. Spatial and temporal variability in these clusters reflects relevant annual cycles, such as the advance/retreat of sea ice and shifts in the Atlantic storm track; the clusters also highlight regions and seasons with comparable operational risks. Our approach is proposed as an effective means to summarize and communicate marine risk with stakeholders, and a potential framework for describing climate change impacts.

  15. Climatology of the scintillation onset over southern Brazil

    Science.gov (United States)

    Sousasantos, Jonas; de Oliveira Moraes, Alison; Sobral, José H. A.; Muella, Marcio T. A. H.; de Paula, Eurico R.; Paolini, Rafael S.

    2018-04-01

    This work presents an analysis of the climatology of the onset time of ionospheric scintillations at low latitude over the southern Brazilian territory near the peak of the equatorial ionization anomaly (EIA). Data from L1 frequency GPS receiver located in Cachoeira Paulista (22.4° S, 45.0° W; dip latitude 16.9° S), from September 1998 to November 2014, covering a period between solar cycles 23 and 24, were used in the present analysis of the scintillation onset time. The results show that the start time of the ionospheric scintillation follows a pattern, starting about 40 min earlier, in the months of November and December, when compared to January and February. The analyses presented here show that such temporal behavior seems to be associated with the ionospheric prereversal vertical drift (PRVD) magnitude and time. The influence of solar activity in the percentage of GPS links affected is also addressed together with the respective ionospheric prereversal vertical drift behavior. Based on this climatological study a set of empirical equations is proposed to be used for a GNSS alert about the scintillation prediction. The identification of this kind of pattern may support GNSS applications for aviation and oil extraction maritime stations positioning.

  16. P fluxes and exotic branes

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Davide M. [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Risoli, Stefano [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-12-21

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T{sup 6}/[ℤ{sub 2}×ℤ{sub 2}] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  17. P fluxes and exotic branes

    International Nuclear Information System (INIS)

    Lombardo, Davide M.; Riccioni, Fabio; Risoli, Stefano

    2016-01-01

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T 6 /[ℤ 2 ×ℤ 2 ] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  18. Climatological Implications of Deep-Rooting in Water-Limited Ecosystems

    Science.gov (United States)

    Amenu, G. G.; Kumar, P.

    2005-12-01

    In vegetated ecosystems, plants are the primary channels that connect the soil with the atmosphere (through water, energy, carbon, and nutrient cycles), with plant roots controlling the below-ground dynamics. Recently, several observational evidences are emerging which suggests the existence of plant roots much deeper in the soil/rock profile than the depth usually perceived in existing hydroclimatological and hydroecological models. In this study, using land surface model, we assess the effects of vegetation deep-rooting on (a) moisture and temperature redistribution in the soil profile, (b) energy flux partitioning at the land surface, and (c) net primary productivity of vegetated ecosystems. Three sites characterized by different vegetation, soil, and climate (all located in arid to sub-humid regions of the United States) were studied. The sites include the Mogollon Rim in Arizona, the Edwards Plateau in Texas, and the Southern Piedmont in Georgia. Soil depths of up to 10 m are investigated. Results of this modeling effort and its implications for climatological modeling will be presented.

  19. Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters

    Science.gov (United States)

    Liman, Julian; Schröder, Marc; Fennig, Karsten; Andersson, Axel; Hollmann, Rainer

    2018-03-01

    Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an

  20. Global surface wind and flux fields from model assimilation of Seasat data

    Science.gov (United States)

    Atlas, R.; Busalacchi, A. J.; Kalnay, E.; Bloom, S.; Ghil, M.

    1986-01-01

    Procedures for dealiasing Seasat data and developing global surface wind and latent and sensible heat flux fields are discussed. Seasat data from September 20, 1978 was dealiased using the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system. The wind data obtained with the objective GLA forecast model are compared to the data subjectively dealiased by Peteherych et al. (1984) and Hoffman (1982, 1984). The GLA procedure is also verified using simulated Seasat data. The areas of high and low heat fluxes and cyclonic and anticyclonic wind stresses detected in the generated fields are analyzed and compared to climatological fields. It is observed that there is good correlation between the time-averaged analyses of wind stress obtained subjectively and objectively, and the monthly mean wind stress and latent fluxes agree with climatological fields and atmospheric and oceanic features.

  1. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  2. Abstraction the public from scientific - applied meteorological-climatologic data

    Science.gov (United States)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  3. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change.

    Science.gov (United States)

    Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2017-12-20

    Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.

  4. Snow Climatology of Arctic Sea Ice: Comparison of Reanalysis and Climate Model Data with In Situ Measurements

    Science.gov (United States)

    Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.

    2015-12-01

    Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.

  5. Updated climatological model predictions of ionospheric and HF propagation parameters

    International Nuclear Information System (INIS)

    Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.

    1991-01-01

    The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs

  6. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    Kodra, Evan; Ganguly, Auroop R; Ghosh, Subimal

    2012-01-01

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  7. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  8. Climatology and forest decay - stresses caused by dry periods

    International Nuclear Information System (INIS)

    Havlik, D.

    1991-01-01

    In the discussion of forest decline in the Eighties, stresses due to dry weather is often named as a secondary cause. The concept of 'climatological dry periods' is introduced in this article and applied to records for the Basel and Aachen regions. The time distribution of dry periods of different length and different water deficiency (40 mm, 60 mm, 100 mm) is analyzed. In the case of the Basel data, the dry periods are related to the 'forest damage caused by draught' recorded for the Basel region since 1930. The results support the theory that increasingly larger and more frequent dry periods with water shortage have contributed significantly to forest damage in the last 15 years. Apart from the 'dry stress' itself, also the enhanced production of photooxidants is a damaging mechanism. (orig.) [de

  9. The limitation and modification of flux-limited diffusion theory

    International Nuclear Information System (INIS)

    Liu Chengan; Huang Wenkai

    1986-01-01

    The limitation of various typical flux-limited diffusion theory and advantages of asymptotic diffusion theory with time absorption constant are analyzed and compared. The conclusions are as following: Though the flux-limited problem in neutron diffusion theory are theoretically solved by derived flux-limited diffusion equation, it's going too far to limit flux due to the inappropriate assumption in deriving flux-limited diffusion equation. The asymptotic diffusion theory with time absorption constant has eliminated the above-mentioned limitation, and it is more accurate than flux-limited diffusion theory in describing neutron transport problem

  10. Fun Teaching: The Key to the Future Climatology

    Science.gov (United States)

    Mulvey, G.

    2016-12-01

    In general meteorology is a science of immediate impact. What will the weather be tomorrow or next week? Climatology and climate change is the science of our long range past and future. Decisions made in the past, now, and in the future on climate change issues did and will continue to impact the global climate. It is essential that current and future generations understand the causes of climate change to make informed decisions regarding individual and government actions needed to mitigate human impacts on the future climate. The university challenge is make climatology an exciting and dynamic adventure into the past, present and future. Instructor and supporting organizations have stepped outside the "old yellow notes" approach to enable students to progress beyond remember, understand, and apply; to analyze, evaluate and create. Responding to this instructional challenge by shifting instructional techniques and tools to a new paradigm does not happen overnight. The instructional strategies to make this jump are known in general, but not in specific. This paper deals with examples of how to translate the instructional strategies into practice in ways that are fun for students and instructors. Techniques to be described include interactive discussions, debates and team challenges, such as: - Describing continental climates during past geological periods - In-class teams debates on legislature to control/modify human CO2 releases Low or no cost teaching aids such as video clips, demonstrations, specimens, and experiments will be described with outcomes and resources interest. Some examples to be discussed are - Tree cookies, cross sections - Ocean core smear slide samples of diatoms, foraminifera, etc. - Ice pack/glacial melt experiments - Glacial flow and interpreting glacial ice cores experiment - Field trips to observe geological strata and geological samples - Storytelling - the shared experiences of each instructor

  11. Climatology of salt transitions and implications for stone weathering.

    Science.gov (United States)

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The surface climatology of the Ross Ice Shelf Antarctica.

    Science.gov (United States)

    Costanza, Carol A; Lazzara, Matthew A; Keller, Linda M; Cassano, John J

    2016-12-01

    The University of Wisconsin-Madison Antarctic Automatic Weather Station (AWS) project has been making meteorological surface observations on the Ross Ice Shelf (RIS) for approximately 30 years. This network offers the most continuous set of routine measurements of surface meteorological variables in this region. The Ross Island area is excluded from this study. The surface climate of the RIS is described using the AWS measurements. Temperature, pressure, and wind data are analysed on daily, monthly, seasonal, and annual time periods for 13 AWS across the RIS. The AWS are separated into three representative regions - central, coastal, and the area along the Transantarctic Mountains - in order to describe specific characteristics of sections of the RIS. The climatology describes general characteristics of the region and significant changes over time. The central AWS experiences the coldest mean temperature, and the lowest resultant wind speed. These AWSs also experience the coldest potential temperatures with a minimum of 209.3 K at Gill AWS. The AWS along the Transantarctic Mountains experiences the warmest mean temperature, the highest mean sea-level pressure, and the highest mean resultant wind speed. Finally, the coastal AWS experiences the lowest mean pressure. Climate indices (MEI, SAM, and SAO) are compared to temperature and pressure data of four of the AWS with the longest observation periods, and significant correlation is found for most AWS in sea-level pressure and temperature. This climatology study highlights characteristics that influence the climate of the RIS, and the challenges of maintaining a long-term Antarctic AWS network. Results from this effort are essential for the broader Antarctic meteorology community for future research.

  13. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  14. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    Science.gov (United States)

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  15. Climatology and decadal variability of the Ross Sea shelf waters

    Directory of Open Access Journals (Sweden)

    A. Russo

    2011-06-01

    Full Text Available The World Ocean Database 2001 data located in the Ross Sea (named WOD01 and containing data in this region since 1928 are merged with recent data collected by the Italian expeditions (CLIMA dataset in the period November 1994-February 2004 in the same area. From this extended dataset, austral summer climatologies of the main Ross Sea subsurface, intermediate and bottom water masses: High Salinity Shelf Water (HSSW, Low Salinity Shelf Water (LSSW, Ice Shelf Water (ISW and Modified Circumpolar Deep Water (MCDW have been drawn. The comparison between the WOD01_1994 climatologies (a subset of the WOD01 dataset until April 1994 and the CLIMA ones for the period 1994/95-2003/04 showed significant changes occurred during the decade. The freshening of the Ross Sea shelf waters which occurred during the period 1960-2000, was confirmed by our analysis in all the main water masses, even though with a spatially varying intensity. Relevant variations were found for the MCDW masses, which appeared to reduce their presence and to deepen; this can be ascribed to the very limited freshening of the MCDW core, which allowed an increased density with respect to the surrounding waters. Variations in the MCDW properties and extension could have relevant consequences, e.g. a decreased Ross Ice Shelf basal melting or a reduced supply of nutrients, and may also be indicative of a reduced thermohaline circulation within the Ross Sea. Shelf Waters (SW having neutral density γn > 28.7 Kg m-3, which contribute to form the densest Antarctic Bottom Waters (AABW, showed a large volumetric decrease in the 1994/95-2003/04 decade, most likely as a consequence of the SW freshening.

  16. Lightning climatology in the Congo Basin: detailed analysis

    Science.gov (United States)

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  17. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  18. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  19. Splitting of inviscid fluxes for real gases

    Science.gov (United States)

    Liou, Meng-Sing; Van Leer, Bram; Shuen, Jian-Shun

    1990-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations for auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  20. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    International Nuclear Information System (INIS)

    Kowalski, Greg M.; De Souza, David P.; Risis, Steve; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Lee-Young, Robert S.; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-01-01

    Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U- 13 C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13 C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac insulin

  1. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Risis, Steve [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Lee-Young, Robert S. [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-08-07

    Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-{sup 13}C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac

  2. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  3. Modern Estimates of Global Water Cycle Fluxes

    Science.gov (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  4. Wave climatology of the Indian Ocean derived from altimetry and wave model

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.

    are found to be low compared to model values. As expected, central Indian Ocean region is found to have higher waves, generally swells, generated by strong winds prevailing over there in all seasons. In July, the entire Arabian Sea is under the influence...

  5. Synoptic climatology evaluation of wind fields in the alpine region

    International Nuclear Information System (INIS)

    Lotteraner, C.

    2009-01-01

    The present investigation basically consists of two parts: In the first part, a 22-year set of 3-hourly 2D-wind analyses (1980-2001) that have been generated within the framework of the VERACLIM (VERA-Climatology) project are evaluated climatologically over the Alpine region. VERACLIM makes use of the VERA (Vienna Enhanced Resolution Analysis) analysis system, combining both the high spatial resolution as provided by the analysis algorithm and the high temporal resolution of a comprehensive synop data set, provided by ECMWF's (European Centre for Medium-Range Weather Forecasts) data archives. The obtained charts of averaged wind speed and the mean wind vector as well as the evaluations of frequency distribution of wind speed and wind direction on gridpoints for several different time periods should be interpreted very carefully as orographic influence is not taken into consideration in the analysis algorithm. However, the 3-hourly wind analyses of the time period 1980-2001 are suitable for investigation of the so-called Alpine Pumping. For that purpose, an arbitrarily chosen border has been drawn around the Alps and the Gauss theorem has been applied in a way that the mean diurnal variations of the two-dimensional divergence over the Alps could be evaluated. The sinusoidal run of the curve not only visualizes the 'breathing of the Alps' in an impressive way, it also enables us to roughly estimate the diurnal air volume exchange on days with a weak large-scale pressure gradient and strong incoming solar radiation. The second part of this investigation deals with the development of three different 'wind-fingerprints' which are included in the VERA-system in order to improve the analysis quality. The wind-fingerprints are designed in a way that they reflect the wind field pattern in the Alpine region on days with weak large-scale pressure gradient and strong incoming solar radiation. Using the fingerprints, both the effects of channelling as well as thermally induced

  6. A Precipitation Climatology of the Snowy Mountains, Australia

    Science.gov (United States)

    Theobald, Alison; McGowan, Hamish; Speirs, Johanna

    2014-05-01

    The precipitation that falls in the Snowy Mountains region of southeastern Australia provides critical water resources for hydroelectric power generation. Water storages in this region are also a major source of agricultural irrigation, environmental flows, and offer a degree of flood protection for some of the major river systems in Australia. Despite this importance, there remains a knowledge gap regarding the long-term, historic variability of the synoptic weather systems that deliver precipitation to the region. This research aims to increase the understanding of long-term variations in precipitation-bearing weather systems resulting in runoff into the Snowy Mountains catchments and reservoirs, and the way in which these are influenced by large-scale climate drivers. Here we present initial results on the development of a climatology of precipitation-bearing synoptic weather systems (synoptic typology), spanning a period of over 100 years. The synoptic typology is developed from the numerical weather model re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), in conjunction with regional precipitation and temperature data from a network of private gauges. Given the importance of surface, mid- and upper-air patterns on seasonal precipitation, the synoptic typing will be based on a range of meteorological variables throughout the depth of the troposphere, highlighting the importance of different atmospheric levels on the development and steering of synoptic precipitation bearing systems. The temporal and spatial variability of these synoptic systems, their response to teleconnection forcings and their contribution to inflow generation in the headwater catchments of the Snowy Mountains will be investigated. The resulting climatology will provide new understanding of the drivers of regional-scale precipitation variability at inter- and intra-annual timescales. It will enable greater understanding of how variability in synoptic scale

  7. Antecedent precipitation index evaluation at chosen climatological stations

    Directory of Open Access Journals (Sweden)

    Silvie Kozlovská

    2010-01-01

    Full Text Available The water retention capacity of a landscape, usually measured for a catchment basin, is a very important and decisive characteristic to identify the runoff amount from the catchment area and, in consequence, for antierosion and flood protection measures. Besides, creating water reserves in the landscape and keeping the water in them is also rather important.Soil humidity contributes to the calculation of potential water retention through modelling the runoff amount and peak discharge from the catchment basin within an area not larger than 5–10 km2. This method is based on curve number values (CN, which are tabulated according to hydrological characteristics of soils, land use, vegetation cover, tillage, antierosion measures and soil humidity, estimated as a 5-day sum of preceding precipitation values. This estimation is known as the antecedent precipitation index and it is divided into 3 degrees – I, II, III. Degree I indicates dry soil but still moist enough to till, whereas degree III means that the soil is oversaturated by water from preceding rainfall. Degree II is commonly used in this context as the antecedent precipitation index. The aim of this paper is to obtain real antecedent precipitation index values in given climatological stations (Brno, Dačice, Holešov, Náměšť nad Oslavou, Strážnice, Telč – Kostelní Myslová, Velké Meziříčí, Znojmo – Kuchařovice for the period of years 1961 – 2009. Daily precipitation sums higher than 30 mm were considered to be the best candidate for such precipitation value since this occurs approximately once a year in studied areas. The occurence of these sums was also analysed for each month within the growing season (April to October. The analysed data was tabulated by climatological stations in order to check the real occurence of all antecedent precipitation index degrees within the studied period.Finally, the effects of different antecedent precipitation index values on the

  8. Available climatological and oceanographical data for site investigation program

    International Nuclear Information System (INIS)

    Lindell, S.; Ambjoern, C.; Juhlin, B.; Larsson-McCann, S.; Lindquist, K.

    2000-03-01

    Information on available data, measurements and models for climate, meteorology, hydrology and oceanography for six communities have been analysed and studied. The six communities are Nykoeping, Oesthammar, Oskarshamn, Tierp, Hultsfred and Aelvkarleby all of them selected by Svensk Kaernbraenslehantering AB, SKB, for a pre-study on possibilities for deep disposal of used nuclear fuel. For each of them a thorough and detailed register of available climatological data together with appropriate statistical properties are listed. The purpose is to compare the six communities concerning climatological and oceanographical data available and analyse the extent of new measurements or model applications needed for all of the selected sites. Statistical information on precipitation, temperature and runoff has good coverage in all of the six communities. If new information concerning any of these variables is needed in sites where no data collection exist today new installation can be made. Data on precipitation in form of snow and days with snow coverage is also available but to a lesser extent. This concerns also days with ground frost and average ground frost level where there is no fully representation of data. If more information is wanted concerning these variables new measurements or model calculations must be initiated. Data on freeze and break-up of ice on lakes is also insufficient but this variable can be calculated with good result by use of one-dimensional models. Data describing air pressure tendency and wind velocity and direction is available for all communities and this information should be sufficient for the purpose of SKB. This is also valid for the variables global radiation and duration of sunshine where no new data should be needed. Measured data on evaporation is normally not available in Sweden more than in special research basins. Actual evaporation is though a variable that easily can be calculated by use of models. There are many lakes in the six

  9. Climatology of damage-causing hailstorms over Germany

    Science.gov (United States)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to

  10. Available climatological and oceanographical data for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, S.; Ambjoern, C.; Juhlin, B.; Larsson-McCann, S.; Lindquist, K. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2000-03-15

    Information on available data, measurements and models for climate, meteorology, hydrology and oceanography for six communities have been analysed and studied. The six communities are Nykoeping, Oesthammar, Oskarshamn, Tierp, Hultsfred and Aelvkarleby all of them selected by Svensk Kaernbraenslehantering AB, SKB, for a pre-study on possibilities for deep disposal of used nuclear fuel. For each of them a thorough and detailed register of available climatological data together with appropriate statistical properties are listed. The purpose is to compare the six communities concerning climatological and oceanographical data available and analyse the extent of new measurements or model applications needed for all of the selected sites. Statistical information on precipitation, temperature and runoff has good coverage in all of the six communities. If new information concerning any of these variables is needed in sites where no data collection exist today new installation can be made. Data on precipitation in form of snow and days with snow coverage is also available but to a lesser extent. This concerns also days with ground frost and average ground frost level where there is no fully representation of data. If more information is wanted concerning these variables new measurements or model calculations must be initiated. Data on freeze and break-up of ice on lakes is also insufficient but this variable can be calculated with good result by use of one-dimensional models. Data describing air pressure tendency and wind velocity and direction is available for all communities and this information should be sufficient for the purpose of SKB. This is also valid for the variables global radiation and duration of sunshine where no new data should be needed. Measured data on evaporation is normally not available in Sweden more than in special research basins. Actual evaporation is though a variable that easily can be calculated by use of models. There are many lakes in the six

  11. Hanford Site Climatological Data Summary 2001 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J.; Ramsdell, James V.; Shaw, Wendy J.

    2001-01-01

    This document presents the climatological data measured at the U. S. Department of Energy's Hanford Site for calendar year 2001. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. This report contains updated historical information for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink (and others) (1999, 2000, 2001) and Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, data from Appendix B--Wind Climatology (Hoitink (and others) 1994) are excluded. Calendar year 2001 was slightly warmer than normal at the Hanford Meteorology Station with an average temperature of 54.3 F, 0.7 F above normal (53.6 F). The hottest temperature was 106 F on July 4, while the coldest was 16 F on December 25. For the 12-month period, 8 months were warmer than normal, and 4 months were cooler than normal. Precipitation for 2001 totaled 6.66 inches, 95% of normal (6.98 inches); calendar year snowfall totaled 15.1 inches (compared to the normal of 15.4 inches). Calendar year 2001 had an average wind speed of 7.6 mph, which was normal (7.6 mph). There were 31 days with peak gusts (ge)40 mph, compared to a yearly average of 27 days. The peak gust during the year was 69 mph on December 16. November 2001 established new records for both days and hours with dense fog (visibility (le)1/4 mile). There were 14 days and 99.4 hours of dense fog reported, compared to an average of 5.5 days with 22.0 hours. The previous record was 13 days in 1965 and 71.4 hours in 1952. The heating-degree days for 2000-2001 were 5,516 (7% above the 5,160 normal). Cooling-degree days for 2001 were 1,092 (8% above the 1,014 normal)

  12. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  13. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  14. Synthesis of results obtained within the framework of international satellite land surface climatology projects. Final report

    International Nuclear Information System (INIS)

    Bolle, H.J.; Katergiannakis, U.; Billing, H.; Koslowsky, D.; Langer, I.; Tonn, W.

    1993-01-01

    In large-scale field experiments, methods were validated with whose aid characteristics of the terrestrial surfaces can be derived from satellite data; these characteristics are required for the exploration of the global change. The report gives an overview. The following topics are treated: Problems of calibration of satellite sensors; the geographical matching of ground observations to the satellite measurements; necessary corrections; dimensional integration of the data up to the dimensions of raster grids of global climate models. The report discusses in detail in what manner the remote exploration data can be connected with information on the terrestrial surfaces, in particular with energy balances. Few experiments only have been executed up to now within the framework of land surface climatology; however, they contributed a great deal to the better understanding of linking satellite data with terrestrial surface processes. If one wants to apply the elaborated methods globally wants, one needs, however, complex algorithms as well as - at least for the time being - constant quality control in the different landscape regions of the earth. (orig.) [de

  15. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, M.; Kriebel, K.T.

    2000-07-01

    Three different climates have been identified by our evaluation of AVHRR (advanced very high resolution radiometer) data using APOLLO (AVHRR processing scheme over land, clouds and ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15 km by 14 km. The study area only comprises 540 km by 560 km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At nonvegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps. (orig.)

  16. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  17. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Directory of Open Access Journals (Sweden)

    M. Ern

    2018-04-01

    Full Text Available Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs and chemistry climate models (CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE. GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER. Typical distributions (zonal averages and global maps of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  18. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Science.gov (United States)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658.

  19. Modeling drought impact occurrence based on climatological drought indices for four European countries

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  20. Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields

    Science.gov (United States)

    Kumar, M.; Parmar, K. S.; Kumar, D. B.; Mhawish, A.; Broday, D. M.; Mall, R. K.; Banerjee, T.

    2018-05-01

    Long-term aerosol climatology is derived using Terra MODIS (Collection 6) enhanced Deep Blue (DB) AOD retrieval algorithm to investigate decadal trend (2006-2015) in columnar aerosol loading, future scenarios and potential source fields over the Indo-Gangetic Plain (IGP), South Asia. Satellite based aerosol climatology was analyzed in two contexts: for the entire IGP considering area weighted mean AOD and for nine individual stations located at upper (Karachi, Multan, Lahore), central (Delhi, Kanpur, Varanasi, Patna) and lower IGP (Kolkata, Dhaka). A comparatively high aerosol loading (AOD: 0.50 ± 0.25) was evident over IGP with a statistically insignificant increasing trend of 0.002 year-1. Analysis highlights the existing spatial and temporal gradients in aerosol loading with stations over central IGP like Varanasi (decadal mean AOD±SD; 0.67 ± 0.28) and Patna (0.65 ± 0.30) exhibit the highest AOD, followed by stations over lower IGP (Kolkata: 0.58 ± 0.21; Dhaka: 0.60 ± 0.24), with a statistically significant increasing trend (0.0174-0.0206 year-1). In contrast, stations over upper IGP reveal a comparatively low aerosol loading, having an insignificant increasing trend. Variation in AOD across IGP is found to be mainly influenced by seasonality and topography. A distinct "aerosol pool" region over eastern part of Ganges plain is identified, where meteorology, topography, and aerosol sources favor the persistence of airborne particulates. A strong seasonality in aerosol loading and types is also witnessed, with high AOD and dominance of fine particulates over central to lower IGP, especially during post-monsoon and winter. The time series analyses by autoregressive integrated moving average (ARIMA) indicate contrasting patterns in randomness of AOD over individual stations with better performance especially over central IGP. Concentration weighted trajectory analyses identify the crucial contributions of western dry regions and partial contributions from

  1. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology.

    Science.gov (United States)

    Gutenbrunner, Christoph; Bender, Tamas; Cantista, Pedro; Karagülle, Zeki

    2010-09-01

    Health Resort Medicine, Balneology, Medical Hydrology and Climatology are not fully recognised as independent medical specialties at a global international level. Analysing the reasons, we can identify both external (from outside the field) and internal (from inside the field) factors. External arguments include, e.g. the lack of scientific evidence, the fact that Balneotherapy and Climatotherapy is not used in all countries, and the fact that Health Resort Medicine, Balneology, Medical Hydrology and Climatology focus only on single methods and do not have a comprehensive concept. Implicit barriers are the lack of international accepted terms in the field, the restriction of being allowed to practice the activities only in specific settings, and the trend to use Balneotherapy mainly for wellness concepts. Especially the implicit barriers should be subject to intense discussions among scientists and specialists. This paper suggests one option to tackle the problem of implicit barriers by making a proposal for a structure and description of the medical field, and to provide some commonly acceptable descriptions of content and terminology. The medical area can be defined as "medicine in health resorts" (or "health resort medicine"). Health resort medicine includes "all medical activities originated and derived in health resorts based on scientific evidence aiming at health promotion, prevention, therapy and rehabilitation". Core elements of health resort interventions in health resorts are balneotherapy, hydrotherapy, and climatotherapy. Health resort medicine can be used for health promotion, prevention, treatment, and rehabilitation. The use of natural mineral waters, gases and peloids in many countries is called balneotherapy, but other (equivalent) terms exist. Substances used for balneotherapy are medical mineral waters, medical peloids, and natural gases (bathing, drinking, inhalation, etc.). The use of plain water (tap water) for therapy is called hydrotherapy

  2. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology

    Science.gov (United States)

    Gutenbrunner, Christoph; Bender, Tamas; Cantista, Pedro; Karagülle, Zeki

    2010-09-01

    Health Resort Medicine, Balneology, Medical Hydrology and Climatology are not fully recognised as independent medical specialties at a global international level. Analysing the reasons, we can identify both external (from outside the field) and internal (from inside the field) factors. External arguments include, e.g. the lack of scientific evidence, the fact that Balneotherapy and Climatotherapy is not used in all countries, and the fact that Health Resort Medicine, Balneology, Medical Hydrology and Climatology focus only on single methods and do not have a comprehensive concept. Implicit barriers are the lack of international accepted terms in the field, the restriction of being allowed to practice the activities only in specific settings, and the trend to use Balneotherapy mainly for wellness concepts. Especially the implicit barriers should be subject to intense discussions among scientists and specialists. This paper suggests one option to tackle the problem of implicit barriers by making a proposal for a structure and description of the medical field, and to provide some commonly acceptable descriptions of content and terminology. The medical area can be defined as “medicine in health resorts” (or “health resort medicine”). Health resort medicine includes “all medical activities originated and derived in health resorts based on scientific evidence aiming at health promotion, prevention, therapy and rehabilitation”. Core elements of health resort interventions in health resorts are balneotherapy, hydrotherapy, and climatotherapy. Health resort medicine can be used for health promotion, prevention, treatment, and rehabilitation. The use of natural mineral waters, gases and peloids in many countries is called balneotherapy, but other (equivalent) terms exist. Substances used for balneotherapy are medical mineral waters, medical peloids, and natural gases (bathing, drinking, inhalation, etc.). The use of plain water (tap water) for therapy is called

  3. Steps Toward an EOS-Era Aerosol Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  4. Climatology and Impact of Convection on the Tropical Tropopause Layer

    Science.gov (United States)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  5. Kuroshio Pathways in a Climatologically-Forced Model

    Science.gov (United States)

    Douglass, E. M.; Jayne, S. R.; Bryan, F. O.; Peacock, S.; Maltrud, M. E.

    2010-12-01

    A high resolution ocean model forced with an annually repeating atmosphere is used to examine variability of the Kuroshio, the western boundary current in the North Pacific Ocean. A large meander in the path of the Kuroshio south of Japan develops and disappears in a highly bimodal fashion on decadal time scales. This meander is comparable in timing and spatial extent to an observed feature in the region. Various characteristics of the large meander are examined, including shear, transport and velocity. The many similarities between the model and observations indicate that the meander results from intrinsic oceanic variability, which is represented in this climatologically-forced model. Each large meander is preceded by a smaller "trigger" meander that originates at the southern end of Kyushu, moves up the coast, and develops into the large meander. However there are also many meanders very similar in character to the trigger meander that do not develop into large meanders. The mechanism that determines which trigger meanders develop into large meanders is as yet undetermined.

  6. Borneo Vortices: A case study and its relation to climatology

    Science.gov (United States)

    Braesicke, P.; Ooi, S. H.; Samah, A. A.

    2012-04-01

    Borneo vortices (BVs) develop over the South China Sea and are main drivers for the formation of deep convection and heavy rainfall in East Malaysia. We present a case study of a cold-surge-induced BV during January 2010 in which the export of potential energy lead to a strengthening of the subtropical jet. Potential vorticity (PV) and water vapour analyses confirm a significant impact of the BV on upper tropospheric composition. Dry, high PV air is found far below 100 hPa in the vicinty of the vortex. Using a PV threshold analysis of ERA-Interim data we construct a climatological composite of similar events and characterise the thermal, dynamical and composition structure of a 'typical' BV. We note the preferential formation of BVs during ENSO cold conditions and show that two effects contribute to the formation of the dry upper layer above a BV: Air is vertically transported upwards in the BV whilst precipitating and the large scale flow in which the BV is embedded advect dry, ozone rich air from the equatorial TTL over the BV. Thus the occurence frequency of BVs is important for the regional variability of upper tropospheric/lower stratospheric composition.

  7. TRMM's Contribution to Our Knowledge of Climatology, Storms and Floods

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has successfully completed nearly ten years in orbit. A brief review of the history and accomplishments of this joint mission between the U.S. and Japan is presented. Research highlights will focus on the seasonal cycle of a TRMM-based rainfall climatology, which takes advantage of the multiple rain estimates available from TRMM. Examples will be given of the use of TRMM data to diagnose the impact of man on precipitation patterns through urbanization and the effect of pollution. Use of TRMM data for tropical cyclone operational analysis in the U.S. will also be shown. Methods for generating 3-hourly rainfall information from multiple satellites using TRMM to calibrate all the information will be described as will application of such information to study extreme rainfall events and associated floods and landslides. These results will emphasize the breadth of science success achieved with the 10-year record of observations from the only rain radar and passive microwave instrument combination in space. The outlook for continued operation of the TRMM satellite and progress in TRMM science and applications will be addressed.

  8. Synoptic and climatological aspects of extra-tropical cyclones

    Science.gov (United States)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  9. Climatology and classification of spring Saharan cyclone tracks

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, A. [Reading University, Department of Meteorology, PO Box 243, Reading (United Kingdom); Awad, A. [King Abdulaziz University, Department of Meteorology, Jeddah (Saudi Arabia); Ammar, K. [Meteorological Authority, Department of Research, Cairo (Egypt)

    2011-08-15

    Spring Saharan cyclones constitute a dominant feature of the not-well-explored Saharan region. In this manuscript, a climatological analysis and classification of Saharan cyclone tracks are presented using 6-hourly NCEP/NCAR sea level pressure (SLP) reanalyses over the Sahara (10 W-50 E, 20 N-50 N) for the Spring (March-April-May) season over the period 1958-2006. A simple tracking procedure based on following SLP minima is used to construct around 640 Spring Saharan cyclone tracks. Saharan cyclones are found to be short-lived compared to their extratropical counterparts with an e-folding time of about 3 days. The lee side of the west Atlas mountain is found to be the main cyclogenetic region for Spring Saharan cyclones. Central Iraq is identified as the main cyclolytic area. A subjective procedure is used next to classify the cyclone tracks where six clusters are identified. Among these clusters the Western Atlas-Asia Minor is the largest and most stretched, whereas Algerian Sahara-Asia Minor is composed of the most long-lived tracks. Upper level flow associated with the tracks has also been examined and the role of large scale baroclinicity in the growth of Saharan cyclones is discussed. (orig.)

  10. A cloud climatology of the Southern Great Plains ARM CART

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, S.M.; Krueger, S.K.; Mace, G.G.

    2000-05-15

    Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports that have been edited to facilitate cloud analysis. Two stations near the Southern Great Plains (SGP) Cloud and Radiation Test Bed (CART) in north-central Oklahoma (Oklahoma City, Oklahoma and Wichita, Kansas) were selected. The ECR data span a 10-yr period from December 1981 to November 1991. The International Satellite Cloud Climatology Project (ISCCP) provided cloud amounts over the SGP CART for an 8-yr period (1983--91). Cloud amounts were also obtained from Micro Pulse Lidar (MPL) and Belfort Ceilometer (BLC) cloud-base height measurements made at the SGP CART over a 1-yr period. The annual and diurnal cycles of cloud amount as a function of cloud height and type were analyzed. The three datasets closely agree for total cloud amount. Good agreement was found in the ECR and MPL-BLC monthly low cloud amounts. With the exception of summer and midday in other seasons, the ISCCP low cloud amount estimates are generally 5%--10% less than the others. The ECR high cloud amount estimates are typically 10%--15% greater than those obtained from either the ISCCP or MPL-BLC datasets. The observed diurnal variations of altocumulus support the authors' model results of radiatively induced circulations.

  11. Agro-climatology of the Colombian Caribbean Region

    International Nuclear Information System (INIS)

    Claro Rizo, Francisco

    1997-01-01

    The agro-meteorology has for object the knowledge of the physical environment where the plants and the animals are developed, to make of him a better use, with the primordial purpose of optimizing the agricultural production. The climatology of the Caribbean Region, it is governed by the zonal processes of thermal and dynamic convection, together with the effect of the Inter-tropical Confluence Area (ITC) however, this extensive plain of the Colombian Caribbean, to be interrupted by the Sierra Nevada of Santa Marta and framed by the Caribbean Sea and the Andean mountain ranges, it makes that big differences are presented in their climatic regime. In this study, climatic elements are analyzed in the region, such as the precipitation, the temperature and the relative humidity of the air, the radiation and the solar shine, the speed of the wind and the potential evapo-perspiration, besides the calculation of the hydraulic balances, those which as integrative of the agriculture-climatic aspects, they serve as base to make the climatic classifications, to know the growth periods and to calculate the potential water demands, fundamental parameters in the planning of the agricultural activities. With these results they stand out the diverse climates in the region, represented in climatic areas from arid until per-humid offer a wide range for the requirements of the different species that are used in the agricultural exploitations

  12. East Asian Seas Regional Climatology Version 2.0 from 1804 to 2014 (NODC Accession 0123300)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The East Asian Seas Regional Climatology Version 2.0 is an update to the preliminary version released in May 2012. This update includes new temperature and salinity...

  13. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model.

    Science.gov (United States)

    Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim

    2017-06-15

    Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.

  14. LBA Regional Monthly Climatology for the 20th Century (New et al.)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set is a subset of "Global Monthly Climatology for the 20th Century (New et al.)" (2000a). This subset characterizes mean monthly surface climate...

  15. LBA Regional Monthly Climatology for the 20th Century (New et al.)

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a subset of "Global Monthly Climatology for the 20th Century (New et al.)" (2000a). This subset characterizes mean monthly surface climate over the...

  16. GPM GROUND VALIDATION OKLAHOMA CLIMATOLOGICAL SURVEY MESONET MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Oklahoma Climatological Survey Mesonet MC3E data were collected during the Midlatitude Continental Convective Clouds Experiment (MC3E) in...

  17. Black Sea Mixed Layer Sensitivity to Various Wind and Thermal Forcing Products on Climatological Time Scales

    National Research Council Canada - National Science Library

    Kara, A. B; Jurlburt, Harley; Wallcraft, Alan; Bourassa, Mark

    2005-01-01

    .... Atmospherically-forced model simulations with no assimilation of any ocean data suggest that the basin-averaged RMS SST differences with respect to the Pathfinder SST climatology can vary from 1.21 degrees C...

  18. SST Anomaly, NOAA POES AVHRR, Casey and Cornillon Climatology, 0.1 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes SST anomaly data using a combination of the POES AVHRR Global Area Coverage data, and data from a climatological database by Casey and...

  19. A Smart Climatology of Evaporation Duct Height and Surface Radar Propagation in the Indian Ocean

    National Research Council Canada - National Science Library

    Twigg, Katherine L

    2007-01-01

    .... We have used existing, civilian, dynamically balanced reanalysis data, for 1970 to 2006, and a state-of-the-art ED model, to produce a spatially and temporally refined EDH climatology for the Indian Ocean (10) and nearby seas...

  20. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) consists of monthly satellite-gauge and associated precipitation error estimates and covers the period January...

  1. International Satellite Cloud Climatology Project (ISCCP) Climate Data Record, H-Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of...

  2. On the semi-diagnostic computation of climatological circulation in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Rao, A.D.; Dube, S.K.; Bahulayan, N.

    and internal density field on the dynamical balance of circulation in the western tropical Indian Ocean is explained. The climatological temperature and salinity data used to drive the model is found to be hydrodynamically adjusted with surface wind, flow field...

  3. Meteorology and climatology as parameters on low level waste disposal monitoring

    International Nuclear Information System (INIS)

    Culkowski, W.M.

    1982-01-01

    Once a site has been chosen for the burial of low level wastes, meteorological input is required in two forms, as climatology and as an estimator of airborne concentrations. The climatological data are fundamental to assessing hydrologic flow which may transport waste material from the original site. Airborne nuclear activity may occur by accidental release of material during the active burial phase or may result from gas formation in the trenches over a period of years

  4. User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data

    Science.gov (United States)

    2018-04-01

    ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET) Profiles from Climatological and Extreme...needed. Do not return it to the originator. ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET...User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  5. Nitrous oxide fluxes from grassland in the Netherlands. 1. Statistical analysis of flux-chamber measurements

    NARCIS (Netherlands)

    Velthof, G.L.; Oenema, O.

    1995-01-01

    Accurate estimates of total nitrous oxide (N2O) losses from grasslands derived from flux-chamber measurements are hampered by the large spatial and temporal variability of N2O fluxes from these sites. In this study, four methods for the calculation o

  6. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  7. A new precipitation and drought climatology based on weather patterns.

    Science.gov (United States)

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  8. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  9. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  10. A lightning climatology of the South-West Indian Ocean

    Directory of Open Access Journals (Sweden)

    C. Bovalo

    2012-08-01

    Full Text Available The World Wide Lightning Location Network (WWLLN data have been used to perform a lightning climatology in the South-West Indian Ocean (SWIO region from 2005 to 2011. Maxima of lightning activity were found in the Maritime Continent and southwest of Sri Lanka (>50 fl km−2 yr−1 but also over Madagascar and above the Great Lakes of East Africa (>10–20 fl km−2 yr−1. Lightning flashes within tropical storms and tropical cyclones represent 50 % to 100 % of the total lightning activity in some oceanic areas of the SWIO (between 10° S and 20° S.

    The SWIO is characterized by a wet season (November to April and a dry season (May to October. As one could expect, lightning activity is more intense during the wet season as the Inter Tropical Convergence Zone (ITCZ is present over all the basin. Flash density is higher over land in November–December–January with values reaching 3–4 fl km−2 yr−1 over Madagascar. During the dry season, lightning activity is quite rare between 10° S and 25° S. The Mascarene anticyclone has more influence on the SWIO resulting in shallower convection. Lightning activity is concentrated over ocean, east of South Africa and Madagascar.

    A statistical analysis has shown that El Niño–Southern Oscillation mainly modulates the lightning activity up to 56.8% in the SWIO. The Indian Ocean Dipole has a significant contribution since ~49% of the variability is explained by this forcing in some regions. The Madden–Julian Oscillation did not show significative impact on the lightning activity in our study.

  11. Effects of Topography-driven Micro-climatology on Evaporation

    Science.gov (United States)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  12. Climatology of GPS signal loss observed by Swarm satellites

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2018-04-01

    Full Text Available By using 3-year global positioning system (GPS measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  13. Climatology of GPS signal loss observed by Swarm satellites

    Science.gov (United States)

    Xiong, Chao; Stolle, Claudia; Park, Jaeheung

    2018-04-01

    By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  14. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  15. Climatology and internal variability in a 1000-year control simulation with the coupled climate model ECHO-G

    Energy Technology Data Exchange (ETDEWEB)

    Min, S.K.; Hense, A. [Bonn Univ. (Germany). Meteorologisches Inst.; Legutke, S.; Kwon, W.T. [Korea Meteorological Administration, Seoul (Korea). Meteorological Research Inst.

    2004-03-01

    The climatology and internal variability in a 1000-year control simulation of the coupled atmosphere-ocean global climate model ECHO-G are analyzed and compared with observations and other coupled climate model simulations. ECHO-G requires annual mean flux corrections for heat and freshwater in order to simulate no climate drift for 1000 years, but no flux corrections for momentum. The ECHO-G control run captures well most aspects of the observed seasonal and annual climatology and of the interannual to decadal variability. Model biases are very close to those in ECHAM4 stand-alone integrations with prescribed observed sea surface temperature. A trend comparison between observed and modeled near surface temperatures shows that the observed global warming at near surface level is beyond the range of internal variability produced by ECHO-G. The simulated global mean near surface temperatures, however, show a two-year spectral peak which is linked with a strong biennial bias of energy in the ENSO signal. Consequently, the interannual variability (3-9 years) is underestimated. The overall ENSO structure such as the tropical SST climate and its seasonal cycle, a single ITCZ in the eastern tropical Pacific, and the ENSO phase-locking to the annual cycle are simulated reasonably well by ECHO-G. However, the amplitude of SST variability is overestimated in the eastern equatorial pacific and the observed westward propagation of zonal wind stress over the equatorial pacific is not captured by the model. ENSO-related teleconnection patterns of near surface temperature, precipitation, and mean sea level pressure are reproduced realistically. The station-based NAO index in the model exhibits a 'white' noise spectrum similar to the observed and the NAO-related patterns of near surface temperature, precipitation, and mean sea level pressure are also simulated successfully. However, the model overestimates the additional warming over the north pacific in the high index

  16. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  17. Modelling drug flux through microporated skin.

    Science.gov (United States)

    Rzhevskiy, Alexey S; Guy, Richard H; Anissimov, Yuri G

    2016-11-10

    A simple mathematical equation has been developed to predict drug flux through microporated skin. The theoretical model is based on an approach applied previously to water evaporation through leaf stomata. Pore density, pore radius and drug molecular weight are key model parameters. The predictions of the model were compared with results derived from a simple, intuitive method using porated area alone to estimate the flux enhancement. It is shown that the new approach predicts significantly higher fluxes than the intuitive analysis, with transport being proportional to the total pore perimeter rather than area as intuitively anticipated. Predicted fluxes were in good general agreement with experimental data on drug delivery from the literature, and were quantitatively closer to the measured values than those derived from the intuitive, area-based approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Congo Basin rainfall climatology: can we believe the climate models?

    Science.gov (United States)

    Washington, Richard; James, Rachel; Pearce, Helen; Pokam, Wilfried M; Moufouma-Okia, Wilfran

    2013-01-01

    The Congo Basin is one of three key convective regions on the planet which, during the transition seasons, dominates global tropical rainfall. There is little agreement as to the distribution and quantity of rainfall across the basin with datasets differing by an order of magnitude in some seasons. The location of maximum rainfall is in the far eastern sector of the basin in some datasets but the far western edge of the basin in others during March to May. There is no consistent pattern to this rainfall distribution in satellite or model datasets. Resolving these differences is difficult without ground-based data. Moisture flux nevertheless emerges as a useful variable with which to study these differences. Climate models with weak (strong) or even divergent moisture flux over the basin are dry (wet). The paper suggests an approach, via a targeted field campaign, for generating useful climate information with which to confront rainfall products and climate models.

  19. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  20. Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico

    OpenAIRE

    ZAVALA-HIDALGO, J.; PARÉS-SIERRA, A.; OCHOA, J.

    2002-01-01

    Heat fluxes between the atmosphere and the sea surface in the Gulf of Mexico are computed using the COADS climatology, bulk formulae, radiation estimations from satellite, and a numerical model. 9 W m-2 is the estimated mean surface heat flux into the ocean, this is higher than previous studies due to different bulk formulae and data sources. The annual cycle has an amplitude of 168 W m-2. The contribution of each term in the heat equation is computed, analyzed and compared to previous studie...

  1. Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Directory of Open Access Journals (Sweden)

    A. Lana

    2012-09-01

    Full Text Available Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b production fluxes of secondary organic aerosols from biogenic organic volatiles; (c emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN numbers derived from satellite (MODIS. More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (re data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to re were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt showed widespread positive correlations to CCN only at low latitudes. Correlations to re were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud

  2. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  3. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  4. Nature and climatology of Pfänderwind

    Directory of Open Access Journals (Sweden)

    Alexander Gohm

    2015-04-01

    Full Text Available The characteristics and climatology of Pfänderwind, a largely unknown downslope windstorm near the town of Bregenz (Austria at the entrance of the Rhine Valley, are investigated based on an eleven-year dataset of weather station observations and ERA-Interim reanalyses. The goal is to clarify the inconsistency in the definition of this phenomenon, to illuminate its dynamics, and to quantify its frequency of occurrence. It is shown that Pfänderwind has similarities to foehn but does occur for different synoptic-scale conditions. Moreover, two types of Pfänderwind have to be distinguished: Type 1, or classical Pfänderwind, is associated with easterly to northeasterly large-scale flow that crosses the Pfänder mountain range, descends in a foehn-like manner and causes moderate to strong winds in the town of Bregenz and its vicinity. The temperature anomaly induced at the surface by adiabatic warming is small as a result of weak low-level stability. Type-1 events occur on average 12 times per year, preferentially in spring, and most frequently between the afternoon and midnight. Type 2, or southeast Pfänderwind, is associated with westerly to southwesterly ambient winds near the main Alpine crest level. The Rhine valley is filled with cold air and in most cases south foehn is not present. However, the synoptic and meso-scale pressure gradient favours southerly ageostrophic flow in the Rhine Valley especially near the top of the cold-air pool. This flow passes the Gebhardsberg, the southwestern extension of the Pfänder mountain range, descends on its leeward side and causes strong foehn-like warming at the surface. However, southerly to southeasterly near-surface winds at Bregenz are rather weak. Type-2 events occur on average 40 times per year, most frequently between the evening and the early morning, and exhibit a weak seasonal dependence. More than half of all type-1 and type-2 events last only one or two hours.

  5. Climatology of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-01-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a dataset of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long term trend in de-seasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to few percent per year, by Generalised Least Square and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two gathering the metropolitan areas of Torino and Milano and their respective nearby sites and the other three clusters gathering north-east, north-west and central Po Valley sites respectively. Finally the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. Significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop resulted low and restricted to few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  6. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  7. Developing MODIS-based cloud climatologies to aid species distribution modeling and conservation activities

    Directory of Open Access Journals (Sweden)

    Michael William Douglas

    2016-10-01

    Full Text Available WorldClim (Hijmans et al. 2005 has been the de-facto source of basic climatological analyses for most species distribution modeling research and conservation science applications because of its global coverage and fine (<1 km spatial resolution.  However, it has been recognized since its development that there are limitations in data-poor regions, especially with regard to the precipitation analyses.  Here we describe procedures to develop a satellite-based daytime cloudiness climatology that better reflects the variations in vegetation cover in many regions of the globe than do the WorldClim precipitation products.  Moderate Resolution Imaging Spectroradiometer (MODIS imagery from the National Aeronautics and Space Administration (NASA Terra and Aqua sun-synchronous satellites have recently been used to develop multi-year climatologies of cloudiness.  Several procedures exist for developing such climatologies.  We first discuss a simple procedure that uses brightness thresholds to identify clouds.  We compare these results with those from a more complex procedure: the MODIS Cloud Mask product, recently averaged into climatological products by Wilson and Jetz (2016.  We discuss advantages and limitations of both approaches.  We also speculate on further work that will be needed to improve the usefulness of these MODIS-based climatologies of cloudiness. Despite limitations of current MODIS-based climatology products, they have the potential to greatly improve our understanding of the distribution of biota across the globe.  We show examples from oceanic islands and arid coastlines in the subtropics and tropics where the MODIS products should be of special value in predicting the observed vegetation cover.  Some important applications of reliable climatologies based on MODIS imagery products will include 1 helping to restore long-degraded cloud-impacted environments; 2 improving estimations of the spatial distribution of cloud

  8. A Spatio-Temporal Analysis of Heatwave Climatology in Three Major US Cities

    Science.gov (United States)

    Hulley, G. C.; Malakar, N.

    2016-12-01

    Heatwaves are one form of severe weather expected to become worse under a warming planet. The impacts of severe heatwaves, particularly in urban areas, can have detrimental and often deadly consequences across key socio-economic urban sectors.These effects are exacerbated by the urban heat island effect, and an overall increase in the number of city dwellers during the 21st century. For example it is projected that nearly 80% of the world's population will live in cities by 2025. In this study we use a combination of in situ and remote sensing measured surface temperatures to investigate the spatio-temporal variations of heatwaves in three major U.S. cities; Los Angeles, Chicago, and Washington D.C. Air temperature data from the NCDC US COOP network stations are used to first detect severe heatwave events using two new excess heat indices, and secondly to assess climatological changes in heatwave frequency, duration, and intensity since the 1950's. For example, in Los Angeles there has been a steady increase in the duration and frequency of heatwaves, while nighttime heatwave temperatures have shown a rapid warming since the start of the 21st century. The second part of the study uses a new land surface temperature product (MOD21) derived from the MODIS Aqua sensor to analyze the spatial variations of heatwave temperatures within urban environments, as a goal to help better understand and predict what areas may be more vulnerable to the effects of extreme temperatures in an effort to advise local councils on effective adaption and mitigation techniques.

  9. The International Satellite Cloud Climatology Project H-Series climate data record product

    Science.gov (United States)

    Young, Alisa H.; Knapp, Kenneth R.; Inamdar, Anand; Hankins, William; Rossow, William B.

    2018-03-01

    This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S" target="_blank">https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.

  10. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe

    Science.gov (United States)

    Schultze, Markus; Rockel, Burkhardt

    2017-08-01

    This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol

  11. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    Science.gov (United States)

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  12. OW AVISO Sea-Surface Height & Niiler Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  13. Evaluation of the influence of monsoon climatology on dispersal and sequestration of continental flux over the southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Shukla, A.S.

    . Spatiotemporal distribution in gibbsite and kaolinite in the study area. A color version is available on the web. N O G I B B S I T E Kali Gan gav ali Aghanashini Sharavathi Gangolli Netravati 50 m 30 m 20 m 10 m Gibbsite SWM (wt %) > 20% 18 - 20% 16 - 18... Aghnashini Sharavati Gangolli Netravati 50 m 30 m 20 m 10 m Chlorite Post Monsoon (wt %) 10 - 12% > 12% 8 - 10% < 8% N O C H L O R I T E N O P A L Y G O R S K I T E Kali Gan gava li Aghnashini Sharavati Gangolli Netravati 50 m 30 m 20 m 10 m Palygorskite...

  14. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  15. Planetary-scale circulations in the presence of climatological and wave-induced heating

    Science.gov (United States)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper

  16. The climatology of the Red Sea - part 1: the wind

    KAUST Repository

    Langodan, Sabique

    2017-05-12

    The wind climatology of the Red Sea is described based on a 30-year high-resolution regional reanalysis generated using the Advanced Weather Research Forecasting model. The model was reinitialized on a daily basis with ERA-Interim global data and regional observations were assimilated using a cyclic three-dimensional variational approach. The reanalysis products were validated against buoy and scatterometers data. We describe the wind climatology and identify four major systems that determine the wind patterns in the Red Sea. Each system has a well-defined origin, and consequently different characteristics along the year. After analysing the relevant features of the basin in terms of their climatology, we investigate possible long-term trends in each system. It is found that there is a definite tendency towards lowering the strength of the wind speed, but at a different rate for different systems and periods of the year.

  17. The climatology of the Red Sea - part 1: the wind

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Vishwanadhapalli, Yesubabu; Pomaro, Angela; Bertotti, Luciana; Hoteit, Ibrahim

    2017-01-01

    The wind climatology of the Red Sea is described based on a 30-year high-resolution regional reanalysis generated using the Advanced Weather Research Forecasting model. The model was reinitialized on a daily basis with ERA-Interim global data and regional observations were assimilated using a cyclic three-dimensional variational approach. The reanalysis products were validated against buoy and scatterometers data. We describe the wind climatology and identify four major systems that determine the wind patterns in the Red Sea. Each system has a well-defined origin, and consequently different characteristics along the year. After analysing the relevant features of the basin in terms of their climatology, we investigate possible long-term trends in each system. It is found that there is a definite tendency towards lowering the strength of the wind speed, but at a different rate for different systems and periods of the year.

  18. Convective climatology over the southwest U.S. and Mexico from passive microwave and infrared data

    Science.gov (United States)

    Negri, Andrew J.; Howard, Kenneth W.; Keehn, Peter R.; Maddox, Robert A.; Adler, Robert F.

    1992-01-01

    Passive microwave data from the Special Sensor Microwave Imager (SSM/I) were used to estimate the amount of rainfall in the June-August season for the regions of the southwest U.S. and Mexico, and the results are compared to rain-gauge observations and to IR climatologies of Maddox et al. (1992), using both the hourly IR data and IR data sampled at the time of the overpass of the SSM/I. A comparison of the microwave climatology with monthly rainfall measured by the climatological gage network over several states of western Mexico resulted in a 0.63 correlation and a large (482 mm) bias, due to sampling and the incongruity of rain gages and satellite estimates. A comparison between the IR and microwave data showed that the IR tended toward higher percentages along the coast compared to the microwave.

  19. Sensitive study of the climatological SST by using ATSR global SST data sets

    Science.gov (United States)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    Climatological sea surface temperature (SST) is an initial step for global climate processing monitoring. A comparison has been made by using Oberhuber's SST data set and two years monthly averaged SST from ATSR thermal band data to force the OGCM. In the eastern Pacific Ocean, these make only a small difference to model SST. In the western Pacific Ocean, the use of Oberhuber's data set gives higher climatological SST than that using ATSR data. The SSTs were also simulated for 1992 using climatological SSTs from two years monthly averaged ATSR data and Oberhuber data. The forcing with SST from ATSR data was found to give better SST simulation than that from Oberhuber's data. Our study has confirmed that ATSR can provide accurate monthly averaged global SST for global climate processing monitoring.

  20. Chapman--Enskog approach to flux-limited diffusion theory

    International Nuclear Information System (INIS)

    Levermore, C.D.

    1979-01-01

    Using the technique developed by Chapman and Enskog for deriving the Navier--Stokes equations from the Boltzmann equation, a framework is set up for deriving diffusion theories from the transport equation. The procedure is first applied to give a derivation of isotropic diffusion theory and then of a completely new theory which is naturally flux-limited. This new flux-limited diffusion theory is then compared with asymptotic diffusion theory

  1. Water mass census in the Nordic seas using climatological and observational data sets

    International Nuclear Information System (INIS)

    Piacsek, S.; Allard, R.; McClean, J.

    2008-01-01

    We have compared and evaluated the water mass census in the Greenland-Iceland-Norwegian (Gin) Sea area from climatologies, observational data sets and model output. The four climatologies evaluated were: the 1998 and 2001 versions of the World Ocean Atlas (WOA98, WOA01), and the United States Navy's GDEM90 (Generalized Digital Environmental Model) and MODAS01 (Modular Ocean Data Assimilation System) climatologies. Three observational data sets were examined: the multidecadal (1965-1995) set contained on the National Oceano- graphic Data Centre's (NODC) WOD98 (World Ocean Data) Cd-Rom, and two seasonal data sets extracted from observations taken on six cruises by the SACLANT Research Center (SACLANTCEN) of NATO/Italy between 1986-1989. The model data is extracted from a global model run at 1/3 degree resolution for the years 1983-1997, using the Pop (Parallel Ocean Program) model of the Los Alamos National Laboratory. The census computations focused on the Norwegian Sea, in the southern part of the Gin Sea, between 10 0 W-10 0 E and 60 0 N-70 0 N, especially for comparisons with the hydro casts and the model. Cases of such evaluation computations included: (a) short term comparisons with quasi-synoptic CTD surveys carried out over a 4-year period in the southeastern Gin Sea; (b) climatological comparisons utilizing all available casts from the WOD98 Cd-Rom, with four climatologies; and (c) a comparison between the WOA01 climatology and the Pop model output ending in 1997. In this region in the spring, the fraction of ocean water that has salinity above 34.85 is ∼94%, and that has temperatures above 0 0 C is ∼33%. Three principal water masses dominated the census: the Atlantic water A W, the deep water D W and an intermediate water mass defined as Lower Arctic Intermediate Water (LAIW). Besides these classes, both the climatologies and the observations exhibited the significant presence of deep water masses with T-S characteristics that do not fall into the named

  2. The Increasing Use of Remote Sensing Data in Studying the Climatological Impacts on Public Health

    Science.gov (United States)

    Kempler, Steven; Benedict, Karl; Ceccato, Pietro; Golden, Meredith; Maxwell, Susan; Morian, Stan; Soebiyanto, Radina; Tong, Daniel

    2011-01-01

    One of the more fortunate outcomes of the capture and transformation of remote sensing data into applied information is their usefulness and impacts to better understanding climatological impacts on public health. Today, with petabytes of remote sensing data providing global coverage of climatological parameters, public health research and policy decision makers have an unprecedented (and growing) data record that relates the effects of climatic parameters, such as rainfall, heat, soil moisture, etc. to incidences and spread of disease, as well as predictive modeling. In addition, tools and services that specifically serve public health researchers and respondents have grown in response to needs of the these information users.

  3. A statistical model for horizontal mass flux of erodible soil

    International Nuclear Information System (INIS)

    Babiker, A.G.A.G.; Eltayeb, I.A.; Hassan, M.H.A.

    1986-11-01

    It is shown that the mass flux of erodible soil transported horizontally by a statistically distributed wind flow has a statistical distribution. Explicit expression for the probability density function, p.d.f., of the flux is derived for the case in which the wind speed has a Weibull distribution. The statistical distribution for a mass flux characterized by a generalized Bagnold formula is found to be Weibull for the case of zero threshold speed. Analytic and numerical values for the average horizontal mass flux of soil are obtained for various values of wind parameters, by evaluating the first moment of the flux density function. (author)

  4. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  5. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  6. Seasonality and flux estimates of dissolved organic carbon in tidal wetlands and estuaries in the U.S. Mid- Atlantic Bight and Gulf of Mexico from ocean color

    Science.gov (United States)

    Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.

    2016-02-01

    Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.

  7. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  8. Hidden symmetry in the presence of fluxes

    International Nuclear Information System (INIS)

    Kubiznak, David; Warnick, Claude M.; Krtous, Pavel

    2011-01-01

    We derive the most general first-order symmetry operator for the Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of an inhomogeneous form ω which is a solution to a coupled system of first-order partial differential equations which we call the generalized conformal Killing-Yano system. Except trivial fluxes, solutions of this system are subject to additional constraints. We discuss various special cases of physical interest. In particular, we demonstrate that in the case of a Dirac operator coupled to the skew symmetric torsion and U(1) field, the system of generalized conformal Killing-Yano equations decouples into the homogeneous conformal Killing-Yano equations with torsion introduced in D. Kubiznak et al. (2009) and the symmetry operator is essentially the one derived in T. Houri et al. (2010) . We also discuss the Dirac field coupled to a scalar potential and in the presence of 5-form and 7-form fluxes.

  9. Cold-Season Tornadoes: Climatological, Meteorological, and Social Perspectives

    Science.gov (United States)

    Childs, Samuel J.

    Tornadoes that occur during the cold season, defined here as November-February (NDJF), pose many unique societal risks. For example, people can be caught off-guard because in general one does not expect severe weather and tornadoes during winter months. The public can also be unsuspecting of significant weather due to the bustle of major holidays like Thanksgiving, Christmas, and New Year's, when most people are concerned with family activities and not thinking about the weather. Cold-season tornadoes also have a propensity to be nocturnal and occur most frequently in the South and Southeastern U.S., where variable terrain, inadequate resources, and a relatively high mobile home density add additional social vulnerabilities. Over the period 1953-2015 within a study domain of (25-42.5°N, 75-100°W), some 937 people lost their lives as a result of NDJF tornadoes. Despite this enhanced societal risk of cold-season tornadoes in the South, very little attention has been given to their meteorological characteristics and climate patterns, and public awareness of their potential impacts is lacking. This thesis aims to greatly advance the current state of knowledge of NDJF tornadoes by providing an in-depth investigation from three different science perspectives. First, a climatology of all (E)F1-(E)F5 NDJF tornadoes is developed, spanning the period 1953-2015 within a domain of (25-42.5°N, 75-100°W), in order to assess frequency and spatial changes over time. A large increasing trend in cold-season tornado occurrence is found across much of the Southeastern U.S., with the greatest uptick in Tennessee, while a decreasing trend is found across eastern Oklahoma. Spectral analysis reveals a cyclic pattern of enhanced NDJF counts every 3-7 years, coincident with the known period for ENSO. Indeed, La Nina episodes are found to be correlated with NDJF tornado counts, although a stronger teleconnection correlation exists with the Arctic Oscillation (AO), which explains 25% of

  10. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  11. Climatology and Meteorological Evolution of Major Wildfire Events over the Northeast United States

    Science.gov (United States)

    Joseph B. Pollina; Brian A. Colle; Joseph J. Charney

    2013-01-01

    This study presents a spatial and temporal climatology of major wildfire events, defined as >100 acres burned (>40.47 ha, where 1 ha = 2.47 acre), in the northeast United States from 1999 to 2009 and the meteorological conditions associated with these events. The northeast United States is divided into two regions: region 1 is centered over the higher terrain of...

  12. A Meso-Climatology Study of the High-Resolution Tower Network Over the Florida Spaceport

    Science.gov (United States)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the US Air Force 45th Weather Squadron (45 WS) use wind and temperature data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria and to issue and verify temperature and wind advisories, watches, and warnings for ground operations. The Spaceflight Meteorology Group at the Johnson Space Center in Houston, TX also uses these data when issuing forecasts for shuttle landings at the KSC Shuttle Landing Facility. Systematic biases in these parameters at any of the towers could adversely affect an analysis, forecast, or verification for all of these operations. In addition, substantial geographical variations in temperature and wind speed can occur under specific wind directions. Therefore, the Applied Meteorology Unit (AMU), operated by ENSCO Inc., was tasked to develop a monthly and hourly climatology of temperatures and winds from the tower network, and identify the geographical variation, tower biases, and the magnitude of those biases. This paper presents a sub-set of results from a nine-year climatology of the KSC/CCAFS tower network, highlighting the geographical variations based on location, month, times of day, and specific wind direction regime. Section 2 provides a description of the tower mesonetwork and instrumentation characteristics. Section 3 presents the methodology used to construct the tower climatology including QC methods and data processing. The results of the tower climatology are presented in Section 4 and Section 5 summarizes the paper.

  13. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  14. Climatology of sea breezes along the Red Sea coast of Saudi Arabia

    KAUST Repository

    Khan, Basit; Abualnaja, Yasser; Al-Subhi, Abdullah M.; Nellayaputhenpeedika, Mohammedali; Nellikkattu Thody, Manoj; Sturman, Andrew P.

    2018-01-01

    and Atmospheric Administration (NOAA) are used to investigate the climatology of sea breezes over the eastern side of the Red Sea region. Results show existence of separate sea breeze systems along different segments of the Red Sea coastline. Based on the physical

  15. Trends in the Indian Ocean Climatology due to anthropogenic induced global warming

    CSIR Research Space (South Africa)

    Meyer, AA

    2009-09-01

    Full Text Available clearly show that due to global warming the South West Indian Ocean Climatology has been changing and that this changing trend will continue into the future as global warming continues. The impacts of regional oceanic climate change on the regions coastal...

  16. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile

    2006-03-01

    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  17. A Wildfire-relevant climatology of the convective environment of the United States

    Science.gov (United States)

    Brian E. Potter; Matthew A. Anaya

    2015-01-01

    Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective...

  18. Determination of dynamic heights in the Bay of Bengal from XBT profiles and climatological salinities

    Digital Repository Service at National Institute of Oceanography (India)

    Ali, M.M.; Gopalakrishna, V.V.; Araligidad, N.; Reddy, G.V.; Salgaonkar, G.

    errors compared to the DH signals are 3.8%, 2.7% and 2.6% for 200, 700 and 1000 dbar levels, respectively. The DHs relative to 700 dbar computed using the XBT temperature and climatological salinity profiles are compared with the SSH observations from...

  19. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Pomaro, Angela; Vishwanadhapalli, Yesubabu; Bertotti, Luciana; Hoteit, Ibrahim

    2017-01-01

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model

  20. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  1. Trends in aerosol optical depth in the Russian Arctic and their links with synoptic climatology

    International Nuclear Information System (INIS)

    Shahgedanova, Maria; Lamakin, Mikhail

    2005-01-01

    Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 deg N and 80.6 deg N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1980s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high AOD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or

  2. A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)

    KAUST Repository

    Dasari, Hari Prasad

    2015-03-06

    In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over the Europe continent for a 60-year period in 1950-2010 using an advanced regional model, WRF, to study extreme precipitation events over Europe. The model runs continuously for each year during the period at a horizontal resolution of 25 km with initial/ boundary conditions derived from the National Center for Environmental Prediction (NCEP) 2.5 degree reanalysis data sets. The E-OBS 0.25 degree rainfall observation analysis is used for model validation. Results indicate that the model could reproduce the spatial annual rainfall pattern over Europe with low amounts (250 - 750 mm) in Iberian Peninsula, moderate to large amounts (750 - 1500 mm) in central, eastern and northeastern parts of Europe and extremely heavy falls (1500 - 2000 mm) in hilly areas of Alps with a slight overestimation in Alps and underestimation in other parts of Europe. The regional model integrations showed increasing errors (mean absolute errors) and decreasing correlations with increasing time scale (daily to seasonal). Rainfall is simulated relatively better in Iberian Peninsula, northwest and central parts of Europe. A large spatial variability with the highest number of wet days over eastern, central Europe and Alps (~200 days/year) and less number of wet days over Iberian Peninsula (≤150 days/year) is also found in agreement with observations. The model could simulate the spatial rainfall climate variability reasonably well with low rainfall days (1 - 10 mm/days) in almost all zones, heavy rainfall events in western, northern, southeastern hilly and coastal zones and extremely heavy rainfall events in northern coastal zones. An increasing trend of heavy rainfall in central, southern and southeastern parts, a decreasing trend in Iberian Peninsula and a steady trend in other

  3. Aerosol climatology over the Mexico City basin: Characterization of optical properties

    Science.gov (United States)

    Carabali, Giovanni; Estévez, Héctor Raúl; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor Manuel; Vázquez-Gálvez, Felipe Adrián

    2017-09-01

    Climatology of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), and aerosol particle-size distribution were analyzed using a 15-year (1999-2014) dataset from AErosol RObotic NETwork (AERONET) observations over the Mexico City (MC) basin. The atmosphere over this site is dominated by two main aerosol types, represented by urban/industrial pollution and biomass-burning particles. Due to the specific meteorological conditions within the basin, seasons are usually classified into three as follows: Dry Winter (DW) (November-February); Dry Spring (DS) (March-April), and the RAiny season (RA) (May-October), which are mentioned throughout this article. Using a CIMEL sun photometer, we conducted continuous observations over the MC urban area from January 1999 to December 2014. Aerosol Optical Depth (AOD), Ångström exponent (α440-870), Single Scattering Albedo (SSA), and aerosol particle-size distribution were derived from the observational data. The overall mean AOD500 during the 1999-2014 period was 0.34 ± 0.07. The monthly mean AOD reached a maximal value of 0.49 in May and a minimal value of 0.27 in February and March. The average α440-870 value for the period studied was 1.50 ± 0.16. The monthly average of α440-870 reached a minimal value of 1.32 in August and a maximal value of 1.61 in May. Average SSA at 440 nm was 0.89 throughout the observation period, indicating that aerosols over Mexico City are composed mainly of absorptive particles. Concentrations of fine- and coarse-mode aerosols over MC were highest in DS season compared with other seasons, especially for particles with radii measuring between 0.1 and 0.2 μm. Results from the Spectral De-convolution Algorithm (SDA) show that fine-mode aerosols dominated AOD variability in MC. In the final part of this article, we present a classification of aerosols in MC by using the graphical method proposed by Gobbi et al. (2007), which is based on the combined analysis of α and its spectral curvature

  4. Josephson flux-flow oscillators in nonuniform microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    2000-01-01

    We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...

  5. Fluxes of ammonia in the coastal marine boundary layer

    DEFF Research Database (Denmark)

    Sørensen, L.L.; Hertel, O.; Skjøth, C.A.

    2003-01-01

    Concentrations of ammonia in air and ammonium in surface water were measured from a platform in the Southern North Sea close to the Dutch coast. Fluxes were derived from the measurements applying Monin-Obukhov similarity theory and exchange velocities calculated. The fluxes and air concentrations...

  6. Flux-pinning-induced stresses in a hollow superconducting cylinder with flux creep and viscosity properties

    International Nuclear Information System (INIS)

    Feng, W.J.; Gao, S.W.

    2014-01-01

    Highlights: • Magnetoelastic problem for a superconducting cylinder with a hole is investigated. • The effects of both flux creep and viscous flux flow on stresses are analyzed. • For the FC case, the maximal hoop tensile stress always occurs at hole edge. • For the ZFC case, the maximal hoop stress is not certain to occur at hole edge. - Abstract: The magnetoelastic problem for a superconducting cylinder with a concentric hole placed in a magnetic field is investigated, where the flux creep and viscous flux flow have been considered. The stress distributions are derived and numerical calculated for the descending field in both the zero-field cooling (ZFC) and field cooling (FC) processes. The effects of applied magnetic field, flux creep and viscous flux flow on the maximal radial and hoop stresses are discussed in detail, and some novel phenomena are found. Among others, for the FC case, the maximal hoop tensile stress always occurs at the hole edge, whist for the ZFC case, the maximal stresses including both hoop and radial stresses either occur in the vicinity of the hole or occur at the position of flux frontier in the remagnetization process. For the descending field, in general, both the flux creep and viscosity parameters have important effects on the maximal radial and hoop stresses. All these phenomena are perhaps of vital importance for the application of superconductors

  7. Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds

    Science.gov (United States)

    Dupuis, HéLèNe; Taylor, Peter K.; Weill, Alain; Katsaros, K.

    1997-09-01

    The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence field. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be Cen × 103 = 2.79U10n-1 + 0.66 (U10n < 5.2 m/s), Cen × 103 = Chn × 103 = 1.2 (U10n ≥ 5.2 m/s), and Cdn × 103 = 11.710n-2 + 0.668 (U10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.

  8. Continuous magnetic flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.

  9. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  10. Flux shunts for undulators

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Hassenzahl, W.V.

    1993-05-01

    Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described

  11. Entropy fluxes, endoreversibility, and solar energy conversion

    Science.gov (United States)

    de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.

    1993-09-01

    A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.

  12. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  13. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  14. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  15. Downscaling NASA Climatological Data to Produce Detailed Climate Zone Maps

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David J.; Whitlock, Charles H.; Zhang, Taiping; Stackhouse, P. W.

    2011-01-01

    The design of energy efficient sustainable buildings is heavily dependent on accurate long-term and near real-time local weather data. To varying degrees the current meteorological networks over the globe have been used to provide these data albeit often from sites far removed from the desired location. The national need is for access to weather and solar resource data accurate enough to use to develop preliminary building designs within a short proposal time limit, usually within 60 days. The NASA Prediction Of Worldwide Energy Resource (POWER) project was established by NASA to provide industry friendly access to globally distributed solar and meteorological data. As a result, the POWER web site (power.larc.nasa.gov) now provides global information on many renewable energy parameters and several buildings-related items but at a relatively coarse resolution. This paper describes a method of downscaling NASA atmospheric assimilation model results to higher resolution and maps those parameters to produce building climate zone maps using estimates of temperature and precipitation. The distribution of climate zones for North America with an emphasis on the Pacific Northwest for just one year shows very good correspondence to the currently defined distribution. The method has the potential to provide a consistent procedure for deriving climate zone information on a global basis that can be assessed for variability and updated more regularly.

  16. The Open Flux Problem

    Science.gov (United States)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  17. The Open Flux Problem

    Energy Technology Data Exchange (ETDEWEB)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2017-10-10

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  18. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    Science.gov (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  19. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    Science.gov (United States)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  20. On the daily cycle of the climatological variables in the Municipality of Quibdo

    International Nuclear Information System (INIS)

    Pabon, Jose Daniel; Reiner Palomino Lemus; William Murillo Lopez

    2005-01-01

    We analyzed the daily cycle of the climatological variables (solar radiation, air temperature, atmospheric pressure, precipitation and wind) in Quibdo, (5.45 degrades N and 76.39 degrades W, 53m), department of Choco. The analysis is based on hourly data recorded during the period 2000-2004 at the meteorological and radiometric station of the technological university of Choco, Diego Luis Cordoba (UTCH). It is shown that the daily cycle of the climatological variables in the city of Quibdo is typical of the tropical areas and the particularities of the daily pattern of precipitation were found: most of the rains occur during the evening. The seasonal variation of the daily cycle was also established. Finally, an approximation was made to the analyses of the effect of extreme phases of inter annual climate variability associated to El Nino and la Nina

  1. Estimating total solar radiation in different climatological of region in Iran using cloud factor

    International Nuclear Information System (INIS)

    Jafarpour, Kh.; Karshenas, M.

    2002-01-01

    Iran is among the countries located on the belt pertaining to lands with a high rate of solar insolation. Statistics shows that, for instance, the solar energy which hi ted the Iranian contention al land just in the year of 1990, was more than 1600 times that of the energy exported by Iran in the same year. This high rate of solar insolation, on the one hand and the limitation of fossil-fuel reservoirs (specially, utilizing energy from such sources is polluting the environment) on the other hand, show that harnessing the solar energy is not anymore a choice of decision but rather on obligation. To fulfill this obligation one needs solar insolation data to be able to design and evaluate solar energy utilizing systems and other uses under different climatological conditions of Iran. As a first step, this article provides total solar radiation data for various cities in Iran under different climatological conditions using cloud factor as a parameter

  2. Prediction of periodically correlated processes by wavelet transform and multivariate methods with applications to climatological data

    Science.gov (United States)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2015-05-01

    This article studies the prediction of periodically correlated process using wavelet transform and multivariate methods with applications to climatological data. Periodically correlated processes can be reformulated as multivariate stationary processes. Considering this fact, two new prediction methods are proposed. In the first method, we use stepwise regression between the principal components of the multivariate stationary process and past wavelet coefficients of the process to get a prediction. In the second method, we propose its multivariate version without principal component analysis a priori. Also, we study a generalization of the prediction methods dealing with a deterministic trend using exponential smoothing. Finally, we illustrate the performance of the proposed methods on simulated and real climatological data (ozone amounts, flows of a river, solar radiation, and sea levels) compared with the multivariate autoregressive model. The proposed methods give good results as we expected.

  3. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique

    2017-05-09

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model. The wave simulations have been validated using buoy and altimeter data. The four main wind systems in the Red Sea characterize the corresponding wave climatology. The dominant ones are the two opposite wave systems with different genesis, propagating along the axis of the basin. The highest waves are generated at the centre of the Red Sea as a consequence of the strong seasonal winds blowing from the Tokar Gap on the African side. There is a general long-term trend toward lowering the values of the significant wave height over the whole basin, with a decreasing rate depending on the genesis of the individual systems.

  4. Fundamentals and new aspects of climatology. Grundlagen und neue Aspekte der Klimatologie

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiese, C D

    1988-01-01

    The submitted lecture notes comply with the students' wish for a guide of the introductory lecture on general climatology (Department of Geosciences at the University of Frankfurt). It substitutes a text book by no means, but on the contrary it is intended to bring the students to work up and complement the topics in literature, which are dealt with extremely briefly and in a few examples. Nevertheless the attempt was made not only to mention the most important basic facts, but also to introduce the important new aspects of climatology. This includes new terms (e.g. climatic system), newly observed phenomena (e.g. El Nino), new concepts (especially climatic model calculations) and not least new forms of understanding the processes of climate fluctuations and anthropogenic climate modification. In this respect, too, the lecture notes do not go beyond the intention of a guide which merely points out the topics without going into detail. (orig./KW) With 55 figs., 11 tabs.

  5. Mapping wood density globally using remote sensing and climatological data

    Science.gov (United States)

    Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.

    2017-12-01

    Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.

  6. Meromorphic flux compactification

    Energy Technology Data Exchange (ETDEWEB)

    Damian, Cesar [Departamento de Ingeniería Mecánica, Universidad de Guanajuato,Carretera Salamanca-Valle de Santiago Km 3.5+1.8 Comunidad de Palo Blanco,Salamanca (Mexico); Loaiza-Brito, Oscar [Departamento de Física, Universidad de Guanajuato,Loma del Bosque No. 103 Col. Lomas del Campestre C.P 37150 León, Guanajuato (Mexico)

    2017-04-26

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  7. Meromorphic flux compactification

    International Nuclear Information System (INIS)

    Damian, Cesar; Loaiza-Brito, Oscar

    2017-01-01

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  8. An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation

    Science.gov (United States)

    Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David

    2013-01-01

    An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.

  9. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile

    Science.gov (United States)

    Blanco, J. L.; Thomas, A. C.; Carr, M.-E.; Strub, P. T.

    2001-06-01

    Over 30 years of hydrographic data from the northern Chile (18°S-24°S) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve cross-shelf gradients and then presented as means within four seasons: austral winter (July-September), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (December-March). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 m depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21°S). A subsurface oxygen minimum, centered at ˜250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile

  10. Testing and documentation of programs used to transform climatological precipitation data to a geographically gridded format

    International Nuclear Information System (INIS)

    Fox, T.D.

    1979-01-01

    A procedure was developed for converting climatological hourly precipitation data into a form suitable for input to regional atmospheric transport and removal models. The procedure involves a rearrangement of the original data by date rather than by station, followed by the use of a spatial averaging scheme to interpolate data from randomly spaced stations to a regularly spaced grid. The procedure has been tested and documented for general use

  11. Synoptic-climatological evaluation of the classifications of atmospheric circulation patterns over Europe

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Beck, Ch.; Kučerová, Monika

    2016-01-01

    Roč. 36, č. 7 (2016), s. 2710-2726 ISSN 0899-8418 R&D Projects: GA ČR(CZ) GPP209/12/P811; GA MŠk OC 115 Institutional support: RVO:68378289 Keywords : circulation types * classification * synoptic climatology * COST733 Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4546/full

  12. Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere

    OpenAIRE

    Dos Santos Mesquita, Michel; Kvamstø, Nils Gunnar; Sorteberg, Asgeir; Atkinson, David E.

    2008-01-01

    This paper presents climatological properties of Northern Hemisphere summer extratropical storm tracks using data extracted from an existing, relative-vorticity-based storm database. This database was constructed using the NCEPNCAR ‘Reanalysis I’ data set from 1948 to 2002. Results contrasting summer and winter patterns for several storm parameters indicated general similarity at the largest scales, including the prominent track corridors of the middle latitude ocean regions and the mid-conti...

  13. Peer-tutoring educational experiences about meteorological and climatological issues in Friuli Venezia Giulia (Italy)

    Science.gov (United States)

    Nordio, Sergio; Flapp, Federica

    2017-04-01

    The aim of this work is to present some experiences of intergenerational education about meteorology and climatology issues carried out with school pupils from 6 to 19 years old, through peer-tutoring methodology. These experiences started in 2003 and each year the project involves about 500 students in Friuli Venezia Giulia region (about 8.000 km2) in northeastern Italy. A group of volunteers (older students from upper secondary school, 17-19 years old) play the role of "tutor": they receive supplementary training on meteorology and climatology, and then, during students' meetings and/or public events, they teach younger pupils how to use meteorological instruments (thermometer, hygrometer, barometer, anemometer, rain gages, etc.) and they carry out interactive experiences such as "game-experiments", to better understand some meteorological concepts, like density of fluids, and some climatological notions, like the effects of climate change with an exhibit that simulates the greenhouse effect. They also do some meteorological forecasting exercises, using meteorological maps, as if they were actual forecasters. All these activities are addressed to pupils from primary (age 6-11) and lower secondary schools (age 11-14), and both tutors and their younger "apprentices" are not only cognitively, but also emotionally involved in such learning experiences. As a second step of this educational process, after consolidating the above mentioned peer-tutoring activities, high school students hare being actively involved in developing visual tools - e.g. video-clips, interviews and cartoons - in order to communicate climate change issues in the most effective way to younger pupils. Keywords: meteorology, climatology, climate change, schools, education, communication.

  14. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    Science.gov (United States)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  15. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PAPAGAYO, COSTA RICA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Papagayo, Costa Rica dataset was created using an automated...

  16. OMI/Aura Surface Reflectance Climatology Level 3 Global 0.5deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI Earth Surface Reflectance Climatology product, OMLER (Global 0.5deg Lat/Lon grid) which is based on Version 003 Level-1B top of atmosphere upwelling radiance...

  17. [An Archive for Science, State and Nation : Climatological Data Practices in Switzerland, 1860-1914].

    Science.gov (United States)

    Hupfer, Franziska

    2017-12-01

    In the second half of the nineteenth century, most European countries began to finance weather observation networks. As a result, climatological data practices changed fundamentally. Using the example of Switzerland, this paper examines the political, institutional and methodological dimensions of national data archives. The institutionalization of data collection within the national framework meant, on the one hand, that more observations were systematically made and published. On the other hand, it also meant that the monitoring was connected to state boundaries. However, based on their universalistic conception of science, this did not preclude national institutions from striving for international data standardization. The national framework also shaped the process of transforming weather observations into statistical data. This information formed the basis for national climatographies and thus had a nation-building effect. According to the Swiss Meteorological Institute, climate data were practically useful and had great potential for research work. However, the epistemic status of data collection was uncertain, since physical approaches to climatology had gained in importance. The anticipation of scientific and practical potential benefits played a central role for the continuation of data production. The Swiss case study presented here illustrates that climatology was transformed by the process of nation-building, affecting its institutional structure, spatial references, and epistemology.

  18. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation

    Directory of Open Access Journals (Sweden)

    Danica Ciric

    2018-04-01

    Full Text Available Moisture transport from its sources to surrounding continents is one of the most relevant topics in hydrology, and its role in extreme events is crucial for understanding several processes such as intense precipitation and flooding. In this study, we considered the Mediterranean Sea as the main water source and estimated its contribution to the monthly climatological and extreme precipitation events over the surrounding continental areas. To assess the effect of the Mediterranean Sea on precipitation, we used the Multi-Source Weighted-Ensemble Precipitation (MSWEP database to characterize precipitation. The Lagrangian dispersion model known as FLEXPART was used to estimate the moisture contribution of this source. This contribution was estimated by tracking particles that leave the Mediterranean basin monthly and then calculating water loss (E − P < 0 over the continental region, which was modelled by FLEXPART. The analysis was conducted using data from 1980 to 2015 with a spatial resolution of 0.25°. The results showed that, in general, the spatial pattern of the Mediterranean source’s contribution to precipitation, unlike climatology, is similar during extreme precipitation years in the regions under study. However, while the Mediterranean Sea is usually not an important source of climatological precipitation for some European regions, it is a significant source during extreme precipitation years.

  19. Sound speed in the Mediterranean Sea: an analysis from a climatological data set

    Directory of Open Access Journals (Sweden)

    S. Salon

    2003-03-01

    Full Text Available This paper presents an analysis of sound speed distribution in the Mediterranean Sea based on climatological temperature and salinity data. In the upper layers, propagation is characterised by upward refraction in winter and an acoustic channel in summer. The seasonal cycle of the Mediterranean and the presence of gyres and fronts create a wide range of spatial and temporal variabilities, with relevant differences between the western and eastern basins. It is shown that the analysis of a climatological data set can help in defining regions suitable for successful monitoring by means of acoustic tomography. Empirical Orthogonal Functions (EOF decomposition on the profiles, performed on the seasonal cycle for some selected areas, demonstrates that two modes account for more than 98% of the variability of the climatological distribution. Reduced order EOF analysis is able to correctly represent sound speed profiles within each zone, thus providing the a priori knowledge for Matched Field Tomography. It is also demonstrated that salinity can affect the tomographic inversion, creating a higher degree of complexity than in the open oceans.Key words. Oceanography: general (marginal and semi-enclosed seas; ocean acoustics

  20. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    Directory of Open Access Journals (Sweden)

    T. De Filippis

    2006-01-01

    Full Text Available IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC of World Meteorological Organisation (WMO Regional Association I (Africa. The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe, organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  1. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  2. CALIPSO climatological products: evaluation and suggestions from EARLINET

    Directory of Open Access Journals (Sweden)

    N. Papagiannopoulos

    2016-02-01

    dust, polluted dust, and clean continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET-derived values.

  3. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  4. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    Science.gov (United States)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  5. Tropopause referenced ozone climatology and inter-annual variability (1994–2003 from the MOZAIC programme

    Directory of Open Access Journals (Sweden)

    Thouret

    2006-01-01

    Full Text Available The MOZAIC programme collects ozone and water vapour data using automatic equipment installed on board five long-range Airbus A340 aircraft flying regularly all over the world since August 1994. Those measurements made between September 1994 and August 1996 allowed the first accurate ozone climatology at 9–12 km altitude to be generated. The seasonal variability of the tropopause height has always provided a problem when constructing climatologies in this region. To remove any signal from the seasonal and synoptic scale variability in tropopause height we have chosen in this further study of these and subsequent data to reference our climatology to the altitude of the tropopause. We define the tropopause as a mixing zone 30 hPa thick across the 2 pvu potential vorticity surface. A new ozone climatology is now available for levels characteristic of the upper troposphere (UT and the lower stratosphere (LS regardless of the seasonal variations of the tropopause over the period 1994–2003. Moreover, this new presentation has allowed an estimation of the monthly mean climatological ozone concentration at the tropopause showing a sine seasonal variation with a maximum in May (120 ppbv and a minimum in November (65 ppbv. Besides, we present a first assessment of the inter-annual variability of ozone in this particular critical region. The overall increase in the UTLS is about 1%/yr for the 9 years sampled. However, enhanced concentrations about 10–15 % higher than the other years were recorded in 1998 and 1999 in both the UT and the LS. This so-called '1998–1999 anomaly' may be attributed to a combination of different processes involving large scale modes of atmospheric variability, circulation features and local or global pollution, but the most dominant one seems to involve the variability of the North Atlantic Oscillation (NAO as we find a strong positive correlation (above 0.60 between ozone recorded in the upper troposphere and the NAO

  6. Critical analysis of documentary sources for Historical Climatology of Northern Portugal (17th-19th centuries)

    Science.gov (United States)

    Amorim, Inês; Sousa Silva, Luís; Garcia, João Carlos

    2017-04-01

    Critical analysis of documentary sources for Historical Climatology of Northern Portugal (17th-19th centuries) Inês Amorim CITCEM, Department of History, Political and International Studies, U. of Porto, Portugal. Luís Sousa Silva CITCEM, PhD Fellowship - FCT. João Carlos Garcia CIUHCT, Geography Department, U. of Porto, Portugal. The first major national project on Historical Climatology in Portugal, called "KLIMHIST: Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources (17th-19th centuries)", ended in September 2015, coordinated by Maria João Alcoforado. This project began in March 2012 and counted on an interdisciplinary team of researchers from four Portuguese institutions (Centre of Geographical Studies, University of Trás-os-Montes and Alto Douro, University of Porto, and University of Évora), from different fields of knowledge (Geography, History, Biology, Climatology and Meteorology). The team networked and collaborated with other international research groups on Climate Change and Historical Climatology, resulting in several publications. This project aimed to reconstruct thermal and rainfall patterns in Portugal between the 17th and 19th centuries, as well as identify the main hydrometeorological extremes that occurred over that period. The basic methodology consisted in combining information from different types of anthropogenic sources (descriptive and instrumental) and natural sources (tree rings and geothermal holes), so as to develop climate change models of the past. The data collected were stored in a digital database, which can be searched by source, date, location and type of event. This database, which will be made publically available soon, contains about 3500 weather/climate-related records, which have begun to be studied, processed and published. Following this seminal project, other initiatives have taken place in Portugal in the area of Historical Climatology, namely a Ph

  7. The combined use of micro-hydropyrolysis and compound-specific isotope analysis (CSIA) as a novel technique to identify coal-derived biodegraded PAH flux in the complex environment

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Gong Sun; Gbolagade Olalere; Wisdom Ivwurie; Mick Cooper; Colin Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2007-07-01

    A novel analytical methodology combining CSIA and micro-hydropyrolysis (CSIA/micro-HyPy) has been developed to aid unambiguous source apportionment of PAHs in the complex environment where PAH matrices have been heavily biodegraded and/or their isotopic signatures are overlapping for some sources. Asphaltenes retain useful information of biogeochemical significance, which can be accessed via hydropyrolysis. The PAHs released from hydropyrolysis of asphaltenes, the bound PAHs, from different primary sources (e.g. crude oils, low and high temperature coal tars) were characterized and compared to free aromatics in regard to their molecular and 13C-isotopic profiles. It was found that hydropyrolysis of asphaltenes can generate molecular and isotopic profiles highly representative of their primary sources. For both low and high temperature coal tar, the bound aromatics have broadly similar molecular distributions to their free aromatic counterparts and have {sup 13}C-isotopic values almost identical to those of UK bituminous coals(-23{per_thousand}), indicating that the asphaltenes are actually released as representative fragments of coal structures during carbonization. As expected, the bound aromatics are more 13C-enriched by 1-3 {per_thousand} (-21 to -23{per_thousand}) compared to free aromatics (-24 to -26{per_thousand}). No significant isotopic difference was observed between free and bound aromatics for a North Sea crude oil, all having similar {sup 13}C-isotopic values (-27.2-30.2 {per_thousand}) that are significantly lighter than those for coal-derived aromatics. Applications of this novel methodological CSIA/micro-HyPy technique to samples previously examined from an area around a former carbonization plant have been successfully demonstrated where unambiguous source apportionment could not be achieved previously for the PAHs due to likely environmental alternation. 3 refs., 2 figs., 2 tabs.

  8. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  9. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  10. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  11. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  12. A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Seon; Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Lee, June-Yi; Wang, Bin; Jin, Fei-Fei [University of Hawaii, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Lee, Woo-Jin [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2011-12-15

    Distinct differences of the storm track-jet relationship over the North Pacific and North Atlantic are investigated in terms of barotropic and baroclinic energetics using NCEP-2 reanalysis data for the period of 1979-2008. From fall to midwinter the Pacific storm track (PST) activity weakens following the southward shift of the Pacific jet, whereas the Atlantic storm track (AST) activity remains steady in position and intensifies regardless of the slight southward shift of the Atlantic jet. This study is devoted to seeking for the factors that can contribute to this conspicuous difference between the two storm tracks on climatological subseasonal variation by analyzing eddy properties and local energetics. Different eddy properties over the two oceans lead to different contribution of barotropic energy conversion to the initiation of storm tracks. In the North Atlantic, meridionally elongated eddies gain kinetic energy efficiently from stretching deformation of the mean flow in the jet entrance. On the other hand, the term associated with shearing deformation is important for the initiation of PST. Analysis of baroclinic energetics reveals that the intensification of the AST activity in midwinter is mainly attributed to coincidence between location of maximum poleward and upward eddy heat fluxes and that of the largest meridional temperature gradient over slight upstream of the AST. The relatively large amount of precipitable water and meridional eddy moisture flux along baroclinic energy conversion axis likely provides a more favorable environment for baroclinic eddy growth over the North Atlantic than over the North Pacific. In the meantime, the midwinter minimum of the PST activity is attributable to the southward shift of the Pacific jet stream that leads to discrepancy between core region of poleward and upward heat fluxes and that of meridional thermal gradient. Weakening of eddy-mean flow interaction due to eddy shape and reduction of moist effect are also

  13. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  14. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET

    Science.gov (United States)

    Chu, Housen; Baldocchi, Dennis D.; John, Ranjeet; Wolf, Sebastian; Reichstein, Markus

    2017-02-01

    FLUXNET, the global network of eddy covariance flux towers, provides the largest synthesized data set of CO2, H2O, and energy fluxes. To achieve the ultimate goal of providing flux information "everywhere and all of the time," studies have attempted to address the representativeness issue, i.e., whether measurements taken in a set of given locations and measurement periods can be extrapolated to a space- and time-explicit extent (e.g., terrestrial globe, 1982-2013 climatological baseline). This study focuses on the temporal representativeness of FLUXNET and tests whether site-specific measurement periods are sufficient to capture the natural variability of climatological and biological conditions. FLUXNET is unevenly representative across sites in terms of the measurement lengths and potentials of extrapolation in time. Similarity of driver conditions among years generally enables the extrapolation of flux information beyond measurement periods. Yet such extrapolation potentials are further constrained by site-specific variability of driver conditions. Several driver variables such as air temperature, diurnal temperature range, potential evapotranspiration, and normalized difference vegetation index had detectable trends and/or breakpoints within the baseline period, and flux measurements generally covered similar and biased conditions in those drivers. About 38% and 60% of FLUXNET sites adequately sampled the mean conditions and interannual variability of all driver conditions, respectively. For long-record sites (≥15 years) the percentages increased to 59% and 69%, respectively. However, the justification of temporal representativeness should not rely solely on the lengths of measurements. Whenever possible, site-specific consideration (e.g., trend, breakpoint, and interannual variability in drivers) should be taken into account.

  15. An extended rational thermodynamics model for surface excess fluxes

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2012-01-01

    In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal

  16. Design of a flux buffer based on the flux shuttle

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented

  17. Lobotomy of flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala,Box 803, SE-751 08 Uppsala (Sweden); Guarino, Adolfo [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Roest, Diederik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4 9747 AG Groningen (Netherlands)

    2014-05-15

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T{sup 6} with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N=4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N=8 theory.

  18. The Solar-flux Third Granulation Signature

    Science.gov (United States)

    Gray, David F.; Oostra, Benjamin

    2018-01-01

    The velocity shifts of spectral lines as a function of line strength, so-called the third signature of granulation, are investigated using three published solar-flux atlases. We use flux atlases because we wish to treat the Sun as a star, against which stellar observations can be compared and judged. The atlases are critiqued and compared to the lower-resolution observations taken with the Elginfield stellar spectrograph. Third-signature plots are constructed for the 6020–6340 Å region. No dependence on excitation potential or wavelength is found over this wavelength span. The shape of the plots from the three solar atlases is essentially the same, with rms line-core velocity differences of 30–35 m s‑1. High-resolution atlas data are degraded to the level of the Elginfield spectrograph and compared to direct observations taken with that spectrograph. The line-core velocities show good agreement, with rms differences of 38 m s‑1. A new standard curve is derived and compared with the previously published one. Only small differences in shape are found, but a significant (+97 m s‑1) change in the zero point is indicated. The bisector of the Fe I 6253 line is mapped onto the third-signature plots and flux deficits are derived, which measure the granule/lane flux imbalance. The lower spectral resolution lowers the flux deficit area slightly and moves the peak of the deficit 0.3–0.5 km s‑1 toward higher velocities. These differences, while significant, are not large compared to measurement errors for stellar data.

  19. Constructing Ozone Profile Climatologies with Self-Organizing Maps: Illustrations with CONUS Ozonesonde Data

    Science.gov (United States)

    Thompson, A. M.; Stauffer, R. M.; Young, G. S.

    2015-12-01

    Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O­3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O­3 is twice the mean O­3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O­3 averages can be a poor choice for a climatology.

  20. Comparison of five gridded precipitation products at climatological scales over West Africa

    Science.gov (United States)

    Akinsanola, A. A.; Ogunjobi, K. O.; Ajayi, V. O.; Adefisan, E. A.; Omotosho, J. A.; Sanogo, S.

    2017-12-01

    The paper aimed at assessing the capabilities and limitations of five different precipitation products to describe rainfall over West Africa. Five gridded precipitation datasets of the Tropical Rainfall Measurement Mission (TRMM) Multi-Platform Analysis (TMPA 3B43v7); University of Delaware (UDEL version 3.01); Climatic Research Unit (CRU version 3.1); Global Precipitation Climatology Centre (GPCC version 7) and African Rainfall Climatology (ARC version 2) were compared and validated with reference ground observation data from 81 stations spanning a 19-year period, from January 1990 to December 2008. Spatial investigation of the precipitation datasets was performed, and their capability to replicate the inter-annual and intra-seasonal variability was also assessed. The ability of the products to capture the El Nino and La Nina events were also assessed. Results show that all the five datasets depicted similar spatial distribution of mean rainfall climatology, although differences exist in the total rainfall amount for each precipitation dataset. Further analysis shows that the three distinct phases of the mean annual cycle of the West Africa Monsoon precipitation were well captured by the datasets. However, CRU, GPCC and UDEL failed to capture the little dry season in the month of August while UDEL and GPCC underestimated rainfall amount in the Sahel region. Results of the inter-annual precipitation anomalies shows that ARC2 fail to capture about 46% of the observed variability while the other four datasets exhibits a greater performance ( r > 0.9). All the precipitation dataset except ARC2 were consistent with the ground observation in capturing the dry and wet conditions associated with El Nino and La Nina events, respectively. ARC2 tends to overestimate the El Nino event and failed to capture the La Nina event in all the years considered. In general GPCC, CRU and TRMM were found to be the most outstanding datasets and can, therefore, be used for precipitation

  1. Particle fluxes above forests: Observations, methodological considerations and method comparisons

    International Nuclear Information System (INIS)

    Pryor, S.C.; Larsen, S.E.; Sorensen, L.L.; Barthelmie, R.J.

    2008-01-01

    This paper reports a study designed to test, evaluate and compare micro-meteorological methods for determining the particle number flux above forest canopies. Half-hour average particle number fluxes above a representative broad-leaved forest in Denmark derived using eddy covariance range from -7 x 10 7 m -2 s -1 (1st percentile) to 5 x 10 7 m -2 s -1 (99th percentile), and have a median value of -1.6 x 10 6 m -2 s -1 . The statistical uncertainties associated with the particle number flux estimates are larger than those for momentum fluxes and imply that in this data set approximately half of the particle number fluxes are not statistically different to zero. Particle number fluxes from relaxed eddy accumulation (REA) and eddy covariance are highly correlated and of almost identical magnitude. Flux estimates from the co-spectral and dissipation methods are also correlated with those from eddy covariance but exhibit higher absolute magnitude of fluxes. - Number fluxes of ultra-fine particles over a forest computed using four micro-meteorological techniques are highly correlated but vary in magnitude

  2. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  3. Climatology of transport and diffusion conditions along the United States Atlantic and Gulf coasts

    International Nuclear Information System (INIS)

    Raynor, G.S.; Hayes, J.V.

    1981-01-01

    A study of the atmospheric transport and diffusion climatology of the United States east and Gulf coasts was conducted to aid in planning and site selection for potentially polluting installations. This paper presents selected results from an extensive statistical study. Regular hourly observational data were obtained from 30 coastal stations from Maine to Texas and analyzed in terms of conditions important to emission transport and diffusion. The 30 stations included four pairs with one of each pair at a greater distance from the coast than the other but near the same latitude

  4. Correlation of natural and artificial radionuclides in soils with pedological, climatological and geographic parameters

    International Nuclear Information System (INIS)

    Schuch, L.A.; Nordemann, D.J.R.; Zago, A.; Dallpai, D.L.; Godoy, J.M.; Pecequilo, B.

    1994-01-01

    Various types of soil samples were collected in the southern part of Brazil, with depth intervals of 5 cm, down to 50 cm, using a specially designed sampler. Pedological analysis of these soils were performed. Nuclear activities of 137 Cs (expressed in Bq m -2 ) and radioactive natural element ( 226 Ra, 228 Ra and 40 K) concentrations were determined by low background gamma-ray spectrometry. 137 Cs concentrations were correlated with radioactive natural element concentrations and pedological, climatological and geographic parameters to the soil samples collected. (author) 6 refs.; 4 tabs

  5. An updated analysis of the Lucas Heights Climatology - 1975 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.H

    1997-06-01

    Meteorological data collected from 1975 to 1996 in the Lucas Heights region have been summarised to provide an update on the climatology. Initially data were recorded in analogue form but since 1991 advanced digital recording systems have allowed more accurate and extensive statistics to be analysed. Since 1993 a network of meteorological stations has been installed through the surrounding area to investigate the influence of complex terrain on wind flow and atmospheric dispersion patterns. A large data volumes is presented together with some initial interpretation of these complex terrain influences on the Lucas Heights region climatolology. 33 refs., 25 tabs., 45 figs.

  6. Famine Early Warning Systems Network (FEWS NET) Agro-climatology Analysis Tools and Knowledge Base Products for Food Security Applications

    Science.gov (United States)

    Budde, M. E.; Rowland, J.; Anthony, M.; Palka, S.; Martinez, J.; Hussain, R.

    2017-12-01

    The U.S. Geological Survey (USGS) supports the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET). The USGS Earth Resources Observation and Science (EROS) Center has developed tools designed to aid food security analysts in developing assumptions of agro-climatological outcomes. There are four primary steps to developing agro-climatology assumptions; including: 1) understanding the climatology, 2) evaluating current climate modes, 3) interpretation of forecast information, and 4) incorporation of monitoring data. Analysts routinely forecast outcomes well in advance of the growing season, which relies on knowledge of climatology. A few months prior to the growing season, analysts can assess large-scale climate modes that might influence seasonal outcomes. Within two months of the growing season, analysts can evaluate seasonal forecast information as indicators. Once the growing season begins, monitoring data, based on remote sensing and field information, can characterize the start of season and remain integral monitoring tools throughout the duration of the season. Each subsequent step in the process can lead to modifications of the original climatology assumption. To support such analyses, we have created an agro-climatology analysis tool that characterizes each step in the assumption building process. Satellite-based rainfall and normalized difference vegetation index (NDVI)-based products support both the climatology and monitoring steps, sea-surface temperature data and knowledge of the global climate system inform the climate modes, and precipitation forecasts at multiple scales support the interpretation of forecast information. Organizing these data for a user-specified area provides a valuable tool for food security analysts to better formulate agro-climatology assumptions that feed into food security assessments. We have also developed a knowledge

  7. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation

    Directory of Open Access Journals (Sweden)

    G. G. Laruelle

    2017-10-01

    Full Text Available In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2, the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher temporal and spatial variability in these regions compared to the open ocean. Here, we use a modified version of a two-step artificial neural network method (SOM-FFN; Landschützer et al., 2013 to interpolate the pCO2 data along the continental margins with a spatial resolution of 0.25° and with monthly resolution from 1998 to 2015. The most important modifications compared to the original SOM-FFN method are (i the much higher spatial resolution and (ii the inclusion of sea ice and wind speed as predictors of pCO2. The SOM-FFN is first trained with pCO2 measurements extracted from the SOCATv4 database. Then, the validity of our interpolation, in both space and time, is assessed by comparing the generated pCO2 field with independent data extracted from the LDVEO2015 database. The new coastal pCO2 product confirms a previously suggested general meridional trend of the annual mean pCO2 in all the continental shelves with high values in the tropics and dropping to values beneath those of the atmosphere at higher latitudes. The monthly resolution of our data product permits us to reveal significant differences in the seasonality of pCO2 across the ocean basins. The shelves of the western and northern Pacific, as well as the shelves in the temperate northern Atlantic, display particularly pronounced seasonal variations in pCO2,  while the shelves in the southeastern Atlantic and in the southern Pacific reveal a much smaller seasonality. The calculation of temperature normalized pCO2 for several latitudes in different oceanic basins confirms that the seasonality in shelf pCO2 cannot solely be explained by temperature-induced changes in solubility but are also the result of seasonal changes in circulation, mixing and biological productivity. Our results also reveal that the amplitudes of both thermal and nonthermal seasonal variations in pCO2 are significantly larger at high latitudes. Finally, because this product's spatial extent includes parts of the open ocean as well, it can be readily merged with existing global open-ocean products to produce a true global perspective of the spatial and temporal variability of surface ocean pCO2.

  8. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    Science.gov (United States)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.

  9. Diffusive flux of methane from warm wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barber, T.R.; Burke, R.A.; Sackett, W.M. (Univ. of South Florida, St. Petersburg (USA))

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  10. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  11. Stratospheric ozone climatology and variability over a southern subtropical site: Reunion Island (21° S; 55° E

    Directory of Open Access Journals (Sweden)

    V. Sivakumar

    2007-11-01

    Full Text Available The study presents the climatological characteristics of stratospheric ozone observed over Reunion Island using in-situ (ozonesonde and SAOZ and satellite (UARS-HALOE, SAGE-II and TOMS measurements. It uses co-localised ozonesondes (from September 1992 to February 2005 and SAOZ measurements (from January 1993 to December 2004, SAGE-II data from October 1984 to February 1999 (~15 years, HALOE data from January 1991 to February 2005 (~15 years, and NIMBUS/TOMS data from January 1978 to December 2004 (27 years. The satellite measurements correspond to overpasses located nearby Reunion Island (21° S; 55° E. The height profiles of ozone concentration obtained from ozonesonde (0.5–29.5 km show less bias in comparison with the HALOE and SAGE-II measurements. Though, the satellite (HALOE and SAGE-II measurements underestimate the tropospheric ozone, they are in good agreement for the heights above 15 km. The bias between the measurements and the normalized ozone profile constructed from the ozonesonde and SAGE-II satellite measurement shows that the SAGE-II measurements are more accurate than the HALOE measurements in the lower stratosphere. The monthly variation of ozone concentration derived from ozonesonde and HALOE shows a nearly annual cycle with a maximum concentration during winter/spring and minimum concentration during summer/autumn months. The time evolution of total column ozone obtained from TOMS, SAOZ and the one computed from ozonesonde and SAGE-II, exhibits similar behaviour with analogous trends as above. The TOMS variation displays a higher value of total column ozone of about 3–5 DU (10% in comparison with the SAOZ and the integrated ozone from ozonesonde and SAGE-II.

  12. Constructing an AIRS Climatology for Data Visualization and Analysis to Serve the Climate Science and Application Communities

    Science.gov (United States)

    Ding, Feng; Keim, Elaine; Hearty, Thomas J.; Wei, Jennifer; Savtchenko, Andrey; Theobald, Michael; Vollmer, Bruce

    2016-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding SNPP CrIS mission. The AIRS mission is entering its 15th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released product from the version 6 algorithm in early 2013. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables from version 6 AIRS product are available in Giovanni. We are developing a climatology product using 14-year AIRS retrievals. The study can be a good start for the long term climatology from NASA sounders: the AIRS and the succeeding CrIS. This presentation will show the impacts to the climatology product from different aggregation methods. The climatology can serve climate science and application communities in data visualization and analysis, which will be demonstrated using a variety of functions in version 4 Giovanni. The highlights of these functions include user-defined monthly and seasonal climatology, inter annual seasonal time series, anomaly analysis.

  13. Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP)

    Science.gov (United States)

    Long, Craig S.; Fujiwara, Masatomo; Davis, Sean; Mitchell, Daniel M.; Wright, Corwin J.

    2017-12-01

    Two of the most basic parameters generated from a reanalysis are temperature and winds. Temperatures in the reanalyses are derived from conventional (surface and balloon), aircraft, and satellite observations. Winds are observed by conventional systems, cloud tracked, and derived from height fields, which are in turn derived from the vertical temperature structure. In this paper we evaluate as part of the SPARC Reanalysis Intercomparison Project (S-RIP) the temperature and wind structure of all the recent and past reanalyses. This evaluation is mainly among the reanalyses themselves, but comparisons against independent observations, such as HIRDLS and COSMIC temperatures, are also presented. This evaluation uses monthly mean and 2.5° zonal mean data sets and spans the satellite era from 1979-2014. There is very good agreement in temperature seasonally and latitudinally among the more recent reanalyses (CFSR, MERRA, ERA-Interim, JRA-55, and MERRA-2) between the surface and 10 hPa. At lower pressures there is increased variance among these reanalyses that changes with season and latitude. This variance also changes during the time span of these reanalyses with greater variance during the TOVS period (1979-1998) and less variance afterward in the ATOVS period (1999-2014). There is a distinct change in the temperature structure in the middle and upper stratosphere during this transition from TOVS to ATOVS systems. Zonal winds are in greater agreement than temperatures and this agreement extends to lower pressures than the temperatures. Older reanalyses (NCEP/NCAR, NCEP/DOE, ERA-40, JRA-25) have larger temperature and zonal wind disagreement from the more recent reanalyses. All reanalyses to date have issues analysing the quasi-biennial oscillation (QBO) winds. Comparisons with Singapore QBO winds show disagreement in the amplitude of the westerly and easterly anomalies. The disagreement with Singapore winds improves with the transition from TOVS to ATOVS observations

  14. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; hide

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  15. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  16. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat

    International Nuclear Information System (INIS)

    Rapp, Anita D; Lebsock, Matthew; L’Ecuyer, Tristan

    2013-01-01

    A climatology of low cloud surface precipitation occurrence and intensity from the new CloudSat 2C-RAIN-PROFILE algorithm is presented from June 2006 through December 2010 for the southeastern Pacific region of marine stratocumulus. Results show that over 70% of low cloud precipitation falls as drizzle. Application of an empirical evaporation model suggests that 50–80% of the precipitation evaporates before it reaches the surface. Segregation of the CloudSat ascending and descending overpasses shows that the majority of precipitation occurs at night. Examination of the seasonal cycle shows that the precipitation is most frequent during the austral winter and spring; however there is considerable regional variability. Conditional rain rates increase from east to west with a maximum occurring in the region influenced by the South Pacific Convergence Zone. Area average rain rates are highest in the region where precipitation rates are moderate, but most frequent. The area average surface rain rate for low cloud precipitation for this region is ∼0.22 mm d −1 , in good agreement with in situ estimates, and is greatly improved over earlier CloudSat precipitation products. These results provide a much-needed quantification of surface precipitation in a region that is currently underestimated in existing satellite-based precipitation climatologies. (letter)

  17. Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements

    Science.gov (United States)

    Mehta, Amita V.; Yang, Song

    2008-01-01

    Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.

  18. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Maturilli

    2013-04-01

    Full Text Available A consistent meteorological dataset of the Arctic site Ny-Ålesund (11.9° E, 78.9° N spanning the 18 yr-period 1 August 1993 to 31 July 2011 is presented. Instrumentation and data handling of temperature, humidity, wind and pressure measurements are described in detail. Monthly mean values are shown for all years to illustrate the interannual variability of the different parameters. Climatological mean values are given for temperature, humidity and pressure. From the climatological dataset, we also present the time series of annual mean temperature and humidity, revealing a temperature increase of +1.35 K per decade and an increase in water vapor mixing ratio of +0.22 g kg−1 per decade for the given time period, respectively. With the continuation of the presented measurements, the Ny-Ålesund high resolution time series will provide a reliable source to monitor Arctic change and retrieve trends in the future. The relevant data are provided in high temporal resolution as averages over 5 (1 min before (after 14 July 1998, respectively, placed on the PANGAEA repository (doi:10.1594/PANGAEA.793046. While 6 hourly synoptic observations in Ny-Ålesund by the Norwegian Meteorological Institute reach back to 1974 (Førland et al., 2011, the meteorological data presented here cover a shorter time period, but their high temporal resolution will be of value for atmospheric process studies on shorter time scales.

  19. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  20. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research) grant number 25350515 and the Japan Aerospace Exploration Agency (JAXA) 7th Research Announcement (RA).

  1. Visualization of Information Based on Tweets from Meteorological, Climatological, and Geophysical Agency: BMKG

    Directory of Open Access Journals (Sweden)

    Mira Chandra Kirana

    2018-05-01

    Full Text Available Indonesia is a country with high rate of natural disaster, so any information about early warning of natural disaster are very important. Social media such as Twitter become one of tools for spreading information about natural disaster warning from account of  Meteorology, Climatology and Geophysics Agency (BMKG, therefore, the effectiveness of this kind of method for providing information have not known yet. The statement becomes the reason that the visualization is needed to analyze the information spread of natural disaster early warning with Twitter. This study is performed in 3 steps, which is retrieving, preprocessing then visualization. Retrieving process is used to get the tweet data of BMKG account in twitter then save into database, while preprocessing is done to process tweet data that has been saved in database by grouping the data according to the category, which includes Meteorology, Climatology, and Geophysics according to existing keyword, also reduce tweet data that is unimportant like BMKG's reply tweet toward other user's question. Visualization stage uses the result of preprocessing data into line chart graphic, bar chart and pie chart. Highest information spreading from BMKG tweet happened in Geophysics at March with 25987 re-tweets, while the highest peak happened at 2 March 2016 with information about 8.3 SR earthquake in Mentawai islands, West Sumatera with total of 6145 re-tweets.

  2. Exploratory study on the influence of climatological parameters on Mycoplasma hyopneumoniae infection dynamics

    Science.gov (United States)

    Segalés, Joaquim; Valero, Oliver; Espinal, Anna; López-Soria, Sergio; Nofrarías, Miquel; Calsamiglia, Maria; Sibila, Marina

    2012-11-01

    The objective of the present work was to elucidate the potential relationship between Mycoplasma hyopneumoniae infection and seroconversion dynamics and climatological conditions in four groups of pigs from the same farm born in different seasons of the year. Nasal swabs and blood samples were taken from 184 pigs at 1, 3, 6, 9, 12, 15, 18, 22 and 25 (slaughter age) weeks of age. Outside climatologic parameters, including temperature (°C), relative humidity (%), precipitation (l/m2) and wind speed (m/s) were recorded weekly from January 2003 to June 2004. Percentage of nPCR detection of M. hyopneumoniae in nasal swabs was associated significantly with the weekly precipitation rate [ P = 0.0018, OR = 1.31 (IC = 1.11-1.55)]; the higher the precipitation rate, the higher the probability of being M. hyopneumoniae nPCR-positive. On the other hand, the percentage of seropositive pigs had a significant association with mean weekly temperature rate [ P = 0.0012, OR = 0.89 [IC = 0.84-0.95]); the lower the temperature, the higher the probability of being M. hyopneumoniae seropositive. Animals born in autumn (when higher precipitations rates were recorded), entering finishing units in winter (when lower temperatures were recorded), and reaching slaughter in spring, had the highest probability of being infected by M. hyopneumoniae and the highest probability of being M. hyopneumoniae seropositive.

  3. Comparison of regional and ecosystem CO{sub 2} fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S. E. (Wind Energy Department, Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark)); Soegaard, H. (Institute of Geography and Geology, University of Copenhagen, Copenhagen (Denmark)); Batchvarova, E. (National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    2009-07-01

    A budget method to derive the regional surface flux of CO{sub 2} from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO{sub 2} concentrations by i.e. an airplane, successive radio-soundings and standard measurements of the CO{sub 2} concentration near the ground. The method was used to derive the regional flux of CO{sub 2} over an agricultural site at Zealand in Denmark during an experiment on 12-13 June 2006. The regional fluxes of CO{sub 2} represent a combination of agricultural and forest surface conditions. It was found that the regional flux of CO{sub 2} in broad terms follows the behavior of the flux of CO{sub 2} at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO{sub 2} fluxes at the two stations. (orig.)

  4. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  5. Fast neutron fluxes distribution in Egyptian ilmenite concrete

    International Nuclear Information System (INIS)

    Megahed, R.M.; Abou El-Nasr, T.Z.; Bashter, I.I.

    1978-01-01

    This work is concerned with the study of the distribution of fast neutron fluxes in a new type of heavy concrete made from Egyptian ilmenite ores. The neutron source used was a collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements were carried-out using phosphorous activation detectors. Iso-flux curves were represented which give directly the shape and thickness required to attenuate the emitted fast neutron flux to a certain value. The relaxation lengths were also evaluated from the measured data for both disc monodirectional source and infinite plane monodirectional source. The obtained values were compared with that calculated using the derived values of relative number densities and microscopic removal cross-sections of the different constituents. The obtained data show that ilmenite concrete attenuates fast neutron flux more strongly than ordinary concrete. A semiemperical formula was derived to calculate the fast neutron flux at different thicknesses along the beam axis. Another semiemperical formula was also derived to calculate the fast neutron flux in ordinary concrete along the beam axis using the corresponding value in ilmenite concrete

  6. Critical heat flux evaluation

    International Nuclear Information System (INIS)

    Banner, D.

    1995-01-01

    Critical heat flux (CHF) is of importance for nuclear safety and represents the major limiting factors for reactor cores. Critical heat flux is caused by a sharp reduction in the heat transfer coefficient located at the outer surface of fuel rods. Safety requires that this phenomenon also called the boiling crisis should be precluded under nominal or incidental conditions (Class I and II events). CHF evaluation in reactor cores is basically a two-step approach. Fuel assemblies are first tested in experimental loops in order to determine CHF limits under various flow conditions. Then, core thermal-hydraulic calculations are performed for safety evaluation. The paper will go into more details about the boiling crisis in order to pinpoint complexity and lack of fundamental understanding in many areas. Experimental test sections needed to collect data over wide thermal-hydraulic and geometric ranges are described CHF safety margin evaluation in reactors cores is discussed by presenting how uncertainties are mentioned. From basic considerations to current concerns, the following topics are discussed; knowledge of the boiling crisis, CHF predictors, and advances thermal-hydraulic codes. (authors). 15 refs., 4 figs

  7. Neutron flux monitor

    International Nuclear Information System (INIS)

    Seki, Eiji; Tai, Ichiro.

    1984-01-01

    Purpose: To maintain the measuring accuracy and the reponse time within an allowable range in accordance with the change of neutron fluxes in a nuclear reactor pressure vessel. Constitution: Neutron fluxes within a nuclear reactor pressure vessel are detected by detectors, converted into pulse signals and amplified in a range switching amplifier. The amplified signals are further converted through an A/D converter and digital signals from the converter are subjected to a square operation in an square operation circuit. The output from the circuit is inputted into an integration circuit to selectively accumulate the constant of 1/2n, 1 - 1/2n (n is a positive integer) respectively for two continuing signals to perform weighing. Then, the addition is carried out to calculate the integrated value and the addition number is changed by the chane in the number n to vary the integrating time. The integrated value is inputted into a control circuit to control the value of n so that the fluctuation and the calculation time for the integrated value are within a predetermined range and, at the same time, the gain of the range switching amplifier is controlled. (Seki, T.)

  8. The NASA Carbon Airborne Flux Experiment (CARAFE: instrumentation and methodology

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2018-03-01

    Full Text Available The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1–1000 km, potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40–90 % for a nominal resolution of 2 km or 16–35 % when averaged over a full leg (typically 30–40 km. CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  9. The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology

    Science.gov (United States)

    Wolfe, Glenn M.; Kawa, S. Randy; Hanisco, Thomas F.; Hannun, Reem A.; Newman, Paul A.; Swanson, Andrew; Bailey, Steve; Barrick, John; Thornhill, K. Lee; Diskin, Glenn; DiGangi, Josh; Nowak, John B.; Sorenson, Carl; Bland, Geoffrey; Yungel, James K.; Swenson, Craig A.

    2018-03-01

    The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1-1000 km), potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE) utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40-90 % for a nominal resolution of 2 km or 16-35 % when averaged over a full leg (typically 30-40 km). CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  10. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina

    2009-01-01

    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  11. Global Derivatives

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    approaches to dealing in the global business environment." - Sharon Brown-Hruska, Commissioner, Commodity Futures Trading Commission, USA. "This comprehensive survey of modern risk management using derivative securities is a fine demonstration of the practical relevance of modern derivatives theory to risk......" provides comprehensive coverage of different types of derivatives, including exchange traded contracts and over-the-counter instruments as well as real options. There is an equal emphasis on the practical application of derivatives and their actual uses in business transactions and corporate risk...... management situations. Its key features include: derivatives are introduced in a global market perspective; describes major derivative pricing models for practical use, extending these principles to valuation of real options; practical applications of derivative instruments are richly illustrated...

  12. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  13. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  14. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  15. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  16. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  17. Simulation of global oceanic upper layers forced at the surface by an optimal bulk formulation derived from multi-campaign measurements.

    Science.gov (United States)

    Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.

    2006-12-01

    order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.

  18. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  19. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A.

    2010-01-01

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  20. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  1. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  2. Physical approach to air pollution climatological modelling in a complex site

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G [Torino, Universita; CNR, Istituto di Cosmo-Geofisica, Turin, Italy); Longhetto, A [Ente Nazionale per l' Energia Elettrica, Centro di Ricerca Termica e Nucleare, Milan; CNR, Istituto di Cosmo-Geofisica, Turin, Italy); Runca, E [International Institute for Applied Systems Analysis, Laxenburg, Austria

    1980-09-01

    A Gaussian climatological model which takes into account physical factors affecting air pollutant dispersion, such as nocturnal radiative inversion and mixing height evolution, associated with land breeze and sea breeze regimes, has been applied to the topographically complex area of La Spezia. The measurements of the dynamic and thermodynamic structure of the lower atmosphere obtained by field experiments are utilized in the model to calculate the SO/sub 2/ seasonal average concentrations. The model has been tested on eight three-monthly periods by comparing the simulated values with the ones measured at the SO/sub 2/ stations of the local air pollution monitoring network. Comparison of simulated and measured values was satisfactory and proved the applicability of the model for urban planning and establishment of air quality strategies.

  3. What model resolution is required in climatological downscaling over complex terrain?

    Science.gov (United States)

    El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem

    2018-05-01

    This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited quantitative measure of the potential errors for various hydrometeorological variables.

  4. The geological and climatological case for a warmer and wetter early Mars

    Science.gov (United States)

    Ramirez, Ramses M.; Craddock, Robert A.

    2018-04-01

    The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.

  5. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  6. Mobile measurement techniques for local and micro-scale studies in urban and topo-climatology

    Directory of Open Access Journals (Sweden)

    Seidel, Jochen

    2016-03-01

    Full Text Available Technical development during the last two decades has brought new potential and new applications for ­mobile measurements. In this paper, we present six case studies where mobile measurement devices were used to acquire data for meteorological and climatological research. Three case studies deal with ground-based mobile measurements – on buses for urban climate measurements and on a vessel on a lake – and three with airborne platforms – on a cable car and on an unmanned aerial vehicle for vertical soundings and on a tethered balloon sonde for cloud physics. For each study, we describe the measurement set-up and address the potential and drawbacks of these applications. At the end, we discuss general aspects related to mobile observations especially concerning the time and space dimension of measurements.

  7. High-resolution precipitation database for the last two centuries in Italy: climatologies and anomalies

    Science.gov (United States)

    Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio

    2017-04-01

    The availability of gridded high-resolution spatial climatologies and corresponding secular records has acquired an increasing importance in the recent years both to research purposes and as decision-support tools in the management of natural resources and economical activities. High-resolution monthly precipitation climatologies for Italy were computed by gridding on a 30-arc-second-resolution Digital Elevation Model (DEM) the precipitation normals (1961-1990) obtained from a quality-controlled dataset of about 6200 stations covering the Italian surface and part of the Northern neighbouring regions. Starting from the assumption that the precipitation distribution is strongly influenced by orography, especially elevation, a local weighted linear regression (LWLR) of precipitation versus elevation was performed at each DEM cell. The regression coefficients for each cell were estimated by selecting the stations with the highest weights in which the distances and the level of similarity between the station cells and the considered grid cell, in terms of orographic features, are taken into account. An optimisation procedure was then set up in order to define, for each month and for each grid cell, the most suitable decreasing coefficients for the weighting factors which enter in the LWLR scheme. The model was validated by the comparison with the results provided by inverse distance weighting (IDW) applied both to station normals and to the residuals of a global regression of station normals versus elevation. In both cases, the LWLR leave-one-out reconstructions show the best agreement with the observed station normals, especially when considering specific station clusters (high elevation sites for example). After producing the high-resolution precipitation climatological field, the temporal component on the high-resolution grid was obtained by following the anomaly method. It is based on the assumption that the spatio-temporal structure of the signal of a

  8. An updated analysis of the Lucas Heights climatology 1991-2003

    International Nuclear Information System (INIS)

    Clark, G.H.

    2003-12-01

    Meteorological data collected from 1991 to 2003 in the Lucas Heights region have been summarised to provide an update on the climatology. This report represents analysis of data collected at the Lucas Heights Science and Technology Centre since 1991 when an advanced digital recording system was installed. The small network of meteorological stations installed in the surrounding region since 1993 has allowed an investigation of the influence of complex terrain on wind flow and atmospheric dispersion patterns. For a period between 1999 and 2001 a Bureau of Meteorology disdrometer was installed at Lucas Heights to investigate raindrop size distributions. A large number of statistical summaries for all meteorological data are presented in in two appendices at the end of the report as a resource for reference purposes

  9. LIS/OTD 2.5 DEGREE LOW RESOLUTION DIURNAL CLIMATOLOGY (LRDC) V2.3.2014

    Data.gov (United States)

    National Aeronautics and Space Administration — The product is a 2.5 deg x 2.5 deg gridded composite of climatological total (IC+CG) lightning bulk production as a function of local hour, expressed as a flash rate...

  10. LIS/OTD 0.5 DEGREE HIGH RESOLUTION ANNUAL CLIMATOLOGY (HRAC) V2.3.2013

    Data.gov (United States)

    National Aeronautics and Space Administration — The product is a 0.5 deg x 0.5 deg gridded composite of total (IC+CG) lightning bulk production, expressed as a flash density (fl/km2/yr). Climatologies from the OTD...

  11. LIS/OTD 2.5 DEGREE LOW RES ANNUAL DIURNAL CLIMATOLOGY (LRADC) V2.3.2013

    Data.gov (United States)

    National Aeronautics and Space Administration — The product is a 2.5 deg x 2.5 deg gridded composite of climatological total (IC+CG) lightning bulk production as a function of local hour, expressed as a flash rate...

  12. LIS/OTD 2.5 DEGREE LOW RESOLUTION ANNUAL CLIMATOLOGY (LRAC) V2.3.2013

    Data.gov (United States)

    National Aeronautics and Space Administration — The product is a 2.5 deg x 2.5 deg gridded composite of climatological total (IC+CG) lightning bulk production as a function of day of year, expressed as a flash...

  13. Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998-2001)

    NARCIS (Netherlands)

    Belviso, S; Moulin, C; Bopp, L; Stefels, J

    A method is developed to estimate sea-surface particulate dimethylsulfoniopropionate (DMSP(p)) and dimethylsulfide (DMS) concentrations from sea-surface concentrations of chlorophyll a (Chl a). When compared with previous studies, the 1degrees x 1degrees global climatology of oceanic DMS

  14. A new global interior ocean mapped climatology: the 1° ×  1° GLODAP version 2

    NARCIS (Netherlands)

    Lauvset, S.K.; Key, R.M.; Olsen, A.; van Heuven, S.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M.; Jutterström, S.; Steinfeldt, R.; Jeansson, E.; Ishii, M.; Pérez, F.F.; Suzuki, T.; Watelet, S.

    2016-01-01

    We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to

  15. Development of alternative sulfur dioxide control strategies for a metropolitan area and its environs, utilizing a modified climatological dispersion model

    Science.gov (United States)

    K. J. Skipka; D. B. Smith

    1977-01-01

    Alternative control strategies were developed for achieving compliance with ambient air quality standards in Portland, Maine, and its environs, using a modified climatological dispersion model (CDM) and manipulating the sulfur content of the fuel oil consumed in four concentric zones. Strategies were evaluated for their impact on ambient air quality, economics, and...

  16. Financial Derivatives

    DEFF Research Database (Denmark)

    Wigan, Duncan

    2013-01-01

    Contemporary derivatives mark the development of capital and constitute a novel form of ownership. By reconfiguring the temporal, spatial and legal character of ownership derivatives present a substantive challenge to the tax collecting state. While fiscal systems are nationally bounded...... and inherently static, capital itself is unprecedentedly mobile, fluid and fungible. As such derivatives raise the specter of ‘financial weapons of mass destruction’....

  17. Financial Derivatives

    OpenAIRE

    Janečková, Alena

    2011-01-01

    1 Abstract/ Financial derivatives The purpose of this thesis is to provide an introduction to financial derivatives which has been, from the legal perspective, described in a not satisfactory manner as quite little literature that can be found about this topic. The main objectives of this thesis are to define the term "financial derivatives" and its particular types and to analyse legal nature of these financial instruments. The last objective is to try to draft future law regulation of finan...

  18. A stratospheric NO2 climatology from Odin/OSIRIS limb-scatter measurements

    International Nuclear Information System (INIS)

    Brohede, S.; Murtagh, D.; Berthet, G.; Haley, C.S.

    2007-01-01

    Since the late 1960s, it has been known that stratospheric nitrogen dioxide (NO 2 ) and ozone are closely coupled. However, stratospheric nitrogen chemistry is not yet fully understood, given the lack of observing systems that can provide both high vertical and temporal resolution measurements of NO 2 . Limb-scattering data from the optical spectrograph and infrared imager system (OSIRIS) aboard the Odin satellite was used in this study along with a photochemical box model to investigate stratospheric NO 2 climatology in terms of mean and standard deviation as a function of latitude, altitude, month and local solar time. The Odin orbit provided near global coverage around the equinoxes and hemispheric coverage elsewhere, due to lack of sunlight. The mean NO 2 field at a specific local solar time involved high concentrations in the polar summer, peaking at about 25 km, with a negative equatorward gradient. High levels between 40 to 50 degrees latitude at 30 km in the winter/spring hemisphere were also found, and were associated with the Noxon-cliff. The diurnal cycle revealed the lowest NO 2 concentrations just after sunrise and steep gradients at twilight. The 1σ standard deviation was around 20 per cent, except for winter and spring high latitudes, where values were above 50 per cent and stretched through the entire stratosphere. NO 2 concentrations were found to be log-normally distributed. Comparisons with the REPROBUS chemical transport model for climatology showed that the relative differences for the mean values were below 20 per cent and comparable to the estimated OSIRIS systematic uncertainty. The polar regions in winter/spring throughout the atmosphere and equatorial regions below 25 km were exceptions, where OSIRIS was higher by 40 per cent and more. It was concluded that further study is needed to determine if these discrepancies are due to limitations of the model. 47 refs., 10 figs., 1 appendix

  19. Efflorescent sulfates from Baia Sprie mining area (Romania) — Acid mine drainage and climatological approach

    International Nuclear Information System (INIS)

    Buzatu, Andrei; Dill, Harald G.; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-01

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30–90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. - Highlights: • Efflorescent salts from mining areas have a great impact on the environment. • Secondary minerals are influenced by geology, hydrology, biology and climate. • AMD-precipitates samples were analyzed by XRD, SEM, Raman and NIR spectrometry. • The dehydration temperatures

  20. Influence of climatological and meteorological events on the Cuban environmental gamma background

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Caveda Ramos, Celia; Ramos Viltre, Emma O.; Dominguez Garcia, Adriel; Alonso Abad, Dolores

    2008-01-01

    Full text: A network of environmental radiological surveillance can appropriately respond in case of any radiological anomaly, due to the suitable methodology employed, the equipment used, the automatized detection systems and the data processing. But it is also important to know how the measurements of the different radiological indicators vary with the action of any atmospheric phenomenon. In this work, an analysis of the effects produced on the environmental gamma background in Cuba when acting climatological and meteorological events, has been achieved. Events, such as seasons of severe precipitation, dry seasons, winter and summer, hurricanes and high and low pressures are studied. The measurements were carried out with a gamma probe which is equipped with two Geiger Muller detectors and a temperature sensor. This probe is located at the height of 3.5 m and is exposed to the direct sun rays. We have built hypothesis for explaining some behaviors related to meteorological events, such as hurricanes. However, our theories are not conclusive, since the data obtained from the presence of this kind of phenomena next to the sites of interest was very poor. In this work, we have given explanation to the fluctuation of the measurements achieved of the environmental gamma background, based on the occurrence of some meteorological and climatological events. All this was possible due to a previous study about the influence of the diurnal variation of the temperature over the measurements of the gamma dose rate. On the other hand, the results obtained and the study of the influence of another environmental parameters, will contribute to the alarm levels setting for this radiological indicator according to the season which the measurements are achieved in. (author)