WorldWideScience

Sample records for fluvial channel deposits

  1. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  2. Formation of topographically inverted fluvial deposits on Earth and Mars

    Science.gov (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2016-12-01

    Sinuous ridges interpreted as exhumed river deposits (so-called "inverted channels") are common features on Mars that show promise for quantifying ancient martian surface hydrology. Morphological similarity of these inverted channels to river channels led to a "landscape inversion hypothesis" in which the geometries of ridges and ridge networks accurately reflect the geometries of the paleo-river channels and networks. An alternative "deposit inversion hypothesis" proposes that ridges represent eroded fluvial channel-belt deposits with channel-body geometries that may differ significantly from those of the rivers that built the deposit. To investigate these hypotheses we studied the sedimentology and morphology of inverted channels in Jurassic and Cretaceous outcrops in Utah and the Aeolis Dorsa region of Mars. Ridges in Utah extend for hundreds of meters, are tens of meters wide, and stand up to 30 meters above the surrounding plain. A thick ribbon-geometry sandstone or conglomerate body caps overbank mudstone, paleosols, and thin crevasse-splay sandstone beds. Caprock beds consist of stacked dune- to bar-scale trough cross sets, mud intraclasts, and in cases scroll bars indicating meandering. In plan view, ridge networks bifurcate; however, crosscutting relationships show that distinct sandstone channel bodies at distinct stratigraphic levels intersect at these junctions. Ridge-forming sandstone bodies have been narrowed from their original dimensions by cliff retreat and bisected by modern fluvial erosion and mass wasting. We therefore interpret the sinuous ridges in Utah as eroded remnants of channel-belt sandstone bodies formed by laterally migrating and avulsing rivers rather than channel fills - consistent with deposit inversion. If the sinuous ridges in Aeolis Dorsa also formed by deposit inversion, river widths previously interpreted under the landscape inversion hypothesis are overestimated by up to a factor of 10 and discharges by up to a factor of 100.

  3. Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes

    Science.gov (United States)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.

    2018-04-01

    Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.

  4. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars

    Science.gov (United States)

    Goudge, Timothy A.; Mohrig, David; Cardenas, Benjamin T.; Hughes, Cory M.; Fassett, Caleb I.

    2018-02-01

    The Jezero crater open-basin lake contains two well-exposed fluvial sedimentary deposits formed early in martian history. Here, we examine the geometry and architecture of the Jezero western delta fluvial stratigraphy using high-resolution orbital images and digital elevation models (DEMs). The goal of this analysis is to reconstruct the evolution of the delta and associated shoreline position. The delta outcrop contains three distinct classes of fluvial stratigraphy that we interpret, from oldest to youngest, as: (1) point bar strata deposited by repeated flood events in meandering channels; (2) inverted channel-filling deposits formed by avulsive distributary channels; and (3) a valley that incises the deposit. We use DEMs to quantify the geometry of the channel deposits and estimate flow depths of ∼7 m for the meandering channels and ∼2 m for the avulsive distributary channels. Using these estimates, we employ a novel approach for assessing paleohydrology of the formative channels in relative terms. This analysis indicates that the shift from meandering to avulsive distributary channels was associated with an approximately four-fold decrease in the water to sediment discharge ratio. We use observations of the fluvial stratigraphy and channel paleohydrology to propose a model for the evolution of the Jezero western delta. The delta stratigraphy records lake level rise and shoreline transgression associated with approximately continuous filling of the basin, followed by outlet breaching, and eventual erosion of the delta. Our results imply a martian surface environment during the period of delta formation that supplied sufficient surface runoff to fill the Jezero basin without major drops in lake level, but also with discrete flooding events at non-orbital (e.g., annual to decadal) timescales.

  5. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain)

    Science.gov (United States)

    Vázquez-Urbez, M.; Pardo, G.; Arenas, C.; Sancho, C.

    2011-01-01

    The Pleistocene deposits of the valley of the River Piedra (NE Spain) are represented by thick tufas with small amounts of detrital material; the development of these deposits correlates with marine isotopic stages 9, 7, 6, and 5. The sedimentary scenario in which they formed mostly corresponded to stepped fluvial systems with barrage-cascade and associated dammed areas separated by low gradient fluvial stretches. Mapping and determining the sedimentology and chronology of these deposits distinguished two main episodes of fluvial diffluence that originated as a result of the temporary blockage of the river — a consequence of the vertical growth of tufa barrages in the main channel. In both episodes, water spilt out toward a secondary course from areas upstream of barrages where the water level surpassed the height of the divide between the main and secondary course. As a consequence, extensive and distinct tufa deposits with very varied facies formed over a gently inclined area toward and, indeed, within the secondary course. The hydrology of this secondary course was episodic, fed only by surface water. The two diffluence episodes detected occurred during MIS 7 and 7-6 and were interrupted by incision events, reflected by detrital deposits at the base of each tufa sedimentation stage in the main channel. Incision, which caused the breakage of the barrages, allowed water to again flow through the main channel. No evidence of diffluence was seen in any younger (MIS 5 to present-day) tufa deposits. The proposed diffluence model might help explain other carbonate fluvial systems in which (1) tufas appear in areas with no permanent water supply, and (2) tufas are absent over extensive areas despite conditions favourable to their formation.

  6. Stratigraphy and Evolution of Delta Channel Deposits, Jezero Crater, Mars

    Science.gov (United States)

    Goudge, T. A.; Mohrig, D.; Cardenas, B. T.; Hughes, C. M.; Fassett, C. I.

    2017-01-01

    The Jezero impact crater hosted an open-basin lake that was active during the valley network forming era on early Mars. This basin contains a well exposed delta deposit at the mouth of the western inlet valley. The fluvial stratigraphy of this deposit provides a record of the channels that built the delta over time. Here we describe observations of the stratigraphy of the channel deposits of the Jezero western delta to help reconstruct its evolution.

  7. Fluvial processes and channel morphometry of the upper Orashi ...

    African Journals Online (AJOL)

    Fluvial processes and channel morphometry of the upper Orashi basin in ... of channel equilibrium between morphology and hydrology, the Orashi channel is not well ... Drainage basins, watershed morphology, morphometric analysis, Nigeria ...

  8. Quantitative reconstruction of cross-sectional dimensions and hydrological parameters of gravelly fluvial channels developed in a forearc basin setting under a temperate climatic condition, central Japan

    Science.gov (United States)

    Shibata, Kenichiro; Adhiperdana, Billy G.; Ito, Makoto

    2018-01-01

    Reconstructions of the dimensions and hydrological features of ancient fluvial channels, such as bankfull depth, bankfull width, and water discharges, have used empirical equations developed from compiled data-sets, mainly from modern meandering rivers, in various tectonic and climatic settings. However, the application of the proposed empirical equations to an ancient fluvial succession should be carefully examined with respect to the tectonic and climatic settings of the objective deposits. In this study, we developed empirical relationships among the mean bankfull channel depth, bankfull channel depth, drainage area, bankfull channel width, mean discharge, and bankfull discharge using data from 24 observation sites of modern gravelly rivers in the Kanto region, central Japan. Some of the equations among these parameters are different from those proposed by previous studies. The discrepancies are considered to reflect tectonic and climatic settings of the present river systems, which are characterized by relatively steeper valley slope, active supply of volcaniclastic sediments, and seasonal precipitation in the Kanto region. The empirical relationships derived from the present study can be applied to modern and ancient gravelly fluvial channels with multiple and alternate bars, developed in convergent margin settings under a temperate climatic condition. The developed empirical equations were applied to a transgressive gravelly fluvial succession of the Paleogene Iwaki Formation, Northeast Japan as a case study. Stratigraphic thicknesses of bar deposits were used for estimation of the bankfull channel depth. In addition, some other geomorphological and hydrological parameters were calculated using the empirical equations developed by the present study. The results indicate that the Iwaki Formation fluvial deposits were formed by a fluvial system that was represented by the dimensions and discharges of channels similar to those of the middle to lower reaches of

  9. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    Science.gov (United States)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  10. Evaluating process origins of sand-dominated fluvial stratigraphy

    Science.gov (United States)

    Chamberlin, E.; Hajek, E. A.

    2015-12-01

    Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large

  11. Fluvial processes on Mars: Erosion and sedimentation

    Science.gov (United States)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  12. Reconstructing paleo-discharge from geometries of fluvial sinuous ridges on Earth and Mars

    Science.gov (United States)

    Hayden, A.; Lamb, M. P.; Mohrig, D. C.; Williams, R. M. E.; Myrow, P.; Ewing, R. C.; Cardenas, B. T.; Findlay, C. P., III

    2017-12-01

    Sinuous, branching networks of topographic ridges resembling river networks are common across Mars, and show promise for quantifying ancient martian surface hydrology. There are two leading formation mechanisms for ridges with a fluvial origin. Inverted channels are ridges that represent casts (e.g., due to lava fill) of relict river channel topography, whereas exhumed channel deposits are eroded remnants of a more extensive fluvial deposit, such as a channel belt. The inverted channel model is often assumed on Mars; however, we currently lack the ability to distinguish these ridge formation mechanisms, motivating the need for Earth-analog study. To address this issue, we studied the extensive networks of sinuous ridges in the Ebro basin of northeast Spain. The Ebro ridges stand 3-15 meters above the surrounding plains and are capped by a cliff-forming sandstone unit 3-10 meters thick and 20-50 meters in breadth. The caprock sandstone bodies contain bar-scale cross stratification, point-bar deposits, levee deposits, and lenses of mudstone, indicating that these are channel-belt deposits, rather than casts of channels formed from lateral channel migration, avulsion and reoccupation. In plan view, ridges form segments branching outward to the north resembling a distributary network; however, crosscutting relationships indicate that ridges cross at different stratigraphic levels. Thus, the apparent network in planview reflects non-uniform exhumation of channel-belt deposits from multiple stratigraphic positions, rather than an inverted coeval river network. As compared to the inverted channel model, exhumed fluvial deposits indicate persistent fluvial activity over geologic timescales, indicating the potential for long-lived surface water on ancient Mars.

  13. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    Science.gov (United States)

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  14. Fluvial Channel Networks as Analogs for the Ridge-Forming Unit, Sinus Meridiani, Mars

    Science.gov (United States)

    Wilkinson, M. J.; du Bois, J. B.

    2010-01-01

    Fluvial models have been generally discounted as analogs for the younger layered rock units of Sinus Meridiani. A fluvial model based on the large fluvial fan provides a possibly close analog for various features of the sinuous ridges of the etched, ridge-forming unit (RFU) in particular. The close spacing of the RFU ridges, their apparently chaotic orientations, and their organization in dense networks all appear unlike classical stream channel patterns. However, drainage patterns on large fluvial fans low-angle, fluvial aggradational features, 100s of km long, documented worldwide by us provide parallels. Some large fan characteristics resemble those of classical floodplains, but many differences have been demonstrated. One major distinction relevant to the RFU is that channel landscapes of large fans can dominate large areas (1.2 million km2 in one S. American study area). We compare channel morphologies on large fans in the southern Sahara Desert with ridge patterns in Sinus Meridiani (fig 1). Stream channels are the dominant landform on large terrestrial fans: they may equate to the ubiquitous, sinuous, elongated ridges of the RFU that cover areas region wide. Networks of convergent/divergent and crossing channels may equate to similar features in the ridge networks. Downslope divergence is absent in channels of terrestrial upland erosional landscapes (fig. 1, left), whereas it is common to both large fans (fig. 1, center) and RFU ridge patterns (fig 1, right downslope defined as the regional NW slope of Sinus Meridiani). RFU ridge orientation, judged from those areas apparently devoid of impact crater control, is broadly parallel with the regional slope (arrow, fig. 1, right), as is mean orientation of major channels on large fans (arrow, fig. 1, center). High densities per unit area characterize fan channels and martian ridges reaching an order of magnitude higher than those in uplands just upstream of the terrestrial study areas fig. 1. In concert with

  15. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits - Fluvial response to climate change, sea-level fluctuation and glaciation

    NARCIS (Netherlands)

    Busschers, F.S.; Weerts, H.J.T.; Wallinga, J.; Cleveringa, P.; Kasse, C.; Wolf, H.de; Cohen, K.M.

    2005-01-01

    Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and

  16. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits fluvial response to climate change, sea-level fluctuation and glaciation

    NARCIS (Netherlands)

    Busschers, F.S.; Weerts, H.J.T.; Wallinga, J.; Kasse, C.; Cleveringa, P.; de Wolf, H.; Cohen, K.M.

    2005-01-01

    Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and

  17. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    Science.gov (United States)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to

  18. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse depositsfluvial response to climate change, sea-level fluctuation and glaciation

    NARCIS (Netherlands)

    Busschers, F.S.; Weerts, H.J.T.; Wallinga, J.; Cleveringa, P.; Kasse, C.; Wolf, H. de; Cohen, K.M.

    2005-01-01

    Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and

  19. Fluvial depositional environment evolving into deltaic setting with marine influences in the buntsandstein of northern vosges (France)

    Science.gov (United States)

    Gall, Jean-Claude

    The Buntsandstein in the Northern Vosges (France) originates mainly in an inland braidplain fluvial environment which passes in the upper part of the sequence into deltaic milieu in the coastal plain along the border of the sea, with the continental environment finally being drowned with the transgression of the shallow sea. The fluvial sedimentation is characterized by the presence of two facies throughout the Buntsandstein : channel facies and overbank plain facies. The channel facies comprises sandy and conglomeratic deposits forming within active streams by strong currents, whereas the overbank plain facies is built up of silty-clayey sandstones or silt/clay originating in stagnant water in abandoned watercourses, ponds, pools and puddles. The significance of particularly the floodplain sediments is subjected to considerable changes throughout the Buntsandstein sequence. There are all stages of transition between overbank plain deposits being only preserved in ghost-like facies as reworked clasts due to effective secondary removal of primarily occasionally formed suspension fines, and an abundance of autochthonous floodplain sediments in the depositional record resulting from favourable conditions of primary origin and secondary preservation. Reworked ventifacts within fluvial channel sediments testify to subordinate aeolian influences in the alluvial plain, with reasonable reworking, however, having removed all in situ traces of wind activity. Declining aridity of palaeoclimate towards the top is indicated by the appearance of violet horizon palaeosols in the Zone-Limite-Violette and the Couches intermédiaires being accompanied by Bröckelbank carbonate breccias originating from concentration of reworked fragments of pedogenic carbonate nodules. Biogenic traces are in the lower part of the sequence mainly present as Planolites burrows in the finer-grained sediments. Palaeosalinities as revealed from boron contents indicate progressively increasing

  20. Suspended sediment transport trough a large fluvial-tidal channel network

    Science.gov (United States)

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  1. Leslie Cemetery and Francisco distributary fluvial channels in the Petersburg Formation (Pennsylvanian) of Gibson County, Indiana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, D L

    1984-01-01

    The Leslie Cemetery Channel is a small distributary fluvial channel that is partly contemporaneous with the Springfield Coal member of the Petersburg Formation (Pennsylvanian) and splits the seam into two seams. This channel is 1-6 miles (1.6-10 km) wide and extends 30 miles (48 km) in the subsurface. Overbank and channel fill deposits consisting of sandstone, siltstone, and mudstone split the coal into two seams up to 40-50 ft (12-15 m) apart in places. The lower seam is a low-sulphur coal. Adjacent to this channel is the unsplit coal, which is as much as 9 ft (3 m) thick. Beneath the Leslie Cemetery Channel and the Springfield coal is the slightly older Francisco Channel (new name), which is younger than the next lower coal. This channel is filled with a fining-upward sandstone as much as 75 ft (23 m) thick. The positions of these stacked channels were determined by the differential compaction of earlier sediments. 20 references.

  2. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    Science.gov (United States)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and

  3. Optimizing sampling strategy for radiocarbon dating of Holocene fluvial systems in a vertically aggrading setting

    International Nuclear Information System (INIS)

    Toernqvist, T.E.; Dijk, G.J. Van

    1993-01-01

    The authors address the question of how to determine the period of activity (sedimentation) of fossil (Holocene) fluvial systems in vertically aggrading environments. The available data base consists of almost 100 14 C ages from the Rhine-Meuse delta. Radiocarbon samples from the tops of lithostratigraphically correlative organic beds underneath overbank deposits (sample type 1) yield consistent ages, indicating a synchronous onset of overbank deposition over distances of at least up to 20 km along channel belts. Similarly, 14 C ages from the base of organic residual channel fills (sample type 3) generally indicate a clear termination of within-channel sedimentation. In contrast, 14 C ages from the base of organic beds overlying overbank deposits (sample type 2), commonly assumed to represent the end of fluvial sedimentation, show a large scatter reaching up to 1000 14 C years. It is concluded that a combination of sample types 1 and 3 generally yields a satisfactory delimitation of the period of activity of a fossil fluvial system. 30 refs., 11 figs., 4 tabs

  4. Volcanic or Fluvial Channels on Ascraeus Mons: Focus on the Source Area of Sinuous Channels on the Southeast Rift Apron

    Science.gov (United States)

    Signorella, J. D.; de Wet, A. P.; Bleacher, J. E.; Collins, A.; Schierl, Z. P.; Schwans, B.

    2012-03-01

    This study focuses on the source area of sinuous channels on the southeast rift apron on Ascraeus Mons, Mars and attempts to understand whether the channels were formed through volcanic or fluvial processes.

  5. Does deposition depth control the OSL bleaching of fluvial sediment?

    NARCIS (Netherlands)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2014-01-01

    The Optically Stimulated Luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  6. Spectral gamma-ray signature of fluvial deposits: a case study from the Late Permian Rio do Rasto Formation, Parana Basin, Brazil; Assinatura gamaespectrometrica de depositos fluviais: estudo de caso na Formacao do Rio do Rasto, Permiano Superior da Bacia do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Sowek, Guilherme Arruda, E-mail: arruda@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Geologia; Ferreira, Francisco Jose Fonseca; Vesely, Fernando Farias, E-mail: francisco.ferreira@ufpr.br, E-mail: vesely@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Geologia. Setor de Ciencias da Terra; Berton, Fabio, E-mail: fabioberton1@yahoo.com.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2013-09-15

    Fluvial channel-fill deposits form highly heterogeneous hydrocarbon reservoirs. The study of outcrop analogs can help in the characterization of these heterogeneities, which are usually not detected by subsurface geophysical methods. The aim of this research is to compare outcrop log signatures with grain size trends and depositional elements of the fluvial deposits of the Late Permian Rio do Rasto Formation. A series of vertical gamma-ray logs were assembled in two outcrops in order to: 1) characterize log-facies in a succession composed of alternated flood plain, channel fill and eolian strata; 2) define within-channel spectral gamma-ray variability of a mixed-load composite point bar deposit and its relationship with grain size trends and lithofacies; 3) correlate log signatures observed in the outcrop sections with deep exploratory wells drilled several tens of kilometers from the study area. The results of this study show that gamma-ray logs have good correlation with grain size trends and that different depositional elements have distinct signatures. On the other hand, point bar deposits exhibit strong lateral changes in log signature due variations in grain size and mud content within lateral accretion strata. Although frequent, the classic bell-shaped log motif was not always detected, which means that the amount of fluvial channel-fill deposits recognized in subsurface can be underestimated. Similar log signatures were detected in the boreholes, at least in the closest ones, helping in paleoenvironmental interpretation in the subsurface. (author)

  7. Facies architecture and high resolution sequence stratigraphy of an aeolian, fluvial and shallow marine system in the Pennsylvanian Piauí Formation, Parnaíba Basin, Brazil

    Science.gov (United States)

    Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos

    2017-07-01

    The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.

  8. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol

    Science.gov (United States)

    Gregory, K. J.; Benito, G.; Downs, P. W.

    2008-06-01

    Significant developments have been achieved in applicable and applied fluvial geomorphology as shown in publications of the last three decades, analyzed as the basis for using results of studies of environmental change as a basis for management. The range of types of publications and of activities are more pertinent to river channel management as a result of concern with sustainability, global climate change, environmental ethics, ecosystem health concepts and public participation. Possible applications, with particular reference to river channel changes, include those concerned with form and process, assessment of channel change, urbanization, channelization, extractive industries, impact of engineering works, historical changes in land use, and restoration with specific examples illustrated in Table 1. In order to achieve general significance for fluvial geomorphology, more theory and extension by modelling methods is needed, and examples related to morphology and process characteristics, integrated approaches, and changes of the fluvial system are collected in Table 2. The ways in which potential applications are communicated to decision-makers range from applicable outputs including publications ranging from review papers, book chapters, and books, to applied outputs which include interdisciplinary problem solving, educational outreach, and direct involvement, with examples summarized in Table 3. On the basis of results gained from investigations covering periods longer than continuous records, a protocol embracing palaeohydrological inputs for application to river channel management is illustrated and developed as a synopsis version (Table 4), demonstrating how conclusions from geomorphological research can be expressed in a format which can be considered by managers.

  9. Analysis on depositional system and discussion on ore-formation conditions of channel sandstone type uranium deposit. Taking Dongsheng area, Ordos meso-cenozoic basin as an example

    International Nuclear Information System (INIS)

    Wu Rengui; Yu Dagan; Zhu Minqiang; Zhou Wanpeng; Chen Anping

    2003-01-01

    Applying the theory of depositional system, the depositional facies and depositional systems of the Zhiluo Formation in Dongsheng area are systematically analysed, and the authors proposed that sediments of the Zhiluo Formation are of fluvial facies, and streams of the Zhiluo time experienced three evolution stages, namely: the early braided stream, the middle low sinuosity meandering stream and the late high sinuosity meandering stream. Based on features of paleoclimatic evolution, the Zhiluo Formation is divided into two lithological members. The lower lithological member consists of sediments of braided and low sinuosity meandering streams under humid-ward paleoclimatic conditions forming grey sedimentary formation. The upper member is composed of sediments of meandering streams under arid-hot paleoclimatic conditions representing complex-colored (mainly red) sedimentary formation. It is suggested that uranium mineralization in the study area is of channel sandstone type and controlled by braided channel sediments. Besides, the ore-formation conditions for channel sandstone type uranium deposit are preliminarily discussed

  10. Fluvial landscape development in the southwestern Kalahari during the Holocene - Chronology and provenance of fluvial deposits in the Molopo Canyon

    DEFF Research Database (Denmark)

    Ramisch, Arne; Bens, Oliver; Buylaert, Jan-Pieter

    2017-01-01

    are sparse and often discontinuous. Hence, little is known about Holocene environmental change in this region. This study focuses on reconstructing paleoenvironmental change from the timing and provenance of fluvial deposits located within the Molopo Canyon, which connects the southern Kalahari drainage...... to the deposition of alluvial fills. These results suggest that the southern Kalahari Drainage remained endorheic and therefore disconnected from the Orange River throughout the Holocene....

  11. Anatomy and dimensions of fluvial crevasse-splay deposits: Examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A.

    Science.gov (United States)

    Burns, C. E.; Mountney, N. P.; Hodgson, D. M.; Colombera, L.

    2017-04-01

    Crevasse-splay deposits form a volumetrically significant component of many fluvial overbank successions (up to 90% in some successions).Yet the relationships between the morphological form of accumulated splay bodies and their internal facies composition remains poorly documented from ancient successions. This work quantifies lithofacies distributions and dimensions of exhumed crevasse-splay architectural elements in the Campanian Castlegate Sandstone and Neslen Formation, Mesaverde Group, Utah, USA, to develop a depositional model. Fluvial crevasse-splay bodies thin from 2.1 m (average) to 0.8 m (average) and fine from a coarsest recorded grain size of lower-fine sand to fine silt away from major trunk channel bodies. Internally, the preserved deposits of splays comprise laterally and vertically variable sandstone and siltstone facies associations: proximal parts are dominated by sharp and erosional-based sandstone-prone units, which may be structureless or may comprise primary current lineation on beds and erosional gutter casts; medial parts comprise sets of climbing-ripple strata and small scale deformed beds; distal parts comprise sets of lower-stage plane beds and complex styles of lateral grading into fine-grained floodbasin siltstones and coals. Lithofacies arrangements are used to establish the following: (i) recognition criteria for crevasse-splay elements; (ii) criteria for the differentiation between distal parts of crevasse-splay bodies and floodplain fines; and (iii) empirical relationships with which to establish the extent (ca. 500 m long by 1000 m wide) and overall semi-elliptical planform shape of crevasse-splay bodies. These relationships have been established by high-resolution stratigraphic correlation and palaeocurrent analysis to identify outcrop orientation with respect to splay orientation. This permits lateral changes in crevasse-splay facies architecture to be resolved. Facies models describing the sedimentology and architecture of

  12. Seismic Facies of Pleistocene–Holocene Channel-fill Deposits in Bawean Island and Adjacent Waters, Southeast Java Sea

    Directory of Open Access Journals (Sweden)

    Ali Albab

    2017-08-01

    Full Text Available The late Pleistocene-Holocene stratigraphic architecture of the Bawean Island and surrounding waters, southeast Java Sea has been analyzed by using sparker seismic profiles. Geological interpretation of these seismic profiles revealed the widespread distribution of paleochannels with different shape and size in the present-day Java Sea. Two channel types can be distinguished based on its morphology: U-shaped channels in the western part and V-shaped channels in the eastern part. The stratigraphic successions were grouped into two major seismic units separated by different seismic boundaries. Characters of marine and fluvial deposits were determined based on seismic boundaries and internal reflectors. Three seismic facies can be identified within late Pleistocene – Holocene incised channel fills associated with SB2. The internal structure of incised-channels consist of chaotic reflector at the bottom, covered by parallel–sub parallel and almost reflection-free indicating the homogenous sediment deposited during the succession.

  13. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Olley, J.M.; Caitcheon, G.G.; Roberts, R.G.

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dating of individual grains are not significant for these samples. We demonstrate that single-grain dating of fluvial material is possible and practicable using standard Risoe optical dating equipment, and we conclude that application of a new regenerative-dose protocol to single grains of quartz, using the lowest dose population to estimate the burial dose, is the best available means of obtaining reliable luminescence ages for heterogeneously bleached fluvial sediments

  14. Buried late Pleistocene fluvial channels on the inner continental shelf off Vengurla, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.; Krishna, K.S.; Chaubey, A.K.

    with sediments. Cross sectional dimensions between 15 to 100 m width and 2 to 6 m depth suggest a fluvial origin of the channels. These buried channels appear to mark former positions of rivers flowing from the nearby coast and debouching into the Arabian Sea...

  15. Changing fluvial styles in volcaniclastic successions: A cretaceous example from the Cerro Barcino Formation, Patagonia

    Science.gov (United States)

    Umazano, A. Martín; Krause, J. Marcelo; Bellosi, Eduardo S.; Perez, Mariano; Visconti, Graciela; Melchor, Ricardo N.

    2017-08-01

    The Cretaceous Puesto La Paloma (PLPM) and Cerro Castaño (CCM) members (Cerro Barcino Formation, Chubut Group) are pyroclastic-rich, alluvial successions deposited in the Somuncurá-Cañadón Asfalto Basin during sag and endorheic conditions. The PLPM comprises sheet-like tuffaceous sandstone strata, whereas the overlying CCM includes sheet-to ribbon-channel sandstone bodies intercalated within tuffaceous and fine-grained sediments. In this context, the goals of this contribution were: i) to make a detailed documentation of the contrasting sedimentary palaeonvironments; and ii) to infer the allocyclic controls that governed the sedimentation of both units. The study area is located in the western sector of the basin, where six localities, which were studied. Six facies associations were defined including ash-falls, sheet-floods, shallow lakes, aeolian, fluvial channel-belts, and reworked debris-flows. We defined four stratigraphic intervals for the studied sections, denominated 1 to 4 in chronological order of deposition, which increase their thicknesses toward the Puesto Mesa-Cerro León site. The interval 1 (18-42 m thick) corresponds to the PLPM and includes numerous pedogenized sheet-flood deposits, carbonate-rich lacustrine, aeolian sandy facies, and ash-fall beds. The interval 1 is interpreted as an ephemeral and unconfined alluvial system that interacted with aeolian dunes and dry interdune zones. The interval 2 (20-47 m thick) represents the lower part of the CCM. It shows an alternation of fluvial channel-belt deposits and vegetated floodplain facies with sediments originated from sheet-floods, lakes, and few ash-falls and debris-flows. The mean palaeoflow was toward E-SE, except in the northernmost locality where the drainage was towards SW. Proportion of channel-belt bodies ranges from 10 to 36%, reaching higher values in the northern part of the study area, where they are also thicker. The interval 2 represents a permanent, meandering or locally low

  16. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  17. Geomorphological evolution of a fluvial channel after primary lahar deposition: Huiloac Gorge, Popocatépetl volcano (Mexico)

    Science.gov (United States)

    Tanarro, L. M.; Andrés, N.; Zamorano, J. J.; Palacios, D.; Renschler, C. S.

    2010-10-01

    Popocatépetl volcano (19°02' N, 98°62' W, 5424 m) began its most recent period of volcanic activity in December 1994. The interaction of volcanic and glacier activity triggered the formation of lahars through the Huiloac Gorge, located on the northern flank of the volcano, causing significant morphological changes in the channel. The most powerful lahars occurred in April 1995, July 1997 and January 2001, and were followed by secondary lahars that formed during the post-eruptive period. This study interprets the geomorphological evolution of the Huiloac Gorge after the January 2001 lahar. Variations in channel morphology at a 520 m-long research site located mid-way down the gorge were recorded over a 4 year period from February 2002 to March 2005, and depicted in five geomorphological maps (scale 1:200) for 14 February and 15 October 2002, 27 September 2003, 9 February 2004, and 16 March 2006. A GIS was used to calculate the surface area for the landforms identified for each map and detected changes and erosion-deposition processes of the landforms using the overlay function for different dates. Findings reveal that secondary lahars and others types of flows, like sediment-laden or muddy streamflows caused by precipitation, rapidly modified the gorge channel following the January 2001 non-eruptive lahar, a period associated with volcanic inactivity and the disappearance of the glacier once located at the headwall of the gorge. Field observations also confirmed that secondary flows altered the dynamics and geomorphological development of the channel. These flows incised and destroyed the formations generated by the primary lahars (1997 and 2001), causing a widening of the channel that continues today. After February 2004, a rain-triggered lahar and other flows infilled the channel with materials transported by these flows. The deposits on the lateral edges of the channel form terraces. A recent lull in lahar activity contrasts with the increasing instability of

  18. Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics.

    NARCIS (Netherlands)

    Cunningham, A.C.; Wallinga, J.; Versendaal, Alice; Makaske, A.; Middelkoop, H.; Hobo, N.

    2015-01-01

    The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  19. Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics

    NARCIS (Netherlands)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2015-01-01

    The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  20. The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

    Science.gov (United States)

    Rengers, Francis K.; McGuire, Luke; Ebel, Brian A.; Tucker, G. E.

    2018-01-01

    The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles ( >D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.

  1. The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

    Science.gov (United States)

    Rengers, F. K.; McGuire, L. A.; Ebel, B. A.; Tucker, G. E.

    2018-05-01

    The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles (>D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.

  2. Protracted fluvial recovery from medieval earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Andermann, Christoff; Schönfeldt, Elisabeth; Seidemann, Jan; Adhikari, Basanta R.; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    River response to strong earthquake shaking in mountainous terrain often entails the flushing of sediments delivered by widespread co-seismic landsliding. Detailed mass-balance studies following major earthquakes in China, Taiwan, and New Zealand suggest fluvial recovery times ranging from several years to decades. We report a detailed chronology of earthquake-induced valley fills in the Pokhara region of western-central Nepal, and demonstrate that rivers continue to adjust to several large medieval earthquakes to the present day, thus challenging the notion of transient fluvial response to seismic disturbance. The Pokhara valley features one of the largest and most extensively dated sedimentary records of earthquake-triggered sedimentation in the Himalayas, and independently augments paleo-seismological archives obtained mainly from fault trenches and historic documents. New radiocarbon dates from the catastrophically deposited Pokhara Formation document multiple phases of extremely high geomorphic activity between ˜700 and ˜1700 AD, preserved in thick sequences of alternating fluvial conglomerates, massive mud and silt beds, and cohesive debris-flow deposits. These dated fan-marginal slackwater sediments indicate pronounced sediment pulses in the wake of at least three large medieval earthquakes in ˜1100, 1255, and 1344 AD. We combine these dates with digital elevation models, geological maps, differential GPS data, and sediment logs to estimate the extent of these three pulses that are characterized by sedimentation rates of ˜200 mm yr-1 and peak rates as high as 1,000 mm yr-1. Some 5.5 to 9 km3 of material infilled the pre-existing topography, and is now prone to ongoing fluvial dissection along major canyons. Contemporary river incision into the Pokhara Formation is rapid (120-170 mm yr-1), triggering widespread bank erosion, channel changes, and very high sediment yields of the order of 103 to 105 t km-2 yr-1, that by far outweigh bedrock denudation rates

  3. Age of depositional and weathering events in Central Amazonia

    Science.gov (United States)

    Sant'Anna, Lucy Gomes; Soares, Emílio Alberto do Amaral; Riccomini, Claudio; Tatumi, Sonia Hatsue; Yee, Marcio

    2017-08-01

    In the last three decades, several studies have been devoted to understanding the role of Late Pleistocene-Holocene climate changes in the Amazonia lowlands environment. However, most of these studies used data obtained from sedimentary deposits (lakes, swamps, and colluvium) located away from the central plain or on the edges of the Amazonia region. This article integrates optically stimulated luminescence and accelerated mass spectrometry 14C ages with sedimentological and geomorphological data obtained during this study or compiled from the literature for fluvial and lacustrine deposits of the central alluvial plain of the Solimões-Amazon River. The age data allow us to present a chronological framework for the Late Pleistocene-Holocene deposits and conclude that (i) the dryness of the LGM in central Amazonia lowlands is recorded by the formation of fluvial terraces and their weathering to pedogenic hematite between 25.3 ka and 17.7 ka; (ii) floodplain deposition was contemporaneous with terrace weathering and occurred in a context of decreased water volume in fluvial channels, lowering of river base level and sea level, and isostatic rebound of the continent; and (iii) lateral and mid-channel fluvial bars in the Solimões-Amazon River have a minimum age of 11.5 ± 1.5 ka, and their deposition responded to increased precipitation at the beginning of the Holocene.

  4. Tectonic and climatic controls on continental depositional facies in the Karoo Basin of northern Natal, South Africa

    Science.gov (United States)

    Turner, Brian R.

    1986-02-01

    The eastern Karoo Basin, South Africa, contains a thick sequence of terrigenous clastic sediments comprising a meanderbelt facies, braided channel facies divided into coarse and fine subfacies, fluviolacustrine facies and aeolian facies. Depositional trends and changes in fluvial style reflect a progressive increase in aridity of the climate under stable tectonic conditions, interrupted by two phases of source area tectonism and the development of fine and coarse clastic wedges of the braided channel subfacies; the latter signifying a short interlude of cool, wet conditions. The fine braided channel subfacies occurs in the upper part of the meanderbelt facies, which was deposited by ephemeral, meandering mixed-load streams of variable discharge and sinuosity, under dry, semi-arid climatic conditions. These deposited complex, internally discordant channel sands and well-developed levee deposits. Following deposition of the coarse braided channel subfacies semi-arid conditions returned and fluvial deposition was dominated by ephemeral, straight to slightly sinuous mixed load streams characterised by simple channel sand bodies. As the aridity of the climate increased, the streams became more localised and carried an increasing proportion of fines. Interbedded with and overlying the fluvial deposits is a mudstone-dominated lacustrine sequence grading up into aeolian sands suggesting a playa lake-type situation. The general absence of evaporites from these sediments is attributed to the fresh nature of the lake waters, as evidenced by the freshwater aquatic organisms and clay-mineral suite, the lack of adequate inflow for solute accumulation and the removal of dust impregnated by salts from the surface of the dry lake bed during the dry season by superheated, upward-spiralling columns of air. Broadly similar environments to the fluvio-lacustrine and aeolian facies sequence are to be found in the Lake Eyre Basin of central Australia and the Okavango "delta" of northern

  5. Effects of Wildfire on Fluvial Sediment Regime through Perturbations in Dry-Ravel

    Science.gov (United States)

    Florsheim, J. L.; Chin, A.; Kinoshita, A. M.; Nourbakhshbeidokhti, S.; Storesund, R.; Keller, E. A.

    2015-12-01

    In steep chaparral ecosystems with Mediterranean climate, dry ravel is a natural process resulting from wildfire disturbance that supplies sediment to fluvial systems. When dense chaparral vegetation burns, sediment accumulated on steep hillslopes is released for dry-season transport (dry ravel) down steep hillslopes during or soon after the wildfire. Results of a field study in southern California's Transverse Ranges illustrate the effect of wildfire on fluvial sediment regime in an unregulated chaparral system. Big Sycamore Canyon in the steep Santa Monica Mountains burned during the May 2013 Springs Fire and experienced one small sediment-transporting stormflow during the following winter. We conducted pre- and post-storm field campaigns during the fall and winter following the fire to quantify the effect of wildfire on the fluvial sediment regime. We utilized a sediment mass balance approach in which: 1) sediment supply, consisting primarily of dry ravel-derived deposits composed of relatively fine grained-sediment, was measured in the upstream basin and in the hillslope-channel margin adjacent to the study reach; 2) changes in storage in the study reach were quantified by analyzing the difference between pre- and post-storm channel topography derived from Terrestrial LiDAR Scanning (TLS) and field surveys; and 3) transport from the study reach was estimated as the difference between supply and change in storage where uncertainty is estimated using calculated sediment transport as a comparison. Results demonstrate channel deposition caused by changes in the short-term post-wildfire sediment regime. The increased sediment supply and storage are associated with significant changes in morphology, channel bed-material characteristics, and ecology. These results suggest that dry-ravel processes are an important factor to consider in post-wildfire sediment management.

  6. Diagnostic sedimentary structures of the fluvial-tidal transition zone – Evidence from deposits of the Rhine and Meuse

    NARCIS (Netherlands)

    Berg, J.H. van den; Boersma, J.R.; Gelder, A. van

    2007-01-01

    n mesotidal settings the transition of a coastal plain estuary to the river is marked by the change of a multiple ebb and flood channel configurationto a single channel system. At high river discharge fluvial processes operate, whereas in periods of low discharge the flow is complicated by a

  7. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    Science.gov (United States)

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fluvial systems and their sedimentary models

    Directory of Open Access Journals (Sweden)

    Dragomir Skabeme

    1995-12-01

    Full Text Available The Slovenian géomorphologie and sedimentologie terminology for fluvial depositional environments is not established yet. Therefore a classification and the proposal for Slovenian names of fluvial sedimentary and erosional forms and influences controlling them are discussed. Attention is given to the problems of recognition of sedimentary environments in sedimentary rocks, and to fluvial sedimentary models.

  9. Paleogeographic and Depositional Model for the Neogene fluvial succession, Pishin Belt Northwest Pakistan

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Umar, Muhammad

    2017-01-01

    Miocene subaerial sedimentation started after the final closure of Katawaz Remnant Ocean. Based on detailed field data twelve facies were recognized in Neogene successions exposed in Pishin Belt. These facies were further organized into four facies associations i.e. channels, crevasse splay, natural levee...... and floodplain facies associations. Facies associations and variations provided ample evidences to recognize number of fluvial architectural components in the succession e.g., low-sinuosity sandy braided river, mixed-load meandering, high-sinuosity meandering channels, single-story sandstone and/or conglomerate...... channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to oblique collision of the Indian Plate with Afghan Block of the Eurasian Plate along the Chaman-Nushki Fault. Post Miocene...

  10. Predicting interwell heterogeneity in fluvial-deltaic reservoirs: Outcrop observations and applications of progressive facies variation through a depositional cycle

    Energy Technology Data Exchange (ETDEWEB)

    Knox, P.R.; Barton, M.D. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Nearly 11 billion barrels of mobile oil remain in known domestic fluvial-deltaic reservoirs despite their mature status. A large percentage of this strategic resource is in danger of permanent loss through premature abandonment. Detailed reservoir characterization studies that integrate advanced technologies in geology, geophysics, and engineering are needed to identify remaining resources that can be targeted by near-term recovery methods, resulting in increased production and the postponement of abandonment. The first and most critical step of advanced characterization studies is the identification of reservoir architecture. However, existing subsurface information, primarily well logs, provides insufficient lateral resolution to identify low-permeability boundaries that exist between wells and compartmentalize the reservoir. Methods to predict lateral variability in fluvial-deltaic reservoirs have been developed on the basis of outcrop studies and incorporate identification of depositional setting and position within a depositional cycle. The position of a reservoir within the framework of a depositional cycle is critical. Outcrop studies of the Cretaceous Ferron Sandstone of Utah have demonstrated that the architecture and internal heterogeneity of sandstones deposited within a given depositional setting (for example, delta front) vary greatly depending upon whether they were deposited in the early, progradational part of a cycle or the late, retrogradational part of a cycle. The application of techniques similar to those used by this study in other fluvial-deltaic reservoirs will help to estimate the amount and style of remaining potential in mature reservoirs through a quicklook evaluation, allowing operators to focus characterization efforts on reservoirs that have the greatest potential to yield additional resources.

  11. Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Rajchl, M.; Uličný, David

    2005-01-01

    Roč. 52, č. 3 (2005), s. 601-625 ISSN 0037-0746 R&D Projects: GA ČR GA205/01/0629 Institutional research plan: CEZ:AV0Z30120515 Keywords : avulsion * Eger Graben * fluvial channels Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.876, year: 2005

  12. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    Science.gov (United States)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood composition of the debris suggests that this was most likely attained by saturation and subsequent entrainment of extensive accumulations of deadwood, promoted by unusually high rates of tree mortality and low rates of bacterial decomposition arising from

  13. Large Fluvial Fans: Aspects of the Attribute Array

    Science.gov (United States)

    Wilkinson, Justin M.

    2015-01-01

    In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.

  14. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  15. Sedimentology of Fraser River delta peat deposits: a modern analogue for some deltaic coals

    Energy Technology Data Exchange (ETDEWEB)

    Styan, W B; Bustin, R M

    1984-01-01

    On the Recent lobe of the Fraser River delta, peat accumulation has actively occurred on the distal lower delta plain, the transition between upper and lower delta plains, and the alluvial plain. Distal lower delta plain peats developed from widespread salt and brackish marshes and were not influenced appreciably by fluvial activity. Lateral development of the marsh facies were controlled by compaction and eustatic sea-level rise. The resulting thin, discontinuous peat network contains numerous silty clay partings and high concentrations of sulphur. Freshwater marsh facies formed but were later in part eroded and altered by transgressing marine waters. Peats overlie a thin, fluvial, fining-upward sequence which in turn overlies a thick, coarsening-upward, prodelta-delta front succession. Lower- upper delta plain peats initially developed from interdistributary brackish marshes and were later fluvially influenced as the delta prograded. Thickest peats occur in areas where distributary channels were abandoned earliest. Sphagnum biofacies replace sedge-grass-dominated communities except along active channel margins, where the sedge-grass facies is intercalated with overbank and splay deposits. Peats are underlain by a relatively thin sequence of fluvial deposits which in turn is underlain by a major coarsening-upward delta front and pro-delta sequence. Alluvial plain peats accumulated in back swamp environments of the flood plain. Earliest sedge-clay and gyttja peats developed over thin fining-upward fluvial cycles or are interlaminated with fine-grained flood deposits. Thickest accumulations occur where peat fills small avulsed flood channels. Overlying sedge-grass and sphagnum biofacies are horizontally stratified and commonly have sharp boundaries with fine-grained flood sediments. At active channel margins, however, sedge-grass peats are intercalated with natural levee deposits consisting of silty clay.

  16. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon

    Directory of Open Access Journals (Sweden)

    Eliezer Senna Gonçalves Júnior

    Full Text Available ABSTRACT: In the scope of Solimões-Amazon fluvial system between the Negro and Madeira tributaries, three levels of Quaternary fluvial terraces overlie the Alter do Chão and Novo Remanso formations further than 100 km southward its current main channel. Smooth undulated topography presenting low drainages density formed by sparse secondary plain channels and rounded lakes characterizes these deposits. Internally, they show point bars morphology constituted by intercalated layers of mud (silt and clay and sand forming an inclined heterolithic stratification. The asymmetric distribution of fluvial terraces allied to the records of old scroll-bars features and paleochannels in many extensions of the Solimões River suggests the predominance of a meander pattern between 240 to 6 kyears. On the other hand, the development of the current anabranching pattern took place in the last six kyears due to the Holocene sea-level rise, besides the action of neotectonics and rainforest establishment related to the increase of humidity in Amazonia.

  17. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    Science.gov (United States)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  18. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    Science.gov (United States)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to

  19. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  20. Mapping Variability in the Medusae Fossae Formation: Yardang Morphologies, Fluvial Reworking, and Crater Depth to Diameter Ratios

    Science.gov (United States)

    Khuller, A. R.; Kerber, L.

    2017-12-01

    The Medusae Fossae Formation (MFF) is a voluminous, fine-grained deposit thought to be of pyroclastic origin. While it contains widespread, well-preserved inverted fluvial features, its pervasive cover of dust means that little is known about its composition, and indirect means must be used to characterize its material properties. This project aims to correlate fluvial features in the Western MFF with other indicators of material strength: yardang morphology and crater depth-to-diameter ratios. For this work, Context Camera (CTX) images were used to map features of fluvial origin (inverted channels, sinuous ridges, alluvial fans). The presence of rounded, meso-yardangs in close proximity to fluvial features was also mapped. Crater depth-diameter (d/D) ratios (for craters 1-512km) were analyzed using a global Mars crater database (Robbins and Hynek, 2012) as a proxy for material strength. Approximately 1400 fluvial segments were mapped, with the most populous cluster located in Aeolis and Zephyria Plana. Rounded meso-yardangs were found to be common in areas that also have fluvial features. In agreement with previous work (Barlow, 1993), MFF craters were found to have a greater d/D ratio (0.0523) than the global mean (0.0511). Ratios between MFF lobes differ significantly, providing insight into the heterogeneity of induration within the formation. The deepest craters are found in Eumenides Dorsum and the shallowest in Aeolis Planum, consistent with a greater degree of induration and reworking in the western part of the formation where the fluvial features and "salt-playa" meso-yardangs are found. It also suggests that Eumenides, which is the tallest MFF outcrop, could also be the least compacted. The presence of long, complex, and sometimes overlapping branching networks imply multiple relative episodes of channel formation. Rounded meso-yardangs, which are associated with salt playa surfaces on Earth, provide additional evidence for the presence of liquid water

  1. The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River

    Directory of Open Access Journals (Sweden)

    Muhammad Irham

    2016-08-01

    Full Text Available Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associated with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed. The results demonstrate that channel deposits in the Aceh River are formed from four different type of materials: pebble deposited along upstream left bank; sand located on the upstream, downstream, and along meander belts; and silt and clay located along the cut bank of meander bends. Because of different depositional pattern, the distribution of the sediment along the river can be used as a surrogate to identify bank stability, as well as to predict critical geometry for meander bend initiation

  2. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Claudia J [Los Alamos National Laboratory; Mcdonald, Eric [NON LANL; Sancho, Carlos [NON LANL; Pena, Jose- Luis [NON LANL

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  3. Gold-bearing fluvial and associated tidal marine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia

    Science.gov (United States)

    Andrews-Speed, C. P.

    1986-07-01

    The structurally defined Mporokoso Basin contains up to 5000 m of continental and marine clastic sediments and minor silicic volcanics which together form the Mporokoso Group. These rocks overlie unconformably a basement of silicic-intermediate igneous rocks and accumulated within the interval 1830-1130 Ma. This sedimentological study was restricted to the eastern end of the basin and was part of an assessment of the potential for palaeoplacer gold in the Mporokoso Group. At the base of the Mporokoso Group, the Mbala Formation consists of 1000-1500 m of purple sandstones and conglomerates deposited in a braided-stream system overlain by 500-1000 m of mature quartz arenites deposited in a tidal marine setting. A general coarsening-upward trend exists within the fluvial sediments. Sandy, distal braided-stream facies passes upwards into more proximal conglomeratic facies. In proximal sections, poorly sorted conglomerates form the top of the coarsening-up sequence which is 500-700 m thick. The overlying fluvial sediments fine upwards. The tidal marine sandstones at the top of the Mbala Formation resulted from reworking of fluvial sediments during a marine transgression. Well-exposed sections with fluvial conglomerates were studied in detail. Individual conglomerate bodies form sheets extending for hundreds of metres downstream and at least one hundred metres across stream, with little sign of deep scouring or channelling. They are generally matrix-supported. The whole fluvial sequence is characterised by a paucity of mud or silt. These conglomerates were deposited by large velocity, sheet flows of water which transported a bed-load of pebbles and sand. Most fine material settling out from suspension was eroded by the next flow. The great lateral and vertical extent and the uniformity of the fluvial sediments suggest that the sediments accumulated over an unconfined alluvial plain and that the tectonic evolution of the source area was relatively continuous and not

  4. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    Science.gov (United States)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the

  5. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    CERN Document Server

    Olley, J M; Roberts, R G

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dati...

  6. Morphology of fluvial levee series along a river under human influence, Maros River, Hungary

    Science.gov (United States)

    Kiss, Tímea; Balogh, Márton; Fiala, Károly; Sipos, György

    2018-02-01

    The development and morphometry of fluvial levees reflect the connection between channel and overbank processes, which can be altered by various human activities. The aims of this study are to investigate the morphology and spatial characteristics of fluvial levees and evaluate the role of some local- and catchment-scale human activities on their medium-term (150 years) development. This study applies LiDAR data along a 53-km-long reach of the Maros River in Hungary. Six fluvial levee types are identified based on the beginning and end of their evolution. These levee types were generated by local nineteenth century channel regulation works (cutoffs) and mid-twentieth century channel narrowing, which was caused by gravel mining and water impoundment in the upstream sections. However, other human activities also influenced the development of active fluvial levees because their horizontal evolution could have been limited by embanked flood-protection levees or the widening of low-lying floodplain benches that were generated by channel narrowing. Additionally, revetment constructions influenced their vertical parameters as higher fluvial levees developed along the fixed banks. Generally, the older active fluvial levees are wider, while the younger active levees are narrower with steeper slopes but not always lower. On the low-lying floodplain levels (benches), the youngest fluvial levees evolved quite rapidly and consist of coarser material. Currently, only 9.8- to 38-year return-period floods could cover the fluvial levees, contributing to their evolution. This fact and the development of fluvial levee series with two-three members reflect a gradual decoupling of the channel from the floodplain.

  7. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  8. Fluvial archives, a valuable record of vertical crustal deformation

    Science.gov (United States)

    Demoulin, A.; Mather, A.; Whittaker, A.

    2017-06-01

    The study of drainage network response to uplift is important not only for understanding river system dynamics and associated channel properties and fluvial landforms, but also for identifying the nature of crustal deformation and its history. In recent decades, geomorphic analysis of rivers has proved powerful in elucidating the tectonic evolution of actively uplifting and eroding orogens. Here, we review the main recent developments that have improved and expanded qualitative and quantitative information about vertical tectonic motions (the effects of horizontal deformation are not addressed). Channel long profiles have received considerable attention in the literature, and we briefly introduce basic aspects of the behaviour of bedrock rivers from field and numerical modelling perspectives, before describing the various metrics that have been proposed to identify the information on crustal deformation contained within their steady-state characteristics. Then, we review the literature dealing with the transient response of rivers to tectonic perturbation, through the production of knickpoints propagating through the drainage network. Inverse modelling of river profiles for uplift in time and space is also shown to be very effective in reconstructing regional tectonic histories. Finally, we present a synthetic morphometric approach for deducing the tectonic record of fluvial landscapes. As well as the erosional imprint of tectonic forcing, sedimentary deposits, such as fluvial terrace staircases, are also considered as a classical component of tectonic geomorphology. We show that these studies have recently benefited from rapid advances in dating techniques, allowing more reliable reconstruction of incision histories and estimation of incision rates. The combination of progress in the understanding of transient river profiles and larger, more rigorous data sets of terrace ages has led to improved understanding of river erosion and the implications for terrace

  9. Identifying the source of fluvial terrace deposits using XRF scanning and Canonical Discriminant Analysis: A case study of the Chihshang terraces, eastern Taiwan

    Science.gov (United States)

    Chang, Queenie; Lee, Jian-Cheng; Hunag, Jyh-Jaan; Wei, Kuo-Yen; Chen, Yue-Gau; Byrne, Timothy B.

    2018-05-01

    The source of fluvial deposits in terraces provides important information about the catchment fluvial processes and landform evolution. In this study, we propose a novel approach that combines high-resolution Itrax-XRF scanning and Canonical Discriminant Analysis (CDA) to identify the source of fine-grained fluvial terrace deposits. We apply this approach to a group of terraces that are located on the hanging wall of the Chihshang Fault in eastern Taiwan with two possible sources, the Coastal Range on the east and the Central Range on the west. Our results of standard samples from the two potential sources show distinct ranges of canonical variables, which provided a better separation ability than individual chemical elements. We then tested the possibility of using this approach by applying it to several samples with known sediment sources and obtain positive results. Applying this same approach to the fine-grained sediments in Chihshang terraces indicates that they are mostly composed of Coastal Range material but also contain some inputs from the Central Range. In two lowest terraces T1 and T2, the fine-grained deposits show significant Central Range component. For terrace T4, the results show less Central Range input and a trend of decreasing Central Range influences up section. The Coastal Range material becomes dominant in the two highest terraces T7 and T10. Sediments in terrace T5 appear to have been potentially altered by post-deposition chemical alteration processes and are not included in the analysis. Our results show that the change in source material in the terraces deposits was relatively gradual rather than the sharp changes suggested by the composition of the gravels and conglomerates. We suggest that this change in sources is related to the change in dominant fluvial processes that controlled by the tectonic activity.

  10. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    discovery. The outcrops found in 2009 amount to approximately 8 m of sediment including a coal seam of 2 m thickness. More outcrops and additional coal deposits most certainly are to be found, pending further fieldwork. The deposits are Middle Jurassic, Callovian, in age and were deposited in a floodplain...... environment related to meandering river channels. Spores and pollen in the lower fluvial deposits reflect abundant vegetation of ferns along the river banks. In contrast, a sparse spore and pollen flora in the coals show a mixed vegetation of ferns and gymnosperms. Based on proximate and petrographic analyses...

  11. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  12. Sandstone-body and shale-body dimensions in a braided fluvial system: Salt wash sandstone member (Morrison formation), Garfield County, Utah

    Science.gov (United States)

    Robinson, J.W.; McCabea, P.J.

    1997-01-01

    Excellent three-dimensional exposures of the Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah allow measurement of the thickness and width of fluvial sandstone and shale bodies from extensive photomosaics. The Salt Wash Sandstone Member is composed of fluvial channel fill, abandoned channel fill, and overbank/flood-plain strata that were deposited on a broad alluvial plain of low-sinuosity, sandy, braided streams flowing northeast. A hierarchy of sandstone and shale bodies in the Salt Wash Sandstone Member includes, in ascending order, trough cross-bedding, fining-upward units/mudstone intraclast conglomerates, singlestory sandstone bodies/basal conglomerate, abandoned channel fill, multistory sandstone bodies, and overbank/flood-plain heterolithic strata. Trough cross-beds have an average width:thickness ratio (W:T) of 8.5:1 in the lower interval of the Salt Wash Sandstone Member and 10.4:1 in the upper interval. Fining-upward units are 0.5-3.0 m thick and 3-11 m wide. Single-story sandstone bodies in the upper interval are wider and thicker than their counterparts in the lower interval, based on average W:T, linear regression analysis, and cumulative relative frequency graphs. Multistory sandstone bodies are composed of two to eight stories, range up to 30 m thick and over 1500 m wide (W:T > 50:1), and are also larger in the upper interval. Heterolithic units between sandstone bodies include abandoned channel fill (W:T = 33:1) and overbank/flood-plain deposits (W:T = 70:1). Understanding W:T ratios from the component parts of an ancient, sandy, braided stream deposit can be applied in several ways to similar strata in other basins; for example, to (1) determine the width of a unit when only the thickness is known, (2) create correlation guidelines and maximum correlation lengths, (3) aid in interpreting the controls on fluvial architecture, and (4) place additional constraints on input variables to

  13. Paleo-hydraulic Reconstructions of Topographically Inverted River Deposits on Earth and Mars

    Science.gov (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2015-12-01

    River deposits are one of the keys to understanding the history of flowing water and sediment on Earth and Mars. Deposits of some ancient Martian rivers have been topographically inverted resulting in sinuous ridges visible from orbit. However, it is unclear what aspects of the fluvial deposits these ridges represent, so reconstructing paleo-hydraulics from ridge geometry is complicated. Most workers have assumed that ridges represent casts of paleo-river channels, such that ridge widths and slopes, for example, can be proxies for river widths and slopes at some instant in time. Alternatively, ridges might reflect differential erosion of extensive channel bodies, and therefore preserve a rich record of channel conditions and paleoenvironment over time. To explore these hypotheses, we examined well exposed inverted river deposits in the Jurassic Morrison and Early Cretaceous Cedar Mountain Formations across the San Rafael Swell of central Utah. We mapped features on foot and by UAV, measured stratigraphic sections and sedimentary structures to constrain deposit architecture and river paleo-hydraulics, and used field observations and drainage network analyses to constrain recent erosion. Our work partly confirms earlier work in that the local trend of the ridge axis generally parallels paleo-flow indicators. However, ridge relief is much greater than reconstructed channel depths, and ridge widths vary from zero to several times the reconstructed channel width. Ridges instead appear to record a rich history of channel lateral migration, floodplain deposition, and soil development over significant time. The ridge network is disjointed owing to active modern fluvial incision and scarp retreat. Our results suggest that ridge geometry alone contains limited quantitative information about paleo-rivers, and that stratigraphic sections and observations of sedimentary structures within ridge-forming deposits are necessary to constrain ancient river systems on Mars.

  14. Fluvial sedimentary styles and associated depositional environments in the buntsandstein west of river rhine in saar area and pfalz (F.R. Germany) and vosges (France)

    Science.gov (United States)

    Dachroth, Wolfgang

    The Buntsandstein west of river Rhine in Saar area, Pfalz and Vosges consists of three fluvial magnacycles which are characterized by different associated non-alluvial environments. The stratigraphic sequence is divided by several unconformities reflecting tectonic movements which were connected with periods of extension of the depositional area. Two major phases and two minor events are recognized by the evaluation of the Pfalz unconformity and the Lothringen unconformity, and the Leuter unconformity and the Saar unconformity, respectively. The Lower Buntsandstein (including Zechstein) compries the first magnacycle and is built up of alluvial-fan deposits, fluvial braidplain sediments and marine to lagoonal deposits. Some aeolian sands as well as several palaeosols are also present. The palaeolandscape consists of alluvial fans seaming the margin of the basin and fluvial braidplains reaching from the toes of the fan belt to the centre of the depositional area which is occupied by a lagoonal sea that partially evolves into a playa-lake with progressive refreshment. The Middle Buntsandstein comprises the second magnacycle and is composed of an alternation of aeolian Dünnschichten and fluvial Felsbänke. The third facies are alluvial-fan deposits of palaeogeographically restricted distribution along the margins of the basin. The aeolian Dünnschichten originate in the marginal parts of chott-type depressions (in comparison with the recent Chott Djerid in Tunesia) where rising ground water moistens the dry sediments that are laid down on the playa floor and thus allows their enhanced preservation. In dry periods, wind-blown sand is spread out as plane sheets or as migrating wind ripple trains, or accumulates to barchanoid-type dunes that advance across the flat. Depending on supply of sand, all stages of transition between dune fields with only narrow interdune corridors between the ridges and interdune playas with isolated widely-spaced dunes are developed. The

  15. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    Science.gov (United States)

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  16. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    Science.gov (United States)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  17. Deciphering Fluvial-Capture-Induced Erosional Patterns at the Continental Scale on the Iberian Peninsula

    Science.gov (United States)

    Anton, L.; Munoz Martin, A.; De Vicente, G.; Finnegan, N. J.

    2017-12-01

    The process of river incision into bedrock dictates the landscape response to changes in climate and bedrock uplift in most unglaciated settings. Hence, understanding processes of river incision into bedrock and their topographic signatures are a basic goal of geomorphology. Formerly closed drainage basins provide an exceptional setting for the quantification of long term fluvial dissection and landscape change, making them valuable natural laboratories. Internally drained basins are peculiar because they trap all the sediment eroded within the watershed; as closed systems they do not respond to the base level of the global ocean and deposition is the dominant process. In that context, the opening of an outward drainage involves a sudden lowering of the base level, which is transmitted upstream along fluvial channels in the form of erosional waves, leading to high incision and denudation rates within the intrabasinal areas. Through digital topographic analysis and paleolandscape reconstruction based on relict deposits and landscapes on the Iberian Peninsula, we quantify the volume of sediments eroded from formerly internally drained basins since capture. Mapping of fluvial dissection patterns reveals how, and how far, regional waves of incision have propagated upstream. In our analysis, erosional patterns are consistent with the progressive establishment of an outward drainage system, providing a relative capture chronology for the different studied basins. Divide migration inferred from chi maps supports the interpretations based on fluvial dissection patterns and volumes, providing clues on how landscaped changed and how drainage integration occurred within the studied watersheds. [Funded by S2013/MAE-2739 and CGL2014-59516].

  18. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    Science.gov (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  19. Unsteady Landscapes: Climatic and Tectonic Controls on Fluvial Terrace Formation

    Science.gov (United States)

    Clubb, F. J.; Mudd, S. M.

    2017-12-01

    Fluvial terraces are common landforms throughout mountainous regions which represent abandoned remnants of active river systems and their floodplains. The formation of these landforms points to a fundamental unsteadiness in the incision rate of the fluvial network, providing important information on channel response to climatic, tectonic, and base-level forcing, sediment storage and dynamics within mountainous systems, and the relative importance of lateral and vertical incision rates. In his 1877 Report on the Geology of the Henry Mountains, G.K. Gilbert suggested that strath terraces may form due to climatically-driven increase in sediment supply, causing armouring of the channel bed and hindering vertical incision. An alternative hypothesis suggests that strath terraces may be preserved through progressive tectonic uplift or base-level fall. These different formation mechanisms should result in varying distribution of terrace elevations along channels: if terraces are formed through climate-driven variations in sediment supply, we might expect that terrace elevations would be random, whereas progressive fluvial incision should result in a series of terraces with a systematic elevation pattern. Here we test alternative hypotheses for strath terrace formation using a new method for objectively and rapidly identifying terrace surfaces from digital elevation models (DEMs) over large spatial scales. Our new method identifies fluvial terraces using their gradient and elevation compared to the modern channel, thresholds of which are statistically calculated from the DEM and do not need to be set manually by the user. We use this method to extract fluvial terraces for every major river along the coast of California, and quantify their distribution and elevation along the fluvial long profile. Our results show that there is no systematic pattern in terrace elevations despite a well-constrained spatial variation in uplift rates, suggesting that terraces in this region do

  20. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  1. A fluvial mercury budget for Lake Ontario.

    Science.gov (United States)

    Denkenberger, Joseph S; Driscoll, Charles T; Mason, Edward; Branfireun, Brian; Warnock, Ashley

    2014-06-03

    Watershed mercury (Hg) flux was calculated for ten inflowing rivers and the outlet for Lake Ontario using empirical measurements from two independent field-sampling programs. Total Hg (THg) flux for nine study watersheds that directly drain into the lake ranged from 0.2 kg/yr to 13 kg/yr, with the dominant fluvial THg load from the Niagara River at 154 kg/yr. THg loss at the outlet (St. Lawrence River) was 68 kg/yr and has declined approximately 40% over the past decade. Fluvial Hg inputs largely (62%) occur in the dissolved fraction and are similar to estimates of atmospheric Hg inputs. Fluvial mass balances suggest strong in-lake retention of particulate Hg inputs (99%), compared to dissolved total Hg (45%) and methyl Hg (22%) fractions. Wetland land cover is a good predictor of methyl Hg yield for Lake Ontario watersheds. Sediment deposition studies, coupled atmospheric and fluvial Hg fluxes, and a comparison of this work with previous measurements indicate that Lake Ontario is a net sink of Hg inputs and not at steady state likely because of recent decreases in point source inputs and atmospheric Hg deposition.

  2. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    Science.gov (United States)

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.

  3. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    Science.gov (United States)

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  4. Investigations of contaminated fluvial sediment deposits: merging of statistical and geomorphic approaches.

    Science.gov (United States)

    Ryti, Randall T; Reneau, Steven L; Katzman, Danny

    2005-05-01

    Concentrations of contaminants in sediment deposits can have large spatial variability resulting from geomorphic processes acting over long time periods. Thus, systematic (e.g., regularly spaced sample locations) or random sampling approaches might be inefficient and/or lead to highly biased results. We demonstrate the bias associated with systematic sampling and compare these results to those achieved by methods that merge a geomorphic approach to evaluating the physical system and stratified random sampling concepts. By combining these approaches, we achieve a more efficient and less biased characterization of sediment contamination in fluvial systems. These methods are applied using a phased sampling approach to characterize radiological contamination in sediment deposits in two semiarid canyons that have received historical releases from the Los Alamos National Laboratory. Uncertainty in contaminant inventory was used as a metric to evaluate the adequacy of sampling during these phased investigations. Simple, one-dimensional Monte Carlo simulations were used to estimate uncertainty in contaminant inventory. We also show how one can use stratified random sampling theory to help estimate uncertainty in mean contaminant concentrations.

  5. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    Science.gov (United States)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

  6. Lazy river on Mars: Ring-shaped fluvial channel discovered north of Capri Chasma

    Science.gov (United States)

    Thomson, B. J.

    2017-12-01

    Many features on Mars are strange, but some are stranger than others. Fluvial features on Mars come in several basic flavors: branching valley networks, massive outflow channels, and possibly presently active recurring slope lineae. Here, we identify a small, valley network-like channel segment whose planform appearance traces out a nearly complete circle. One of the key tenants of hydrogeology and plumbing is that "stuff flows downhill." A seemingly circular loop implies a gross violation of the downhill flow rule, akin to a visual claim of perpetual motion. This M.C. Escher-inspired landform is located at 6.45°S, 39.70°W inside Innsbruck crater, a 59-km diameter impact structure that is just north of Capri Chasma. A close inspection reveals that the loop is not 100% continuous; there is a slight break on the western side of the loop. The pair of channels on either side of this gap terminate abruptly. These appear to be points of origin rather than termini, although admittedly the direction(s) of flow within the channel segments are difficult to constrain uniquely. The overall morphology of this near-circular channel system implies a local source limited both in duration and volume. Assuming that the fluid involved was water, the volume of water was sufficient for incipient erosion of the terrain, but not sufficient to have ponded or continued to flow. Here, the combined infiltration and evaporation rates must have been sufficiently large such that a breakout flow did not occur.

  7. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    Directory of Open Access Journals (Sweden)

    Ahmed Gaber

    2017-12-01

    Full Text Available Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2] using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand. The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ° and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7 of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological

  8. Recent changes in sediment redistribution in the upper parts of the fluvial system of European Russia: regional aspects

    Directory of Open Access Journals (Sweden)

    O. P. Yermolaev

    2015-03-01

    Full Text Available Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.

  9. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    , eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.

  10. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    Science.gov (United States)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  11. Supercritical strata in Lower Paleozoic fluvial rocks: a super critical link to upper flow regime processes and preservation in nature

    Science.gov (United States)

    Lowe, David; Arnott, Bill

    2015-04-01

    Recent experimental work has much improved our understanding of the lithological attributes of open-channel supercritical flow deposits, namely those formed by antidunes, chutes-and-pools and cyclic steps. However their limited documentation in the ancient sedimentary record brings into question details about their geological preservation. Antidune, chute-and-pool and cyclic step deposits are well developed in sandy ephemeral fluvial deposits of the Upper Cambrian - Lower Ordovician Potsdam Group in the Ottawa Embayment of eastern North America. These high energy fluvial strata form dm- to a few m-thick units intercalated within thick, areally expansive successions of sheet sandstones consisting mostly of wind ripple and adhesion stratification with common deflation lags. Collectively these strata record deposition in a semi-arid environment in which rare, episodic high-energy fluvial events accounted for most of the influx of sediment from upland sources. Following deposition, however, extensive aeolian processes reworked the sediment pile, and hence modified profoundly the preserved stratigraphic record. Antidune deposits occur as 0.2 - 1.6 m thick cosets made up of 2 - 15 cm thick lenticular sets of low angle (≤ 20o) cross-stratified, medium- to coarse-grained sandstone bounded by low-angle (5 - 15o) concave-upward scours and, in many cases, capped by low angle (10 - 15o) convex-upwards symmetrical formsets. Chute-and-pool deposits form single sets, 5 - 55 cm thick and 0.6 - 6 m wide, with scoured bases and low to high angle (5 - 25o) sigmoidal cross-strata consisting of medium- to coarse-grained sandstone. Cyclic step deposits consist of trough cross-stratified sets, 20 cm - 1.6 m thick, 2.5 - 12 m long and 7 - 35 m wide, typically forming trains that laterally are erosively juxtaposed at regularly-spaced intervals. They are composed of medium- to coarse-grained sandstone with concave-up, moderate to high angle (15 - 35o) cross-strata with tangential bases

  12. Riparian shrub metal concentrations and growth in amended fluvial mine tailings

    Science.gov (United States)

    Fluvial mine tailing deposition has caused extensive riparian damage throughout the western United States. Willows are often used for fluvial mine tailing revegetation, but some species accumulate excessive metal concentrations which could be detrimental to browsers. In a greenhouse experiment, gr...

  13. Arquitectura fluvial de las «Areniscas del río Arandilla». Triásico de Molina de Aragón (Guadalajara

    Directory of Open Access Journals (Sweden)

    Sánchez-Moya, Y.

    1989-08-01

    Full Text Available The outstanding outcrops of Upper Buntsandstein sediments (Middle Triassic in Molina de Aragón (Guadalajara area, allow a detailed study of their characteristics and their associations which are described here. The fluvial architecture of the section indicates four main depositional episodes. The two lowest episodes were laid down by a fluvial system characterized by frequent channel shifting, low sinuosity and wide shallow channels. The drainage basin was controlled by highly seasonal discharge. The middle episode evolved into a more distal systems, with smaller higher sinuosity channels and fine overbank deposits. The uppermost episode is related to an increase of slope in the basin. That increase is probably related to tectonic movements recorded in this area. An attempt has been made to correlate the above events to the global sea level fluctuations (Haq et al., 1987. So, the low stage that have been stated occurred during Early Anisian can be tentatively correlated with the uppermost episode in Areniscas del río Arandilla.Los excelentes afloramientos de la parte superior del Buntsandstein (Triásico medio en Molina de Aragón (Guadalajara, han permitido llevar a cabo un análisis sedimentológico detallado de las facies fluviales y de su arquitectura. Se han distinguido doce diferentes facies cuyas características y asociaciones se describen en este trabajo. La evolución fluvial indica la existencia de cuatro episodios deposicionales. Los dos episodios inferiores son característicos de un sistema fluvial con canales de baja sinuosidad, inestables, de gran amplitud y poca profundidad. El drenaje de la cuenca estaba controlado por importantes descargas estacionales. El episodio intermedio es el resultado de la evolución del sistema hacia facies más distales. En esta etapa los canales son de menor tamaño, la sinuosidad es mayor y existe un mayor porcentaje de depósitos de granulometría fina relacionados con la llanura de inundaci

  14. Mapping and dating based evolution studies of the Niger Vallis outflow channel, Mars

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-04-01

    Niger Vallis is one of the four large outflow channel systems in the eastern Hellas rim region of Mars. Niger, as well as the other nearby valles, is assumed to have been carved by water and later covered by ice-rich deposits. Thus, it plays a significant role both in the fluvial and glacial evolution of the region. This work presents the photogeological mapping and crater count dating results of the Niger Vallis system achieved based on the images of the ConTeXt (CTX) and High Resolution Imaging Science Experiment (HiRISE) cameras of Mars Reconnaissance Orbiter (MRO). The results show that Niger Vallis formed in at least two stages. The southern branch of Niger Vallis originated from Ausonia Cavus, ∼3.7-3.9 Ga ago, whereas the northern branch formed from Peraea Cavus, ∼3.3-3.4 Ga ago. Both of the time scales correspond to the volcanic activity phases of the nearby highland volcanoes of Tyrrhenus and Hadriacus Montes. The fluvial activity of Niger Vallis was not, however, as intense as the activity of the other nearby outflow channels, and it seems to have weakened soon after the formation of the northern branch. The outflow channel was resurfaced again ∼0.9-1.5 Ga ago, probably by regional fluvial activity. After that, the floor of Niger Vallis was covered by lineated valley fills and corresponding ice-rich deposits, the formation of which ended ∼220-470 Ma ago, or not later than ∼110 Ma ago. Although the origin of the deposits was probably related to contemporary climate conditions, the emplacement of some deposits, or even their formation, may have been contributed by impact events. After lineated valley fill formation, the region was resurfaced several times, probably because of changes in regional climatic or endogenic circumstances.

  15. Marine intervals in Neogene fluvial deposits of western Amazonia

    Science.gov (United States)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  16. Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone

    Science.gov (United States)

    Anderson, P.B.; Chidsey, T.C.; Ryer, T.A.

    1997-01-01

    East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

  17. Stability of Fluvial and Gravity-flow Antidunes

    Science.gov (United States)

    Fedele, J. J.; Hoyal, D. C. J. D.; Demko, T. M.

    2017-12-01

    Antidunes develop as a consequence of interface (free surface) deformation and sediment transport feedback in supercritical flows. Fluvial (open-channel flow) antidunes have been studied extensively in the laboratory and the field, and recognized in ancient sedimentary deposits. Experiments on gravity flow (turbidity and density currents) antidunes indicate that they are more stable and long-lived than their fluvial counterpart but the mechanism controlling this stability is poorly understood. Sea floor bathymetric and subsurface data suggest that large-scale, antidune-like sediment waves are extremely common in deep-water, found in a wide range of settings and sediment characteristics. While most of these large features have been interpreted as cyclic steps, the term has been most likely overused due to the lack of recognition criteria and basic understanding on the differences between antidunes and cyclic steps formed under gravity flows. In principle, cyclic steps should be more common in confined or channel-lobe transition settings where flows tend to be more energetic or focused, while antidunes should prevail in regions of less confinement, under sheet-like or expanding flows. Using published, fluvial stable-antidune data, we show that the simplified 1D, mechanical-energy based analysis of flow over a localized fixed obstacle (Long, 1954; Baines, 1995; Kubo and Yokokawa, 2001) is inaccurate for representing flow over antidunes and their stability. Instead, a more detailed analysis of a flow along a long-wavelength (in relation to flow thickness) wavy bed that also considers the interactions between flow and sediment transport is used to infer conditions of antidune stability and the breaking of surface waves. In particular, the position of the surface wave crest in relation to the bedform crest, along with the role of average flow velocity, surface velocity, and surface wave celerity appear relevant in determining antidune instability. The analysis is

  18. Allogenic controls on the fluvial architecture and fossil preservation of the Upper Triassic Ischigualasto Formation, NW Argentina

    Science.gov (United States)

    Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.

    2017-12-01

    The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.

  19. Depositional environments of the uranium bearing Cutler Formations, Lisbon Valley, Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Steele-Mallory, B.A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67 0 W. on the average, whereas marine currents moved sediment S. 36 0 E. and N. 24 0 W., and wind transported sand S. 80 0 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little

  20. Depositional environments of the uranium-bearing Cutler Formations, Lisbon Valley, Utah

    Science.gov (United States)

    Campbell, John A.; Steele-Mallory, Brenda A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67? W. on the the average, whereas marine currents moved sediment S. 36? E. and N. 24? W., and wind transported sand S. 800 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little.

  1. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  2. Essential application of depositional analysis and interpretation in hydrogeologic assessments of contaminated sites

    International Nuclear Information System (INIS)

    Sciacca, J.

    1991-01-01

    In most hydrogeologic studies of contaminated sites, little attention is given to analysis of depositional environments and associated depositional patterns. This analysis is essential for sedimentary deposits present at a majority of these sites. The depositional processes associated with alluvial, fluvial and deltaic environments yield heterogeneity ranging from large to small scale. These processes also yield preferential grain orientations in coarse grained units which result in preferential directions of increased permeability. Studies conducted in fluvial and deltaic petroleum reservoirs have shown varying permeabilities resulting from deposition that strongly control the flow of fluids. The marked heterogeneity evident in the sandy portion of a single 3 to 30-foot thick fluvial point bar deposit can exert significant differences in porous flow. Preferential permeability has been shown parallel to the long axis of fluvial channel sand units while barrier beach sands exhibit preferential permeability perpendicular to the long axis of the sand body. Such controls influence natural flow and transport of contaminants in groundwater. Hydrogeologic studies should: determine the depositional environment and facies present at the site; determine the propensity for heterogeneity within the entire vertical sequence investigated and within the different facies present; assess the potential for preferential permeability within sand bodies; and provide a predictive depositional model to assess potential connections between major high permeability units. Sand unit connections are commonly forced during cross section generation and subsequent aquifer analysis. Failure to incorporate the above objectives in hydrogeologic investigations ignores the basic precept that process controls the distribution of permeability and will result in poor prediction of natural and remedial transport of contaminants in groundwater

  3. Experimental investigation of fluvial dike breaching due to flow overtopping

    Science.gov (United States)

    El Kadi Abderrezzak, K.; Rifai, I.; Erpicum, S.; Archambeau, P.; Violeau, D.; Pirotton, M.; Dewals, B.

    2017-12-01

    The failure of fluvial dikes (levees) often leads to devastating floods that cause loss of life and damages to public infrastructure. Overtopping flows have been recognized as one of the most frequent cause of dike erosion and breaching. Fluvial dike breaching is different from frontal dike (embankments) breaching, because of specific geometry and boundary conditions. The current knowledge on the physical processes underpinning fluvial dike failure due to overtopping remains limited. In addition, there is a lack of a continuous monitoring of the 3D breach formation, limiting the analysis of the key mechanisms governing the breach development and the validation of conceptual or physically-based models. Laboratory tests on breach growth in homogeneous, non-cohesive sandy fluvial dikes due to flow overtopping have been performed. Two experimental setups have been constructed, permitting the investigation of various hydraulic and geometric parameters. Each experimental setup includes a main channel, separated from a floodplain by a dike. A rectangular initial notch is cut in the crest to initiate dike breaching. The breach development is monitored continuously using a specific developed laser profilometry technique. The observations have shown that the breach develops in two stages: first the breach deepens and widens with the breach centerline being gradually shifted toward the downstream side of the main channel. This behavior underlines the influence of the flow momentum component parallel to the dike crest. Second, the dike geometry upstream of the breach stops evolving and the breach widening continues only toward the downstream side of the main channel. The breach evolution has been found strongly affected by the flow conditions (i.e. inflow discharge in the main channel, downstream boundary condition) and floodplain confinement. The findings of this work shed light on key mechanisms of fluvial dike breaching, which differ substantially from those of dam

  4. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    Science.gov (United States)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted

  5. FLUVIAL PROCESSES IN ATTACHMENT BARS IN THE UPPER PARANÁ RIVER, BRAZIL

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Dos Santos

    2017-08-01

    Full Text Available Bars are semi-submerged fluvial forms associated with the availability of sediments and a temporal dynamic, whose dimensions are controlled by the flow and depth of the channel.  Attachment bars are very common in large anabranching river systems and play an important role in island formation and ecology. The Upper Paraná River exhibits an anabranching pattern characterized by channels of different sizes, separated by islands and bars. The objective of this work is to present the processes involved in the formation and development of attachment bars in Santa Rosa Island, situated in Porto Rico, State of Parana, Southern Brazil. Acquisition campaigns were performed to obtain data on channel hydraulics (ADCP equipment, morphometry (Echo-sound profiles and textural parameters (grain-size analyses at high and medium water levels. Santa Rosa Island divides the flow into two channels of distinct hydraulic and sedimentary dynamics. Flow diversion produces a decrease in flow velocity and consequent sediment deposition near the upstream end of Santa Rosa Island. The formation and maintenance of attachment bars in Santa Rosa Island is related to flow competence reduction and the occurrence of divergent currents. Vegetation cover and flow regime control its permanence. 

  6. Late Pleistocene sea-level changes recorded in tidal and fluvial deposits from Itaubal Formation, onshore portion of the Foz do Amazonas Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Isaac Salém Alves Azevedo Bezerra

    Full Text Available ABSTRACTThe Pleistocene deposits exposed in the Amapá Coastal Plain (onshore portion of the Foz do Amazonas Basin, northeastern South America were previously interpreted as Miocene in age. In this work, they were named as "Itaubal Formation" and were included in the quaternary coastal history of Amazonia. The study, through facies and stratigraphic analyses in combination with optically stimulated luminescence (single and multiple aliquot regeneration, allowed interpreting this unit as Late Pleistocene tidal and fluvial deposits. The Itaubal Formation, which unconformably overlies strongly weathered basement rocks of the Guianas Shield, was subdivided into two progradational units, separated by an unconformity related to sea-level fall, here named as Lower and Upper Units. The Lower Unit yielded ages between 120,600 (± 12,000 and 70,850 (± 6,700 years BP and consists of subtidal flat, tide-influenced meandering stream and floodplain deposits, during highstand conditions. The Upper Unit spans between 69,150 (± 7,200 and 58,150 (± 6,800 years BP and is characterized by braided fluvial deposits incised in the Lower Unit, related to base-level fall; lowstand conditions remained until 23,500 (± 3,000 years BP. The studied region was likely exposed during the Last Glacial Maximum and then during Holocene, covered by tidal deposits influenced by the Amazon River.

  7. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    Directory of Open Access Journals (Sweden)

    Jorien E Vonk

    2016-08-01

    Full Text Available Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C and molecular organic geochemistry (lignin, leaf waxes. High-resolution age models (137Cs, 210Pb of downcore lake sediment records (n=11 along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels. Comparison with earlier published Mackenzie River depth profiles shows that (i lake sediments reflect the riverine surface suspended load, and (ii hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  8. Evidence of anthropogenic tipping points in fluvial dynamics in Europe

    Science.gov (United States)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert

    2018-05-01

    In this study the occurrence of thresholds in fluvial style changes during the Holocene are discussed for three different catchments: the Dijle and Amblève catchments (Belgium) and the Valdaine Region (France). We consider tipping points to be a specific type of threshold, defined as relatively rapid and irreversible changes in the system. Field data demonstrate that fluvial style has varied in all three catchments over time, and that different tipping points can be identified. An increase in sediment load as a result of human induced soil erosion lead to a permanent change in the Dijle floodplains from a forested peaty marsh towards open landscape with clastic deposition and a well-defined river channel. In the Valdaine catchment, an increase in coarse sediment load, caused by increased erosion in the mountainous upper catchment, altered the floodplains from a meandering pattern to a braided pattern. Other changes in fluvial style appeared to be reversible. Rivers in the Valdaine were prone to different aggradation and incision phases due to changes in peak water discharge and sediment delivery, but the impact was too low for these changes to be irreversible. Likewise the Dijle River has recently be prone to an incision phase due to a clear water effect, and also this change is expected to be reversible. Finally, the Amblève River did not undergo major changes in style during the last 2000 to 5000 years, even though floodplain sedimentation rates increased tenfold during the last 600 years. Overall, these examples demonstrate how changes in fluvial style depend on the crossing of thresholds in sediment supply and water discharge. Although changes in these controlling parameters are caused by anthropogenic land use changes, the link between those land use changes and changes in fluvial style is not linear. This is due to the temporal variability in landscape connectivity and sediment transport and the non-linear relationship between land use intensity and soil

  9. Spatial and temporal modelling of fluvial aggradation in the Hasli Valley (Swiss Alps) during the last 1300 years

    Science.gov (United States)

    Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe

    2016-04-01

    The Haslital delta (upper Aare River catchment, Bernese Alps) progradated into the Lake Brienz after the retreat of the Aare Glacier (post-LGM). Present delta plain geomorphology and spatial distribution of sedimentary facies result from historical fluvial dynamics and aggradation. Over centuries, local communities have struggled to control the Aare floods and to mitigate their effects on the floodplain (by means of raising artificial levees, channelizing the course, creating an underground drainage network, constructing dams at the basin headwaters). This study focuses on the spatial and temporal evolution of sediment dynamics of the floodplain by analyzing fluvial sedimentary records . The internal variability of lithostratigraphic sequences is a key issue to understand hydrological processes in the basin under the effect of environmental and anthropogenic changes of the past. The floodplain lithostratigraphy was reconstructed by coring alongside four cross-sections; each one is composed of more than 25 shallow boreholes (2 m deep) and two long drillings (variable depth, up to 9 m). The chronostratigraphical models were obtained by AMS 14C dating, and information of paleofloods and channel migration were reconstructed from historical sources (Schulte et al., 2015). The identification of different sedimentary facies, associated with the fluvial architecture structures, provides information on variations of vertical and lateral accretion processes (Houben, 2007). The location and geometry of buried channel-levee facies (gravel and coarse sand layers) indicate a significant mobility of the riverbed of the Hasli-Aare river, following an oscillatory pattern during the last millennia. Furthermore, fine sedimentary deposits and peat layers represent the existence of stable areas where floods have a low incidence. Once the different types of deposits were identified, aggradation rates were estimated in order to determine the spatial variability of the accumulation

  10. Lacustrine-fluvial interactions in Australia's Riverine Plains

    Science.gov (United States)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of

  11. Fluvial deposits as an archive of early human activity: Progress during the 20 years of the Fluvial Archives Group

    Science.gov (United States)

    Chauhan, Parth R.; Bridgland, David R.; Moncel, Marie-Hélène; Antoine, Pierre; Bahain, Jean-Jacques; Briant, Rebecca; Cunha, Pedro P.; Despriée, Jackie; Limondin-Lozouet, Nicole; Locht, Jean-Luc; Martins, Antonio A.; Schreve, Danielle C.; Shaw, Andrew D.; Voinchet, Pierre; Westaway, Rob; White, Mark J.; White, Tom S.

    2017-06-01

    Fluvial sedimentary archives are important repositories for Lower and Middle Palaeolithic artefacts throughout the 'Old World', especially in Europe, where the beginning of their study coincided with the realisation that early humans were of great antiquity. Now that many river terrace sequences can be reliably dated and correlated with the globally valid marine isotope record, potentially useful patterns can be recognized in the distribution of the find-spots of the artefacts that constitute the large collections that were assembled during the years of manual gravel extraction. This paper reviews the advances during the past two decades in knowledge of hominin occupation based on artefact occurrences in fluvial contexts, in Europe, Asia and Africa. As such it is an update of a comparable review in 2007, at the end of IGCP Project no. 449, which had instigated the compilation of fluvial records from around the world during 2000-2004, under the auspices of the Fluvial Archives Group. An overarching finding is the confirmation of the well-established view that in Europe there is a demarcation between handaxe making in the west and flake-core industries in the east, although on a wider scale that pattern is undermined by the increased numbers of Lower Palaeolithic bifaces now recognized in East Asia. It is also apparent that, although it seems to have appeared at different places and at different times in the later Lower Palaeolithic, the arrival of Levallois technology as a global phenomenon was similarly timed across the area occupied by Middle Pleistocene hominins, at around 0.3 Ma.

  12. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  13. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.

    Science.gov (United States)

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali

    2017-11-01

    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  14. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  15. Impacts of channel deposition on the risk of flooding in a watershed

    Science.gov (United States)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  16. Uranium in tertiary stream channels, Lake Frome area, South Australia

    International Nuclear Information System (INIS)

    Brunt, D.A.

    1978-01-01

    Uranium exploration over a wide area of the Southern Frome Embayment, South Australia, has defined a number of Lower Tertiary fluvial palacochannels incised in older rocks. The buried channels contain similar stratigraphic sequences of interbedded sand, silt, and clay, probably derived from the adjacent uranium-rich Olary Province. Uranium mineralization is pervasive within two major palacochannels, and four small uranium deposits have been found in the basal sands of these channel sequences, at the margins of extensive tongues of limonitic sand. A genetic model is proposed suggesting formation by a uraniferous geochemical cell which migrated down the stream gradient and concentrated uranium on its lateral margins adjacent to the channel bank

  17. A Field Exercise in Fluvial Sediment Transport.

    Science.gov (United States)

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  18. Lithofacies palaeogeography of the Carboniferous and Permian in the Qinshui Basin, Shanxi Province, China

    Directory of Open Access Journals (Sweden)

    Long-Yi Shao

    2015-10-01

    The Xiashihezi, Shangshihezi, and Shiqianfeng Formations consist mainly of red mudstones with thick-interbedded sandstones. During the deposition of these formations, most areas of the basin were occupied by a fluvial channel, resulting in palaeogeographic units that include fluvial channel zones and flood basins. The fluvial channel deposits consist mainly of relatively-thick sandstones, which could have potential for exploration of tight sandstone gas.

  19. Muddy lateral accretion and low stream power in a sub-recent confined channel belt, Rhine-Meuse delta, central Netherlands

    NARCIS (Netherlands)

    Makaske, B.; Weerts, H.J.T.

    2005-01-01

    The Hennisdijk fluvial system in the central Rhine-Meuse delta is an abandoned Rhine distributary that was active on a wide floodplain from 3800 to 3000 years BP. Cross-sectional geometry, lithological characteristics and planform patterns of the channel-belt deposits indicate lateral migration of

  20. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    Science.gov (United States)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also

  1. Numerical simulation of sediment movement and deposition in a meandering channel

    International Nuclear Information System (INIS)

    Ghani, U.

    2011-01-01

    In this research work, predictions have been made for the transport and deposition of incoming sediments in an open channel. Attempt has been made to understand the behavior of sediments flowing in the channel. The geometry consisted of a meandering compound channel with a constant inflow of sediments. For this purpose, 3D version of CFD (Computational Fluid Dynamics) code FLUENT has been used as a research tool. The turbulence closure of Reynolds Averaged Navior-Stokes equation was performed with standard -turbulence model. The Lagrangian particle tracking technique available in the code has been used for modeling sediment movement and deposition. For this purpose, nine different ranges of the particle diameters were released at the inlet of the channel. Initially, the model was validated using point velocities in the downstream direction and discharge values at five cross sections along the meander wavelength. The channel used for simulation purposes had a rectangular section. Once the model validated, it was then used for simulation of sediments. The numerical modeling gave a detailed picture of sediment deposited and transported through the channel. As the model was used with - turbulence model and Lagrangian particle tracking technique and then validated, it showed that when this combination of particle tracking and turbulence closure option will be used, the prediction will be fairly good and trustworthy. A number of numerical experiments were conducted to get the impact of sediment inflow velocity and its diameter on deposition patterns. It showed that boundary shearing stresses and secondary flows had considerable impact on sediment deposition in a river bend. The current study revealed that CFD technique can be used for predicting sediment distribution patterns with reasonable confidence. Such prediction techniques are not only economical but also provide details of complex flow and sediment movement behavior which are difficult to get through

  2. How well do the rosgen classification and associated "natural channel design" methods integrate and quantify fluvial processes and channel response?

    Science.gov (United States)

    Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D.; Rhoads, B.; Grant, G.; Fitzpatrick, F.; Juracek, K.; McPhillips, M.; MacBroom, J.

    2005-01-01

    Over the past 10 years the Rosgen classification system and its associated methods of "natural channel design" have become synonymous (to many without prior knowledge of the field) with the term "stream restoration" and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely, and perhaps dominantly adopted by governmental agencies, particularly those funding restoration projects. For example, in a request for proposals for the restoration of Trout Creek in Montana, the Natural Resources Conservation Service required "experience in the use and application of a stream classification system and its implementation." Similarly, classification systems have been used in evaluation guides for riparian areas and U.S. Forest Service management plans. Most notably, many highly trained geomorphologists and hydraulic engineers are often held suspect, or even thought incorrect, if their approach does not include reference to or application of a classification system. This, combined with the para-professional training provided by some involved in "natural channel design" empower individuals and groups with limited backgrounds in stream and watershed sciences to engineer wholesale re-patterning of stream reaches using 50-year old technology that was never intended for engineering design. At Level I, the Rosgen classification system consists of eight or nine major stream types, based on hydraulic-geometry relations and four other measures of channel shape to distinguish the dimensions of alluvial stream channels as a function of the bankfull stage. Six classes of the particle size of the boundary sediments are used to further sub-divide each of the major stream types, resulting in 48 or 54 stream types. Aside from the difficulty in identifying bankfull stage, particularly in incising channels, and the issue of sampling from two distinct populations (beds and banks) to classify the boundary sediments, the classification provides a

  3. Carbonate Channel-Levee Systems Influenced by Mass-Transport Deposition, Browse Basin, Australia

    Science.gov (United States)

    Dunlap, D.; Janson, X.; Sanchez-Phelps, C.; Covault, J. A.

    2017-12-01

    Submarine channels are primary conduits for clastic sediment transport to deep-water basins, thereby controlling the location of marine depocenters and sediment bypass. The evolution and depositional character of submarine channels have broad implications to sediment dispersal, sediment quality, and hydrocarbon exploration potential. Siliciclastic channel systems have been extensively studied in modern environments, seismic and outcrop; however, carbonate channel-levee deposits have only recently been explored. Here we utilize newly released high-resolution (90 Hz) seismic-reflection data from the Australian Browse Basin to document the influence of mass-transport complex (MTC) deposition on the stratigraphic architecture of carbonate channel-levee systems. The 2014 vintage seismic survey is 2500 km2 and hosts numerous large Miocene-age carbonate channel-levee complexes basinward of the shelf edge. Regional horizons and individual channel forms were mapped. Channels range from 200-300 m wide and are bounded by high-relief levee-overbank wedges (>100 ms TWTT). These channels extend across the survey area >70 km. The leveed-channels were sourced from middle and late Miocene slope gullies linked to platform carbonates. Slope-attached and locally derived MTC's are evident throughout the Miocene section likely related to periods of basin inversion and shelf-edge gully incision. We interpret that regionally extensive (>1000 km2) slope-attached MTC's can shut down a channel-levee system and trigger the initiation of a new system, whereas more locally derived (wasting and turbidity currents, which informs depositional models of carbonate slope systems and calls for re-evaluation of the controls on stratigraphic patterns in mixed siliciclastic-carbonate deep-water basins.

  4. Influence of fluvial sandstone architecture on geothermal energy production

    NARCIS (Netherlands)

    Willems, C.J.L.; Maghami Nick, Hamidreza M.; Weltje, G.J.; Donselaar, M.E.; Bruhn, D.F.

    2015-01-01

    Fluvial sandstone reservoirs composed of stacked meander belts are considered as potential geothermal resources in the Netherlands. Net-to-gross, orientation and stacking pattern of the channel belts is of major importance for the connectivity between the injection and production well in such

  5. Fluvial hydrology and geomorphology of Monsoon-dominated Indian rivers

    Directory of Open Access Journals (Sweden)

    Vishwas S. Kale

    2005-11-01

    Full Text Available The Indian rivers are dominantly monsoon rainfed. As a result, their regime characteristics are dictated by the spatio-temporal variations in the monsoon rainfall. Although the rivers carry out most of the geomorphic work during 4-5 months of the monsoon season, the nature and magnitude of response to variations in the discharge and sediment load varies with the basin size and relief characteristics. Large monsoon floods play a role of great importance on all the rivers. This paper describes the hydrological and geomorphological characteristics of the two major fluvial systems of the Indian region, namely the Himalayan fluvial system and the Peninsular fluvial system. Large number of studies published so far indicate that there are noteworthy differences between the two river systems, with respect to river hydrology, channel morphology, sediment load and behaviour. The nature of alterations in the fluvial system due to increased human interference is also briefly mentioned. This short review demonstrates that there is immense variety of rivers in India. This makes India one of the best places to study rivers and their forms and processes.

  6. "The Waters of Meridiani" - Further Support for a Fluvial Interpretation of the Ridged, Layered Units

    Science.gov (United States)

    Wilkinson, Justin; Kreslavsky, Misha

    2009-01-01

    A relatively unknown terrestrial fluvial environment, the mesoscale megafan, provides analogs for various Martian landscapes, including the etched unit (etched unit, Unite E of Arvidson et al., 2003; ridge-forming unit R of Edgett, 2005) of the Sinus Meridiani region on Mars. A global survey of Earth shows that megafans are very large partial cones of dominantly fluvial sediment with radii on the order of hundreds of km, and very low slopes. Responsible fluvial processes are sufficiently different from those of classical arid alluvial fans and deltas that it is useful to class megafans as separate features. The megafan model calls into question two commonly held ideas. 1. Earth examples prove that topographic basins per se are unnecessary for the accumulation of large sedimentary bodies. 2. River channels are by no means restricted to valleys (Meridiani sediments are termed a "valley-ed volume" of Edgett). These perspectives reveal unexpected parallels with features at Meridiani-several channel-like features that are widespread, mostly as ridges inverted by eolian erosion; channel networks covering thousands of sq km, especially on intercrater plains; and regional relationships of sediment bodies situated immediately downstream of highland masses. These all suggest that fluvial explanations are at least part of the Meridiani story.

  7. Geological aspects of paleoseismicity and archaeosismology in the fluvial alluvial Rimac valley

    OpenAIRE

    Jacay, Javier

    2017-01-01

    The sedimentary fill of the Rimac River fluvial-alluvial plain (Upper Miocene-Quaternary) consists of a thick sequence of unconsolidated material that corresponds to fluvial deposits. A record of seismotectonic activity is presentedin the sedimentary levels of fine facie within numerous paleoseismic structures such as contoured layers, pseudonodules, load figures, and material injections. Additionally, wall inclination and collapse, as well as displacement and partialfracturing, and pavement ...

  8. Late Cenozoic fluvial successions in northern and western India: an overview and synthesis

    Science.gov (United States)

    Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.

    2007-11-01

    Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.

  9. Deciphering Depositional Signals in the Bed-Scale Stratigraphic Record of Submarine Channels

    Science.gov (United States)

    Sylvester, Z.; Covault, J. A.

    2017-12-01

    Submarine channels are important conduits of sediment transfer from rivers and shallow-marine settings into the deep sea. As such, the stratigraphic record of submarine-channel systems can store signals of past climate- and other environmental changes in their upstream sediment-source areas. This record is highly fragmented as channels are primarily locations of sediment bypass; channelized turbidity currents are likely to leave a more complete record in areas away from and above the thalweg. However, the link between the thick-bedded axial channel deposits that record a small number of flows and the much larger number of thin-bedded turbidites forming terrace- and levee deposits is poorly understood. We have developed a relatively simple two-dimensional model that, given a number of input flow parameters (mean velocity, grain size, duration of deposition, flow thickness), predicts the thickness and composition of the turbidite that is left behind in the channel and in the overbank areas. The model is based on a Rouse-type suspended sediment concentration profile and the Garcia-Parker entrainment function. In the vertical direction, turbidites tend to rapidly become thinner and finer-grained with height above thalweg, due to decreasing concentration. High near-thalweg concentrations result in thick axial beds. However, an increase in flow velocity can result in high entrainment and no deposition at the bottom of the channel, yet a thin layer of sand and mud is still deposited higher up on the channel bank. If channel thalwegs are largely in a bypass condition, relatively minor velocity fluctuations result in a few occasionally preserved thick beds in the axis, and numerous thin turbidites - and a more complete record - on the channel banks. We use near-seafloor data from the Niger Delta slope and an optimization algorithm to show how our model can be used to invert for likely flow parameters and match the bed thickness and grain size of 100 turbidites observed in a

  10. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    Science.gov (United States)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  11. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    Science.gov (United States)

    Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-08

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.

  12. Open channels in fractures maintained by deposition and erosion of colloids

    International Nuclear Information System (INIS)

    Kessler, J.H.; Hunt, J.R.

    1993-01-01

    Material in the colloidal size range is present in many natural groundwater systems at existing or proposed radioactive waste storage locations. Colloids initially suspended in the water in fractures can deposit onto the fracture surfaces, and will partially or fully clog the fracture. The amount of clogging will depend on whether the deposited colloidal material can erode from the fracture surfaces. If the fracture remains only partially clogged the unclogged regions take the form of open channels. The purpose of this paper is to assess under what conditions these open channels form. An analytical model of a steady state, average open channel width is presented which is a function of the fluid flow rate and viscosity, fracture aperture, and the permeability and shear strength of the deposited colloidal material. The implications of the presence of open channels for colloidal transport is also discussed. However, for most repository conditions the fractures are expected to fully clog with colloids

  13. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    Science.gov (United States)

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  14. Determination of Distribution and Properties of Soil Formed on Different Fluvial Deposit

    Directory of Open Access Journals (Sweden)

    Orhan DENGİZ

    2014-03-01

    Full Text Available Alluvial land, formed on accumulated sediment depositions by time, show large variety in their properties at short distances. Therefore, different soils can be form on these lands. The objective of this research was to determine, mapping and classify different soils formed on fluvial land used for intensive cultivation in Örencik village of Samsun Bafra district. Total study area is approximately 407.9 ha. Average annual temperature and precipitation are 13.6 oC and 764.3 mm, respectively. After examination of topographic, land use, geologic and geomorphologic maps and land observation, 9 profile places were excavated in study area. Detailed land observations were done with grid method and auger examinations. The soil samples were taken from each profile and their analyses were done in the laboratory. By assessing the results of analyses and field studies, 7 different soil series were determined and described. Three of them were classified as Entisol due to their young age, three of them were classified as Inceptisol and one is as Vertisol. Whereas Cevizlik series has the largest area (24.7%, Elmacıdede series has the smallest area in the study area (7.8%.

  15. Sedimentological reservoir characteristics of the Paleocene fluvial/lacustrine Yabus Sandstone, Melut Basin, Sudan

    Science.gov (United States)

    Mahgoub, M. I.; Padmanabhan, E.; Abdullatif, O. M.

    2016-11-01

    Melut Basin in Sudan is regionally linked to the Mesozoic-Cenozoic Central and Western African Rift System (CWARS). The Paleocene Yabus Formation is the main oil producing reservoir in the basin. It is dominated by channel sandstone and shales deposited in fluvial/lacustrine environment during the third phase of rifting in the basin. Different scales of sedimentological heterogeneities influenced reservoir quality and architecture. The cores and well logs analyses revealed seven lithofacies representing fluvial, deltaic and lacustrine depositional environments. The sandstone is medium to coarse-grained, poorly to moderately-sorted and sub-angular to sub-rounded, arkosic-subarkosic to sublitharenite. On the basin scale, the Yabus Formation showed variation in sandstone bodies, thickness, geometry and architecture. On macro-scale, reservoir quality varies vertically and laterally within Yabus Sandstone where it shows progressive fining upward tendencies with different degrees of connectivity. The lower part of the reservoir showed well-connected and amalgamated sandstone bodies, the middle to the upper parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenetic changes such as compaction, cementation, alteration, dissolution and kaolinite clays pore fill and coat all have significantly reduced the reservoir porosity and permeability. The estimated porosity in Yabus Formation ranges from 2 to 20% with an average of 12%; while permeability varies from 200 to 500 mD and up to 1 Darcy. The understanding of different scales of sedimentological reservoir heterogeneities might contribute to better reservoir quality prediction, architecture, consequently enhancing development and productivity.

  16. Connectivity of Multi-Channel Fluvial Systems: A Comparison of Topology Metrics for Braided Rivers and Delta Networks

    Science.gov (United States)

    Tejedor, A.; Marra, W. A.; Addink, E. A.; Foufoula-Georgiou, E.; Kleinhans, M. G.

    2016-12-01

    Advancing quantitative understanding of the structure and dynamics of complex networks has transformed research in many fields as diverse as protein interactions in a cell to page connectivity in the World Wide Web and relationships in human societies. However, Geosciences have not benefited much from this new conceptual framework, although connectivity is at the center of many processes in hydro-geomorphology. One of the first efforts in this direction was the seminal work of Smart and Moruzzi (1971), proposing the use of graph theory for studying the intricate structure of delta channel networks. In recent years, this preliminary work has precipitated in a body of research that examines the connectivity of multiple-channel fluvial systems, such as delta networks and braided rivers. In this work, we compare two approaches recently introduced in the literature: (1) Marra et al. (2014) utilized network centrality measures to identify important channels in a braided section of the Jamuna River, and used the changes of bifurcations within the network over time to explain the overall river evolution; and (2) Tejedor et al. (2015a,b) developed a set of metrics to characterize the complexity of deltaic channel networks, as well as defined a vulnerability index that quantifies the relative change of sediment and water delivery to the shoreline outlets in response to upstream perturbations. Here we present a comparative analysis of metrics of centrality and vulnerability applied to both braided and deltaic channel networks to depict critical channels in those systems, i.e., channels where a change would contribute more substantially to overall system changes, and to understand what attributes of interest in a channel network are most succinctly depicted in what metrics. Marra, W. A., Kleinhans, M. G., & Addink, E. A. (2014). Earth Surface Processes and Landforms, doi:10.1002/esp.3482Smart, J. S., and V. L. Moruzzi (1971), Quantitative properties of delta channel networks

  17. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  18. Sedimentologie and stratigraphic s aspects of conglomeratic sandstones belong to the channel between of the Pirambora and Botucatu formations (mesozoic basin of Parana)district of Sao Paolo Brazil

    International Nuclear Information System (INIS)

    Caetano Chang, M.

    1998-01-01

    The interest of present study is concerned to the sedimentogenic characterization of fluvial conglomeratic sandstones that occur close to the top of Piramboia Formation.These deposits are interpreted as braided channel bar facies, deposited on alluvial fans at the border of desertic environment. The sandstones are fine to coarse, with variable percentage of gravel. These are dominantly quart zones and median scale trough cross-bedded. (author)

  19. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    Science.gov (United States)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  20. The phosphorus content of fluvial sediment in rural and industrialized river basins.

    Science.gov (United States)

    Owens, Philip N; Walling, Desmond E

    2002-02-01

    The phosphorus content of fluvial sediment (suspended sediment and the sediment) has been examined in contrasting rural (moorland and agricultural) and industrialized catchments in Yorkshire, UK. The River Swale drains a rural catchment with no major urban and industrial areas, and the total phosphorus (TP) content of fluvial sediment is generally within the range 500-1,500 microg g(-1). There is little evidence of any major downstream increase in TP content. In contrast, fluvial sediment from the industrialized catchments of the Rivers Aire and Calder exhibits both higher levels of TP content and marked downstream increases, with values of TP content ranging from 7,000 microg g(-1) at downstream sites. These elevated levels reflect P inputs from point sources, such as sewage treatment works (STWs) and combined sewer overflows. The influence of STWs is further demonstrated by the downstream increase in the inorganic P/organic P ratio from 4 in the lower reaches. Comparison of the P content of suspended sediment with that of the sediment and both discharge and suspended sediment concentration, reflecting changes in sediment and P sources during high flow events. Spatial variations in the P contents of the sediment evidence a similar pattern as those for suspended sediment, with relatively low levels of TP in the River Swale and elevated levels in the middle and downstream reaches of the Rivers Aire and Calder. The PP concentrations associated with floodplain and channel bed sediment are, however, lower than equivalent values for suspended sediment, and this primarily reflects the differences in the particle size composition between the three types of sediments. Rates of floodplain deposition and the amounts of fine-grained sediment stored in the river channels are relatively high, and suggest that such environments may represent important sinks for PP. Based on the sediment samples collected from the study basins, a simple four-fold classification which relates the

  1. Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations

    Science.gov (United States)

    Goren, Liran; Petit, Carole

    2017-04-01

    Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the

  2. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    Reade, H.L.

    1978-01-01

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU 3 O 8 ,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU 3 O 8 , and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU 3 O 8 . The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  3. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Flores, R.M.; Ethridge, F.G.

    1985-01-01

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  4. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  5. Geology and ore deposits of Johnny M mine, Ambrosia Lake District

    International Nuclear Information System (INIS)

    Falkowski, S.K.

    1980-01-01

    The Johnny M mine is one of very few mines in the Ambrosia Lake district with uranium ore in two members of the Morrison Formation (Jurassic); these members are the Westwater Canyon Sandstone and the Brushy Basin Shale. The Westwater Canyon ore is contained in the two upper sandstone units of the member, and the Brushy Basin ore is contained in the Poison Canyon sandstone (informal usage). The sedimentary features and structures in the Westwater Canyon sandstones indicate that the sediments were deposited by a system of aggrading braided streams, possibly at the distal end of coalescing alluvial fans. The Poison Canyon sandstone was probably the result of deposition in a complex environment of meandering and braided streams. Paleocurrent-direction indicators, such as fossilized-log orientation, foreset azimuths, and the axes of crossbeds and channel scours, suggest that the local palostream flow was to the east and southeast. The uranium mineralization is closely associated with 1) local accumulations of carbonaceous (humate) matter derived from the decay of organic material and 2) paleostream channels preserved in the rocks. The ore elements were derived from the leaching of volcanic air-fall tuffs and ash, which were introduced into the fluvial system during volcanic activity in the western United States. The mobile ore-element ions were reduce and concentrated by humic acids and bacteria present in the fluvial system and ultimately remobilized into the forms present today. The uranium is thus envisioned as forming either essentially on the surface as the sediments were being deposited or at very shallow depth

  6. Pre- and post-remediation characterization of acid-generating fluvial tailings material

    Science.gov (United States)

    Smith, Kathleen S.; Walton-Day, Katherine; Hoal, Karin O.; Driscoll, Rhonda L.; Pietersen, K.

    2012-01-01

    The upper Arkansas River south of Leadville, Colorado, USA, contains deposits of fluvial tailings from historical mining operations in the Leadville area. These deposits are potential non-point sources of acid and metal contamination to surface- and groundwater systems. We are investigating a site that recently underwent in situ remediation treatment with lime, fertilizer, and compost. Pre- and post-remediation fluvial tailings material was collected from a variety of depths to examine changes in mineralogy, acid generation, and extractable nutrients. Results indicate sufficient nutrient availability in the post-remediation near-surface material, but pyrite and acid generation persist below the depth of lime and fertilizer addition. Mineralogical characterization performed using semi-quantitative X-ray diffraction and quantitative SEM-based micro-mineralogy (Mineral Liberation Analysis, MLA) reveal formation of gypsum, jarosite, and complex coatings surrounding mineral grains in post-remediation samples.

  7. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    Science.gov (United States)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    , dated the sediments by dendrology and OSL dating, and performed in situ XRF analysis of sediment cores. The data show that the downstream head of the bar is the oldest and most of fine sediments (mostly sand, minor silt) of the bar material have been historically polluted by Pb mining. The sedimentary sequences, most valuable for reconstruction of recent pollution, were found in the side channel where the fill the representing the last ca 150 years pollution history (Hg and U). The body of the bar has been formed earlier. According to our hypothesis the bar originated as a direct consequence of historical mining in the nearby Jachymov Ore Region. The use of lateral fluvial deposits as a sedimentary archive definitely requires intensive application of fluvial geomorphology. Vice versa, pollution patterns will allow delineating areas, in particular the bar bank and inlet to the side channel, where intensive reworking (erosion/redeposition) occurred as documented by the microtopography and woody debris.

  8. Contribution of radioactive tracers to sediment transport study in fluvial flows

    International Nuclear Information System (INIS)

    Wilson Junior, G.

    1995-01-01

    The uses of radioactive tracers in sediment transport studies are presented in this report to evidence the importance of: Open channel researches, to describe field applications in waterways; Simultaneous utilization of classical methods and radiotracer techniques, in fluvial and estuarine environments; Development of radiotracers techniques applied in dynamic sedimentology. The report illustrated with some experiments carried out in Brazil and France, in open channel and natural flows. (author). 5 refs, 4 figs

  9. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1978-01-01

    Paleocurrent maps of the fluvial lower Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium- and hydrocarbon-exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains, as in the channel-sandstone bodies deposited in Eocene time by a 40-kilometer segment of the eastward-flowing paleo-Wind River that exended westward from near the town of Powder River on the east edge of the basin. Channel-sandstone bodies with a Granite Mountains source occur south of this segment of the paleo-Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district, but the channel-sandstone bodies between the Gas Hills district and the 40-kilometer segment of the paleo-Wind River may also be mineralized. This area includes the southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel-sandstone bodies derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the paleo-Wind River in Paleocene time flowed eastward and had approximately the same location as the eastward-flowing paleo-Wind River of Eocene time. The channel-sandstone bodies of the paleo-Wind Rivers are potential hydrocarbon reservoirs, particularly where they are underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation. If leaks of sulfur-containing gas have created a reducing environment in the Eocene paleo-Wind River channel-sandstone bodies, then I speculate that the areas of overlap of the channel-sandstone bodies and natural-gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits

  10. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1975-01-01

    Paleocurrent maps of the fluvial early Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium and hydrocarbon exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains as in the channel sandstones deposited by the 25-mile segment of the Eocene Wind River extending westward from near the town of Powder River on the east edge of the basin. Channel sandstones with a Granite Mountain source occur south of this segment of the Eocene Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district but channel sandstones between the Gas Hills district and the 25-mile segment of the Eocene Wind River are potentially mineralized. This area includes the entire southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel sandstones derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the Paleocene Wind River flowed eastward and had approximately the same location as the eastward-flowing Eocene Wind River. If leaks of sulfur-containing gas have created a reducing environment in the Eocene Wind River channel sandstones, then I speculate that the areas of overlap of the channel sandstones and natural gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits. The channel sandstones of the Paleocene and Eocene Wind Rivers are potential hydrocarbon reservoirs, particularly where underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation

  11. Remote sensing information acquisition of paleo-channel sandstone-type uranium deposit in Nuheting area

    International Nuclear Information System (INIS)

    Liu Jianjun

    2000-01-01

    The author briefly describes the genesis and ore-formation mechanism of paleo-channel sandstone-type uranium deposit in Nuheting area. Techniques such as remote sensing digital image data processing and data enhancement, as well as 3-dimension quantitative analysis of drill hole data are applied to extract information on metallogenic environment of paleo-channel sandstone-type uranium deposit and the distribution of paleo-channel

  12. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars

    Directory of Open Access Journals (Sweden)

    Claire Cousins

    2015-02-01

    Full Text Available The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite, and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides. This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.

  13. Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars.

    Science.gov (United States)

    Cousins, Claire

    2015-02-16

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.

  14. Physical Drivers Vs. Effects of the Wolf-Elk Trophic Cascade on Fluvial Channel Planform, Olympic National Park, Washington

    Science.gov (United States)

    East, A. E.; Jenkins, K. J.; Happe, P. J.; Bountry, J.; Beechie, T. J.; Mastin, M. C.; Sankey, J. B.; Randle, T. J.

    2016-12-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history; all four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, shown, for example, by the response of the Elwha River to a landslide. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate rapid transmission of climatic signals through relatively short sediment-routing systems that lack substantial buffering by sediment storage. We infer no correspondence between channel evolution and elk abundance, suggesting that in this system effects of the wolf-driven trophic cascade are subsidiary to physical controls on channel morphology. Our examinations of stage-discharge history, historical maps, photographs, and descriptions, and empirical geomorphic thresholds do not support a previous conceptual model that these rivers underwent a fundamental geomorphic transition (widening, and a shift from single-thread to braided) resulting from large elk populations in the early 20th century. These findings differ from previous interpretations of Olympic National Park river dynamics, and also contrast with previous findings in Yellowstone National Park, where legacy effects of abundant elk nearly a century ago apparently still affect

  15. Discussion on several problems on the mineralization of paleo-channel sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Huang Shijie

    1997-01-01

    On the basis of comprehensively analyzing paleo-channel sandstone type uranium deposits at home and abroad, the author discusses the division of mineralization types of paleo-channel sandstone type uranium deposits, and analyzes the metallogenic geologic conditions such as regional geologic background, climatic and geomorphological conditions, basement and sedimentary cover, characteristics of paleo-valley and paleo-channel, mineralization features as well as epigenetic metallogenic process. Future prospecting direction is also proposed

  16. Factors controlling localization of uranium deposits in the Dakota Sandstone, Gallup and Ambrosia Lake mining districts, McKinley County, New Mexico

    Science.gov (United States)

    Pierson, Charles Thomas; Green, Morris W.

    1977-01-01

    siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.

  17. A Paleogeographic and Depositional Model for the Neogene Fluvial Succession, Pishin Belt, Northwest Pakistan: Effect of Post Collisional Tectonics on Sedimentation in a Peripheral Foreland Setting

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Umar, Muhammad

    2018-01-01

    . During the Early Miocene, subaerial sedimentation started after the final closure of the Katawaz Remnant Ocean. Based on detailed field data, twelve facies were recognized in Neogene successions exposed in the Pishin Belt. These facies were further organized into four facies associations i.e. channels......‐story sandstone and/or conglomerate channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to the oblique collision of the Indian Plate with the Afghan Block of the Eurasian Plate along......, crevasse splay, natural levee and floodplain facies associations. Facies associations and variations provided ample evidence to recognize a number of fluvial architectural components in the succession e.g., low‐sinuosity sandy braided river, mixed‐load meandering, high‐sinuosity meandering channels, single...

  18. Ephemeral-fluvial sediments as potential hydrocarbon reservoirs. Vol. 1: Sedimentology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K.S.

    1994-12-31

    Although reservoirs formed from ephemeral-fluvial sandstones have previously been considered relatively simple, unresolved problems of sandbody correlation and production anomalies demonstrate the need for improved understanding of their internal complexity. Outcropping ephemeral-fluvial systems have been studied in order to determine the main features and processes occurring in sand-rich ephemeral systems and to identify which features will be of importance in a hydrocarbon reservoir. The Lower Jurassic Upper Moenave and Kayenta Formations of south-eastern Utah and northern Arizona comprise series of stacked, sand-dominated sheet-like palaeochannels suggestive of low sinuosity, braided systems. Low subsidence rates and rapid lateral migration rates enabled channels to significantly modify their widths during high discharge. (author)

  19. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    Science.gov (United States)

    Eaton, L. Scott; Morgan, Benjamin A.; Kochel, R. Craig; Howard, Alan D.

    2003-01-01

    A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains.The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum.Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for

  20. Characterization and 3D reservoir modelling of fluvial sandstones of the Williams Fork Formation, Rulison Field, Piceance Basin, Colorado, USA

    International Nuclear Information System (INIS)

    Pranter, Matthew J; Vargas, Marielis F; Davis, Thomas L

    2008-01-01

    This study describes the stratigraphic characteristics and distribution of fluvial deposits of the Upper Cretaceous Williams Fork Formation in a portion of Rulison Field and addresses 3D geologic modelling of reservoir sand bodies and their associated connectivity. Fluvial deposits include isolated and stacked point-bar deposits, crevasse splays and overbank (floodplain) mudrock. Within the Williams Fork Formation, the distribution and connectivity of fluvial sandstones significantly impact reservoir productivity and ultimate recovery. The reservoir sandstones are primarily fluvial point-bar deposits interbedded with shales and coals. Because of the lenticular geometry and limited lateral extent of the reservoir sandstones (common apparent widths of ∼500–1000 ft; ∼150–300 m), relatively high well densities (e.g. 10 acre (660 ft; 200 m) spacing) are often required to deplete the reservoir. Heterogeneity of these fluvial deposits includes larger scale stratigraphic variability associated with vertical stacking patterns and structural heterogeneities associated with faults that exhibit lateral and reverse offsets. The discontinuous character of the fluvial sandstones and lack of distinct marker beds in the middle and upper parts of the Williams Fork Formation make correlation between wells tenuous, even at a 10 acre well spacing. Some intervals of thicker and amalgamated sandstones within the middle and upper Williams Fork Formation can be correlated across greater distances. To aid correlation and for 3D reservoir modelling, vertical lithology proportion curves were used to estimate stratigraphic trends and define the stratigraphic zonation within the reservoir interval. Object-based and indicator-based modelling methods have been applied to the same data and results from the models were compared. Results from the 3D modelling indicate that sandstone connectivity increases with net-to-gross ratio and, at lower net-to-gross ratios (<30%), differences exist in

  1. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  2. Seismic modeling of fluvial-estuarine deposits in the Athabasca oil sands using ray-tracing techniques, Steepbank River area, northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Langenberg, C. W.; Hein, F. J. [Alberta Energy and Utilities Board, Edmonton, AB (Canada); Lawton, D.; Cunningham, J. [Calgary Univ., Dept. of Geology and Geophysics, Calgary, AB (Canada)

    2002-03-01

    Seismic reflection characteristics of contrasting channel geometries in a five-section portion of the Steepbank River are modeled using ray-tracing techniques. Outcrop lithofacies associations are used to create a seismic model that can be used as a subsurface analog of other similar oil-sands successions. At least four channel complexes based on stratal bounding surfaces, arrangement of lithofacies, and consistent paleoflow patterns have been identified. The lower part of each channel complex contains trough crossbedded sandstone, exhibiting high porosity and permeability. These sandstones were deposited in channel axes and are the highest grade bitumen deposits in the area. The upper parts of the channels contain significantly lower bitumen saturation values due to common interbedded mudstone. Nearby wells contain cored and logged intervals that are similar to exposed outcrops in the riverbank. Overall modeling results indicate that channel complexes can be imaged seismically, given data of sufficient quality and frequency. Bitumen grade may be predicted in these seismic lines, which has important consequences for bitumen exploration and extraction in the Steepbank River region. 64 refs., 26 figs.

  3. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  4. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    Science.gov (United States)

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  5. Tidal-controlled variations of primary- and secondary bedform height: Innenjade tidal channel (Jade Bay, German Bight)

    DEFF Research Database (Denmark)

    Ernstsen, Verner B.; Winter, C.; Becker, M.

    2010-01-01

    Coastal, estuarine, fluvial and submarine morphodynamics encompass some of the leading processes shaping our planet. They stem mainly, but not only, from the interaction of water in motion and movable sediment boundaries, resulting in morphological changes produced by erosion, transport and depos......Coastal, estuarine, fluvial and submarine morphodynamics encompass some of the leading processes shaping our planet. They stem mainly, but not only, from the interaction of water in motion and movable sediment boundaries, resulting in morphological changes produced by erosion, transport...... and deposition of sediments that generate a variety of landscapes and seascapes over time. Morphodynamics allows for a better understanding and interpretation of self adjustments in drainage basins, longitudinal river profiles and shorelines shapes, as well as characteristic features such as beach cusps, bed...... forms such as dunes, and channel patterns. This collection of about 150 contributions should be invaluable to wetland ecologists, fish biologists, engineers, geomorphologists, fluvial engineers, coastal scientists , as well as to scientists interested in processes responsible for earth-surface landscape...

  6. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska

    Science.gov (United States)

    Skelly, Raymond L.; Bristow, Charlie S.; Ethridge, Frank G.

    2003-05-01

    Architecture of recent channel-belt deposits of the Niobrara River, northeast Nebraska, USA, records the response of a sandy braided river to rapid base-level rise. Up to 3 m of aggradation has occurred within the lower 14 km of the Niobrara River since the mid-1950s as a result of base-level rise at the confluence of the Niobrara and Missouri Rivers. Aerial photographs and channel surveys indicate that the lower Niobrara has evolved from a relatively deep, stable channel with large, bank-attached braid bars to a relatively shallow, aggrading channel with braid bars and smaller secondary channels. Architecture of channel-belt deposits associated with the recent aggradation has been defined using ground-penetrating radar (GPR) and vibracores. The channel-belt deposits exhibit a series of amalgamated channel fills and braid bar complexes (i.e., macroforms). Radar facies identified in the GPR data represent architectural elements of the braid bar complexes, large and small bedforms [two-dimensional (2-D) and three-dimensional (3-D) dunes], and channels. Individual braid bars appear to consist of basal high-flow and upper low-flow components. Preservation of the complete, high-flow bar geometry is generally incomplete due to frequent migration of smaller scale, secondary channels within the channel belt (i.e., braided channel network) at low discharges. The large-scale stratification of the braid bar deposits is dominated by cross-channel and upstream accretion. Elements of downstream accretion are also recognized. These accretion geometries have not been documented previously in similar sandy braided rivers. Braid bar deposits with low-flow modification (e.g., incision by secondary channels) are recognized in the deeper portions of the deposits imaged by GPR. Preservation of braid bars, with both high- and low-flow components, is a result of the rapid base-level rise and channel-bed aggradation experienced by the Niobrara River over the past 45 years. Recent avulsion

  7. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  8. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein

    Science.gov (United States)

    Mader, Detlef

    The spectrum of aeolian depositional subenvironments in the upper Middle Buntsandstein Karlstal-Schichten sequence in the Eifel North-South-zone at the western margin of the Mid-European Triassic Basin comprises trains of larger and higher narrowly-spaced dunes in sand seas, isolated smaller and lower widely-spaced dunes in floodplains and interdune playas, dry interdune sheet sands, damp interdune adhesive sandflats, wet interdune playa lakes, rainfall runoff watercourses and ephemeral channels cutting through the dune belt, and deflation gravel lag veneers. Distinction of aeolian and fluvial sediments within the succession of closely intertonguing wind- and water-laid deposits is possible by independent analysis of the conventional criteria and the more modern stratification styles. Thick cross-bedded aeolian sand sequences originate as barchanoid-type dunes which accumulate and migrate in the regime of narrow to wide unimodal southeasterly to southwesterly trade winds in low northern palaeolatitude in summer when the intertropical convergence zone is shifted to the north. The predominantly transverse-ridge dunes accrete mainly by grainfall and subcritical climbing of wind ripples, subordinately also by grainflow interfingering with grainfall. Horizontal-laminated aeolian sands form as sand sheets in dry interdune playas by subcritical migration of wind ripple trains, rarely also by plane bed accretion. Thin cross-bedded dune sands or horizontal-laminated aeolian sands capping fluvial cyclothems originate by deflation of emerged alluvial bar sands during low-water stages and subsequent accumulation of the winnowed sand as widely-spaced dunelets or chains of wind ripples in desiccated parts of the adjoining floodplain. The aeolian sand layers at the base of lacustrine cyclothems record migration of isolated little dunes across the dry playa floor at the beginning of a wetting-upwards cyclothem, with the sand deriving from deflation of fluvial incursions or

  9. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta formation (lower jurassic), Southwest Colorado

    Science.gov (United States)

    Miall, Andrew D.

    1988-03-01

    Three well-exposed outcrops in the Kayenta Formation (Lower Jurassic), near Dove Creek in southwestern Colorado, were studied using lateral profiles, in order to test recent regarding architectural-element analysis and the classification and interpretation of internal bounding surfaces. Examination of bounding surfaces within and between elements in the Kayenta outcrops raises problems in applying the three-fold classification of Allen (1983). Enlarging this classification to a six-fold hierarchy permits the discrimination of surfaces intermediate between Allen's second- and third-order types, corresponding to the upper bounding surfaces of macroforms, and internal erosional "reactivation" surfaces within the macroforms. Examples of the first five types of surface occur in the Kayenta outcrops at Dove Creek. The new classifications is offered as a general solution to the problem of description of complex, three-dimensional fluvial sandstone bodies. The Kayenta Formation at Dove Creek consists of a multistorey sandstone body, including the deposits of lateral- and downstream-accreted macroforms. The storeys show no internal cyclicity, neither within individual elements nor through the overall vertical thickness of the formation. Low paleocurrent variance indicates low sinuosity flow, whereas macroform geometry and orientation suggest low to moderate sinuosity. The many internal minor erosion surfaces draped with mud and followed by intraclast breccias imply frequent rapid stage fluctuation, consistent with variable (seasonal? monsonal? ephemmeral?) flow. The results suggest a fluvial architecture similar to that of the South Saskatchewan River, through with a three-dimensional geometry unlike that interpreted from surface studies of that river.

  10. A fast, parallel algorithm to solve the basic fluvial erosion/transport equations

    Science.gov (United States)

    Braun, J.

    2012-04-01

    Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on

  11. Automatic detection of buried channel deposits from dense laser altimetry data

    NARCIS (Netherlands)

    Possel, B.M.J.; Lindenbergh, R.C.; Storms, J.E.A.

    2010-01-01

    The formation of the current Rhine-Meuse delta mainly took place during the last 12 000 years. Consecutive avulsions, i.e. sudden changes in the course of river channels, resulted in a complicated pattern of sandy channel deposits, surrounded by peat and clay. Knowledge of this pattern is not only

  12. Sequential development of tidal ravinement surfaces in macro- to hypertidal estuaries with high volcaniclastic input: the Miocene Puerto Madryn Formation (Patagonia, Argentina)

    Science.gov (United States)

    Scasso, Roberto A.; Cuitiño, José I.

    2017-08-01

    The late Miocene beds of the Puerto Madryn Formation (Provincia del Chubut, Argentina) are formed by shallow marine and estuarine sediments. The latter include several tidal-channel infills well exposed on the cliffy coast of the Peninsula Valdés. The Bahía Punta Fósil and Cerro Olazábal paleochannels are end members of these tidal channels and show a fining-upward infilling starting with intraformational channel lag conglomerates above deeply erosional surfaces interpreted as fluvial ravinement surfaces (the erosion surface formed in the purely fluvial or the fluvially dominated part of the estuary, where erosion is driven by fluvial processes). These are overlain and eventually truncated (and suppressed) by the tidal ravinement surface (TRS), in turn covered with high-energy, bioclastic conglomerates mostly formed in the "tidally dominated/fluvially influenced" part of an estuary. Above, large straight or arcuate point bars with alternatively sandy/muddy seasonal beds and varying trace and body fossil contents were deposited from the freshwater fluvially dominated to saline-water tidally dominated part of the estuary. The upper channel infill is formed by cross-bedded sands with mud drapes and seaward-directed paleocurrents, together with barren, volcaniclastic sandy to muddy heterolithic seasonal rhythmites, both deposited in the fluvially dominated part of the estuary. Volcanic ash driven by the rivers after large explosive volcanic eruptions on land resulted in sedimentation rates as high as 0.9 m per year, preserving (through burial) the morphology of tidal channels and TRSs. The channel deposits were formed in a tide-dominated, macrotidal to hypertidal open estuary with well-developed TRSs resulting from strong tidal currents deeply scouring into the transgressive filling of the channels and eventually cutting the fluvial ravinement surface. The TRSs extended upstream to the inner part of the estuary during long periods of low sedimentation rates

  13. Variability in fluvial geomorphic response to anthropogenic disturbance

    Science.gov (United States)

    Verstraeten, Gert; Broothaerts, Nils; Van Loo, Maarten; Notebaert, Bastiaan; D'Haen, Koen; Dusar, Bert; De Brue, Hanne

    2017-10-01

    Humans have greatly impacted the processes and intensities of erosion, sediment transport and storage since the introduction of agriculture. In many regions around the world, accelerated floodplain sedimentation can be related to increases in human pressure on the environment. However, the relation between the intensity of anthropogenic disturbance and the magnitude of change in fluvial sediment dynamics is not straightforward and often non-linear. Here, we review a number of case studies from contrasting environmental settings in the European loess belt, the Eastern Mediterranean mountain ranges and the eastern USA. Detailed field-based sediment archive studies and sediment budgets covering time periods ranging from 200 to over 5000 year, as well as the use of pollen and sediment provenance techniques, show that no overarching concept of changes in floodplain sedimentation following anthropogenic disturbance can be established. Slope-channel (dis)connectivity controls the existence of thresholds or tipping points that need to be crossed before significant changes in downstream sediment dynamics are recorded following human impact. This coupling can be related to characteristics of human pressure such as its duration, intensity and spatial patterns, but also to the geomorphic and tectonic setting. Furthermore, internal feedback mechanisms, such as those between erosion and soil thickness, further complicate the story. All these factors controlling the propagation of sediment from eroding hillslopes to river channels vary between regions. Hence, only unique patterns of fluvial geomorphic response can be identified. As a result, unravelling the human impact from current-day sediment archives and predicting the impact of future human disturbances on fluvial sediment dynamics remain a major challenge. This has important implications for interpreting contemporary sediment yields as well as downstream sediment records in large floodplains, deltas and the marine

  14. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    Science.gov (United States)

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could

  15. A geologic approach to field methods in fluvial geomorphology

    Science.gov (United States)

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  16. Wandering gravel-bed rivers and high-constructive stable channel sandy fluvial systems in the Ross River area, Yukon Territory, Canada

    Directory of Open Access Journals (Sweden)

    Darrel G.F. Long

    2011-07-01

    Gravel-dominated strata, inter-bedded with, and overlying coal-bearing units, are interpreted as deposits of wandering gravel-bed rivers, with sinuosity approaching 1.4. In most exposures they appear to be dominated by massive and thin planar-bedded granule to small pebble conglomerates, which would traditionally be interpreted as sheet-flood or longitudinal bar deposits of a high-gradient braided stream or alluvial fan. Architectural analysis of exposures in an open-pit shows that the predominance of flat bedding is an artefact of the geometry of the roadside exposures. In the pit the conglomerates are dominated by large scale cross stratification on a scale of 1–5.5 m. These appear to have developed as downstream and lateral accretion elements on side-bars and on in-channel bars in water depths of 2–12 m. Stacking of strata on domed 3rd order surfaces suggests development of longitudinal in-channel bar complexes similar to those observed in parts of the modern Rhône River system. Mudstone preserved in some of the channels reflects intervals of channel abandonment or avulsion. Minimum channel width is from 70 to 450 m.

  17. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  18. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    Science.gov (United States)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  19. A Late Pleistocene linear dune dam record of aeolian-fluvial dynamics at the fringes of the northwestern Negev dunefield

    Science.gov (United States)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2017-04-01

    The paper presents a late Pleistocene aeolian-fluvial record within a linear dune-like structure that partway served as a dune dam. Situated along the southern fringe of the northwestern Negev desert dunefield (Israel) the structure's morphology, orientation, and some of its stratigraphic units partly resemble adjacent west-east extending vegetated linear dunes. Uneven levels of light-colored, fine-grained fluvial deposits (LFFDs) extend to the north and south from the flanks of the studied structure. Abundant Epipalaeolithic sites line the fringes of the LFFDs. The LFFD microstructures of fine graded bedding and clay blocky peds indicate sorting and shrinking of saturated clays in transitional environments between low energy flows to shallow standing water formed by dunes damming a mid-sized drainage system. The structure's architecture of interchanging units of sand with LFFDs indicates interchanging dominances between aeolian sand incursion and winter floods. Sand mobilization associated with powerful winds during the Heinrich 1 event led to dune damming downstream of the structure and within the structure to in-situ sand deposition, partial fluvial erosion, reworking of the sand, and LFFD deposition. Increased sand deposition led to structure growth and blockage of its drainage system that in turn accumulated LFFD units up stream of the structure. Extrapolation of current local fluvial sediment yields indicate that LFFD accretion up to the structure's brim occurred over a short period of several decades. Thin layers of Geometric Kebaran (c. 17.5-14.5 ka cal BP) to Harifian (12-11 ka BP) artifacts within the structure's surface indicates intermittent, repetitive, and short term camping utilizing adjacent water along a timespan of 4-6 kyr. The finds directly imply that the NW Negev LFFDs formed in dune-dammed water bodies which themselves were formed following events of vegetated linear dune elongation. LFFD accumulation persisted as a result of dune dam

  20. A Volcanic Origin for Sinuous and Branching Channels on Mars: Evidence from Hawaiian Analogs

    Science.gov (United States)

    Bleacher, Jacob E.; deWet, Andrew; Garry, W. Brent; Zimbelman, James R.

    2012-01-01

    Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends > 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust

  1. Facies and depositional model of Almada Canyon, Almada Basin, Bahia, Brazil; Facies e modelo deposicional do Canyon de Almada, Bacia de Almada, Bahia

    Energy Technology Data Exchange (ETDEWEB)

    D' Avila, Roberto Salvador Francisco; Souza Cruz, Carlos Emanoel de; Oliveira Filho, Jose Souto; Jesus, Candida Menezes de; Cesero, Pedro de; Dias Filho, Dorval Carvalho; Lima, Claudio Coelho de; Queiroz, Claudia Lima de; Santos, Saulo Ferreira; Ferreira, Eduardo Araripe [PETROBRAS, Santos, SP (Brazil). Unidade de Negocio de Exploracao]. E-mail: rdavila@petrobras.com.br

    2004-11-01

    In the continental portion of the Almada Basin outcrops of canyon filling deposits are represented by turbidite channels and associated facies from Urucutuca Formation. The canyon - semi-exhumated - eroded basement and pre-Cenomanian sedimentary rocks. The field study of the outcrops and cores obtained in adjacent perforations lead to the understanding of the facies and processes that controlled the deposition of these channeled turbidite that can be compared to the reservoirs of many oil fields in Brazil. The Almada canyon is a submarine conduct of tectonic origin that was enlarged by the repeated passing of turbidity currents. During the rift phase and the Albian period, compressive events reactivated old N E and N W faults in the basement as trans current fault systems. The continuation of these stresses, from the Cenomanian to the Maastrichtian, developed normal faults that controlled a submarine canyon that connected the continent, where an estuary was formed between the mountains, to the deep marine region of the basin. The canyon has received sediments brought by catastrophic fluvial floods coming from the surrounding mountains, which formed hyperpicnal flows that have evolved as turbidity currents, thus causing erosion of the substrate and carrying a huge volume of sediments to the basin. A part of that load was deposited in the canyon and formed turbidite channels filled by conglomerates, sandstones and shales. These moderately to highly efficient turbidite are intercalated to pro delta pelites and low density turbid plumes deposits, which have mostly been re mobilized as slump and debris flows (chaotic deposits). Pelites were accumulated mainly in the normal fluvial sedimentation phases, when the sandy sediment was retained next to the canyon head and were reworked by the tides on the upper part of the estuary. (author)

  2. Microbial weathering processes after release of heavy metals and arsenic from fluvial tailing deposits; Mikrobielle Verwitterungsprozesse bei der Freisetzung von Schwermetallen und Arsen aus fluvialen Tailingablagerungen

    Energy Technology Data Exchange (ETDEWEB)

    Willscher, S. [Technische Univ. Dresden (Germany). Fak. fuer Forst, Geo und Hydrowissenschaften, Inst. fuer Abfallwirtschaft und Altlasten

    2006-07-01

    Microbial processes play an important role in global metal cycles. The microbial weathering of mineral surfaces, including deposited anthropogenic mineral remainders, is a natural occurring process, taking place on uncovered dump surfaces as well as in deeper zones of dumps. Such weathering processes also occur in metal contaminated soils and sediments. In this work, a sulfidic fluvial tailing sediment was investigated for its acidity and salinity generating potential and the subsequent mobilisation of heavy metals, generated by biogeochemical processes. The long-term risks of such a deposit were evaluated. Unstabilised deposits of such materials can generate a considerable contamination of the surrounding ground and surface water. It could be shown in the experiments that in acid generating dumps and tailing materials besides the well known acidophilic autotrophs also acidotolerant heterotrophic microorganisms play a role in the mobilisation of metals. (orig.)

  3. Beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming

    Science.gov (United States)

    Persico, L.; Meyer, G.

    2008-12-01

    Beaver habitation is an important component of many fluvial landscapes that can impact a variety of hydrologic, geomorphic, and ecologic processes. Beaver damming, via long term valley aggradation, is thought to be important to the postglacial geomorphic evolution of many smaller mountain stream networks in the western United States. Loss of beaver dams can also cause rapid channel incision. Although several studies have documented rapid short-term aggradation of channels behind single beaver dams, there is little actual data on the long-term cumulative effect of beaver damming. In Yellowstone''s Northern Range, field surveys and stratigraphic section along six streams in the Northern Range reveal net thickness of mostly beaver-pond deposits. We estimate that reaches with clear morphologic and stratigraphic evidence for beaver-related aggradation constitute about 19% of the total stream network length. Reaches with probable and possible beaver-related aggradation make up an additional 8% and 2% of the network, respectively. The remaining 71% of the network has no clear evidence for beaver-related aggradation. Thirty-nine radiocarbon ages on beaver-pond deposits in northern Yellowstone fall primarily within the last 4000 yr, but gaps in dated beaver occupation from 2200-1800 and 950-750 cal yr BP correspond with severe and persistent droughts that likely caused low to ephemeral discharges in smaller streams. In the last two decades, severe drought has also caused streams that were occupied by beaver in the 1920s to become ephemeral. Beaver have been largely absent from the Northern Range since the mid-20th century, probably due to multiple ecological and climatic factors. This loss of beaver is thought to have led to widespread degradation of stream and riparian habitat via channel incision. Although 20th-century beaver loss has caused significant channel incision at some former dam sites, downcutting elsewhere in northern Yellowstone is unrelated to beaver dams or

  4. Facies discrimination in a mixed fluvio-eolian setting using elemental whole rock geochemistry

    DEFF Research Database (Denmark)

    Svendsen, Johan; Friis, Henrik; Stollhofen, Harald

    2007-01-01

    -eolian successions. The method is developed on the modern fluvio-eolian sediments from the Skeleton Coast dune field, Namibia. The examined sediments comprise eight different facies types; eolian dune sands, inter dune fluvial channel sands, intra erg mass flow deposits, intra erg hyperconcentrated flow deposits......, fluvial channel sands, fluvial mud, lacustrine heterolithic sand and lacustrine heterolithic mud. The contrasting provenance of the fluvial and eolian sediments results in a distinct source fingerprint which can be discriminated using elemental whole rock geochemistry. Multivariate statistical technique...... performed on the geochemical data has enabled discrimination of seven of the eight facies types. Furthermore, the facies discrimination method allowed a quantitative estimate of the degree of fluvial reworking of eolian sand. We believe that the method presented here, when calibrated to a reference well...

  5. Facies associations, depositional environments and stratigraphic framework of the Early Miocene-Pleistocene successions of the Mukah-Balingian Area, Sarawak, Malaysia

    Science.gov (United States)

    Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey

    2018-02-01

    Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.

  6. Errors in Martian paleodischarges skew interpretations of hydrologic history: Case study of the Aeolis Dorsa, Mars, with insights from the Quinn River, NV

    Science.gov (United States)

    Jacobsen, Robert E.; Burr, Devon M.

    2018-03-01

    Changes in Martian fluvial geomorphology with time-stratigraphic age, including decreases in paleochannel widths, suggest waning paleodischarges through time. Where fluvial landforms do not preserve paleochannel widths (e.g., meander deposits), other landform dimensions (i.e., radius of curvature) may be used to estimate paleodischarges. In the Aeolis Dorsa region, topographically inverted and stacked fluvial deposits - wide meander point bars overlain by thin channel fills - preserve ostensible evidence of decreasing paleodischarges through time. However, a robust paleohydraulic analysis of these distinct deposits requires knowledge of the accuracy of a terrestrial-based empirical relationship that estimates channel width from point-bar radius of curvature. We assess the accuracy of this radius-width relationship by applying it to a well-studied terrestrial analog, the Quinn River, Nevada. We find that radii of curvature from the Quinn River exceed the values predicted from the empirical relationship. These anomalously high radii are associated with greater resistance in the channel cut banks, indicating that bank strength is a confounding factor in the radius-width relationship. Some deposits in the Aeolis Dorsa include irregular meander morphologies, suggesting variably resistant channel banks and overestimates of both paleochannel widths and paleodischarges. Furthermore, the morphometry of the overlying thin channel fills suggests their widths have been eroded, such that their paleodischarges are underestimates. These overestimates and underestimates, when considered together, suggest little change in paleodischarge during the stratigraphic transition from meander deposits to channel fills. This work demonstrates the importance of terrestrial analog studies for revealing confounding factors in Martian fluvial systems and cautions against simplistic interpretations of Martian fluvial history. The discovered inaccuracies of paleodischarge estimates expose sources

  7. Recent flow regime and sedimentological evolution of a fluvial system as the main factors controlling spatial distribution of arsenic in groundwater (Red River, Vietnam)

    DEFF Research Database (Denmark)

    Kazmierczak, J.; Larsen, F.; Jakobsen, R.

    2016-01-01

    sediments was partially eroded during the Holocene and covered by sand and clay deposited in fluvial environments. Sedimentary processes lead to the development of two flow systems. Shallow groundwater discharges either to the local surface water bodies or, in the areas where low permeable sediments...... isolating Pleistocene and Holocene aquifers were eroded, to the deep groundwater flow system discharging to Red River. Previously reported pattern of arsenic groundwater concentrations decreasing with an increasing sediment age is modified by the observed flow regime. Connection of the younger and older...... river channels resulted in a transport of high arsenic concentrations towards the Pleistocene aquifer, where low arsenic concentrations were expected....

  8. Superficial deposits in northeast flank of Sierras Australes (Provincia de Buenos Aires, Republica Argentina)

    International Nuclear Information System (INIS)

    Gentile, R.; Fucks, E.; De Francesco, F.

    2004-01-01

    Pleistocene and Holocene superficial deposits, which have been recognized in an area of 1500 km2 in the northeast flank of Sierras Australes, are characterized. In divide they are underlain by silts and siltstone which are called Sediments Pampeanas. There, a lower sequence, consisting mainly of aeolian sediments (loess) with scarce fluvial deposits and diamictons, was recognized. In some places an upper sequence that is product of aeolian and anthropogenic activity, was also recognized. In the valley sequences, the loess deposits can not only be underlain by fluvial sediments but can also overlain them. The more recent fluvial deposits which have eroded loess sequences are of the post conquest age [es

  9. Fluvial system response to Late Devensian (Weichselian) aridity, Baston, Lincolnshire, England

    Science.gov (United States)

    Briant, Rebecca M.; Coope, G. Russell; Preece, Richard C.; Keen, David H.; Boreham, Steve; Griffiths, Huw I.; Seddon, Mary B.; Gibbard, Philip L.

    2004-07-01

    Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice-wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice-wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice-wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice-wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright

  10. Uniqueness Deposit of Sediment on Floodplain Resulting From Lateral Accretion on Tropical Area : Study Case at Kampar River, Indonesia

    Directory of Open Access Journals (Sweden)

    Yuniarti Yuskar

    2017-03-01

    Full Text Available Kampar rivers has a length of 413 km with average depth of 7.7 m and width of 143 m. Sixty percent of  this rivers are meandering fluvial system which transport and deposit a mixture of suspended and bed-load (mixed load along low energy. River channel that moving sideways by erosion is undergoing lateral migration and the top of the point bar becomes the edge of the floodplain and the fining-upward succession of the point bar will be capped by overbank deposits of Kampar River. Along the Kampar Rivers, there are more than 60% of floodplain sediments and almost all of the floodplain formed by bend migration on the suspended-load channels of Kampar watershed. This formation consist of succession of fine to medium sand and silt/mud, with root traces, that form as drapes on the prograding bank. These beds dip mostly channel wards and quickly wedge out as they grade up and onto the floodplain. The depositional model is presented showing how lateral accretion can make a significant contribution to the preservation of fine-grained within channel deposits in contemporary floodplains. The examples presented here demonstrate that analogues to ancient point-bar deposits containing alternating sandstone and shale sequences are common in the low-energy fluvial environments of Riau rivers especially Kampar rivers.

  11. Long-term passive restoration following fluvial deposition of sulphidic copper tailings: nature filters out the solutions.

    Science.gov (United States)

    Nikolic, Nina; Böcker, Reinhard; Nikolic, Miroslav

    2016-07-01

    Despite the growing popularity of ecological restoration approach, data on primary succession on toxic post-mining substrates, under site environmental conditions which considerably differ from the surrounding environment, are still scarce. Here, we studied the spontaneous vegetation development on an unusual locality created by long-term and large-scale fluvial deposition of sulphidic tailings from a copper mine in a pronouncedly xerothermic, calcareous surrounding. We performed multivariate analyses of soil samples (20 physical and chemical parameters) and vegetation samples (floristic and structural parameters in three types of occurring forests), collected along the pollution gradients throughout the affected floodplain. The nature can cope with two types of imposed constraints: (a) excessive Cu concentrations and (b) very low pH, combined with nutrient deficiency. The former will still allow convergence to the original vegetation, while the latter will result in novel, depauperate assemblages of species typical for cooler and moister climate. Our results for the first time demonstrate that with the increasing severity of environmental filtering, the relative importance of the surrounding vegetation for primary succession strongly decreases.

  12. On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels

    Directory of Open Access Journals (Sweden)

    Safari Mir-Jafar-Sadegh

    2014-03-01

    Full Text Available The condition of incipient motion and deposition are of the essential issues for the study of sediment transport. This phenomenon is of great importance to hydraulic engineers for designing sewers, drainage, as well as other rigid boundary channels. This is a study carried out with the objectives of describing the effect of cross-sectional shape on incipient motion and deposition of particles in rigid boundary channels. In this research work, the experimental data given by Loveless (1992 and Mohammadi (2005 are used. On the basis of the critical velocity approach, a new incipient motion equation for a V-shaped bottom channel and incipient deposition of sediment particles equations for rigid boundary channels having circular, rectangular, and U-shaped cross sections are obtained. New equations were compared to the other incipient motion equations. The result shows that the cross-sectional shape is an important factor for defining the minimum velocity for no-deposit particles. This study also distinguishes incipient motion of particles from incipient deposition for particles. The results may be useful for designing fixed bed channels with a limited deposition condition.

  13. Cyclic steps and superimposed antidune deposits: important elements of coarse-grained deepwater channel-levée complexes

    Science.gov (United States)

    Lang, Joerg; Brandes, Christian; Winsemann, Jutta

    2017-04-01

    The facies distribution and architecture of submarine fans can be strongly impacted by erosion and deposition by supercritical density flows. We present field examples from the Sandino Forearc Basin (southern Central America), where cyclic-step and antidune deposits represent important sedimentary facies of coarse-grained channel-levée complexes. These bedforms occur in all sub-environments of the depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. Large-scale scours (18 to 29 m deep, 18 to 25 m wide, 60 to >120 m long) with an amalgamated infill, comprising massive, normally coarse-tail graded or spaced subhorizontally stratified conglomerates and pebbly sandstones, are interpreted as deposits of the hydraulic-jump zone of cyclic steps. These cyclic steps probably formed during avulsion, when high-density flows were routed into the evolving channel. The large-scale scour fills can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump deposits. Channel fills include repetitive successions deposited by cyclic steps with superimposed antidunes. The hydraulic-jump zone of cyclic-step deposits comprises regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m wide), which are infilled by intraclast-rich conglomerates or pebbly sandstones and display normal coarse-tail grading or backsets. Laterally and vertically these deposits are associated with subhorizontally stratified, low-angle cross-stratified or sinusoidal stratified pebbly sandstones and sandstones (wavelength 0.5 to 18 m), interpreted as representing antidune deposits formed on the stoss-side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called crudely or spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation

  14. Preliminary assessment of channel stability and bed-material transport in the Tillamook Bay tributaries and Nehalem River basin, northwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; Keith, Mackenzie K.; O'Connor, Jim E.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Tillamook (drainage area 156 square kilometers [km2]), Trask (451 km2), Wilson (500 km2), Kilchis (169 km2), Miami (94 km2), and Nehalem (2,207 km2) Rivers along the northwestern Oregon coast. This study, conducted in coopera-tion with the U.S. Army Corps of Engineers and Oregon Department of State Lands to inform permitting decisions regarding instream gravel mining, revealed that: * Study areas along the six rivers can be divided into reaches based on tidal influence and topography. The fluvial (nontidal or dominated by riverine processes) reaches vary in length (2.4-9.3 kilometer [km]), gradient (0.0011-0.0075 meter of elevation change per meter of channel length [m/m]), and bed-material composition (a mixture of alluvium and intermittent bedrock outcrops to predominately alluvium). In fluvial reaches, unit bar area (square meter of bar area per meter of channel length [m2/m]) as mapped from 2009 photographs ranged from 7.1 m2/m on the Tillamook River to 27.9 m2/m on the Miami River. * In tidal reaches, all six rivers flow over alluvial deposits, but have varying gradients (0.0001-0.0013 m/m) and lengths affected by tide (1.3-24.6 km). The Miami River has the steepest and shortest tidal reach and the Nehalem River has the flattest and longest tidal reach. Bars in the tidal reaches are generally composed of sand and mud. Unit bar area was greatest in the Tidal Nehalem Reach, where extensive mud flats flank the lower channel. * Background factors such as valley and channel confinement, basin geology, channel slope, and tidal extent control the spatial variation in the accumulation and texture of bed material. Presently, the Upper Fluvial Wilson and Miami Reaches and Fluvial Nehalem Reach have the greatest abundance of gravel bars, likely owing to local bed-material sources in combination with decreasing channel gradient and

  15. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    Science.gov (United States)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in

  16. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    Science.gov (United States)

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua J.

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  17. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.; van Steen, M.S.H.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, C.

    2014-01-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic

  18. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Finch, W.I.; Davis, J.F.

    1985-01-01

    World-class sandstone-type uranium deposits are defined as epigenetic concentrations of uranium minerals occurring as uneven impregnations and minor massive replacements primarily in fluvial, lacustrine, and deltaic sandstone formations. The main purpose of this introductory paper is to define, classify, and introduce to the general geologic setting for sandstone-type uranium deposits

  19. Variability of morphological conditions of the Vistula river channel in the section Czerwińsk-Kępa Polska

    Directory of Open Access Journals (Sweden)

    Popek Zbigniew

    2015-03-01

    Full Text Available Variability of morphological conditions of the Vistula river channel in the section Czerwińsk-Kępa Polska. The paper presents an assessment of morphological changes that occurred in the Vistula river channel in selected section of about 33 km long, located in the middle of the Vistula river course between Czerwińsk and Kępa Polska (km 576–609. Based on the analysis of archival material from 1972–2009, a characteristics of river channel changes, taking primarily into account the horizontal layout (shape in the plan, was obtained. An attempt was made to estimate the trends and rate of transformation of the following parameters in the river channel: width, length, and position of the riverbanks, abundance and size of islands and fluvial deposits, as well as their percentage in the total area of the main river channel and the floodplain area between levees.

  20. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  1. Submarine flow discharge changes as a way to explain incission-overspilling and other cycles in submarine channel sequences

    Science.gov (United States)

    Milana, J. P.; Kneller, B.; Dykstra, M.

    2009-04-01

    Many studies mainly made in subsurface slopes systems using 3D seismics supported by drill data, suggest that these environments behave cyclically, with the geological time at proximal and intermediate positions in the slope, divided in times in which erosion and elaboration of deep channels prevail and thus bypass of the sediment towards lower areas, and epochs in which accumulation prevails occurring by the development of depositional leveés and eventual widening of the channel system with some over spilling possible. To understand which are the ruling mechanisms of these cycles we study in detail the depositional processes that occur at the Rosario Fm (Baja Ca, Mexico), one of the best exposed canyon and channel-levee systems. We centered this study in the gravel fractions of the system assuming that they would indicate the transport modes of the most energetic flows. After analyzing both the bed structure and facies, and the particular conglomerate fabric at certain types of large-scale bed structures, we concluded that conglomerate deposition was by simple traction mechanisms, quite comparable to what occurs at some highly concentrated and fast fluvial streams. The main difference to fluvial hyperconcentrated tractive flows lies on bedform types and scales, as bed architecture might be at one order of scale larger than fluvial systems. Most of these conglomerates can thus be explained as deposited by known bedload mechanisms, without the need to call for hypothetical mechanisms as traction-carpet freezing, sweep fallout, etc. The bedload dominated flows responsible for gravel transport produced the bed structures due to migration of three main bedforms at different balances of erosion/accumulation. These three bedforms are gravel waves, a subcritical bedform comparable to gravel dunes, capable to produce very large-scale through cross stratification at a linguoid bedform crest type reach and large-scale (2-3 m thick) sets of gravel planar cross

  2. Mapping process and age of Quaternary deposits on Santa Rosa Island, Channel Islands National Park, California

    Science.gov (United States)

    Schmidt, K. M.; Minor, S. A.; Bedford, D.

    2016-12-01

    Employing a geomorphic process-age classification scheme, we mapped the Quaternary surficial geology of Santa Rosa (SRI) within the Channel Islands National Park. This detailed (1:12,000 scale) map represents upland erosional transport processes and alluvial, fluvial, eolian, beach, marine terrace, mass wasting, and mixed depositional processes. Mapping was motivated through an agreement with the National Park Service and is intended to aid natural resource assessments, including post-grazing disturbance recovery and identification of mass wasting and tectonic hazards. We obtained numerous detailed geologic field observations, fossils for faunal identification as age control, and materials for numeric dating. This GPS-located field information provides ground truth for delineating map units and faults using GIS-based datasets- high-resolution (sub-meter) aerial imagery, LiDAR-based DEMs and derivative raster products. Mapped geologic units denote surface processes and Quaternary faults constrain deformation kinematics and rates, which inform models of landscape change. Significant findings include: 1) Flights of older Pleistocene (>120 ka) and possibly Pliocene marine terraces were identified beneath younger alluvial and eolian deposits at elevations as much as 275 m above modern sea level. Such elevated terraces suggest that SRI was a smaller, more submerged island in the late Neogene and (or) early Pleistocene prior to tectonic uplift. 2) Structural and geomorphic observations made along the potentially seismogenic SRI fault indicate a protracted slip history during the late Neogene and Quaternary involving early normal slip, later strike slip, and recent reverse slip. These changes in slip mode explain a marked contrast in island physiography across the fault. 3) Many of the steeper slopes are dramatically stripped of regolith, with exposed bedrock and deeply incised gullies, presumably due effects related to past grazing practices. 4) Surface water presence is

  3. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    Science.gov (United States)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic

  4. Stratigraphic implications of uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1980-01-01

    One of the most consistent characteristics of economic uranium deposits is their restricted stratigraphic distribution. Uraninite deposited with direct igneous affiliation contains thorium, whereas chemical precipitates in sedimentary rocks are characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments, these minerals form low-grade disseminations; but in terrestrial sediments, chiefly fluvial sandstones, the concentration of uranium varies widely, with the high-grade portions constituting ore. Pitchblende vein deposits not only exhibit the same chemical characteristics as the Colorado-type sandstone deposits, but they have a stratigraphically consistent position at unconformities covered by fluvial sandstones. If deposits in such diverse situations have critical features in common, they are likely to have had many features of their origin in common. Thus, vein deposits in Saskatchewan and Australia may have analogues in areas that contain Colorado-type sandstone deposits. In New Mexico, the presence of continental sandstones with peneconformable uranium deposits should also indicate good prospecting ground for unconformity-type vein deposits. All unconformities within the periods of continental deposition ranging from Permian to Cretaceous should have uranium potential. Some situations, such as the onlap of the Abo Formation onto Precambrian basement in the Zuni Mountains, may be directly comparable to Saskatchewan deposition. However, uranium occurrences in the upper part of the Entrada Sandstone suggest that unconformities underlain by sedimentary rocks may also be exploration targets

  5. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    Science.gov (United States)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  6. Effects of storm waves on rapid deposition of sediment in the Yangtze Estuary channel

    Directory of Open Access Journals (Sweden)

    Xu Fumin

    2008-03-01

    Full Text Available Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.

  7. Fluvial Apophenia

    Science.gov (United States)

    Coulthard, Tom; Armitage, John

    2017-04-01

    Apophenia describes the experience of seeing meaningful patterns or connections in random or meaningless data. Francis Bacon was one of the first to identify its role as a "human understanding is of its own nature prone to suppose the existence of more order and regularity in the world than it finds". Examples include pareidolia (seeing shapes in random patterns), gamblers fallacy (feeling past events alter probability), confirmation bias (bias to supporting a hypothesis rather than disproving), and he clustering illusion (an inability to recognise actual random data, instead believing there are patterns). Increasingly, researchers use records of past floods stored in sedimentary archives to make inferences about past environments, and to describe how climate and flooding may have changed. However, it is a seductive conclusion, to infer that drivers of landscape change can lead to changes in fluvial behaviour. Using past studies and computer simulations of river morphodynamics we explore how meaningful the link between drivers and fluvial changes is. Simple linear numerical models would suggest a direct relation between cause and effect, despite the potential for thresholds, phase changes, time-lags and damping. However, a comparatively small increase in model complexity (e.g. the Stream Power law) introducing non-linear behaviour and Increasing the complexity further can lead to the generation of time-dependent outputs despite constant forcing. We will use this range of findings to explore how apophenia may manifest itself in studies of fluvial systems, what this can mean and how we can try to account for it. Whilst discussed in the context of fluvial systems the concepts and inferences from this presentation are highly relevant to many other studies/disciplines.

  8. Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling.

    Science.gov (United States)

    Vijver, Martina G; Spijker, Job; Vink, Jos P M; Posthuma, Leo

    2008-12-01

    Metals in floodplain soils and sediments (deposits) can originate from lithogenic and anthropogenic sources, and their availability for uptake in biota is hypothesized to depend on both origin and local sediment conditions. In criteria-based environmental risk assessments, these issues are often neglected, implying local risks to be often over-estimated. Current problem definitions in river basin management tend to require a refined, site-specific focus, resulting in a need to address both aspects. This paper focuses on the determination of local environmental availabilities of metals in fluvial deposits by addressing both the origins of the metals and their partitioning over the solid and solution phases. The environmental availability of metals is assumed to be a key force influencing exposure levels in field soils and sediments. Anthropogenic enrichments of Cu, Zn and Pb in top layers could be distinguished from lithogenic background concentrations and described using an aluminium-proxy. Cd in top layers was attributed to anthropogenic enrichment almost fully. Anthropogenic enrichments for Cu and Zn appeared further to be also represented by cold 2M HNO3 extraction of site samples. For Pb the extractions over-estimated the enrichments. Metal partitioning was measured, and measurements were compared to predictions generated by an empirical regression model and by a mechanistic-kinetic model. The partitioning models predicted metal partitioning in floodplain deposits within about one order of magnitude, though a large inter-sample variability was found for Pb.

  9. Detrital shadows: estuarine food web connectivity depends on fluvial influence and consumer feeding mode.

    Science.gov (United States)

    Howe, Emily; Simenstad, Charles A; Ogston, Andrea

    2017-10-01

    We measured the influence of landscape setting on estuarine food web connectivity in five macrotidal Pacific Northwest estuaries across a gradient of freshwater influence. We used stable isotopes (δ 13 C, δ 15 N, δ 34 S) in combination with a Bayesian mixing model to trace primary producer contributions to suspension- and deposit-feeding bivalve consumers (Mytilus trossulus and Macoma nasuta) transplanted into three estuarine vegetation zones: emergent marsh, mudflat, and eelgrass. Eelgrass includes both Japanese eelgrass (Zostera japonica) and native eelgrass (Zostera marina). Fluvial discharge and consumer feeding mode strongly influenced the strength and spatial scale of observed food web linkages, while season played a secondary role. Mussels displayed strong cross-ecosystem connectivity in all estuaries, with decreasing marine influence in the more fluvial estuaries. Mussel diets indicated homogenization of detrital sources within the water column of each estuary. In contrast, the diets of benthic deposit-feeding clams indicated stronger compartmentalization in food web connectivity, especially in the largest river delta where clam diets were trophically disconnected from marsh sources of detritus. This suggests detritus deposition is patchy across space, and less homogenous than the suspended detritus pool. In addition to fluvial setting, other estuary-specific environmental drivers, such as marsh area or particle transport speed, influenced the degree of food web linkages across space and time, often accounting for unexpected patterns in food web connectivity. Transformations of the estuarine landscape that alter river hydrology or availability of detritus sources can thus potentially disrupt natural food web connectivity at the landscape scale, especially for sedentary organisms, which cannot track their food sources through space. © 2017 by the Ecological Society of America.

  10. Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?

    Science.gov (United States)

    Lague, D.; Davy, P.

    2008-12-01

    Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width

  11. Valley-scale morphology drives differences in fluvial sediment budgets and incision rates during contrasting flow regimes

    Science.gov (United States)

    Weber, M. D.; Pasternack, G. B.

    2017-07-01

    High-resolution topographic surveys using LiDAR and multibeam sonar can be used to characterize and quantify fluvial change. This study used repeat surveys to explore how topographic change, fluvial processes, sediment budgets, and aggradation and incision rates vary across spatial scales and across two contrasting decadal flow regimes in a regulated gravel/cobble river. A novel method for quantifying digital elevation model uncertainty was developed and applied to a topographic change detection analysis from 2006/2008 to 2014. During this period, which had four modest 3-5 year floods, most sediment was laterally redistributed through bank erosion and channel migration. Erosion primarily occurred in the floodplain (97,000 m3), terraces (80,000 m3), and lateral bars (58,000 m3); while deposition occurred in the adjacent pools (73,000 m3), fast glides (48,000 m3), and runs (36,000 m3). In contrast, significantly higher magnitude and longer duration floods from 1999 to 2006/2008 caused sediment to be displaced longitudinally, with the upstream reaches exporting sediment and the downstream reaches aggrading. The river maintained floodplain connectivity during both periods, despite different processes dominating the type of connectivity. Larger floods promoted overbank scour and avulsion, while smaller floods promoted bank erosion and lateral migration. This study explores and illustrates how the geomorphic response to contrasting flood regimes in a nonuniform river is highly dependent on which landforms are controlling hydraulics.

  12. Sediment–flow interactions at channel confluences: A flume study

    Directory of Open Access Journals (Sweden)

    Tonghuan Liu

    2015-06-01

    Full Text Available Sediment transport and bed morphology at channel confluences with different confluence angles and discharge ratios are analyzed through a series of flume experiments. Bed topography and sediment transport rate are measured and results are compared among different conditions. Sediment transport is intermittent and pulsating as the tributary flow mixes with the mainstream, and the sediment transport rate goes up with the increase in discharge ratio and confluence angle. With no sediment supplied from upstream of the flume, a central scour hole will form along the shear plane and develop toward the right bank, and the depth of the central scour hole increases as the confluence angle and discharge ratio increase. With heavy upstream sediment supplement, deposition will happen in the separation zone and upstream of the confluence area because of the tributary. And the deposition height is related to the discharge ratio and confluence angle. Results indicate the significant impact of confluence geometry, sediment, and flow factors on fluvial processes.

  13. Clay minerals in uraniferous deposit of Imouraren (Tim Mersoi basin, Niger): implications on genesis of deposit and on ore treatment process

    International Nuclear Information System (INIS)

    Billon, Sophie

    2014-01-01

    Nigerian uraniferous deposits are located in carboniferous and Jurassic formations of Tim Mersoi basin. AREVA is shareholder of 3 mine sites in this area: SOMAIR and COMINAK, both in exploitation since 1960's and IMOURAREN, 80 km further South, whose exploitation is planned for 2015. Mineralization of Imouraren deposit is included in the fluvial formation of Tchirezrine 2 (Jurassic), composed of channels and flood plains. Facies of channel in-fillings range from coarse sandstones to siltstones, while overflow facies are composed of analcimolites. Secondary mineralogy was acquired during 2 stages: 1- diagenesis, with formation of clay minerals, analcime, secondary quartz and albites, and 2- stage of fluids circulations, which induced alteration of detrital and diagenetic minerals, formation of new phases and uranium deposition. A mineralogical zoning, at the scale of deposit resulted from this alteration. The heterogeneity of Tchirezrine 2, at the level of both facies and mineralogy, is also evidenced during ore treatment, as ore reacts differently depending on its source, with sometimes problems of U recovery. Ore treatment tests showed that analcimes and chlorites were both penalizing minerals, because of 1- the sequestration of U-bearing minerals into analcimes, 2- their dissolution which trends to move away from U solubilization conditions (pH and Eh) and to form numerous sulfates, and 3- problems of percolation. A detection method of analcime-rich ores, based on infrared spectroscopy, was developed in order to optimize ore blending and so to reduce negative effects during ore treatment process. (author)

  14. Fluvial Responses to Holocene sea Level Variations Along the Macdonald River, New South Wales, Australia

    Science.gov (United States)

    Rustomji, P.; Chappell, J.; Olley, J.

    2003-12-01

    The Macdonald River drains the rugged eastern flanks of Australia's Great Dividing Range. It has a catchment area of 2000km2, restricted alluvial lowlands confined by bedrock interfluves and flows into the Hawkesbury River, a larger estuarine valley. The Macdonald valley is presently tidal for 14km from the Hawkesbury. At about 8000 year before present (BP), rising sea level invaded the Macdonald Valley for at least 35km upstream of the Hawkesbury River. Rapid aggradation occurred between 8000 and 6000 years BP and a sand bed river was established in the Macdonald Valley, its mouth prograding rapidly towards the Hawkesbury. Little is known about the character of the sand bed river during the +2 meter sea level highstand occurring between 5000 and 4000 BP. However, from 3000 to 1500 BP when sea level was consistently at +1 to +1.5m, major floodplain and levee-like structures, now virtually inactive, were established. The bed is inferred to have been elevated above its present day level and consequently intersected mean sea level (MSL) downstream of its present location. This is consistent with reported sea levels at +1 to +2m above present levels for the New South Wales coast at this time. From 1500 years BP, local sea level fell rapidly to its present level. Aggradation of the levee crests ceased and sedimentation along the valley became restricted to aggradation of an inset floodplain, within the pre-1500 BP deposits. The channel contracted and the sandy river bed incised. An equivalent and synchronous change in sedimentation style is observed along the Tuross River 400km south of the Macdonald, lending support to sea level variations being the factor driving this change. By 1850 AD, the bed dipped below MSL about 10km upstream of its inferred position prior to 1500 years BP. A series of large floods between 1949 and 1955 eroded significant volumes of sandy sediment from the Holocene deposits. The channel bed widened from between 25 and 50m width to ˜100m along

  15. Orbital radar studies of paleodrainages in the central Namib Desert

    Science.gov (United States)

    Lancaster, N.; Schaber, G.G.; Teller, J.T.

    2000-01-01

    Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area. (C) Elsevier Science Inc., 2000.Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area.

  16. A new ‘superassemblage’ model explaining proximal-to-distal and lateral facies changes in fluvial environments, based on the Proterozoic Sanjauli Formation (Lesser Himalaya, India

    Directory of Open Access Journals (Sweden)

    Ananya Mukhopadhyay

    2016-09-01

    Full Text Available Facies analysis of fluvial deposits of the Proterozoic Sanjauli Formation in the Lesser Himalaya was combined with an architectural analysis. On this basis, a model was developed that may be applied to other fluvial systems as well, whether old or recent. The new model, which might be considered as an assemblage of previous models, explains lateral variations in architecture and facies but is not in all respects consistent with the standard fluvial models. The Sanjauli fluvial model is unique in that it deals with lateral facies variations due to shifts of the base-level along with fluctuations in accommodation space owing to changes in palaeoclimate.

  17. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars - A Keck Geology Consortium Undergraduate Research Project

    Science.gov (United States)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-01-01

    Water has clearly played an important part in the geological evolution of Mars. There are many features on Mars that were almost certainly formed by fluvial processes -- for example, the channels Kasei Valles and Ares Vallis in the Chryse Planitia area of Mars are almost certainly fluvial features. On the other hand, there are many channel features that are much more difficult to interpret -- and have been variously attributed to volcanic and fluvial processes. Clearly unraveling the details of the role of water on Mars is extremely important, especially in the context of the search of extinct or extant life. In this project we built on our recent work in determining the origin of one channel on the southwest rift apron of Ascraeus Mons. This project, funded by the Keck Geology Consortium and involving 4 undergraduate geology majors took advantage of the recently available datasets to map and analyze similar features on Ascraeus Mons and some other areas of Mars. A clearer understanding of how these particular channel features formed might lead to the development of better criteria to distinguish how other Martian channel features formed. Ultimately this might provide us with a better understanding of the role of volcanic and fluvial processes in the geological evolution of Mars.

  18. The microfauna assemblages as indicators of paleoenvironmental changes in the Miocene fluvial- lacustrine cycles (NE Duero Basin, Spain

    Directory of Open Access Journals (Sweden)

    A. Herrero-Hernández

    2016-11-01

    Full Text Available The siliclastic and carbonate deposits are interbedded in the Villadiego area (Miocene, NE Duero Basin. They have been subdivided into two high-rank depositional sequences: DDS and CDS. The sedimentary analysis of these units and the study of the microfauna content, mainly ostracods, led to the identification of lacustrine-fluvial interaction systems. The sedimentary characteristics reveal the existence of fluvial systems of gravel, flood plains and lacustrine systems that were interconnected and intimately related in north-south direction. In the sedimentological analysis, thirteen types of fluvial and lacustrine lithofacies and six genetic facies associations were recognized. The top of DDS is the result of lake level risings. The CDS shows a deepening-shallowing cycle. The ostracod micropaleontological analysis of the sediments have been studied, with the aim of reconstructing the palaeoenvironmental evolution of this area. These microfauna assemblages integrated with the analysis of the sedimentary facies allowed to conclude the existence of lakes with a water-bearing level of few tens of meters. A change in the chemical conditions of the waters, which evolved from oligohaline and carbonated to mesohaline and sulphated is concluded.

  19. Sedimentology of the lower Karoo Supergroup fluvial strata in the Tuli Basin, South Africa

    Science.gov (United States)

    Bordy, Emese M.; Catuneanu, Octavian

    2002-11-01

    The Karoo Supergroup in the Tuli Basin (South Africa) consists of a sedimentary sequence (˜450-500 m) composed of four stratigraphic units, namely the informal Basal, Middle and Upper Units, and the formal Clarens Formation. The units were deposited in continental settings from approximately Late Carboniferous to Middle Jurassic. This paper focuses on the ˜60-m-thick Basal Unit, which was examined in terms of sedimentary facies and palaeo-environments based on evidence provided by primary sedimentary structures, palaeo-flow measurements, palaeontological findings, borehole data (59 core descriptions) and stratigraphic relations. Three main facies associations have been identified: (i) gravelstone (breccias and conglomerate-breccias), (ii) sandstone and (iii) fine-grained sedimentary rocks. The coarser facies are interpreted as colluvial fan deposits, possibly associated with glaciogenic diamictites. The sandstone facies association is mainly attributed to channel fills of low sinuosity, braided fluvial systems. The coal-bearing finer-grained facies are interpreted as overbank and thaw-lake deposits, and represent the lower energy correlatives of the sandy channel fills. Sediment aggradation in this fluvio-lacustrine system took place under cold climatic conditions, with floating lake ice likely associated with lacustrine environments. Palaeo-current indicators suggest that the highly weathered, quartz-vein-rich metamorphic rock source of the Basal Unit was situated east-northeast of the study area. The accumulation of the Basal Unit took place within the back-bulge depozone of the Karoo foreland system. In addition to flexural subsidence, the amount of accommodation in this tectonic setting was also possibly modified by extensional tectonism in the later stages of the basin development. Based on sedimentological and biostratigraphic evidence, the coal-bearing fine-grained facies association displays strong similarities with the Vryheid Formation of the main Karoo

  20. An optical age chronology of late Quaternary extreme fluvial events recorded in Ugandan dambo soils

    Science.gov (United States)

    Mahan, S.A.; Brown, D.J.

    2007-01-01

    There is little geochonological data on sedimentation in dambos (seasonally saturated, channel-less valley floors) found throughout Central and Southern Africa. Radiocarbon dating is problematic for dambos due to (i) oxidation of organic materials during dry seasons; and (ii) the potential for contemporary biological contamination of near-surface sediments. However, for luminescence dating the equatorial site and semi-arid climate facilitate grain bleaching, while the gentle terrain ensures shallow water columns, low turbidity, and relatively long surface exposures for transported grains prior to deposition and burial. For this study, we focused on dating sandy strata (indicative of high-energy fluvial events) at various positions and depths within a second-order dambo in central Uganda. Blue-light quartz optically stimulated luminescences (OSL) ages were compared with infrared stimulated luminescence (IRSL) and thermoluminescence (TL) ages from finer grains in the same sample. A total of 8 samples were dated, with 6 intervals obtained at ???35, 33, 16, 10.4, 8.4, and 5.9 ka. In general, luminescence ages were stratigraphically, geomorphically and ordinally consistent and most blue-light OSL ages could be correlated with well-dated climatic events registered either in Greenland ice cores or Lake Victoria sediments. Based upon OSL age correlations, we theorize that extreme fluvial dambo events occur primarily during relatively wet periods, often preceding humid-to-arid transitions. The optical ages reported in this study provide the first detailed chronology of dambo sedimentation, and we anticipate that further dambo work could provide a wealth of information on the paleohydrology of Central and Southern Africa. ?? 2006 Elsevier Ltd. All rights reserved.

  1. The Pliocene initiation and Early Pleistocene volcanic disruption of the palaeo-Gediz fluvial system, Western Turkey

    NARCIS (Netherlands)

    Maddy, D.; Demir, T.; Bridgland, D.R.; Veldkamp, A.; Stemerdink, C.; Schriek, van der T.; Schreve, D.

    2007-01-01

    In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula

  2. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  3. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar....... According to the model, the predominant tantalum growth species is TaCl3. The temperature is shown to have a pronounced effect onthe morphology and rate of deposition of the tantalum and an apparent change in deposition mechanism occurs between 850–900 °C, resulting in the deposition rate at 900 °C being...

  4. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China

    Science.gov (United States)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao

    2018-05-01

    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  5. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    Science.gov (United States)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the upper reach (200 m2) downstream, with channel expansion and gullies contributing fine sediment to the system. A lack of topsoil being supplied to the channel suggests minimal lateral connectivity between the catchment and the trunk stream in all

  6. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    Science.gov (United States)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    A sedimentological and mineralogical study of sedimentary cores allowed reconstructing the evolution of depositional environments along the Northern coast of Sfax (Tunisia). The aim of this research work is to identify the factors controlling the sedimentation from the Holocene to the Present time. Three 30-m sediment cores collected by drilling at 30 m water depth were analyzed for their color, magnetic susceptibility signal, grain size by laser diffraction, organic matter content by loss of ignition, carbonate content by calcimetry and mineralogy by X-ray diffraction on bulk powder and clay <2 μm. They broadly present the same sedimentological and mineralogical features. Microscopical observations of petrographic slides allowed identifying six main sedimentary facies. Bulk mineralogical assemblages comprised clay minerals, quartz, calcite, gypsum and K-feldspars were examined. Considerable change was observed in the carbonate content that mimicked the bioclaste abundance and diluted the detrital minerals (clay minerals, quartz and feldspars). The gypsum mainly occurred in the lower sedimentary columns (SC12 and SC9) and in the upper/middle of core SC6. The clay fraction was made of a mixture of kaolinite, illite, smectite and palygorskite with no clear variation through core depth. Both grain-size parameters and magnetic susceptibility profile showed a sharp transition in the upper 2-5 m of the sedimentological columns. Coarse, sandy to gravely sediments characterized by a low magnetic susceptibility signal were replaced by fine bioclastic-rich clayey sediments. The analysis of vertical succession of depositional facies revealed a fluvial depositional environment (coastal plain) basically marked by fluvial channels and inundation plains at the bottom of all cores. However, core-top sediments recorded a littoral marine environment with sand depositions rich in gastropods, lamellibranches and algæ. Depositional facies, sedimentological and mineralogical

  7. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    Science.gov (United States)

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Obtaining isochrones from pollution signals in a fluvial sediment record: A case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic

    International Nuclear Information System (INIS)

    Matys Grygar, T.; Elznicová, J.; Bábek, O.; Hošek, M.; Engel, Z.; Kiss, T.

    2014-01-01

    Highlights: • Integrated approach to assess pollutant distribution in floodplain. • Natural background concentration is a function and not a value. • Concept of local enrichment factors based on local background functions. • Secondary pollution from transient fluvial deposits. - Abstract: Uranium mining and processing in the watershed of the Ploučnice River in the Czech Republic during a well-defined time interval (1969–1989) allowed for a study of pollutant fates in sediments of a meandering river that is otherwise in a nearly natural state. A considerable part of the primary pollution is present in hotspots in the floodplain 10–15 km downstream from the mining district. One of the hotspots was characterised using geoinformatic, geophysical and geochemical means. The floodplain geomorphology and architecture and river channel dynamics were studied to develop an understanding of the formation of the hotspot and evaluate further movement of pollutants in the river system. Local background functions (with Rb or Ti as a predictor) and local enrichment factors (LEFs) were obtained for Ba, Ni, Pb, U and Zn concentrations in unpolluted sediments from the deeper strata of the active floodplain, an abandoned floodplain and an ancient terrace. The most recent (2013) overbank fines in the study area are still considerably enriched in Ni, U and Zn (LEF 3, 6 and 8, respectively), and thus pollution by heavy metals several km downstream of the hotspots continuously increases even though the primary source of pollution was terminated more than 20 years ago. The onset of the primary pollution (the base of the polluted strata) is hence clearly identified in the distal floodplain sediments as persistent and a potentially isochronous pollution signal in the fluvial record, whereas a secondary pollution signal overwrites the expected “primary pollution climax” and “pollution improvement” signals. That inertia of the fluvial system can also be expected in other

  9. The Gediz River fluvial archive

    NARCIS (Netherlands)

    Maddy, D.; Veldkamp, A.; Demir, T.; Gorp, van W.; Wijbrans, J.R.; Hinsbergen, van D.J.J.; Dekkers, M.J.; Schreve, D.; Schoorl, J.M.; Scaife, R.

    2017-01-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River

  10. Morphology and modern sedimentary deposits of the macrotidal Marapanim Estuary (Amazon, Brazil)

    Science.gov (United States)

    Araújo da Silva, Cléa; Souza-Filho, Pedro Walfir M.; Rodrigues, Suzan W. P.

    2009-03-01

    The northern Brazilian coast, east of the Amazon River is characterized by several macrotidal estuarine systems that harbor large mangrove areas with approximately 7600 km 2. The Marapanim Estuary is influenced by macrotidal regime with moderate waves influence. Morphologic units were investigated by using remote sensing images (i.e., Landsat-7 ETM+, RADARSAT- 1 Wide and SRTM) integrated with bathymetric data. The modern sedimentary deposits were analyzed from 67 cores collected by Vibracore and Rammkersonde systems. Analysis of morphology and surface sedimentary deposits of the Marapanim River reveal they are strongly influenced by the interaction of tidal, wave and fluvial currents. Based on these processes it was possible to recognize three distinct longitudinal facies zonation that revels the geological filling of a macrotidal estuary. The estuary mouth contain fine to medium marine sands strongly influenced by waves and tides, responsible for macrotidal sandy beaches and estuarine channel development, which are characterized by wave-ripple bedding and longitudinal cross-bedding sands. The estuary funnel is mainly influenced by tides that form wide tidal mudflats, colonized by mangroves, along the estuarine margin, with parallel laminations, lenticular bedding, root fragments and organic matter lenses. The upstream estuary contains coarse sand to gravel of fluvial origin. Massive mud with organic matter lenses, marks and roots fragments occur in the floodplain accumulates during seasonal flooding providing a slowly aggrading in the alluvial plain. This morphologic and depositional pattern show easily a tripartite zonation of a macrotidal estuary, that are in the final stage of filling.

  11. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    Science.gov (United States)

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  12. Characteristics of uranium mineralization and depositional system of host sediments, Bayantala basin, Inner Mongolia autonomous region

    International Nuclear Information System (INIS)

    Zhu Minqiang; Wu Rengui; Yu Dagan; Chen Anping; Shen Kefeng

    2003-01-01

    Based upon the research of basin fills at the Bayantala basin, the genetic facies of host sediments have been ascertained and the target beds and their range are delineated. The sand bodies of the Upper Member of Tengge'er Formation deposited in fan delta front is favorable to the formation of uranium mineralization of phreatic-interlayer oxidation. The Saihantala Fm deposited in fluvial system can be divided into Lower Member and Upper Member based on depositional microfacies and paleoclimate. The Lower Member of braided system is the most important target bed enriched in organic matter where basal-channel-type uranium mineralization occurs. Features of alteration and mineralization suggest that the early-stage and the late-stage uranium mineralization are related to phreatic oxidation and interlayer oxidation (roll-type) respectively. Meanwhile, the secondary reduction has superimposed over the earlier mineralization in the area caused by hydrocarbons raising along faults

  13. Implications of sedimentological studies for environmental pollution assessment and management: Examples from fluvial systems in North Queensland and Western Australia

    Science.gov (United States)

    Eyre, Bradley; McConchie, David

    1993-05-01

    Sedimentology is of increasing importance in environmental research, particularly environmental pollution studies, where past trends in environmental processes need to be combined with data on present conditions to predict likely future changes—the past and present as a key to the future. Two examples are used to illustrate the role of sedimentology in assessing the influence of major processes on the transport, accumulation, deposition and modification of contaminants in fluvial/estuarine systems and in developing environmental management plans. Example 1 shows that when assessing nutrient behaviour in fluvial/estuarine depositional settings, it is important to examine the partitioning of phosphorus between grain size fractions to evaluate the sedimentological processes which control the dispersion and trapping of these contaminants. Example 2 shows that in studies of anthropogenic metal inputs to modern depositional settings, lateral and stratigraphic trends in sediment texture and mineralogy should be examined, in addition to trends in metal loads and evaluation of the prevailing physical, chemical and biological processes that may influence metal mobility and dispersion. Clearly, basic sedimentological data should form part of any assessment of potentially contaminated sites and part of investigations into the dispersion and trapping of contaminants in fluvial systems. These data are also required for rational environmental management to ensure that planning decisions are compatible with natural environmental constraints.

  14. Age, distribution, and significance within a sediment budget, of in-channel depositional surfaces in the Normanby River, Queensland, Australia

    Science.gov (United States)

    Pietsch, T. J.; Brooks, A. P.; Spencer, J.; Olley, J. M.; Borombovits, D.

    2015-06-01

    We present the results of investigations into alluvial deposition in the catchment of the Normanby River, which flows into Princess Charlotte Bay (PCB) in the northern part of the Great Barrier Reef Lagoon. Our focus is on the fine fraction (bank attached bars or inset or inner floodplains, these more or less flat-lying surfaces within the macro-channel have hitherto received little attention in sediment budgeting models. We use high resolution LiDAR based mapping combined with optical dating of exposures cut into these in-channel deposits to compare their aggradation rates with those found in other depositional zones in the catchment, namely the floodplain and coastal plain. In total 59 single grain OSL dates were produced across 21 stratigraphic profiles at 14 sites distributed though the 24 226 km2 catchment. In-channel storage in these inset features is a significant component of the contemporary fine sediment budget (i.e. recent decades/last century), annually equivalent to more than 50% of the volume entering the channel network from hillslopes and subsoil sources. Therefore, at the very least, in-channel storage of fine material needs to be incorporated into sediment budgeting exercises. Furthermore, deposition within the channel has occurred in multiple locations coincident in time with accelerated sediment production following European settlement. Generally, this has occurred on a subset of the features we have examined here, namely linear bench features low in the channel. This suggests that accelerated aggradation on in-channel depositional surfaces has been in part a response to accelerated erosion within the catchment. The entire contribution of ~ 370 kilotonnes per annum of fine sediment estimated to have been produced by alluvial gully erosion over the last ~ 100 years can be accounted for by that stored as in-channel alluvium. These features therefore can play an important role in mitigating the impact on the receiving water of accelerated erosion.

  15. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  16. Coalbed methane potential of the Upper Cretaceous Mesaverde and Meeteetse formations, Wind River Reservation, Wyoming

    Science.gov (United States)

    Johnson, R.C.; Clark, A.C.; Barker, C.E.; Crysdale, B.L.; Higley, D.K.; Szmajter, R.J.; Finn, T.M.

    1993-01-01

    The environments of deposition of the uppermost part of the Cody Shale and the Mesaverde and Meeteetse Formations of Late Cretaceous age were studied on outcrop in the Shotgun Butte area in the north-central part of the Wind River Reservation. A shoreface sandstone occurs in the lower part of the Mesaverde Formation at all localities studied, and is directly overlain by a coaly interval. Repetitive coarsening-upward cycles of mudstone, siltstone, and sandstone occur in the 200 ft interval of the upper part of the Cody Shale below the shoreface sandstone. These Cody sandstones are typically hummocky cross stratified with symmetrical ripples near the top, indicating that they are largely storm surge deposits that were later reworked. Channel-form sandstones from 10 to 20 ft thick, with abundant locally derived clayey clasts, occur in a 75 ft thick interval below the shoreface at one locality. These unusual sandstones are largely confined to a narrow area of the outcrop and grade laterally into more typical storm surge deposits. They may be unusually large storm surge channels created when high-energy flow conditions were localized to a limited area of the shelf.The Mesaverde Formation above the shoreface sandstone is divided into a middle member and the Teapot Sandstone Member. The lower part of the middle member is everywhere coaly. Erosional-based sandstones in this coaly interval are highly variable in thickness and architecture. Thin, single channel sandstone bodies were deposited by moderate to high sinuosity streams, and thick, multistory channel sandstone bodies were deposited by rapidly switching fluvial channel systems that remained relatively stationary for extended periods of time. The architecture of the fluvial channel sandstones in the overlying noncoaly interval appears to be highly variable as well, with complex multistory sandstones occurring at different stratigraphic levels at different localities. This distribution may be explained by long term

  17. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    Science.gov (United States)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  18. Reconstructing Early Pleistocene (1.3 Ma) terrestrial environmental change in western Anatolia: Did it drive fluvial terrace formation?

    NARCIS (Netherlands)

    Veldkamp, A.; Candy, I.; Jongmans, A.G.; Maddy, D.; Demir, T.; Schoorl, J.M.; Schreve, D.; Stemerdink, C.; Schriek, van der T.

    2015-01-01

    A terrestrial environmental reconstruction of an Early Pleistocene landscape from western Anatolia is presented. The basis of this reconstruction is a sedimentary stack comprising fluvial and colluvial slope deposits. Contained within this stack is a sequence comprising two massive laminar calcretes

  19. Secular bathymetric variations of the North Channel in the Changjiang (Yangtze) Estuary, China, 1880-2013: Causes and effects

    Science.gov (United States)

    Mei, Xuefei; Dai, Zhijun; Wei, Wen; Li, Weihua; Wang, Jie; Sheng, Hao

    2018-02-01

    As the interface between the fluvial upland system and the open coast, global estuaries are facing serious challenges owing to various anthropogenic activities, especially to the Changjiang Estuary. Since the establishment of the Three Gorges Dam (TGD), currently the world's largest hydraulic structure, and certain other local hydraulic engineering structures, the Changjiang Estuary has experienced severe bathymetric variations. It is urgent to analyze the estuarine morphological response to the basin-wide disturbance to enable a better management of estuarine environments. North Channel (NC), the largest anabranched estuary in the Changjiang Estuary, is the focus of this study. Based on the analysis of bathymetric data between 1880 and 2013 and related hydrological data, we developed the first study on the centennial bathymetric variations of the NC. It is found that the bathymetric changes of NC include two main modes, with the first mode representing 64% of the NC variability, which indicates observable deposition in the mouth bar and its outer side area (lower reach); the second mode representing 11% of the NC variability, which further demonstrates channel deepening along the inner side of the mouth bar (upper reach) during 1970-2013. Further, recent erosion observed along the inner side of the mouth bar is caused by riverine sediment decrease, especially in relation to TGD induced sediment trapping since 2003, while the deposition along the lower reach since 2003 can be explained by the landward sediment transport because of flood-tide force strengthen under the joint action of TGD induced seasonal flood discharge decrease and land reclamation induced lower reach narrowing. Generally, the upper and lower NC reach are respectively dominated by fluvial and tidal discharge, however, episodic extreme floods can completely alter the channel morphology by smoothing the entire channel. The results presented herein for the NC enrich our understanding of bathymetric

  20. Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liangmiao; Yang, Kexian [Univ. of Tulsa, OK (United States)

    1997-08-01

    Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

  1. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    Science.gov (United States)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  2. Quantifying bleaching for zero-age fluvial sediment: A Bayesian approach

    International Nuclear Information System (INIS)

    Cunningham, Alastair C.; Evans, Mary; Knight, Jasper

    2015-01-01

    Luminescence dating of sediment requires the sand grains to have been exposed to sunlight prior to their most recent burial. Under fluvial transport, the amount of sunlight exposure may not always be sufficient to reset the luminescence signal, a phenomenon known as ‘partial bleaching'. The extent of bleaching is dependent on a combination of geomorphic, sedimentological and fluvial processes. If bleaching can be quantified, and the relationship with these processes understood, it could potentially be used as a new environmental proxy for changes in the dynamics of river systems. Here, we use a recently developed statistical model to evaluate the extent of bleaching, by inferring the proportion of well-bleached grains in the small-aliquot population. We sampled low-flow and flood deposits at a single site on the River Sabie, South Africa. We show that the low-flow sediment is almost perfectly bleached (>80% of grains well bleached), while sediment at flood elevations is partially bleached (20–70 % of grains well bleached). The degree of bleaching may show a relationship with flood magnitude as defined by elevation above normal river level, and we speculate on the causes of variability in bleaching between flood samples. - Highlights: • We sampled modern river sediment from low-flow and flood elevations. • The unbleached OSL dose was measured. • Bayesian methods can estimate the proportion of well-bleached grains. • Low-flow sediments are well bleached; flood deposits are poorly bleached.

  3. Evolution of Early Pleistocene fluvial systems in central Poland prior to the first ice sheet advance – a case study from the Bełchatów lignite mine

    Directory of Open Access Journals (Sweden)

    Goździk Jan

    2017-06-01

    Full Text Available Deposits formed between the Neogene/Pleistocene transition and into the Early Pleistocene have been studied, mainly on the basis of drillings and at rare, small outcrops in the lowland part of Polish territory. At the Bełchatów lignite mine (Kleszczów Graben, central Poland, one of the largest opencast pits in Europe, strata of this age have long been exposed in extensive outcrops. The present paper is based on our field studies and laboratory analyses, as well as on research data presented by other authors. For that reason, it can be seen as an overview of current knowledge of lowermost Pleistocene deposits at Bełchatów, where exploitation of the Quaternary overburden has just been completed. The results of cartographic work, sedimentological, mineralogical and palynological analyses as well as assessment of sand grain morphology have been considered. All of these studies have allowed the distinction of three Lower Pleistocene series, i.e., the Łękińsko, Faustynów and Krzaki series. These were laid down in fluvial environments between the end of the Pliocene up to the advance of the first Scandinavian ice sheet on central Poland. The following environmental features have been interpreted: phases of river incision and aggradation, changes of river channel patterns, source sediments for alluvia, rates of aeolian supply to rivers and roles of fluvial systems in morphological and geological development of the area. The two older series studied, i.e., Łękińsko and Faustynów, share common characteristics. They were formed by sinuous rivers in boreal forest and open forest environments. The Neogene substratum was the source of the alluvium. The younger series (Krzaki formed mainly in a braided river setting, under conditions of progressive climatic cooling. Over time, a gradual increase of aeolian supply to the fluvial system can be noted; initially, silt and sand were laid down, followed by sand only during cold desert conditions. These

  4. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    Science.gov (United States)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  5. Type of delta cycle in the Upper Westphalian of the Central coalfield (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero, J R; Barba Regidor, P

    1985-01-01

    The deltas were one of the main depositional systems in Westphalian sedimentation of the Central Asturian Coalfield. A prograding shallow fluvial dominated deltaic cycle is analyzed in this paper. The prograding coarsening-upward sequence consists mainly of sandstone lithofacies deposited by small-scale distributary fluvial channels and bars. Several widely distributed bituminous coal seams in the delta-plain lithofacies reflect inactive stages without sedimentation before its definitive abandonment.

  6. Transient bedrock channel evolution across a precipitation gradient: A case study from Kohala, Hawaii.

    Science.gov (United States)

    Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.

    2011-12-01

    This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is

  7. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia

    Science.gov (United States)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella

    2018-06-01

    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  8. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2015-06-01

    Full Text Available We present results of research into fluvial to aeolian successions at four sites in the foreland of the Last Glacial Maximum, i.e., the central part of the “European Sand Belt”. These sites include dune fields on higher-lying river terraces and alluvial fans. Sediments were subjected to detailed lithofacies analyses and sampling for morphoscopic assessment of quartz grains. Based on these results, three units were identified in the sedimentary succession: fluvial, fluvio-aeolian and aeolian. Material with traces of aeolian origin predominate in these sediments and this enabled conclusions on the activity of aeolian processes during the Pleniglacial and Late Glacial, and the source of sediment supply to be drawn. Aeolian processes played a major role in the deposition of the lower portions of the fluvial and fluvio-aeolian units. Aeolian material in the fluvial unit stems from aeolian accumulation of fluvial sediments within the valley as well as particles transported by wind from beyond the valley. The fluvio-aeolian unit is composed mainly of fluvial sediments that were subject to multiple redeposition, and long-term, intensive processing in an aeolian environment. In spite of the asynchronous onset of deposition of the fluvio-aeolian unit, it is characterised by the greatest homogeneity of structural and textural characteristics. Although the aeolian unit was laid down simultaneously, it is typified by the widest range of variation in quartz morphoscopic traits. It reflects local factors, mainly the origin of the source material, rather than climate. The duration of dune-formation processes was too short to be reflected in the morphoscopy of quartz grains.

  9. Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming

    Science.gov (United States)

    Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

    1987-01-01

    Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

  10. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body

    Science.gov (United States)

    Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke

    2016-01-01

    Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.

  11. Coupled Landscape and Channel Dynamics in the Ganges-Brahmaputra Tidal Deltaplain, Southwest Bangladesh

    Science.gov (United States)

    Bomer, J.; Wilson, C.; Hale, R. P.

    2017-12-01

    In the Ganges-Brahmaputra Delta (GBD) and other tide-dominated systems, periodic flooding of the land surface during the tidal cycle promotes sediment accretion and surface elevation gain over time. However, over the past several decades, anthropogenic modification of the GBD tidal deltaplain through embankment construction has precluded sediment delivery to catchment areas, leading to widespread channel siltation and subsidence in poldered landscapes. Amongst the current discussion on GBD sustainability, the relationship between tidal inundation period and resultant sedimentation in natural and embanked settings remains unclear. Moreover, an evaluation of how riparian sedimentology and stratigraphic architecture changes across the GBD tidal-fluvial spectrum is notably absent, despite its critical importance in assessing geomorphic change in human-impacted transitional environments. To provide local-scale, longitudinal trends of coupled landscape-channel dynamics, an array of surface elevation tables, groundwater piezometers, and sediment traps deployed in natural and embanked settings have been monitored seasonally over a time span of 4 years. This knowledge base will be extended across the GBD tidal-fluvial transition by collecting sediment cores from carefully selected point bars along the Gorai River. Sediments will be analyzed for lithologic, biostratigraphic, and geochemical properties to provide an integrated framework for discerning depositional zones and associated facies assemblages across this complex transitional environment. Preliminary comparisons of accretion and hydroperiod data suggest that inundation duration strongly governs mass accumulation on the intertidal platform, though other factors such as mass extraction from sediment source and vegetation density may play secondary roles.

  12. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians

    Science.gov (United States)

    Łapcik, Piotr

    2018-02-01

    Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.

  13. Tamarix, hydrology and fluvial geomorphology: Chapter 7

    Science.gov (United States)

    Auerbach, Daniel A.; Merritt, David M.; Shafroth, Patrick B.; Sher, Anna A; Quigley, Martin F.

    2013-01-01

    This chapter explores the impact of hydrology and fluvial geomorphology on the distribution and abundance of Tamarix as well as the reciprocal effects of Tamarix on hydrologic and geomorphic conditions. It examines whether flow-regime alteration favors Tamarix establishment over native species, and how Tamarix stands modify processes involved in the narrowing of river channels and the formation of floodplains. It begins with an overview of the basic geomorphic and hydrologic character of rivers in the western United States before analyzing how this setting has contributed to the regional success of Tamarix. It then considers the influence of Tamarix on the hydrogeomorphic form and function of rivers and concludes by discussing how a changing climate, vegetation management, and continued water-resource development affect the future role of Tamarix in these ecosystems.

  14. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    Science.gov (United States)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised

  15. Depositional environments of the Hart coal zone (Paleocene), Willow Bunch Coalfield, southern Saskatchewan, Canada from petrographic, palynological, paleobotanical, mineral and trace element studies

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.; Beaton, A.P.; McDougall, W.J.; Nambudiri, E.M.V.; Vigrass, L.W. (University of Regina, SK (Canada). Energy Research Unit)

    1991-12-01

    Coal petrology, palynology, paleobotany and mineralogy of the Hart coal indicate deposition under wet, warm-temperate to subtropical climatic conditions in low-lying backswamps with fluvial channels and locally ponded areas. The coal is dominated by mixed xylitic/attrital lithotypes and by huminite macerals with secondary inertinite macerals and minor liptinite macerals. Good correlation exists between lithotypes and maceral composition. Local and vertical variations in proportions of huminites and inertinites reflect frequent fluctuations in water levels, periodic flooding, desiccation and burning of the peat. Swamps were dominated by {ital Glyptostrobus-Taxodium} forest with {ital Betula-Myrica-Alnus} communities and, locally {ital Laevigatosporites}, which are the dominant contributors to the xylite-rich lithotypes. Attrital lithotypes with abundant {ital Pandanus}, {ital Typha} and {ital Azolla} are consistent with wetter areas of a fluvial environment, including ponds and channels. Trace elements Cr, Cu, Mo, Ni, Si, Ti, U, Se, V, W, K and Th, typically associated with syngenetic minerals kaolinite, calcite and quartz, may have a volcanic source. High concentrations of Na, Ba and Ca found in organic complexes are of secondary origin and probably originate in deep source brines rather than marine surface waters. 55 refs., 11 figs., 5 tabs.

  16. The sedimentological changes caused by human impact at the artificial channel of Medjerda-River (Coastal zone of Medjerda, Tunisia)

    Science.gov (United States)

    Benmoussa, Thouraya; Amrouni, Oula; Dezileau, Laurent; Mahé, Gil; Abdeljaouad, Saâdi

    2018-04-01

    Recent sedimentary and morphological changes at the new mouth of Medjerda-River (Gulf of Tunis) are investigated using a multiproxy approach of sediment cores complited by 210Pbex and 137Cs method dating. The subject of the study is to focus on surveying the sedimentary evolution of Medjerda-Raoued Delta caused by the human intervention in the management of the main tributaries of the Medjerda-River (artificial channel of Henchir Tobias). Sediment cores (CEM-1 and CEM-3) were subjected to both multiproxy approaches (Grain size, geochemical analysis and dating radiometric 210Pbex and 137Cs). The sedimentological analysis of the new deltaic deposits shows a progradation sequence with the silt and clay deposits on the historic sandy substratum. The mean grain size evolution on the old beach profile shows a decreasing trend from backshore (CEM-3) to nearshore (CEM-1). The geochemical results show varying concentrations of chemical elements such as Fe, K, Rb, Nb, Cr, Ti, Ba, Ca, Sr, Zr, V, and potentially toxic metal trace elements such as Pb, Zn and the As. The Principal component Analysis (PCA) applied in the geochemical elements evolution confirms the marine origin of the sand deposits in the basic layers of the two cores. The chronological method (210Pbex and 137Cs) affirms that the first fluvial deposits were set up only after 1950. The sedimentological and geochemical result confirm the actual unless of coarser fluvial supplies under the human activities leading the negative coastal sediment balance and the shoreline retreat as well.

  17. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    Science.gov (United States)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  18. Phytolith analysis in fluvial quaternary sediment (San Salvador and Palmar formation) Uruguay river and Argentina eastern

    International Nuclear Information System (INIS)

    Patterer, N.; Passeggi, E.; Zucol, A.; Brea, M.; Krohling, D.

    2012-01-01

    This work is about two microfossils fluvial units deposited by the Uruguay river during the Quaternary. These are San Salvador and Palmar formation (Plio-Pleistocene - Upper Pleistocene).The Palmar formation is a band of 4-15 km along the right bank of the Uruguay river outcropping from the eastern provinces of Corrientes and Entre Rios, to Concepcion del Uruguay

  19. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    Science.gov (United States)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava

  20. Toward the Validation of Depth-Averaged Three Dimensional, Rans Steady-State Simulations of Fluvial Flows at Natural Scale

    Science.gov (United States)

    Mateo Villanueva, P. A.; Hradisky, M.

    2010-12-01

    Simulations of fluvial flows are strongly influenced by geometric complexity and overall uncertainty on measured flow variables, including those assumed to be well known boundary conditions. Often, 2D steady-state models are used for computational simulations of flows at the scale of natural rivers. Such models have been successfully incorporated in iRIC (formerly MD_SWMS), one of the widely used quasi-3D CFD solvers to perform studies of environmental flows. iRIC aids in estimating such quantities as surface roughness and shear stress, which, in turn, can be used to estimate sediment transport. However, the computational results are inherently limited in accuracy because of restricting the computations to 2D, or quasi-3D, space, which can affect the values of these predictions. In the present work we perform computer-based simulations of fluvial flows using OpenFOAM, a free, open source fully 3D CFD software package, and compare our results to predictions obtained from iRIC. First, we study the suitability of OpenFOAM as the main CFD solver to analyze fluvial flows and validate our results for two well documented rectangular channel configurations: the first case consists of a large aspect-ratio channel (ratio of depth over width 0.017, ratio of depth over length 0.0019) with a rectangular obstacle mounted at the bottom wall; the second case involves a large aspect-ratio channel (ratio of depth over width 0.1, ratio of depth over length 0.0025) with cubic obstacles mounted at the lower wall (one obstacle) and upper wall (two obstacles). Secondly, we apply our model to simulation or river at natural scale and compare our results to the output obtained from iRIC to quantify the differences in velocity profiles and other flow parameters when comparable solution techniques are used. Steady-state, RANS k-epsilon models are employed for all simulations.

  1. Tipping points in Anthropocene fluvial dynamics

    Science.gov (United States)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert; Berger, Jean-François; Houbrechts, Geoffrey

    2016-04-01

    Many rivers have undergone dramatic changes over the last millennia due to anthropogenic on- and offsite impacts. These changes have important implications for the geomorphic and hydrological functioning of the river. In this study we compare the influence of large-scaled off-site anthropogenic impact on three European river systems. We do this using traditional geomorphological methods, combined with palynological and archaeological data; for each catchment a Holocene sediment budget was constructed. The Dijle catchment is located in the central Belgian loess belt, and has undergone intense agriculture for at least the last 2000 year. Pre-Anthropocene floodplain are big marshes lacking a well-established river channel. Anthropogenic deforestation in the headwaters resulted in a sediment pulse from the Bronze Age on. In the main floodplain sediments gradually covered the peat layer, starting near a newly formed river channel and expanding over time towards the floodplain edges. In contrast, this transition is abrupt in the smaller tributary floodplains. Comparison with palynological data shows that this abrupt transition occurs when human impact reaches a certain threshold. The Valdaine region is located in the French Pre-Alps. Floodplain deposition increased over time since the Neolithic time period due to human induced and fire related soil erosion. This general aggradation trend is however interrupted by three major river incision phases which are caused by human land abandonment and dry periods. A second major change in floodplain geomorphology occurs during the High Roman Period and the last 800 year: the fine-grained meandering river changes to a gravel loaded braided river. During this period the upstream mountain reaches became a major sediment source due to deforestation, possibly combined with climate change. During the last century reforestation and land abandonment has led to a new incision phases, and floodplain are now a major source of gravel while

  2. Long-term sand supply to Coachella Valley Fringe-toed Lizard Habitat in the Northern Coachella Valley, California

    Science.gov (United States)

    Griffiths, Peter G.; Webb, Robert H.; Lancaster, Nicholas; Kaehler, Charles A.; Lundstrom, Scott C.

    2002-01-01

    The Coachella Valley fringe-toed lizard (Uma inornata) is a federally listed threatened species that inhabits active sand dunes in the vicinity of Palm Springs, California. The Whitewater Floodplain and Willow Hole Reserves provide some of the primary remaining habitat for this species. The sediment-delivery system that creates these active sand dunes consists of fluvial depositional areas fed episodically by ephemeral streams. Finer fluvial sediments (typically sand size and finer) are mobilized in a largely unidirectional wind field associated with strong westerly winds through San Gorgonio Pass. The fluvial depositional areas are primarily associated with floodplains of the Whitewater?San Gorgonio Rivers and Mission Creek?Morongo Wash; other small drainages also contribute fluvial sediment to the eolian system. The eolian dunes are transitory as a result of unidirectional sand movement from the depositional areas, which are recharged with fine-grained sediment only during episodic floods that typically occur during El Ni?o years. Eolian sand moves primarily from west to east through the study area; the period of maximum eolian activity is April through June. Wind speed varies diurnally, with maximum velocities typically occurring during the afternoon. Development of alluvial fans, alteration of stream channels by channelization, in-stream gravel mining, and construction of infiltration galleries were thought to reduce the amount of fluvial sediment reaching the depositional areas upwind of Uma habitat. Also, the presence of roadways, railroads, and housing developments was thought to disrupt or redirect eolian sand movement. Most of the sediment yield to the fluvial system is generated in higher elevation areas with little or no development, and sediment yield is affected primarily by climatic fluctuations and rural land use, particularly livestock grazing and wildfire. Channelization benefits sediment delivery to the depositional plains upwind of the reserves

  3. Distinctive fingerprints of erosional regimes in terrestrial channel networks

    Science.gov (United States)

    Grau Galofre, A.; Jellinek, M.

    2017-12-01

    Satellite imagery and digital elevation maps capture the large scale morphology of channel networks attributed to long term erosional processes, such as fluvial, glacial, groundwater sapping and subglacial erosion. Characteristic morphologies associated with each of these styles of erosion have been studied in detail, but there exists a knowledge gap related to their parameterization and quantification. This knowledge gap prevents a rigorous analysis of the dominant processes that shaped a particular landscape, and a comparison across styles of erosion. To address this gap, we use previous morphological descriptions of glaciers, rivers, sapping valleys and tunnel valleys to identify and measure quantitative metrics diagnostic of these distinctive styles of erosion. From digital elevation models, we identify four geometric metrics: The minimum channel width, channel aspect ratio (longest length to channel width at the outlet), presence of undulating longitudinal profiles, and tributary junction angle. We also parameterize channel network complexity in terms of its stream order and fractal dimension. We then perform a statistical classification of the channel networks using a Principal Component Analysis on measurements of these six metrics on a dataset of 70 channelized systems. We show that rivers, glaciers, groundwater seepage and subglacial meltwater erode the landscape in rigorously distinguishable ways. Our methodology can more generally be applied to identify the contributions of different processes involved in carving a channel network. In particular, we are able to identify transitions from fluvial to glaciated landscapes or vice-versa.

  4. Introduction to the special issue on discontinuity of fluvial systems

    Science.gov (United States)

    Burchsted, Denise; Daniels, Melinda; Wohl, Ellen E.

    2014-01-01

    Fluvial systems include natural and human-created barriers that modify local base level; as such, these discontinuities alter the longitudinal flux of water and sediment by storing, releasing, or changing the flow path of those materials. Even in the absence of distinct barriers, fluvial systems are typically discontinuous and patchy. The size of fluvial discontinuities ranges across scales from 100 m, such as riffles, to 104 m, such as lava dams or major landslides. The frequency of occurrence appears to be inversely related to size, with creation and failure of the small features, such as beaver dams, occurring on a time scale of 100 to 101 years and a frequency of occurrence at scales as low as 101 m. In contrast, larger scale discontinuities, such as lava dams, can last for time scales up to 105 years and have a frequency of occurrence of approximately 104 m. The heterogeneity generated by features is an essential part of river networks and should be considered as part of river management. Therefore, we suggest that "natural" dams are a useful analog for human dams when evaluating options for river restoration. This collection of papers on the studies of natural dams includes bedrock barriers, log jams and beaver dams. The collection also addresses the discontinuity generated by a floodplain — in the absence of an obvious barrier in the channel — and tools for evaluation of riverbed heterogeneity. It is completed with a study of impact of human dams on floodplain sedimentation. These papers will help geomorphologists and river managers understand the factors that control river heterogeneity across scales and around the world.

  5. 78 FR 10449 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Astragalus...

    Science.gov (United States)

    2013-02-13

    ... Creek and Morongo Wash (Unit 3), and unnamed channels through the alluvial valley floor deposits... ephemeral washes that carry substrates from alluvial deposits to alluvial fan areas where they can be... alluvial sand deposits that support the fluvial and aeolian sand transport processes crucial to the...

  6. Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland

    Science.gov (United States)

    Castillo, Miguel; Bishop, Paul; Jansen, John D.

    2013-01-01

    A sudden drop in river base-level can trigger a knickpoint that propagates throughout the fluvial network causing a transient state in the landscape. Knickpoint retreat has been confirmed in large fluvial settings (drainage areas > 100 km2) and field data suggest that the same applies to the case of small bedrock river catchments (drainage areas UK), where rivers incise into dipping quartzite. The mapping of raised beach deposits and strath terraces, and the analysis of stream long profiles, were used to identify knickpoints that had been triggered by base-level fall. Our results indicate that the distance of knickpoint retreat scales to the drainage area in a power law function irrespective of structural setting. On the other hand, local channel slope and basin size influence the vertical distribution of knickpoints. As well, at low drainage areas (~ 4 km2) rivers are unable to absorb the full amount of base-level fall and channel reach morphology downstream of the knickpoint tends towards convexity. The results obtained here confirm that knickpoint retreat is mostly controlled by stream discharge, as has been observed for other transient landscapes. Local controls, reflecting basin size and channel slope, have an effect on the vertical distribution of knickpoints; such controls are also related to the ability of rivers to absorb the base-level fall.

  7. Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input

    Science.gov (United States)

    Tian, Qing; Wang, Qing; Liu, Yalong

    2017-06-01

    This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal flats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, largescale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.

  8. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  9. Glacial lake outburst floods and fluvial erosion in the Himalaya - insights from the 2016 Bhote Koshi GLOF

    Science.gov (United States)

    Cook, K. L.; Gimbert, F.; Andermann, C.; Hovius, N.; Adhikari, B. R.

    2017-12-01

    The Himalaya is a region of rapid erosion where fluvial processes are assumed to be driven by precipitation delivered during the annual Indian Summer Monsoon. However, the rivers in this region are also subject to catastrophic floods caused by the failure of glacial lake and landslide dams. Because these floods are rarely observed, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan valleys is largely unknown. In July 2016, the Bhotekoshi/Sunkoshi River in central Nepal was hit by a glacial lake outburst flood (GLOF) that caused substantial changes to the channel bed, banks, and adjacent hillslopes, causing at least 26 landslides and an average of 11 m of channel widening. The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. Our data indicate that impacts of the GLOF far exceed those driven by the annual summer monsoon, likely due to extremely coarse sediment that armors much of the channel. The relatively frequent occurrence of GLOFs and the extremely high discharges relative to monsoon floods suggest that GLOFs may

  10. The eolic fluvial succession and paleoclimatic evolution of Rio Conlara, San Luis, Argentina

    International Nuclear Information System (INIS)

    Chiesa, J.

    2004-01-01

    The outcroping deposits in the ravines of the Conlara River are dominated by silt with subordinated and variable percentages of sand and clays. In the section that is described, at the south of the town of Santa Rosa del Conlara, these materials have been deposited responding generally climatic changing conditions. The base of the profile, assigned to the late Pleistocene, contains extint fauna of the Lujanense and a datation of 8950 B.P., and it is represented by fluvial sandy gravels. The overlaying succession, assigned to the Holocene, shows an intercalation of horizons generated by eolic-loessic deposits and deposits with development of pedogenetic processes. The whole succession shows characteristic of corresponding to a vegetated plain, next to the river flood plain. The discriminated horizons are the result of a detailed sampling and the representation of range parameters of the same ones, in function of the depth, this last one oscillates between 6 and 8 meters. The quaternary deposits of the region, support indistinctly as on the crystalline basement of San Luis range, as on the calcretes assigned to the Neogene [es

  11. Bar deposition in glacial outburst floods: scaling, post-flood reworking, and implications for the geomorphological and sedimentary record

    Science.gov (United States)

    Marren, Philip

    2016-04-01

    The appearance of a flood deposit in the geomorphological and sedimentary record is a product of both the processes operating during the flood, and those that occur afterwards and which overprint the deposit with a record of 'normal' processes. This paper describes the creation and modification of jökulhlaup barforms in the Skeiðará river, relating the changes to post-flood fluvial processes and glacier retreat. Large compound bars formed from the amalgamation of unit bars up to 1.5 km long. Nearly half of the total discharge of the November 1996 jökulhlaup on Skeiðarársandur was discharged through the Skeiðará river. The flood deposits have been extensively reworked since, up until 2009 when the channel was abandoned, effectively leaving the Skeiðará as a terrace, when retreat of Skeiðarárjökull directed meltwater to the adjacent Gígjukvísl river system. Large compound bars formed in the flood channel, with their location governed by the macro-scale topography of the flood channel, and their size by upstream channel width in accordance with bar-scaling theory. Jökulhlaup bars are therefore scale invariant and formed in a similar fashion to braid bars in non-jökulhlaup braided rivers. Post-flood fragmentation and reworking of the bars consistently increased the length-width ratio of preserved bar fragments from approximately two and one half to over five. When combined with earlier work on the Skeiðará jökulhlaup bars, and studies of jökulhlaup deposits elsewhere on Skeiðarársandur these observations increase our understanding of the preservation potential and final form of jökulhlaup deposits and provide the basis for an improved model for the recognition of jökulhlaup deposits in the geomorphological and sedimentary record.

  12. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  13. The volcaniclastic sequence of Aranzazu: Record of the impact of volcanism on Neogene fluvial system in the middle part of the Central Cordillera, Colombia

    International Nuclear Information System (INIS)

    Borrero Pena, Carlos Alberto; Rosero Cespedes, Juan Sebastian; Valencia M, Julian David; Pardo Trujillo, Andres

    2008-01-01

    The volcaniclastic sequence of Aranzazu (VSA, late Pliocene - early Pleistocene?) was sourced from the northernmost sector of the Machin - Cerro Bravo volcanic complex. The volcaniclastic accumulations filled the pre-existing fault-bend depressions in the surroundings of Aranzazu town (Caldas department, Colombia). A new classification of volcaniclastic deposits is proposed, in which the lahars are defined as volcaniclastic resedimented deposits, and differentiated from the primary volcaniclastic and epiclastic deposits. The updating the sedimentology and rheology of the deposits related with the laharic events is aimed. The VSA stratigraphy is based on the lithofacies identification and the definition of the architectural elements for syn- and inter-eruptive periods. The VSA lower member corresponds to the successive aggradation of syneruptive lahars (SV and SB elements) resulted from re-sedimentation of pumice-rich pyroclastic deposits and transported as debris and hyperconcentrated stream/flood flows. The VSA middle and upper members defined by coal contents were formed during the dominion of inter-eruptive (FF element) over the syn-eruptive (SV and SB elements) periods. They were formed during the reestablishment of the fluvial condition after the syn-eruptive laharic activity. Once the fluvial deposition was strengthened, the necessary conditions for the peat formation were propitious and the coal-bearing bed sets were developed.

  14. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  15. Controls on fluvial metamorphosis during global warming at the Paleocene-Eocene boundary (56 Ma) in Spain: extreme droughts, extreme floods or both?

    Science.gov (United States)

    Castelltort, Sebastien; Chen, Chen; Guerit, Laure; Foreman, Brady; Paola, Chris; Adatte, Thierry

    2017-04-01

    How does global warming change the frequency and intensity of extreme weather events? The response to this question is partly preserved in the geological record. 56 Ma ago, global temperatures increased during the Paleocene-Eocene Thermal Maximum (PETM), leading to a major biotic turnover, but how this event affected the nature of extreme events remains unknown. On several continents, fluvial systems with sinuous channels within fine-grained floodplains suddenly transformed at the P-E boundary into apparently coarser-grained braid plains with frequent lateral migrations, washing their muddy floodplains to the seas. This landscape transformation has been related to aridification and intensification of precipitation allowing transport of coarser material as a result of P-E global warming, with important implications for predicting the consequences of current global change. Here we test this hypothesis by quantifying the magnitude of grain size change and flow depth at a representative P-E locality in Northern Spain. We find that the size of pebbles in transport and flow depth remained similar to, or even smaller than, pre-PETM conditions. This suggests that, if more seasonal and extreme precipitation occurred, they are not necessarily borne out in the predicted deeper flow depths and coarser grain sizes, but rather trigger a shift to multiple active channels. However, an alternative or complementary explanation may rest in pollen data found in coeval marine records and which document a dramatic vegetation shift from permanent conifer forests prior to the crisis into periodic vegetation in brief periods of rain during the hyperthermal episode. Such change induced by long periods of intense droughts, could have enhanced erodibility of channel banks by decreasing root-controlled cohesion of fine-grained floodplains and interfluves, promoting their lateral mobility and the observed fluvial metamorphosis. Thus, although water is regarded as the main agent sculpting

  16. Surficial origin of North American pitchblende and related uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1977-01-01

    The ubiquitous association of pitchblende uranium deposits with terrestrial sediments is believed to be the natural result of formation of the orebodies by surficial processes operating under continental conditions. The major uranium deposits of North America illustrate this. The quartz-pebble conglomerate uranium deposits of Elliot Lake, Ontario, have thorium-rich uranium minerals that indicate a detrital origin. With the development of an oxygenic atmosphere before 1,700 m.y. ago, uranium was transported in solution in meteoric surface and near-surface ground water, and produced pitchblende veins in fractures in the basement and in lava flows in terrestrial environments. This accounts for the closee association of fluvial sediments with the pitchblende deposits at Beaverlodge, Rabbit Lake, Baker Lake, and Great Bear Lake, Canada. The development of land plants about 300 m.y. ago produced favorable environments within the terrestrial sandstones themselves, and resulted in the tabular uranium orebodies of the Colorado Plateau. The close relation of tabular orebodies to sedimentation is apparent when compared to recent fluvial sedimentation. In Wyoming, the stratigraphic restriction of the boundary-roll deposits to a few zones in Eocene rocks results from their being remobilized tabular deposits

  17. Regional exploration for channel and playa uranium deposits in Western Australia using groundwater

    International Nuclear Information System (INIS)

    Noble, R.R.P.; Gray, D.J.; Reid, N.

    2011-01-01

    Shallow calcrete aquifers in the central north of the Yilgarn Craton in Western Australia are the host to numerous secondary carnotite U deposits. Sampling and analysis of approximately 1400 shallow aquifer groundwaters were conducted to test if U mineralisation of this type may be found using a >5 km sample spacing. Results show this can be achieved. All the economic deposits and most of the minor deposits and occurrences are associated with groundwater that has carnotite (KUO 2 VO 4 ) approaching or exceeding saturated conditions. Soluble U concentrations alone identified the largest deposit (Yeelirrie) and several smaller deposits, but this parameter was not as successful as the mineral saturation indices. Palaeodrainage distribution and thickness of cover combined with surface drainage and catchment boundaries provided background information of U primary sources and for areas with the highest exploration potential for channel and playa U deposits. Granites in the SE of the study area are less prospective with regard to secondary U deposits. Groundwater geochemistry in conjunction with palaeodrainage mapping may greatly improve exploration through cover where radiometric geophysics is not effective. The study of regional, shallow groundwater for U shows multiple benefits for mineral exploration, the economy and potable water quality.

  18. Vision for a worldwide fluvial-sediment information network

    Science.gov (United States)

    Gray, J.R.; Osterkamp, W.R.

    2007-01-01

    The nations of the world suffer both from the deleterious effects of some natural and human-altered fluxes of fluvial sediment and a lack of consistent and reliable information on the temporal and spatial occurrence of fluvial sediments. Decades ago, this difficulty was unavoidable due to a lack of understanding of the magnitude and scope of environmental influences exerted by fluvial sediment coupled with a dearth of tools for monitoring and studying the data. Such is no longer the case.

  19. Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality

    Science.gov (United States)

    Brown, A. G.

    2008-10-01

    Geoarchaeology is the application of geological and geomorphological techniques to archaeology and the study of the interactions of hominins with the natural environment at a variety of temporal and spatial scales. Geoarchaeology in the UK over the last twenty years has flourished largely because it has gone beyond technological and scientific applications. Over the same period our ability to reconstruct the 3-dimensional stratigraphy of fluvial deposits and the matrix of fluvial sites has increased dramatically because of a number of technological advances. These have included the use of LiDAR (laser imaging) and radar to produce high-resolution digital surface models, the use of geophysics, particularly ground penetrating radar and electrical resistivity, to produce sediment depth models, and the use of GIS and data visualisation techniques to manipulate and display the data. These techniques along with more systematic and detailed sedimentological recording of exposed sections have allowed the construction of more precise 3-dimensional (volumetric) models of the matrix of artefacts within fluvial deposits. Additionally a revolution in dating techniques, particularly direct sediment dating by luminescence methods, has enabled the creation of 4-dimensional models of the creation and preservation of these sites. These 4-dimensional models have the ability to provide far more information about the processes of site creation, preservation and even destruction, and also allow the integration of these processes with independent data sources concerning cultural evolution and climatic change. All improvements in the precision of dating fluvial deposits have archaeological importance in our need to translate events from a sequential or geological timeframe to human timescales. This allows geoarchaeology to make a more direct contribution to cultural history through the recognition of agency at the individual or group level. This data can then form a component of

  20. Fluvial sedimentology of a major uranium-bearing sandstone - A study of the Westwater Canyon member of the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Turner-Peterson, C.E.

    1986-01-01

    The Westwater Canyon Member of the Morrison Formation, the main ore-bearing sandstone in the San Juan basin, consists of a sequence of vertically stacked braided stream deposits. Three fluvial units within the sequence can be delineated in the basin. Volcanic pebbles are abundant in the middle fluvial unit, in a zone that forms a crude time line. A pronounced thickening of sandstone in the Westwater Canyon Member north of Gallup, once believed to be the apex of a large alluvial fan, is now thought to merely reflect a greater accumulation of sediment in response to downwarping of the basin in that area. Provenance studies suggest that highlands that contributed detritus to Westwater Canyon streams were located several hundred kilometers to the west and southwest of the San Juan basin, and thus fan apices would also have been several hundred kilometers upstream. The fluvial units recognized in the basin may well be coalesced distal fan deposits, but are probably best interpreted as vertically stacked braided steam sequences. Facies changes in fine-grained interbeds of the Westwater Canyon probably have greater significance in terms of localizing ore than any special attribute of the fluvial sandstones themselves. Uranium ore generally occurs in sandstones that are interbedded with greenish-gray lacustrine mudstones. Pore waters that were expelled from these mudstones are thought to have been the source of the pore-filling organic matter (humate) associated with primary uranium ore in nearby sandstones

  1. Degradation of the Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia

    Science.gov (United States)

    Shellberg, J. G.; Spencer, J.; Brooks, A. P.; Pietsch, T. J.

    2016-08-01

    Along low gradient rivers in northern Australia, there is widespread gully erosion into unconfined alluvial deposits of active and inactive floodplains. On the Mitchell River fluvial megafan in northern Queensland, river incision and fan-head trenching into Pleistocene and Holocene megafan units with sodic soils created the potential energy for a secondary cycle of erosion. In this study, rates of alluvial gully erosion into incipiently-unstable channel banks and/or pre-existing floodplain features were quantified to assess the influence of land use change following European settlement. Alluvial gully scarp retreat rates were quantified at 18 sites across the megafan using recent GPS surveys and historic air photos, demonstrating rapid increases in gully area of 1.2 to 10 times their 1949 values. Extrapolation of gully area growth trends backward in time suggested that the current widespread phase of gullying initiated between 1880 and 1950, which is post-European settlement. This is supported by young optically stimulated luminescence (OSL) dates of gully inset-floodplain deposits, LiDAR terrain analysis, historic explorer accounts of earlier gully types, and archival records of cattle numbers and land management. It is deduced that intense cattle grazing and associated disturbance concentrated in the riparian zones during the dry season promoted gully erosion in the wet season along steep banks, adjacent floodplain hollows and precursor gullies. This is a result of reduced native grass cover, increased physical disturbance of soils, and the concentration of water runoff along cattle tracks, in addition to fire regime modifications, episodic drought, and the establishment of exotic weed and grass species. Geomorphic processes operating over geologic time across the fluvial megafan predisposed the landscape to being pushed by land used change across an intrinsically close geomorphic threshold towards instability. The evolution of these alluvial gullies is discussed

  2. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  3. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness.

  4. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    International Nuclear Information System (INIS)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness

  5. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    Science.gov (United States)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  6. Simulation of channel sandstone architecture in an incised valley

    Energy Technology Data Exchange (ETDEWEB)

    Frykman, P.; Johannessen, P.; Andsbjerg, J.

    1998-12-31

    The present report describes a geostatistical modelling study that is aimed at reflecting the architecture of the channel sandstones in an incised valley fill. The example used for this study is a part of the Middle Jurassic sandy succession of the Bryne Formation in the Danish central Graben. The succession consists mainly of fluvial sediments in the lower part, overlain by tidal influenced sediments, which again is overlain by shallow marine sediments. The modelling study has been performed on a sequence of incised valley sediments in the upper part of the Bryne Formation overlying fluvial sediments. (au) EFP-96. 19 refs.

  7. MULTI-DECADAL FLUVIO-GEOMORPHOLOGICAL AND BANKLINE CHANGES OF THE GANGA RIVER AROUND BALLIA AND RUDRAPUR USING REMOTE SENSING AND GIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. J. Desai

    2012-09-01

    Full Text Available Fluvial landforms are developed due to river action and these processes help in understanding the development of various landforms on the earth's surface. Gangetic plain is vast alluvial tract made up of sand, silt and clay. This region receives heavy rainfall causing flash floods which results in bank-line shifting as well as various fluvio-geomorphological changes. Fluvial processes such as erosion and deposition not only play an important role in shaping of different fluvial landscapes but also contribute towards the braiding and meandering pattern which causes change in the flow pattern of the river channel. Transportation and deposition of the suspended load also contributes towards such changes. The present work describes various fluvio-geomorphological features and their changes during different time intervals in and around Ballia and Rudrapur. The paper also deals in understanding the problems like bank-line shifting, erosion and deposition caused by the continuous change in the fluvial patterns, bank erosion and sedimentation in this region over past 8 decades.

  8. Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.

    2009-06-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  9. Patterns and controls on historical channel change in the Willamette River, Oregon, USA

    Science.gov (United States)

    Jennifer Rose Wallick; Gordon E. Grant; Stephen T. Lancaster; John P. Bolte; Roger P. Denlinger

    2007-01-01

    Distinguishing human impacts on channel morphology from the natural behaviour of fluvial systems is problematic for large river basins. Large river basins, by virtue of their size, typically encompass wide ranges of geology and landforms resulting in diverse controls on channel form. They also inevitably incorporate long and complex histories of overlapping human and...

  10. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    Science.gov (United States)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka

  11. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  12. Eemian Rhine delta architecture in The Netherlands: facies distribution, deposit characteristics and preservation potential in an near-coastal deltaic setting

    NARCIS (Netherlands)

    Peeters, J.

    2012-01-01

    Within near-coastal environments, the fluvial-tidal transition zone is one of the most complex zones due to mixture of processes and sediments of different source and depositional styles. Despite a large number of excellent Holocene fluvial-estuarine cases, transferring sedimentary concepts into

  13. Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, Northeastern Thailand

    Science.gov (United States)

    Nimnate, P.; Thitimakorn, T.; Choowong, M.; Hisada, K.

    2017-12-01

    The Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.

  14. Correlation of Early Tertiary Terrestrial Deposits of the Amaga Basin, Cauca Depression, Colombian Andes

    Science.gov (United States)

    Sierra, G. M.; Sierra, G. M.; MacDonald, W. D.

    2001-05-01

    The Amaga Formation of the Amaga Basin preserves early Tertiary terrestrial deposits of many facies: channel, crevasse splay, paludal, flood plain, point bar, etc. These deposits lie between two major strike-slip fault zones, the Cauca and the Romeral in the Cauca Valley of the northern Andes of Colombia. Coal deposits characterize the lower part of the stratigraphic section; fine to medium clastic sediments otherwise dominate the sections. Within the basin, correlation between sections is difficult because various discontinuities interrupt the continuity of the strata. These include Tertiary intrusives, folding and faulting. Rapid lateral facies changes further complicate the correlations. Detailed studies on five stratigraphic sections are underway. Multiple methods of correlating sections are being used, including fluvial sequence stratigraphy in outcrops, architectural facies analysis, heavy mineral separates, grain-size and grain-ratio variations, paleocurrent directions, and magnetic property variations. Distinctive regional variations in magnetic anisotropic susceptibility indicate areas in which tectonic effects overprint sedimentary fabrics. The presence of secondary hematite and siderite is related to that overprinting. A major compositional break (identified by grain-ratio variations) has been found in the middle of the section. The integrated correlation results are summarized.

  15. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    Science.gov (United States)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  16. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... and that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In the implemented...

  17. A hydro-geochemical study of Nahr-Ibrahim catchment area: Fluvial metal transport

    International Nuclear Information System (INIS)

    Korfali, Samira

    2004-01-01

    Author.Metals enter water bodies geological weathering, soil erosion, industrial and domestic waste discharges, as well as atmospheric deposition. The metal content in sediments is a reflection of the nature of their background whether of geologic and/or anthropogenic origin. The depositional process of metals in sediment are controlled by river discharge, turbulence of river, morphology and river geometry, as well as the geochemical phases of sediment and soils. Thus a study of metal content in river and /or metal transport with a water body should include a hydrological study of the river, types of minerals in sediment and soil, sediment and soil textures, and metal speciation in the different geochemical phases of sediment, bank and soils. A contaminated flood plain is a temporary storage system for pollutants and an understanding of soil-sediment-interactions is important prerequisite for modeling fluvial pollutant transport. The determination of metal speciation in sediment and soil chemical fraction can provide information on the way in which these metals are bound to sediment and soil, their mobilization potential, bioavailability and possible mechanism of fluvial pollutant transport. Sequential extraction techniques yielding operationally defined chemical pools have been used by many workers to examine the partitioning of metals among the various geochemical phases of sediment or soil. The sequential extraction method specifies metals in sediment fractions as: exchangeable, specifically sorbed, easily reducible, moderately reducible, organic, residual. Previously, I have conducted a study on speciation of metals (Fe, Mn, Zn, Cu, Pb and Cd) in the dry season bed-load sediments only at five sites 13 km stretch upstream from the mouth of Nahr Ibrahim. The reported data revealed that the specifically sorbed sediment fraction was the prime fraction for deposition of Mn, Z, CU, Pb and Cd metals in sediments. X-ray diffraction analysis of bed sediments showed

  18. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Dietrich, William E [UC BERKELEY; Day, Geoff [NEWCREST MINING; Parker, Gary [UNIV OF ILLINOIS

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  19. Channel sandstone and bar morphology of the Beaufort group uranium district near Beaufort West

    International Nuclear Information System (INIS)

    Stear, W.M.

    1980-01-01

    Sheet-like and lenticular sandstone bodies in the Lower Beaufort Group (Adelaide Subgroup) uranium district occur in megacyclic repetition as superimposed systems of ephemeral fluvial channels that display characteristics of complex lateral and vertical accretion. Channel sandstone bodies are defined on morphological grounds into two types. Sheet sandstone bodies are the commonest type and comprise the bulk of sandstone packages in arenaceous zones of megacycles. Composite sandstone sheets result from multilateral coalescence of individual sandstone bodies. Isolated lenticular sandstone units in argillaceous zones of megacycles comprise sheet and ribbon sandstone types. Multi-storeying is a prominent feature of most channel sandstone bodies and often results in local sandstone thickening. Bedforms relate to the formation of compound bars and record periods of dynamic accretion and erosion. Rarely preserved palaeosurfaces vividly illustrate the fluctuating hydrodynamic conditions that typified ephemeral fluvial sedimentation in a semi-arid environment during Lower Beaufort times

  20. Channel sandstone and bar morphology of the Beaufort group uranium district near Beaufort West

    Energy Technology Data Exchange (ETDEWEB)

    Stear, W M

    1980-01-01

    Sheet-like and lenticular sandstone bodies in the Lower Beaufort Group (Adelaide Subgroup) uranium district occur in megacyclic repetition as superimposed systems of ephemeral fluvial channels that display characteristics of complex lateral and vertical accretion. Channel sandstone bodies are defined on morphological grounds into two types. Sheet sandstone bodies are the commonest type and comprise the bulk of sandstone packages in arenaceous zones of megacycles. Composite sandstone sheets result from multilateral coalescence of individual sandstone bodies. Isolated lenticular sandstone units in argillaceous zones of megacycles comprise sheet and ribbon sandstone types. Multi-storeying is a prominent feature of most channel sandstone bodies and often results in local sandstone thickening. Bedforms relate to the formation of compound bars and record periods of dynamic accretion and erosion. Rarely preserved palaeosurfaces vividly illustrate the fluctuating hydrodynamic conditions that typified ephemeral fluvial sedimentation in a semi-arid environment during Lower Beaufort times.

  1. Insights into organic carbon oxidation potential during fluvial transport from laboratory and field experiments

    Science.gov (United States)

    Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.

    2017-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during

  2. Paleoambientes sedimentarios de la Formación Toro Negro (Neógeno, antepaís fracturado andino, noroeste argentino Sedimentary paleoenvironments of the Toro Negro Formation (Neogene, Andean broken foreland, northwest Argentina

    Directory of Open Access Journals (Sweden)

    Patricia L Ciccioli

    2012-09-01

    paleovalle fluvial en el norte del área y posterior relleno por cursos fluviales gravo-arenosos provenientes del oeste principalmente (AFI-V. En la etapa II (Mioceno Medio a Tardío se desarrollan sistemas fluviales no confinados areno-gravosos (AFVI-VII que progradan sobre un lago somero (AFVIII desarrollado en el sur del área. Finalmente, la etapa III (miembro superior, Mioceno Tardío-Plioceno Temprano corresponde a pulsos de progradación de la cuña clástica (AFIX-XI desde el oeste (Precordillera.The Toro Negro Formation (Neogene records the sedimentation in the broken-foreland Vinchina Basin during the Andean Orogeny, in northwestern Argentina. This unit is composed of conglomerates, sandstones and mudstones together with some beds of breccias and tuffs deposited mainly in fluvial environments. Eleven facies associations (FA were identified in this unit, eight of them corresponding to the lower member and three to the upper member. FAI is composed of massive intraformational megabreccias and cross-bedded conglomerates deposited in braided fluvial systems that filled a deep fluvial paleovalley formed in the north of the studied region. FAII was only identified in marginal positions of the paleovalley and is composed of intraformational breccias and sandstones forming channel belts incised within alluvial plains deposits. FAIII comprises gravelly channel belts and sandy floodplains dominated by crevasse splays interpreted as deposited in semiarid anastomosing fluvial systems. FAIV shows coarsening-upward successions with thick muddy alluvial plain deposits including thin crevasse splays and gravelly single channels. Encapsulated channel complexes composed of coarse-grained sandstones and scarce conglomerates, form FAV. FAVI covers a low-relief erosive surface and is mainly composed of conglomerates and gravelly sandstones deposited in broad alluvial plains. This fluvial complex evolved to a lower-energy system (FAVII characterized by an increase of muddy floodplain

  3. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  4. Paleo-channel deposition of natural uranium at a US Air Force landfill

    International Nuclear Information System (INIS)

    Young, Carl; Weismann, Joseph; Caputo, Daniel

    2007-01-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 μg/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up

  5. The igapó of the Negro River in central Amazonia: Linking late-successional inundation forest with fluvial geomorphology

    Science.gov (United States)

    Montero, Juan Carlos; Latrubesse, Edgardo M.

    2013-10-01

    Despite important progress on Amazonian floodplain research, the flooded forest of the Negro River "igapó" has been little investigated. In particular, no study has previously focused the linkage between fluvial geomorphology and the floristic variation across the course of the river. In this paper we describe and interpret relations between igapó forest, fluvial geomorphology and the spatial evolution of the igapó forest through the Holocene. Therefore, we investigate the effect of geomorphological units of the floodplain and channel patterns on tree diversity, composition and structural parameters of the late-successional igapó forest. Our results show that sites sharing almost identical flooding regime, exhibit variable tree assemblages, species richness and structural parameters such as basal area, tree density and tree heights, indicating a trend in which the geomorphologic styles seem to partially control the organization of igapó's tree communities. This can be also explained by the high variability of well-developed geomorphologic units in short distances and concentrated in small areas. In this dynamic the inputs from the species pool of tributary rivers play a crucial role, but also the depositional and erosional processes associated with the evolution of the floodplain during the Holocene may control floristic and structural components of the igapó forests. These results suggest that a comprehensive approach integrating floristic and geomorphologic methods is needed to understand the distribution of the complex vegetation patterns in complex floodplains such as the igapó of the Negro River. This combination of approaches may introduce a better comprehension of the temporal and spatial evolutionary analysis and a logic rationale to understand the vegetation distribution and variability in function of major landforms, soil distributions and hydrology. Thus, by integrating the past into macroecological analyses will sharpen our understanding of the

  6. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    Science.gov (United States)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting

  7. Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting

    Science.gov (United States)

    Cassanelli, James P.; Head, James W.

    2018-05-01

    The Reull Vallis outflow channel is a segmented system of fluvial valleys which originates from the volcanic plains of the Hesperia Planum region of Mars. Explanation of the formation of the Reull Vallis outflow channel by canonical catastrophic groundwater release models faces difficulties with generating sufficient hydraulic head, requiring unreasonably high aquifer permeability, and from limited recharge sources. Recent work has proposed that large-scale lava-ice interactions could serve as an alternative mechanism for outflow channel formation on the basis of predictions of regional ice sheet formation in areas that also underwent extensive contemporaneous volcanic resurfacing. Here we assess in detail the potential formation of outflow channels by large-scale lava-ice interactions through an applied case study of the Reull Vallis outflow channel system, selected for its close association with the effusive volcanic plains of the Hesperia Planum region. We first review the geomorphology of the Reull Vallis system to outline criteria that must be met by the proposed formation mechanism. We then assess local and regional lava heating and loading conditions and generate model predictions for the formation of Reull Vallis to test against the outlined geomorphic criteria. We find that successive events of large-scale lava-ice interactions that melt ice deposits, which then undergo re-deposition due to climatic mechanisms, best explains the observed geomorphic criteria, offering improvements over previously proposed formation models, particularly in the ability to supply adequate volumes of water.

  8. Genesis and sedimentary record of blind channel and islands of the anabranching river: An evolution model

    Science.gov (United States)

    Leli, Isabel T.; Stevaux, José C.; Assine, Mário L.

    2018-02-01

    Blind channel (BC) is a fluvial feature formed by attachment of a lateral sand bar to an island or riverbank. It consists of a 10- to 20-m wide and hundreds to thousands meters long channel, parallel to the island or bank, closed at its upstream end by accretion to the island. It is an important feature in anabranching rivers that plays an important role in both the island formation and river ecology. This paper discusses the formation processes, functioning, evolution, and the sedimentary record of a blind channel, related landforms, and its context on island development in the Upper Paraná River. The evolution of this morphologic feature involves (1) formation of a lateral or attachment bar beside an island with the development of a channel in between; (2) vertical accretion of mud deposits during the flood and vegetal development on the bar; (3) the upstream channel closure that generates the blind channel; and (4) annexation of the blind channel to the island. A blind channel is semilotic to lentic, that is not totally integrated to the dynamics of the main active channel and that acts as a nursery for fingerlings and macrophytes. The sedimentary facies succession of BCs are relatively simple and characterized by cross-stratified sand covered by organic muddy sediments. Based on facies analysis of 12 cores, we identified a succession of environments that contribute to the formation of islands: channel bar, blind channel, pond, and swamp. Blind channel formation and its related bar-island attachment are relevant processes associated with the growing of large island evolution in some anabranching rivers.

  9. Architecture and quantitative assessment of channeled clastic deposits, Shihezi sandstone (Lower Permian, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Chengye Jia

    2017-02-01

    Full Text Available Lower Permian Shihezi sandstone in Ordos Basin is the largest gas reservoir in China. Architecture elements of channel, overbank and floodplain facies of braided channel deposits were identified through an outcrops survey, and their proportion of channel facies have been quantitatively estimated from well logging. Characteristics of architecture elements, such as sand thickness, bounding surfaces and lithofacies were investigated through outcrops and core. Petrology of Shihezi sandstone has also been studied in detail. Analysis on sandstone components shows that monocrystalline quartz with approximately 76% bulk volume, and lithic up to 5%–45% bulk volume, are the two main components. Litharenite and lithic quartz sandstone are the main rock types. Compaction is concluded by former researchers as the control factor of low permeability. Examination through thin section reveals that secondary pores developed well in coarse sand. Inter-granular dissolution is included as the positive effect to increasing porosity, and is concluded as the control factor to the generation of net pay. Scale of coarse grained channel fills and channel bar sandstone bodies are quantitatively estimated. Strike-oriented, dip-oriented, and vertical distribution of channel fills and channel bar sandstone bodies have been investigated. The geometry of sand bodies can be depicted as an elongated lens. Subsurface mapping reveals that channel sandstone bodies distribute widely from both lateral and longitudinal cross section profiles, and are poorly connected.

  10. Late Quaternary fine silt deposits of Jammu, NW Himalaya: Genesis ...

    Indian Academy of Sciences (India)

    ... of Jammu suggest fluvial environment of the deposits wherein the water budget fluctuated. ... the probable source for desert 'loess' of Pakistan. (Rendell et al 1989). ...... the velocity of water is diminished due to loss of flow competence and.

  11. Analysis of Sedimentation Rates in the Densu River Channel: The ...

    African Journals Online (AJOL)

    Sediment is important in determining the morphology of river systems. The Densu basin has come under intense anthropogenic activities such as farming, sand winning, bushfires, among others, which are impacting on the fluvial processes, forms and channel morphology of the river. The study investigated sedimentation of ...

  12. Active overbank deposition during the last century, South River, Virginia

    Science.gov (United States)

    Pizzuto, Jim; Skalak, Katherine; Pearson, Adam; Benthem, Adam

    2016-03-01

    We quantify rates of overbank deposition over decadal to centennial timescales along the South River in Virginia using four independent methods. Detailed mercury profiles sampled adjacent to the stream channel preserve the peak historic mercury concentration on suspended sediment dating from 1955 to 1961 and suggest sedimentation rates of 8 to 50 cm/100 years. Sediment accumulation over the roots of trees suggest rates of 0 to 100 cm/100 years, with significantly higher values on levees and lower values on floodplains farther from the channel. Profiles of 137Cs and 210Pb from two eroding streambanks are fit with an advection-diffusion model calibrated at an upland reference site; these methods suggest sedimentation rates of 44 to 73 cm/100 years. Mercury inventories from 107 floodplain cores, combined with a previously published reconstruction of the history of mercury concentration on suspended sediment, provide spatially comprehensive estimates of floodplain sedimentation: median sedimentation rates are 3.8 cm/100 years for the HEC-RAS) modeling demonstrates that the floodplain of the South River remains hydraulically connected to the channel: 56% of the 100-year floodplain is inundated every two years, and 83% of the floodplain is inundated every five years. These results, combined with previously published data, provide the basis for a regional synthesis of floodplain deposition rates since European settlement. Floodplain sedimentation rates were high following European settlement, with published estimates ranging from 50 to 200 cm/100 years. Sedimentation rates decreased by 1 to 2 orders of magnitude during the twentieth and twenty-first centuries; but despite these lower sedimentation rates, floodplains continue to store a significant fraction of total suspended sediment load. Many floodplains of the mid-Atlantic region are active landforms fully connected to the rivers that flow within them and should not be considered terraces isolated from contemporary

  13. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    Science.gov (United States)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    Industrial pollution can provide a useful tool to study spatiotemporal distribution of modern floodplain sediments, trace their provenance, and allow their dating. Regional contamination of southern Moravia (the south-eastern part of the Czech Republic) by heavy metals during the 20th century was determined in fluvial sediments of the Morava River by means of enrichment factors. The influence of local sources and sampling sites heterogeneity were studied in overbank fines with different lithology and facies. For this purpose, samples were obtained from hand-drilled cores from regulated channel banks, with well-defined local sources of contamination (factories in Zlín and Otrokovice) and also from near naturally inundated floodplains in two nature protected areas (at 30 km distance). The analyses were performed by X-ray fluorescence spectroscopy (ED XRF), ICP MS (EDXRF samples calibration, 206Pb/207Pb ratio), magnetic susceptibility, cation exchange capacity (CEC), and 137Cs and 210Pb activities. Enrichment factors (EF) of heavy metals (Pb, Zn, Cu and Cr) and magnetic susceptibility of overbank fines in near-naturally (near annually) inundated areas allowed us to reconstruct historical contamination by heavy metals in the entire study area independently on lithofacies. Measured lithological background values were then used for calculation of EFs in the channel sediments and in floodplain sediments deposited within narrow part of a former floodplain which is now reduced to about one quarter of its original width by flood defences. Sediments from regulated channel banks were found stratigraphically and lithologically "erratic", unreliable for quantification of regional contamination due to a high variability of sedimentary environment. On the other hand, these sediments are very sensitive to the nearby local sources of heavy metals. For a practical work one must first choose whether large scale, i.e. a really averaged regional contamination should be reconstructed

  14. Quantification of shear stress in a meandering native topographic channel using a physical hydraulic model

    Science.gov (United States)

    Michael E. Ursic; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt

    2012-01-01

    Fluvial systems respond to changes in boundary conditions in order to sustain the flow and sediment supplied to the system. Local channel responses are typically difficult to predict due to possible affects from upstream, downstream, or local boundary conditions that cause changes in channel or planform geometry. Changes to the system can threaten riverside...

  15. Quantifying Quaternary Deformation in the Eastern Cordillera of the Colombian Andes Using Cosmogenic Nuclide Geochronology and Fluvial Geomorphology

    Science.gov (United States)

    Dalman, E.; Taylor, M. H.; Veloza-fajardo, G.; Mora, A.

    2014-12-01

    Northwest South America is actively deforming through the interaction between the Nazca, South American, and Caribbean plates. Though the Colombian Andes are well studied, much uncertainty remains in the rate of Quaternary deformation along the east directed frontal thrust faults hundreds of kilometers in board from the subduction zones. The eastern foothills of the Eastern Cordillera (EC) preserve deformed landforms, allowing us to quantify incision rates. Using 10Be in-situ terrestrial cosmogenic nuclide (TCN) geochronology, we dated 2 deformed fluvial terraces in the hanging wall of the Guaicaramo thrust fault. From the 10Be concentration and terrace profile relative to local base level, we calculated incision rates. We present a reconstructed slip history of the Guaicaramo thrust fault and its Quaternary slip rate. Furthermore, to quantify the regional Quaternary deformation, we look at the fluvial response to tectonic uplift. Approximately 20 streams along the eastern foothills of the Eastern Cordillera (EC) were studied using a digital elevation model (DEM). From the DEM, longitudinal profiles were created and normalized channel steepness (Ksn) values calculated from plots of drainage area vs. slope. Knickpoints in the longitudinal profiles can record transient perturbations or differential uplift. Calculated Ksn values indicate that the EC is experiencing high rates of uplift, with the highest mean Ksn values occurring in the Cocuy region. Mean channel steepness values along strike of the foothills are related to increasing uplift rates from south to north. In contrast, we suggest that high channel steepness values in the south appear to be controlled by high rates of annual precipitation.

  16. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, Mohamed N.; Wang, Q. X.; Alshareef, Husam N.

    2014-01-01

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling

  17. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota

    Science.gov (United States)

    Greene, Samantha L.; Knox, James C.

    2014-01-01

    Floods increase fluvial complexity by eroding established surfaces and creating new alluvial surfaces. As dams regulate channel flow, fluvial complexity often decreases and the hydro-eco-geomorphology of the riparian habitat changes. Along the Missouri River, flow regulation resulted in channel incision of 1-3 m within the study area and disconnected the pre-dam floodplain from the channel. Evidence of fluvial complexity along the pre-dam Missouri River floodplain can be observed through the diverse depositional environments represented by areas of varying soil texture. This study evaluates the role of flow regulation and depositional environment along the Missouri River in the riparian invasion of red cedar downstream of Gavins Point dam, the final dam on the Missouri River. We determine whether invasion began before or after flow regulation, determine patterns of invasion using Bayesian t-tests, and construct a Bayesian multivariate linear model of invaded surfaces. We surveyed 59 plots from 14 riparian cottonwood stands for tree age, plot composition, plot stem density, and soil texture. Red cedars existed along the floodplain prior to regulation, but at a much lower density than today. We found 2 out of 565 red cedars established prior to regulation. Our interpretation of depositional environments shows that the coarser, sandy soils reflect higher energy depositional pre-dam surfaces that were geomorphically active islands and point bars prior to flow regulation and channel incision. The finer, clayey soils represent lower energy depositional pre-dam surfaces, such as swales or oxbow depressions. When determining patterns of invasion for use in a predictive statistical model, we found that red cedar primarily establishes on the higher energy depositional pre-dam surfaces. In addition, as cottonwood age and density decrease, red cedar density tends to increase. Our findings indicate that flow regulation caused hydrogeomorphic changes within the study area that

  18. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  19. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    Science.gov (United States)

    Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.

  20. The Jurassic of Denmark and Greenland: Sedimentology and sequence stratigraphy of the Bryne and Lulu Formations, Middle Jurassic, northern Danish Central Graben

    Directory of Open Access Journals (Sweden)

    Andsbjerg, Jan

    2003-10-01

    Full Text Available The Middle Jurassic Bryne and Lulu Formations of the Søgne Basin (northern part of the Danish Central Graben consist of fluvially-dominated coastal plain deposits, overlain by interfingering shoreface and back-barrier deposits. Laterally continuous, mainly fining-upwards fluvial channel sandstones that locally show evidence for tidal influence dominate the alluvial/coastal plain deposits of the lower Bryne Formation. The sandstones are separated by units of fine-grained floodplain sediments that show a fining-upwards - coarsening-upwards pattern and locally grade into lacustrine mudstones. A regional unconformity that separates the lower Bryne Formation from the mainly estuarine upper Bryne Formation is defined by the strongly erosional base of a succession of stacked channel sandstones, interpreted as the fill of a system of incised valleys. Most of the stacked channel sandstones show abundant mud laminae and flasers, and rare herringbone structures, suggesting that they were deposited in a tidal environment, probably an estuary. Several tens of metres of the lower Bryne Formation may have been removed by erosion at this unconformity. The estuarine channel sandstone succession is capped by coal beds that attain a thickness of several metres in the western part of the Søgne Basin, but are thin and poorly developed in the central part of the basin. Above the coal beds, the Lulu Formation is dominated by various types of tidally influenced paralic deposits in the western part of the basin and by coarsening-upwards shoreface and beach deposits in central parts. Westwards-thickening wedges of paralic deposits interfinger with eastwards-thickening wedges of shallow marine deposits. The Middle Jurassic succession is subdivided into nine sequences. In the lower Bryne Formation, sequence boundaries are situated at the base of laterally continuous fluvial channel sandstones whereas maximum flooding surfaces are placed in laterally extensive floodplain

  1. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    Science.gov (United States)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    The analysis of the slope-area relationship in bedrock streams is a common way for discriminating the channel from the hillslope domain and associated landscape processes. Spatial variations of these domains are important indicators of landscape change. In fluvial catchments, this relationship is a function of contributing drainage area, channel slope and the threshold drainage area for fluvial erosion. The resulting pattern is related to climate, tectonic and underlying bedrock. These factors may become secondary in catchments affected by glacial erosion, as it is the case in many mid- to high-latitude mountain belts. The perturbation (i.e. the destruction) of an initial steady state fluvial bedrock morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. Topographic change is associated with a decrease and fragmentation of the channel network and an extension of the hillslope domain. In case of glacially conditioned catchments discrimination of the two domains remains problematic and a discrimination inconsistent. A definition is therefore highly needed considering that (i) a spatial shift in the domains affect the process and rate of erosion and (ii) topographic classifications of alpine catchments often base on channel and hillslope parameters (i.e.channel or hillslope relief). Here we propose a novel numerical approach to topographically define channel heads from digital topography in glacially conditioned mountain range catchments in order to discriminate the channel from the hillslope domain. We analyzed the topography of the southern European Central Alps, a region which (i) has been glaciated multiple times during the Quaternary, shows (ii) little lithological variations, is (iii) home of very low erodible rocks and is (iv) known as a region were tectonic processes have largely ceased. The

  2. Which DEM is best for analyzing fluvial landscape development in mountainous terrains?

    Science.gov (United States)

    Boulton, Sarah J.; Stokes, Martin

    2018-06-01

    Regional studies of fluvial landforms and long-term (Quaternary) landscape development in remote mountain landscapes routinely use satellite-derived DEM data sets. The SRTM and ASTER DEMs are the most commonly utilised because of their longer availability, free cost, and ease of access. However, rapid technological developments mean that newer and higher resolution DEM data sets such as ALOS World 3D (AW3D) and TanDEM-X are being released to the scientific community. Geomorphologists are thus faced with an increasingly problematic challenge of selecting an appropriate DEM for their landscape analyses. Here, we test the application of four medium resolution DEM products (30 m = SRTM, ASTER, AW3D; 12 m = TanDEM-X) for qualitative and quantitative analysis of a fluvial mountain landscape using the Dades River catchment (High Atlas Mountains, Morocco). This landscape comprises significant DEM remote sensing challenges, notably a high mountain relief, steep slopes, and a deeply incised high sinuosity drainage network with narrow canyon/gorge reaches. Our goal was to see which DEM produced the most representative best fit drainage network and meaningful quantification. To achieve this, we used ArcGIS and Stream Profiler platforms to generate catchment hillshade and slope rasters and to extract drainage network, channel long profile and channel slope, and area data. TanDEM-X produces the clearest landscape representation but with channel routing errors in localised high relief areas. Thirty-metre DEMs are smoother and less detailed, but the AW3D shows the closest fit to the real drainage network configuration. The TanDEM-X elevation values are the closest to field-derived GPS measurements. Long profiles exhibit similar shapes but with minor differences in length, elevation, and the degree of noise/smoothing, with AW3D producing the best representation. Slope-area plots display similarly positioned slope-break knickpoints with modest differences in steepness and concavity

  3. Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, Northeastern Thailand

    Directory of Open Access Journals (Sweden)

    Nimnate P.

    2017-12-01

    Full Text Available The Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT and Ground Penetrating Radar (GPR to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.

  4. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  5. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    Science.gov (United States)

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  6. The contribution of bank and surface sediments to fluvial sediment ...

    African Journals Online (AJOL)

    The contribution of bank and surface sediments to fluvial sediment transport of the Pra River. ... the relative contribution of surface and bank sediments to the fluvial sediment transport. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  7. Modelamiento geoestadístico de los depósitos fluviales de la zona c-formación mugrosa en el área la Cira-Este del Campo La Cira

    OpenAIRE

    Rojas Suárez, César Augusto

    2011-01-01

    Mediante algoritmos geoestadísticos se realizo el modelo tridimensional de los yacimientos fluviales de la Zona-C de la Formación Mugrosa en el área Cira-Este del Campo La Cira. Este modelo permitió calcular el aceite original en sitio e identificar las reservas que aun no han sido drenadas en el yacimiento. / Abstract. Geostatistical algorithms were used for making the three-dimensional model for the fluvial deposits of Zona-C of Mugrosa Formation in the Cira-Este area of the Cira Field. Thi...

  8. On the Application of an Enthalpy Method to the Evolution of Fluvial Deltas Under Sea-Level Changes

    Science.gov (United States)

    Anderson, W.; Lorenzo-Trueba, J.; Voller, V. R.

    2017-12-01

    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, tectonics, and sediment supply on the evolution of these boundaries, we develop a forward stratigraphic model that captures the dynamic behavior of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries whose location must be determined as part of the solution to the overall morphological evolution problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level changes. The mathematics of the approach are verified by comparing predictions from the numerical model with both existing and newly developed closed form analytical solutions. Model results support previous work, which suggests that the migration of the ABT can respond very differently to the sea-level signal. This response depends on factors such as sediment supply and delta length, which can vary greatly between basins. These results can have important implications for the reconstruction of past sea-level changes from the stratigraphic record of sedimentary basins.

  9. MODELLING LANDSCAPE MORPHODYNAMICS BY TERRESTRIAL PHOTOGRAMMETRY: AN APPLICATION TO BEACH AND FLUVIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    E. Sánchez-García

    2016-06-01

    Full Text Available Beach and fluvial systems are highly dynamic environments, being constantly modified by the action of different natural and anthropic phenomena. To understand their behaviour and to support a sustainable management of these fragile environments, it is very important to have access to cost-effective tools. These methods should be supported on cutting-edge technologies that allow monitoring the dynamics of the natural systems with high periodicity and repeatability at different temporal and spatial scales instead the tedious and expensive field-work that has been carried out up to date. The work herein presented analyses the potential of terrestrial photogrammetry to describe beach morphology. Data processing and generation of high resolution 3D point clouds and derived DEMs is supported by the commercial Agisoft PhotoScan. Model validation is done by comparison of the differences in the elevation among the photogrammetric point cloud and the GPS data along different beach profiles. Results obtained denote the potential that the photogrammetry 3D modelling has to monitor morphological changes and natural events getting differences between 6 and 25 cm. Furthermore, the usefulness of these techniques to control the layout of a fluvial system is tested by the performance of some modeling essays in a hydraulic pilot channel.

  10. Insights into Pleistocene palaeoenvironments and biostratigraphy in southern Buenos Aires province (Argentina) from continental deposits

    Science.gov (United States)

    Beilinson, E.; Gasparini, G. M.; Soibelzon, L. H.; Soibelzon, E.

    2015-07-01

    The coastal cliffs of the Buenos Aires province (Argentina) have been the subject of intense paleontological studies since the XIX century. Therefore, many of the type localities in which is based the late Cenozoic Pampean biostratigraphic/chronostratigraphic scheme are located in this area. In this context, the sedimentites that crop out near the mouth of the Chocorí Creek contain a set of palaeontological sites that, because of their richness and well-preserved fossil content, hold high national and international importance. The aims of the present contribution are: 1) to make a stratigraphic and sedimentological characterization of the study area; 2) to list the fauna outcropped at these palaeontological sites and establish a biostratigraphic framework; 3) to elaborate a palaeoenvironmental model for the area. The study interval was informally subdivided into a lower, middle and upper interval. Interpretation was based on the presence of a number of key features such as architectural elements; channel:overbank ratio and palaeosol occurrence. The first two intervals were interpreted as continental deposits of a fluvio-alluvial nature and are the focus of this paper. The upper interval was related to foreshore marine deposits and will be studied in a future contribution. The lower interval is characterized mainly by overbank architectural elements in which calcisols and argillic protosols were identified. Channel-fill deposits are isolated and surrounded by fine-grained overbank successions and sedimentary structures are suggestive of mixed-load transport. The contact between the lower and middle intervals is an irregular, highly erosive surface characterized by a significant vertical change in the facies. This surface defines the base of multistorey sandbodies which's internal arrangement alongside with the low participation of overbank deposits suggests deposition by a braided fluvial system. Palaeosols and vertebrate fossils were used as palaeoclimatic

  11. Sedimentology of a surficial uranium deposit on North Flodelle Creek, Stevens County, Washington

    International Nuclear Information System (INIS)

    Macke, D.L.; Johnson, S.Y.; Otton, J.K.

    1985-01-01

    Surficial accumulations of uranium (up to 0.2 wt. % U/sub 3/O/sub 8/, dry basis) are currently forming in organic-rich, poorly drained sediments deposited in fluvial-lacustrine environments. Known occurrences are in northeastern Washington, northern Idaho, the Sierra Nevada, the Colorado Front Range, New Hampshire, and several areas in Canada. The first accumulation of this type to be mined is in postglacial sediments of a 10-acre boggy meadow along North Flodelle Creek in Stevens County, Washington. The meadow is flanked by hills of fine- to medium-grained two-mica quartz monzonite that are mantled by glacial drift of late Wisconsin age (about 18,000 to 11,500 yr B.P.). Relatively thick, hummocky deposits of this same glacial drift impede drainage at the lower end of the meadow. Following ice retreat, glacial sediments on the meadow floor were reworked by fluvial processes, and patches of organic-rich sediment may have formed in ice-melt depressions. About 6700 yr B.P., a blanket of Mazama ash from the Crater Lake eruption was deposited in the meadow. Shortly thereafter, a beaver dam across the lower end of the meadow further restricted drainage, and peat and organic mud accumulated in the pond behind the dam. The dam is preserved in the stratigraphic record as a sheet-like body of woody peat (with beaver-gnawed sticks) about 100m wide and 60 cm thick. After the gradual influx of sand and coarse silt had filled the pond, and the beavers had abandoned the site, fluvial deposition was reestablished

  12. A Comparison and Analog-Based Analysis of Sinuous Channels on the Rift Aprons of Ascraeus Mons and Pavonis Mons Volcanoes, Mars

    Science.gov (United States)

    Collins, A.; de Wet, A.; Bleacher, J.; Schierl, Z.; Schwans, B.

    2012-01-01

    The origin of sinuous channels on the flanks of the Tharsis volcanoes on Mars is debated among planetary scientists. Some argue a volcanic genesis [1] while others have suggested a fluvial basis [2-4]. The majority of the studies thus far have focused on channels on the rift apron of Ascraeus Mons. Here, however, we broadly examine the channels on the rift apron of Pavonis Mons and compare them with those studied channels around Ascraeus. We compare the morphologies of features from both of these volcanoes with similar features of known volcanic origin on the island of Hawai i. We show that the morphologies between these two volcanoes in the Tharsis province are very similar and were likely formed by comparable processes, as previous authors have suggested [5]. We show that, although the morphologies of many of the channels around these volcanoes show some parallels to terrestrial fluvial systems, these morphologies can also be formed by volcanic processes. The context of these features suggests that volcanic processes were the more likely cause of these channels.

  13. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA

    Science.gov (United States)

    Pavlowsky, Robert T.; Lecce, Scott A.; Owen, Marc R.; Martin, Derek J.

    2017-12-01

    The Old Lead Belt of southeastern Missouri was one of the leading producers of Pb ore for more than a century (1869-1972). Large quantities of contaminated mine waste have been, and continue to be, supplied to local streams. This study assessed the magnitude and spatial distribution of mining-contaminated legacy sediment stored in channel and floodplain deposits of the Big River in the Ozark Highlands of southeastern Missouri. Although metal concentrations decline downstream from the mine sources, the channel and floodplain sediments are contaminated above background levels with Pb and Zn along its entire 171-km length below the mine sources. Mean concentrations in floodplain cores > 2000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn extend 40-50 km downstream from the mining area in association with the supply of fine tailings particles that were easily dispersed downstream in the suspended load. Mean concentrations in channel bed and bar sediments ranging from 1400 to 1700 mg kg- 1 for Pb extend 30 km below the mines, while Zn concentrations of 1000-3000 mg kg- 1 extend 20 km downstream. Coarse dolomite fragments in the 2-16 mm channel sediment fraction provide significant storage of Pb and Zn, representing 13-20% of the bulk sediment storage mass in the channel and can contain concentrations of > 4000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn. These coarse tailings have been transported a maximum distance of only about 30 km from the source over a period of 120 years for an average of about 250 m/y. About 37% of the Pb and 9% of the Zn that was originally released to the watershed in tailings wastes is still stored in the Big River. A total of 157 million Mg of contaminated sediment is stored along the Big River, with 92% of it located in floodplain deposits that are typically contaminated to depths of 1.5-3.5 m. These contaminated sediments store a total of 188,549 Mg of Pb and 34,299 Mg of Zn, of which 98% of the Pb and 95% of the Zn are stored in floodplain

  14. Modification history of the Harmakhis Vallis outflow channel, Mars, based on CTX-scale photogeologic mapping and crater count dating

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-01-01

    Harmakhis Vallis is one of the four major outflow channel systems (Dao, Niger, Harmakhis, and Reull Valles) that cut the eastern rim region of the Hellas basin, the largest well-preserved impact structure on Mars. The structure of Harmakhis Vallis and the volume of its head depression, as well as earlier dating studies of the region, suggest that the outflow channel formed in the Hesperian period by collapsing when a large amount of subsurface fluid was released. Thus Harmakhis Vallis, as well as the other nearby outflow channels, represents a significant stage of the fluvial activity in the regional history. On the other hand, the outflow channel lies in the Martian mid-latitude zone, where there are several geomorphologic indicators of past and possibly also contemporary ground ice. The floor of Harmakhis also displays evidence of a later-stage ice-related activity, as the outflow channel has been covered by lineated valley fill deposits and debris apron material. The eastern rim region of the Hellas impact basin has been the subject of numerous geologic mapping studies at various scales and based on different imaging data sets. However, Harmakhis Vallis itself has received less attention and the studies on the outflow channel have focused only on limited parts of the outflow channel or on separated different geologic events. In this work, the Harmakhis Vallis floor is mapped and dated from the head depression to the beginning of the terminus based on the Mars Reconnaissance Orbiter's ConTeXt camera images (CTX; ∼ 6 m/pixel). Our results show that Harmakhis Vallis has been modified by several processes after its formation. Age determinations on the small uncovered parts of the outflow channel, which possibly represent the original floor of Harmakhis, imply that Harmakhis may have experienced fluvial activity only 780-850 ( ± 400-600) Ma ago. The discovered terrace structure instead shows that the on-surface activity of the outflow channel has been periodic

  15. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo

    Science.gov (United States)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; BouDagher-Fadel, Marcelle K.

    2018-07-01

    The Kuching Zone in West Sarawak consists of two different sedimentary basins, the Kayan and Ketungau Basins. The sedimentary successions in the basins are part of the Kuching Supergroup that extends into Kalimantan. The uppermost Cretaceous (Maastrichtian) to Lower Eocene Kayan Group forms the sedimentary deposits directly above a major unconformity, the Pedawan Unconformity, which marks the cessation of subduction-related magmatism beneath SW Borneo and the Schwaner Mountains, due to termination of the Paleo-Pacific subduction. The successions consist of the Kayan and Penrissen Sandstones and are dominated by fluvial channels, alluvial fans and floodplain deposits with some deltaic to tidally-influenced sections in the Kayan Sandstone. In the late Early or early Middle Eocene, sedimentation in this basin ceased and a new basin, the Ketungau Basin, developed to the east. This change is marked by the Kayan Unconformity. Sedimentation resumed in the Middle Eocene (Lutetian) with the marginal marine, tidal to deltaic Ngili Sandstone and Silantek Formation. Upsequence, the Silantek Formation is dominated by floodplain and subsidiary fluvial deposits. The Bako-Mintu Sandstone, a potential lateral equivalent of the Silantek Formation, is formed of major fluvial channels. The top of the Ketungau Group in West Sarawak is formed by the fluvially-dominated Tutoop Sandstone. This shows a transition of the Ketungau Group in time towards terrestrial/fluvially-dominated deposits. Paleocurrent measurements show river systems were complex, but reveal a dominant southern source. This suggests uplift of southern Borneo initiated in the region of the present-day Schwaner Mountains from the latest Cretaceous onwards. Additional sources were local sources in the West Borneo province, Mesozoic melanges to the east and potentially the Malay Peninsula. The Ketungau Group also includes reworked deposits of the Kayan Group. The sediments of the Kuching Supergroup are predominantly

  16. Evolution of Fine-Grained Channel Margin Deposits behind Large Woody Debris in an Experimental Gravel-Bed Flume

    Science.gov (United States)

    ONeill, B.; Marks, S.; Skalak, K.; Puleo, J. A.; Wilcock, P. R.; Pizzuto, J. E.

    2014-12-01

    Fine grained channel margin (FGCM) deposits of the South River, Virginia sequester a substantial volume of fine-grained sediment behind large woody debris (LWD). FGCM deposits were created in a laboratory setting meant to simulate the South River environment using a recirculating flume (15m long by 0.6m wide) with a fixed gravel bed and adjustable slope (set to 0.0067) to determine how fine sediment is transported and deposited behind LWD. Two model LWD structures were placed 3.7 m apart on opposite sides of the flume. A wire mesh screen with attached wooden dowels simulated LWD with an upstream facing rootwad. Six experiments with three different discharge rates, each with low and high sediment concentrations, were run. Suspended sediment was very fine grained (median grain size of 3 phi) and well sorted (0.45 phi) sand. Upstream of the wood, water depths averaged about 0.08m, velocities averaged about 0.3 m/s, and Froude numbers averaged around 0.3. Downstream of the first LWD structure, velocities were reduced tenfold. Small amounts of sediment passed through the rootwad and fell out of suspension in the area of reduced flow behind LWD, but most of the sediment was carried around the LWD by the main flow and then behind the LWD by a recirculating eddy current. Upstream migrating dunes formed behind LWD due to recirculating flow, similar to reattachment bars documented in bedrock canyon rivers partially obstructed by debouching debris fans. These upstream migrating dunes began at the reattachment point and merged with deposits formed from sediment transported through the rootwad. Downstream migrating dunes formed along the channel margin behind the LWD, downstream of the reattachment point. FGCM deposits were about 3 m long, with average widths of about 0.8 m. Greater sediment concentration created thicker FGCM deposits, and higher flows eroded the sides of the deposits, reducing their widths.

  17. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  18. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    Science.gov (United States)

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  19. Denudation of the continental shelf between Britain and France at the glacial–interglacial timescale

    Science.gov (United States)

    Mellett, Claire L.; Hodgson, David M.; Plater, Andrew J.; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-01-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial–interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian–Eemian–early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of

  20. Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale.

    Science.gov (United States)

    Mellett, Claire L; Hodgson, David M; Plater, Andrew J; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-12-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14 C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of

  1. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    Science.gov (United States)

    Bordy, Emese M.; Catuneanu, Octavian

    2001-08-01

    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.

  2. Neutron-photon energy deposition in CANDU reactor fuel channels: a comparison of modelling techniques using ANISN and MCNP computer codes

    International Nuclear Information System (INIS)

    Bilanovic, Z.; McCracken, D.R.

    1994-12-01

    In order to assess irradiation-induced corrosion effects, coolant radiolysis and the degradation of the physical properties of reactor materials and components, it is necessary to determine the neutron, photon, and electron energy deposition profiles in the fuel channels of the reactor core. At present, several different computer codes must be used to do this. The most recent, advanced and versatile of these is the latest version of MCNP, which may be capable of replacing all the others. Different codes have different assumptions and different restrictions on the way they can model the core physics and geometry. This report presents the results of ANISN and MCNP models of neutron and photon energy deposition. The results validate the use of MCNP for simplified geometrical modelling of energy deposition by neutrons and photons in the complex geometry of the CANDU reactor fuel channel. Discrete ordinates codes such as ANISN were the benchmark codes used in previous work. The results of calculations using various models are presented, and they show very good agreement for fast-neutron energy deposition. In the case of photon energy deposition, however, some modifications to the modelling procedures had to be incorporated. Problems with the use of reflective boundaries were solved by either including the eight surrounding fuel channels in the model, or using a boundary source at the bounding surface of the problem. Once these modifications were incorporated, consistent results between the computer codes were achieved. Historically, simple annular representations of the core were used, because of the difficulty of doing detailed modelling with older codes. It is demonstrated that modelling by MCNP, using more accurate and more detailed geometry, gives significantly different and improved results. (author). 9 refs., 12 tabs., 20 figs

  3. Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta

    Directory of Open Access Journals (Sweden)

    J. H. Nienhuis

    2017-09-01

    Full Text Available The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal dynamics or allogenic (external forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.

  4. Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip

    Science.gov (United States)

    Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.

    2008-12-01

    Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute

  5. Human impacts on fluvial systems - A small-catchment case study

    Science.gov (United States)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological

  6. Temporal correlation of fluvial and alluvial sequences in the Makran Range, SE-Iran

    Science.gov (United States)

    Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Dolati, A.; Smit, J.; Burg, J.-P.; Bahroudi, A.; Kubik, P. W.; Baur, H.; Wieler, R.; Haghipour, N.

    2009-04-01

    The Makran region of southeastern Iran is an active accretionary wedge with a partially subaerial component. New investigations have revealed a rather complex geodynamic evolution of the Makran active accretionary wedge that is not yet fully understood in its entity. Ongoing convergence between the Arabian and Eurasian plates and tectonic activity since the late Mesozoic has extended all trough the Quaternary. We focus here on fluvial and alluvial sequences in tectonically separated basins that have been deposited probably in the Pliocene/Quaternary, based on stratigraphic classification in official geological maps, in order to understand the climatic and tectonic forces occurring during the ongoing accretionary wegde formation. Specifically, we investigate the influence of Quaternary climate variations (Pleistocene cold period, monsoonal variations) on erosional and depositional processes in the (semi)arid Makran as well as local and regional tectonic forces in the Coastal and Central Makran Range region. Necessary for such an analysis is a temporal calibration of alluvial and fluvial terrace sequences that will allow an inter-basin correlation. We utilize the exposure age dating method using terrestrial cosmogenic nuclides (TCN) due to the lack of otherwise datatable material in the arid Makran region. Limited radiocarbon data are only available for marine terraces (wave-cut platforms). Our preliminary 21Ne and 10Be TCN-ages of amalgamated clast samples from (un)deformed terrace and alluvial sequences range from ~250 ky to present day (modern wash). These ages agree in relative terms with sequences previously assigned by other investigations through correlation of Quaternary sequences from Central and Western Iran regions. However, our minimum ages suggest that all age sequences are of middle to late Pleistocene age, compared to Pliocene age estimates previously assigned for the oldest units. Although often suggested, a genetical relation and connection of those

  7. Facies Analysis and Sequence Stratigraphy of Missole Outcrops: N’Kapa Formation of the South-Eastern Edge of Douala Sub-Basin (Cameroon)

    OpenAIRE

    Kwetche , Paul; Ntamak-Nida , Marie Joseph; Nitcheu , Adrien Lamire Djomeni; Etame , Jacques; Owono , François Mvondo; Mbesse , Cecile Olive; Kissaaka , Joseph Bertrand Iboum; Ngon , Gilbert Ngon; Bourquin , Sylvie; Bilong , Paul

    2018-01-01

    International audience; Missole facies description and sequence stratigraphy analysis allow a new proposal of depositional environments of the Douala sub-basin eastern part. The sediments of Missole outcrops (N’kapa Formation) correspond to fluvial/tidal channel to shallow shelf deposits with in some place embayment deposits within a warm and semi-arid climate. Integrated sedimentologic, palynologic and mineralogical data document a comprehensive sequence stratigraphy of this part of the Doua...

  8. Deposition and diagenesis of the Brushy Basin Member and upper part of the Westwater Canyon member of the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Bell, T.E.

    1986-01-01

    The Brushy Basin Member and the upper part of the Westwater Canyon Member of the Morrison Formation in northwest New Mexico are nonmarine sedimentary rocks of Late Jurassic age. This stratigraphic interval consists of as many as four lithofacies deposited in fluvial and playa-lake environments. Lithofacies A is composed of crossbed feldspathic sandstone and was deposited by braided streams on an alluvial plain. Lithofacies B is composed of crossbedded feldspathic sandstone and tuffaceous mudstone, and was deposited by braided and anastomosing streams at the distal end of the alluvial plain. Lithofacies C is composed of calcareous, tuffaceous mudstone and was deposited on a mudflat between the alluvial plain and a playa lake. Lithofacies D is composed of zeolitic, tuffaceous mudstone and was deposited in a playa lake. The distribution of diagenetic facies in mudstones and tuffs in the Brushy Basin Member and upper part of the Westwater Canyon Member reflects the pH and salinity gradients common to fluvial/playa-lake systems. The abundant vitric ash in the sediments reacted to form montmorillonite in the fluvial facies. Calcite and montmorillonite were the reaction products where the fluvial and outermost playa facies met. Vitric ash reacted to form clinoptilolite and heulandite along the playa margins. In the center of the playa facies, analcime replaced clinoptilolite, an early zeolite. These early diagenetic minerals were replaced by albite, quartz, and mixed-layer illitemontmorillonite where the Brushy Basin Member and upper part of the Westwater Canyon Member have been deeply buried in the San Juan basin

  9. Martian Fluvial Conglomerates at Gale Crater

    Science.gov (United States)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  10. Displaced/re-worked rhodolith deposits infilling parts of a complex Miocene multistorey submarine channel: A case history from the Sassari area (Sardinia, Italy)

    Science.gov (United States)

    Murru, Marco; Bassi, Davide; Simone, Lucia

    2015-08-01

    In the Sassari area (north-western Sardinia, Italy), the Miocene Porto Torres sub-basin sequences represent the complex multistorey mixed carbonate-siliciclastic submarine feature called the Sassari Channel. During the late Burdigalian-early Serravallian, repeated terrigenous supplies from uplifted Paleozoic crystalline substrata fed the Sassari Channel system by means of turbidity and locally hyper-concentrated turbidity flows. Shelfal areas were the source of terrigenous clasts, but open shelf rhodalgal/foramol carbonate areas were very productive and largely also contributed to the channel infilling. Re-worked sands and skeletal debris were discontinuously re-sedimented offshore as pure terrigenous, mixed and/or carbonate deposits. Major sediment supply was introduced between the latest Burdigalian and the start of the middle Langhian, during which a large amount of carbonate, mixed and siliciclastic sediments reached the Porto Torres Basin (Sassari Channel I). Contributions from shallow proximal source areas typify the lower intervals (Unit A) in marginal sectors of the channel. Upward, these evolve into autochthonous rhodolith deposits, winnowed by strong currents in relatively shallow well lit settings within a complex network of narrow tidally-controlled channels (Unit D) locally bearing coral assemblages. Conversely, re-sedimented rhodoliths from the Units B and C accumulated under conditions of higher turbidity. In deeper parts of the channel taxonomically diversified rhodoliths point to the mixing of re-deposited skeletal components from different relatively deep bathmetric settings. In the latest early Langhian, major re-sedimentation episodes, resulting in large prograding bodies (Unit D), triggered by repeated regression pulses in a frame of persistent still stand. During these episodes photophile assemblages dwelled in the elevated margin sectors of the channel. A significant latest early Langhian drop in relative sea-level resulted in impressive mass

  11. Utilization of alternatives fuels in a fluvial convoy; Utilizacao de combustiveis alternativos em um comboio fluvial

    Energy Technology Data Exchange (ETDEWEB)

    Padovezi, Carlos D; Giraldo, Arnaldo

    1987-12-31

    This work presents the results of tests performed with ethanol and methanol in a fluvial convoy in Tiete river, Sao Paulo State - Southeast Brazil. It also outlines a comparison and evaluation methodology. 9 figs., 3 tabs.

  12. Utilization of alternatives fuels in a fluvial convoy; Utilizacao de combustiveis alternativos em um comboio fluvial

    Energy Technology Data Exchange (ETDEWEB)

    Padovezi, Carlos D.; Giraldo, Arnaldo

    1986-12-31

    This work presents the results of tests performed with ethanol and methanol in a fluvial convoy in Tiete river, Sao Paulo State - Southeast Brazil. It also outlines a comparison and evaluation methodology. 9 figs., 3 tabs.

  13. Evidence for an early land use in the Rhône delta (Mediterranean France) as recorded by late Holocene fluvial paleoenvironments (1640-100 BC)

    Science.gov (United States)

    Arnaud-Fassetta, Gilles; De Beaulieu, Jacques-Louis; Suc, Jean-Pierre; Provansal, Mireille; Williamson, David; Leveau, Philippe; Aloïsi, Jean-Claude; Gadel, François; Giresse, Pierre; Oberlin, Christine; Duzer, Danièle

    The overall objective of this paper is to describe the late Holocene (1640-100 BC) sedimentary and biological evolution of the Rhône-delta-plain, to interpret the sedimentary facies and palynofacies as the result of the effects of fluvial dynamic fluctuations and relative sea level change and to evaluate the paleohydrological constraints in the development of the land use and settlements of the Camargue. Focus is made on the upper part of V III core drilled on NE of the Vaccarès lagoon. By combining sedimentology, palynology, magnetic susceptibility and archeological data, this study allowed to identify the superposition of three types of paleo-environments (marsh, fluvial floodplain, levee/crevasse splay). This sequence indicates a gradual extension of fluvial environments between the end of the second millennium BC and the 1st century BC. The variability of fluvial dynamic is evident during this period with important flood events which contrast with periods of low flow. Pollen record can be a good marker of the fluvial dynamic variability. The expression of the riparian tree pollen grains in the coarser floodplain deposits could correspond to increased fluvial influence and probably to erosion of riverbank during flood events. The local plants are associated to the low energy sedimentary environments. Focuses are made on the relations between the evolution of the environment and land use. The development of the cereal culture in the floodplain of the Rhône delta has been demonstrated between 1640-1410 and 100 BC. The last alluviation of the Rhône perturbs the research of the archaeological sites in the central part of the delta but the existence of the rural villages from the first part of the first millennium BC is highly possible.

  14. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    Science.gov (United States)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  15. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  16. Reconstruction of the Late Holocene river channel shifts in the North-Eastern part of the Lower Danube Plain based on historical data

    Directory of Open Access Journals (Sweden)

    Ionuț-Alexandru CRISTEA

    2014-11-01

    Full Text Available Several periods of increased fluvial activity and accelerated runoff / deposition have been identified during the Holocene in different regions of Europe (Macklin et al, 2006. According to Starkel (2002 the older phases were characterized by an incision of deeper and wider tracks and, since Roman period, especially during the past millennium, tendency had changed to aggradation, braiding and river avulsions. The turn to a more stable fluvial regime caused further incisions and the development of narrow and smaller meanders. All these fluvial responses can be mainly correlated with the climatic fluctuations (cooler and wetter phases alternating with drier and warmer ones, socio-economic changes (increased anthropic pressure or both. The last major period of concentration of extreme meteorological and hydrological events is the Little Ice Age (LIA, which conventionally took place between the 16th and mid 19th century (Lamb, 1984. However in Romania the study of LIA and the associate fluvial effects is rather poor. The data regarding hydro-climatological events (weather conditions, floods in the medieval period (mostly collected by Topor, 1960 is scarce and based on the few local chronicles and diaries of the foreign travelers. However these confirm the increased frequency and magnitude of the rainfalls in the summer (with several important peaks in the 1590 – 1690 interval as well as the hard winters well documented for the rest of the continent. Changes in the configuration of the stream network, due to avulsions, can be evaluated based on historical maps only with the first half of the 17th century and the dating of the fluvial records is still missing.The North-Eastern part of the Lower Danube Plain (Fig. 1 is a large alluvial floodplain where Siret River collects several major tributary streams draining SE Carpathians (Putna, Râmnicu Sărat, Buzău or the Moldavian Tableland (Bârlad, before joining Danube, near Galaţi. Surprisingly Siret

  17. Beaver Activity, Holocene Climate and Riparian Landscape Change Across Stream Scales in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Levine, R.; Meyer, G. A.

    2013-12-01

    Beaver (Castor canadensis) have been part of the fluvial and riparian landscape across much of North America since the Pleistocene, increasing channel habitat complexity and expanding riparian landscapes. The fur trade, however, decimated beaver populations by the 1840s, and other human activities have limited beaver in many areas, including parts of the Greater Yellowstone Ecosystem (GYE). Understanding fluctuations in beaver occupation through the Holocene will aid in understanding the natural range of variability in beaver activity as well as climatic and anthropogenic impacts to fluvial systems. We are developing a detailed chronology of beaver-assisted sedimentation and overall fluvial activity for Odell and Red Rock Creeks (basin areas 83 and 99 km2) in Centennial Valley (CV), Montana, to augment related studies on the long-term effects of beaver on smaller GYE fluvial systems (basin areas 0.1-50 km2). In developing the CV chronology, we use the presence of concentrations of beaver-chewed sticks as a proxy for beaver occupancy. Beaver-stick deposits are found in paleochannel and fluvial terrace exposures. The relative ages of exposures were determined by elevation data from airborne LiDAR and ground surveys. Numerical ages were obtained from 36 14C ages (~30 more are pending) of beaver-stick wood collected during investigation of the stratigraphy. Most beaver-stick deposits are associated with ~ 1 meter of fine-grained sediment, interpreted as overbank deposits, commonly overlying gravelly sand or pebble gravel channel deposits which is consistent with enhanced overbank sedimentation associated with active beaver dams in CV streams. The CV deposits differ from those on smaller GYE streams where beaver-stick deposits are associated with abandoned dams (berms), infilled ponds and laminated sediments. The lack of pond-related deposition associated with CV beaver-stick deposits is consistent with frequent dam breaching (≤ 5 years) in the modern channel of Odell

  18. Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments

    Science.gov (United States)

    Chatmas, E.; Kim, W.

    2015-12-01

    Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is

  19. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    Science.gov (United States)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction

  20. The sedimentary environment of the Beaufort Group Uranium Province in the vicinity of Beaufort West, South Africa

    International Nuclear Information System (INIS)

    Stear, W.M.

    1980-12-01

    Most of the Beaufort Group uranium deposits in the southwestern Karoo are located near the contact of the Abrahamskraal Formation and the Teekloof Formation within a stratigraphic interval of about 500 meters. Rocks of the Lower Beaufort uranium province in the Beaufort West study area occur in thick, fining upwards megacyclic sequences, each of which consists of an arenaceous zone overlain by an argillaceous zone. The morphology and internal geometry of selected channel sandstone bodies are described in plan and cross-section. Lateral and vertical profile diagrams are used to illustrate the salient features of fluvial style in the Abrahamskraal Formation and to compare these characteristics with recognised fluvial facies models. The Abrahamskraal Formation provides a local facies model of an ancient, interior drainage system characterised by a continuously shifting, ephemeral fluvio-lacustrine complex. Semi-arid climatic conditions in the depositional environment promoted the formation of uranium mineralization. The geologic structure and stratigraphy of the area, the facies and their distribution, the channel facies association as well as the geometry of the channel sandstone bodies and the interchannel facies association are discussed

  1. National Uranium Resource Evaluation: Manhattan Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were conducted in the Manhattan Quadrangle, Kansas, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. These studies were designed in part to follow up airborne radiometric and hydrogeochemical and stream-sediment surveys. More than 600 well records were examined in the subsurface phase of the study. Results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone uranium deposits in Cretaceous rocks and for Wyoming roll-type deposits in Pennsylvanian sandstones. The Cretaceous sandstone environments exhibit such favorable characteristics as a bottom unconformity, high bed load, braided fluvial channels, large-scale cross-bedding, and one anomalous outcrop. The Pennsylvanian sandstone environments exhibit such favorable characteristics as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated because not enough data were available include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  2. Fluvial response to the last Holocene rapid climate change in the Northwestern Mediterranean coastlands

    Science.gov (United States)

    Degeai, Jean-Philippe; Devillers, Benoît; Blanchemanche, Philippe; Dezileau, Laurent; Oueslati, Hamza; Tillier, Margaux; Bohbot, Hervé

    2017-05-01

    The variability of fluvial activity in the Northwestern Mediterranean coastal lowlands and its relationship with modes of climate change were analysed from the late 9th to the 18th centuries CE. Geochemical analyses were undertaken from a lagoonal sequence and surrounding sediments in order to track the fluvial inputs into the lagoon. An index based on the K/S and Rb/S ratios was used to evidence the main periods of fluvial activity. This index reveals that the Medieval Climate Anomaly (MCA) was a drier period characterized by a lower fluvial activity, while the Little Ice Age (LIA) was a wetter period with an increase of the river dynamics. Three periods of higher than average fluvial activity were evidenced at the end of the first millennium CE (ca. 900-950 cal yr CE), in the first half of the second millennium CE (ca. 1150-1550 cal yr CE), and during the 1600s-1700s CE (ca. 1650-1800 cal yr CE). The comparison of these fluvial periods with other records of riverine or lacustrine floods in Spain, Italy, and South of France seems to indicate a general increase in fluvial and flood patterns in the Northwestern Mediterranean in response to the climate change from the MCA to the LIA, although some episodes of flooding are not found in all records. Besides, the phases of higher than average fluvial dynamics are in good agreement with the North Atlantic cold events evidenced from records of ice-rafted debris. The evolution of fluvial activity in the Northwestern Mediterranean coastlands during the last millennium could have been driven by atmospheric and oceanic circulation patterns.

  3. The Paleoecology of Vegetation on Pennsylvanian Basin Margins

    DEFF Research Database (Denmark)

    Bashforth, Arden Roy

    deposits are capped by log accumulations, many of which are overlain by abandoned channel mudstones.  It is proposed that flood sediment buildup and log jam development prompted avulsion and channel abandonment, thus providing some of the earliest evidence for the effects of large woody debris on fluvial...... settings.  Such landscapes were characterized by steep gradients and high-energy regimes due to their proximity to uplands, and the prevalence of coarse-grained sediment enhanced soil drainage and hindered peat accumulation. To help resolve the full spectrum of vegetation cover in tropical Euramerica...... on a fluvial megafan under strongly seasonal conditions, gigantic cordaitalean forests dominated the landscape, particularly alongside ephemeral channels.  Floodplains were largely dry and degraded, although pteridosperms, ferns, and lycopsids persisted around poorly drained depressions.  On the Nýrany Member...

  4. The depositional and hydrogeologic environment of tertiary uranium deposits, South Texas uranium province

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1985-01-01

    Uranium ore bodies of the South Texas Uranium Province occur within the most transmissive sand facies of coastal-plain fluvial and shore-zone depositional systems. Host strata range in age from Eocene through Miocene. Ore bodies formed at the fringes of epigenetic oxidation tongues near intrinsic organic debris or iron-disulfide mineral reductants. Mineralized Eocene units, which include the Carrizo and Whitsett Sandstones, subcropped beneath tuffaceous Oligocene through early Miocene coastal plain sediments. Roll-front mineralization occurred because of this direct hydrologic continuity between an aquifer and a uranium source. Most ore occurs within coarse, sand-rich, arid-region, bed-load fluvial systems of the Oligocene through Miocene Catahoula, Oakville, and Goliad Formations. Host sediments were syndepositionally oxidized and leached. Reductant consists predominantly of epigenetic pyrite precipitated from deep, sulfide-rich thermobaric waters introduced into the shallow aquifers along fault zones. Mineralization fronts are commonly entombed within reduced ground. Modern ground waters are locally oxidizing and redistributing some ore but appear incapable of forming new mineralization fronts. (author)

  5. Is Kasei Valles (Mars) the largest volcanic channel in the solar system?

    Science.gov (United States)

    Leverington, David W.

    2018-02-01

    With a length of more than 2000 km and widths of up to several hundred kilometers, Kasei Valles is the largest outflow system on Mars. Superficially, the scabland-like character of Kasei Valles is evocative of terrestrial systems carved by catastrophic aqueous floods, and the system is widely interpreted as a product of outbursts from aquifers. However, as at other Martian outflow channels, clear examples of fluvial sedimentary deposits have proven difficult to identify here. Though Kasei Valles lacks several key properties expected of aqueous systems, its basic morphological and contextual properties are aligned with those of ancient volcanic channels on Venus, the Moon, Mercury, and Earth. There is abundant evidence that voluminous effusions of low-viscosity magmas occurred at the head of Kasei Valles, the channel system acted as a conduit for associated flows, and mare-style volcanic plains developed within its terminal basin. Combined mechanical and thermal incision rates of at least several meters per day are estimated to have been readily achieved at Kasei Valles by 20-m-deep magmas flowing with viscosities of 1 Pa s across low topographic slopes underlain by bedrock. If Kasei Valles formed through incision by magma, it would be the largest known volcanic channel in the solar system. The total volume of magma erupted at Kasei Valles is estimated here to have possibly reached or exceeded ∼5 × 106 km3, a volume comparable in magnitude to those that characterize individual Large Igneous Provinces on Earth. Development of other large outflow systems on Mars is expected to have similarly involved eruption of up to millions of cubic kilometers of magma.

  6. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    Science.gov (United States)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  7. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  8. Modeling plan-form deltaic response to changes in fluvial sediment supply

    NARCIS (Netherlands)

    Nienhuis, J.H.; Ashton, A.D.; Roos, Pieter C.; Hulscher, Suzanne J.M.H.; Giosan, L.; Kranenburg, W.M.; Horstman, E.M.; Wijnberg, K.M.

    2012-01-01

    This study focuses on the effects of changes in fluvial sediment supply on the plan-form shape of wave-dominated deltas. We apply a one-line numerical shoreline model to calculate shoreline evolution after (I) elimination and (II) time-periodic variation of fluvial input. Model results suggest four

  9. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Okwen, Roland [University of Illinois, Champaign, IL (United States); Frailey, Scott [University of Illinois, Champaign, IL (United States); Leetaru, Hannes [University of Illinois, Champaign, IL (United States); Moulton, Sandy [Illinois State Geological Survey, Champaign, IL (United States)

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  10. Marine and fluvial facies modelling at petroleum reservoir scale; Modelisation des heterogeneites lithologiques a l'echelle du reservoir petrolier en milieu marin et fluviatile

    Energy Technology Data Exchange (ETDEWEB)

    Leflon, B.

    2005-10-15

    When modelling a petroleum reservoir, well data are very useful to model properties at a sub-seismic scale. Petrophysical properties like porosity or permeability are linked to the rock-type. Two methods based on well data have been developed to model facies. The first one is used to model marine carbonates deposits. The geometry of sedimentary layers is modelled through a special parameterization of the reservoir similar to Wheeler space. The time parameter is defined along the well paths thanks to correlations. The layer thickness is then extrapolated between wells. A given relationship between facies and bathymetry of sedimentation makes it possible to compute bathymetry along the well paths. Bathymetry is then extrapolated from wells and a reference map using the concept of accommodation. The model created this way is stratigraphically consistent. Facies simulation can then be constrained by the computed bathymetry. The second method describes a novel approach to fluvial reservoirs modelling. The core of the method lies in the association of a fairway with the channels to be simulated. Fairways are positioned so that all data are taken in account; they can be stochastic if unknown or explicitly entered if identified on seismic data. A potential field is defined within the fairway. Specifying a transfer function to map this potential field to thickness results in generating a channel inside the fairway. A residual component is stochastically simulated and added to the potential field creating realistic channel geometries. Conditioning to well data is obtained by applying the inverse transfer function at the data location to derive thickness values that will constrain the simulation of residuals. (author)

  11. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    Science.gov (United States)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  12. Geological principles of exploration for sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Le Roux, J.P.

    1982-10-01

    Although the importance of sandstone-hosted uranium deposits has seemingly faded in recent years due to the discovery of large, high -grade deposits elsewhere, a forecasted energy shortage in the near future will probably necessitate a new look at sedimentary basins as a source of uranium. Back-arc basins adjacent to calcalkaline source areas are especially favourable if they are filled with fluvial, post-Devonian sediments. Syn- and post-depositional tectonics play an important role in the sedimentation-mineralisation process and should be investigated. The oxidation-reduction state of the sandstones is a valid prospecting tool. Sedimentological environments govern the permeability and vegetal matter content of sandstones and directly control uranium mineralisation

  13. Progress on channel spark development and application of pulsed electron beam deposition (PED) in the field of medical coating work

    International Nuclear Information System (INIS)

    Schultheiss, Christoph; Buth, Lothar-H.-O.; Frey, Wolfgang; Bluhm, Hansjoachim; Mayer, Hanns-G.

    2002-01-01

    A promising source for Pulsed Electron Beam Deposition (PED) is the channel spark. Recent improvements helped to reduce beam instabilities which up to now have limited the life time of the system. The beam power could be increased and because of better beam quality the transport length of the beam is increased from 1 to several centimeters (up to 10 cm). Together with other improvements on the triggering system and beam transport in dielectric tubes, the channel spark approaches industrial standards. An overview of actual applications in research and industry will be presented. An attractive feature of the pulsed electron beam thin film deposition is the conservation of stoichiometry even during deposition of multi-component earth-alkali and alkali glasses. Specially developed glasses like BIOGLAS registered have the ability to anchor soft living tissue at the surface. In form of a bulk material bio active glasses are brittle limiting its applications. Contrary to brittle bulk material a thin layers on medical implants exhibits reliable bio-functionality. Coating of implants with this category of materials is subject of the European INCOMED project (Innovative Coating of Medical Implants with Soft Tissue Anchoring Ability) which just has started

  14. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 1: Genus-Level Relationships with Geomorphic Typologies

    Directory of Open Access Journals (Sweden)

    Anna G. N. Meissner

    2016-01-01

    Full Text Available Modern river ecosystems undergo constant stress from disturbances such as bank stabilization, channelization, dams, and municipal, agricultural, and industrial water use. As these anthropogenic water requirements persist, more efficient methods of characterizing river reaches are essential. Benthic macroinvertebrates are helpful when evaluating fluvial health, because they are often the first group to react to contaminants that can then be transferred through them to other trophic levels. Hence, the purpose of this research is to use a geospatial model to differentiate instream macroinvertebrate habitats, and determine if the model is a viable method for stream evaluation. Through the use of ArcGIS and digital elevation models, the fluvial geomorphology of the Qu’Appelle River in Saskatchewan (SK was assessed. Four geomorphological characteristics of the river were isolated (sinuosity, slope, fractal dimension, and stream width and clustered through Principle Component Analysis (PCA, yielding sets of river reaches with similar geomorphological characteristics, called typologies. These typologies were mapped to form a geospatial model of the river. Macroinvertebrate data were aligned to the locations of the typologies, revealing several relationships with the fluvial geomorphology. A Kruskal-Wallis analysis and post hoc pairwise multiple comparisons were completed with the macroinvertebrate data to pinpoint significant genera, as related to the geospatial model.

  15. Contemporary Conceptual Approaches in Fluvial Geomorphology

    Directory of Open Access Journals (Sweden)

    Mônica dos Santos Marçal

    2016-06-01

    Full Text Available Contemporary fluvial geomorphology faces challenging questions, especially as it goes by understanding the Late Holocene/Anthropocene period, which has repercussions today and are intrinsically important to understand the human river disturbance. Given the scale that physical rates operate in complex river systems, two conceptual paths were developed to analyze the spatial and temporal organization. The network view emphasizes controls on catchment-scale and a reach approach focuses on discontinuity and local controls. Fluvial geomorphology has seek to understand the organization of complex river systems from the integrated view of the continuity and discontinuity paradigm. This integrated approach has stimulated within the geomorphology, the emergence of new theoretical-methodological instruments. It is recognized that rivers management is an ongoing process, part of the socio-cultural development, which refers to both a social movement and scientific exercise.

  16. Ground penetrating radar images of selected fluvial deposits in the Netherlands

    NARCIS (Netherlands)

    Berghe, J. van den; Overmeeren, R.A. van

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  17. Ground penetrating radar images of selected fluvial deposits in the Netherlands.

    NARCIS (Netherlands)

    Vandenberghe, J.; van Overmeeren, R.A.

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  18. A Conceptual Framework and Classification for the Fluvial-Backwater-Marine Transition in Coastal Rivers Globally

    Science.gov (United States)

    Howes, N. C.; Georgiou, I. Y.; Hughes, Z. J.; Wolinsky, M. A.

    2012-12-01

    Channels in fluvio-deltaic and coastal plain settings undergo a progressive series of downstream transitions in hydrodynamics and sediment transport, which is consequently reflected in their morphology and stratigraphic architecture. Conditions progress from uniform fluvial flow to backwater conditions with non-uniform flow, and finally to bi-directional tidal flow or estuarine circulation at the ocean boundary. While significant attention has been given to geomorphic scaling relationships in purely fluvial settings, there have been far fewer studies on the backwater and tidal reaches, and no systematic comparisons. Our study addresses these gaps by analyzing geometric scaling relationships independently in each of the above hydrodynamic regimes and establishes a comparison. To accomplish this goal we have constructed a database of planform geometries including more than 150 channels. In terms of hydrodynamics studies, much of the work on backwater dynamics has concentrated on the Mississippi River, which has very limited tidal influence. We will extend this analysis to include systems with appreciable offshore tidal range, using a numerical hydrodynamic model to study the interaction between backwater dynamics and tides. The database is comprised of systems with a wide range of tectonic, climatic, and oceanic forcings. The scale of these systems, as measured by bankfull width, ranges over three orders of magnitude from the Amazon River in Brazil to the Palix River in Washington. Channel centerlines are extracted from processed imagery, enabling continuous planform measurements of bankfull width, meander wavelength, and sinuosity. Digital terrain and surface models are used to estimate floodplain slopes. Downstream tidal boundary conditions are obtained from the TOPEX 7.1 global tidal model, while upstream boundary conditions such as basin area, relief, and discharge are obtained by linking the databases of Milliman and Meade (2011) and Syvitski (2005). Backwater

  19. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    Science.gov (United States)

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  20. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  1. Evaluation of droplet deposition in rod bundle

    International Nuclear Information System (INIS)

    Ji, W.; Gu, C.Y.; Anglart, H.

    1997-01-01

    Deposition model for droplets in gas droplet two-phase flow in rod bundle is developed in this work using the Lagrangian method. The model is evaluated in a 9-rod bundle geometry. The deposition coefficient in the bundle geometry are compared with that in round tube. The influences of the droplet size and gas mass flow rate on deposition coefficient are investigated. Furthermore, the droplet motion is studied in more detail by dividing the bundle channel into sub-channels. The results show that the overall deposition coefficient in the bundle geometry is close to that in the round tube with the diameter equal to the bundle hydraulic diameter. The calculated deposition coefficient is found to be higher for higher gas mass flux and smaller droplets. The study in the sub-channels show that the ratio between the local deposition coefficient for a sub-channel and the averaged value for the whole bundle is close to a constant value, deviations from the mean value for all the calculated cases being within the range of ±13%. (author)

  2. Latest Pleistocene and Holocene surficial deposits and landforms of Yosemite Valley, California

    Science.gov (United States)

    Haddon, E. K.; Stock, G. M.; Booth, D. B.

    2016-12-01

    Field studies on the surficial geology and geomorphology of Yosemite Valley since the 1870's formed an early basis for our understanding of Quaternary landscape evolution in the central Sierra Nevada. These landmark studies described the erosional origin of Yosemite's iconic scenery, but left details of the latest Pleistocene and Holocene sedimentary record for later investigation. We combined mapping of deposits and landforms with geochronology to reconstruct the geomorphic evolution of Yosemite Valley since the 15 ka retreat of the Last Glacial Maximum (LGM) valley glacier. We document a sustained period of relative landscape stability, characterized by valley-bottom aggradation of glacial till, fluvial sediments, and lacustrine silts, as well as valley-margin accumulation of talus and fan alluvium. Recessional moraines, episodically emplaced rock avalanches, and alluvial fans impeded surface flow and controlled the local base level. This predominantly aggradational regime then shifted to incision in the earliest Holocene, likely due to a diminishing supply of glacial sediment, and created a flight of fluvial terraces inset by up to 9 m. The volume of fringing talus and fan alluvium in comparison with fluvial terrace sequences emphasizes the importance of valley-wall erosion as a sediment source. Cosmogenic 10Be exposure ages from rock avalanche boulders and 14C charcoal ages from deltaic sequences and inset fluvial gravels suggest variable rates of Holocene river incision. Although some incision events likely record local base level changes at the El Capitan LGM recessional moraine, the presence of perched, well-developed outwash terraces downstream indicates a more regional climatic forcing. These findings, including the depositional record of land-use disturbances over the past two centuries, help illuminate the geologic evolution of this celebrated landscape and inform ongoing river-restoration work.

  3. Distribution of Ordinary High Water Mark (OHWM) Indicators and Their Reliability in Identifying the Limits of "Waters of the United States" in Arid Southwestern Channels

    National Research Council Canada - National Science Library

    Lichvar, Robert W; Finnegan, David C; Ericsson, Michael P; Ochs, Walter

    2006-01-01

    .... COE hydrologic models require detailed site information for rainfall and stream flow characteristics, as well as on-site surveys to determine channel morphology, width, fluvial patterns, slope...

  4. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    Science.gov (United States)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to

  5. Unit-bar migration and bar-trough deposition: impacts on hydraulic conductivity and grain size heterogeneity in a sandy streambed

    Science.gov (United States)

    Korus, Jesse T.; Gilmore, Troy E.; Waszgis, Michele M.; Mittelstet, Aaron R.

    2018-03-01

    The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity ( K v) is highly variable in space and time, and controls the rate of stream-aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10-20 cm of water and migrated 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low- K v zones formed in the subsequent heterogeneous bar downstream of the original 15-40-cm-thick bar front and past abandoned bridge pilings. These low- K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.

  6. Trace element partitioning in fluvial tufa reveals variable portions of biologically influenced calcite precipitation

    Science.gov (United States)

    Ritter, Simon M.; Isenbeck-Schröter, Margot; Schröder-Ritzrau, Andrea; Scholz, Christian; Rheinberger, Stefan; Höfle, Bernhard; Frank, Norbert

    2018-03-01

    The formation of tufa is essentially influenced by biological processes and, in order to infer environmental information from tufa deposits, it has to be determined how the geochemistry of biologically influenced tufa deviates from equilibrium conditions between water and calcite precipitate. We investigated the evolution of the water and tufa geochemistry of consecutive tufa barrages in a small tufa-depositing creek in Southern Germany. High incorporation of divalent cations into tufa is ubiquitous, which is probably promoted by an influence of biofilms in the tufa element partitioning. The distribution coefficients for the incorporation of Mg, Sr and Ba into tufa at the Kaisinger creek D(Mg), D(Sr) and D(Ba) are 0.020-0.031, 0.13-0.18 and 0.26-0.43, respectively. This agrees with previous research suggesting that biofilm influenced tufa will be enriched in divalent cations over equilibrium values in the order of Mg formation with likely higher distribution coefficients and inorganically-driven tufa formation with likely lower distribution coefficients. Additionally, the distribution coefficients of metals in tufa of the Kaisinger creek D(Cd), D(Zn), D(Co) and D(Mn) show values of 11-22, 2.2-12, 0.7-4.9 and 30-57, respectively. These metals are highly enriched in upstream tufa deposits and their contents in tufa strongly decrease downstream. Such highly compatible elements could therefore be used to distinguish easily between different lateral sections in fluvial barrage-dam tufa depositional systems and could serve as a useful geochemical tool in studying ancient barrage-dam tufa depositional systems.

  7. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    Science.gov (United States)

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Spatial variability in channel and slope morphology within the Ardennes Massif, and its link with tectonics

    Science.gov (United States)

    Sougnez, N.; Vanacker, V.

    2010-09-01

    Geomorphic processes that produce and transport sediment, and incise river valleys are complex; and often difficult to quantify over longer timescales of 103 to 105 years. Morphometric indices that describe the topography of hill slopes, valleys and river channels have commonly been used to compare morphological characteristics between catchments and to relate them to hydrological and erosion processes. This work focuses on a wide range of slope and river channel morphometric indices to study their behavior and strength in regions affected by low to moderate tectonic activity. We selected 10 catchments of about 150 to 250 km2 across the Ardennes Massif that cover various tectonic domains with uplift rates ranging from about 0.06 to 0.20 mm year-1 since mid-Pleistocene times. The morphometric analysis indicates that the slope and channel morphology of third-order catchments is not yet in topographic steady-state, and exhibits clear convexities in slope and river profiles. Our data indicate that the fluvial system is the main driver of topographic evolution and that the spatial pattern of uplift rates is reflected in the distribution of channel steepness and convexity. The spatial variation that we observe in slope and channel morphology between the 10 third-order catchments suggests that the response of the fluvial system was strongly diachronous, and that a transient signal of adjustment is migrating from the Meuse valley towards the Ardennian headwaters.

  9. Morrowan stratigraphy, depositional systems, and hydrocarbon accumulation, Sorrento field, Cheyenne County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, D.M.; Kidwell, M.R.

    1983-08-01

    The Sorrento field, located on the western flank of the present-day Las Animas arch in western Cheyenne County, Colorado, has approximately 29 million bbl of oil and 12 bcf of gas in place in sandstones of the Lower Pennsylvanian Morrow units. The sandstones were deposited in a fluvially dominated deltaic system, and the trap for the hydrocarbon accumulation is formed by pinch-out of this deltaic system onto regional dip. The primary reservoirs are point-bar deposits. At the Sorrento field, the basal Keyes limestone member of the Morrow formation rests unconformably on the Mississippian St. Louis Formation. Above the Keyes limestone, the Morrow shale is 180 to 214 ft (55 to 65 m) thick, and locally contains reservoir sands. Gas/oil and oil/water contacts are not uniform through the field owing to discontinuities between separate point bars. One such discontinuity is formed by an apparent mud plug of an abandoned channel separating two point bars on the southeastern end of the field. In a well 7000 ft (2100 m) from the edge of the meander belt, the regressive sequence is represented by a shoreline siltstone unit 8 ft (2 m) thick with flaser bedding, graded bedding, load structures, and rare wave-ripple cross-bedding overlain by 3 ft (1 m) of flood-plain mudstone and coal with no indication of proximity to a nearby sand system.

  10. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  11. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand

    Science.gov (United States)

    Flores, R.M.; Sykes, R.

    1996-01-01

    , barrier shoreface, tidal and mire) and marine environments. The fluvial sandstone lithofacies accumulated in channels during a sea-level stillstand. The channels were infilled by coeval braided and meandering streams prior to transgression. Continued transgression, ranging from tidal channel-estuarine incursions to widespread but uneven paleoshoreline encroachment, accompanied by moderate basin subsidence, is marked by a stacked, back-stepping geometry of bioturbated sandstone and marine mudstone lithofacies. Final retrogradation (sea-level highstand) is marked by backfilling of estuaries and by rapid landward deposition of the marine Kaiata Formation in the late Eocene.

  12. Uraniferous surficial deposits in Southern Africa

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Wagener, G.F.

    1986-01-01

    Surficial uranium deposits are located in the north-western Cape Province of South Africa, in the Namib Desert east of Walvis Bay in South West Africa/Namibia and in the Serule Block of Botswana. They have been classified into the valley-fill, lacustrine, and pedogenic types. Carnotite is the main uranium-bearing mineral in the larger surficial deposits, with other minerals such as soddyite and phosphuranylite occurring locally. Uraninite or urano-organic complexes occur in the reducing environments of the diatomaceous earth, peat-rich deposits. Economically, the valley-fill type is the most important, with the largest deposits occurring in South West Africa/Namibia. In South West Africa/Namibia the valley-fill surficial uranium deposits occur in the Tumas and Langer Heinrich formations of the Teriary to Recent Namib Group. The Tubas, Langer Heinrich, and Welwitchia deposits are discussed: in them, carnotite occurs in calcareous and gypsiferous fluvial gravels. The pedogenic deposit at Mile 72 occurs in weathered granite and overlying gypcrete and has little economic potential. The economic potential of the surficial deposits in the north-western Cape Province is very limited in comparison with their South West African/Namibian counterparts, but the most important deposits are the lacustrine type, in particular those containing peat and diatomaceous earth. The mechanisms for the precipitation and preservation of the uranium are discussed

  13. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    Science.gov (United States)

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  14. An analysis of plant species distributions on the floodplain of the ...

    African Journals Online (AJOL)

    Furthermore, several ruderal species were restricted to elevated sites in close proximity to the channel, occurring on recently formed point bars which are the product of fluvial processes. Disturbance in the form of sediment deposition on point bars is thus an important determinant of species distribution on floodplains of the ...

  15. Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange

    Science.gov (United States)

    John M. Buffington; Daniele Tonina

    2009-01-01

    We propose that the mechanisms driving hyporheic exchange vary systematically with different channel morphologies and associated fluvial processes that occur in mountain basins, providing a framework for examining physical controls on hyporheic environments and their spatial variation across the landscape. Furthermore, the spatial distribution of hyporheic environments...

  16. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA

    Science.gov (United States)

    Levine, Rebekah; Meyer, Grant A.

    2014-01-01

    Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment

  17. Early Permian transgressive-regressive cycles: Sequence stratigraphic reappraisal of the coal-bearing Barakar Formation, Raniganj Basin, India

    Science.gov (United States)

    Bhattacharya, Biplab; Bhattacharjee, Joyeeta; Bandyopadhyay, Sandip; Banerjee, Sudipto; Adhikari, Kalyan

    2018-03-01

    The present research is an attempt to assess the Barakar Formation of the Raniganj Gondwana Basin, India, in the frame of fluvio-marine (estuarine) depositional systems using sequence stratigraphic elements. Analysis of predominant facies associations signify deposition in three sub-environments: (i) a river-dominated bay-head delta zone in the inner estuary, with transition from braided fluvial channels (FA-B1) to tide-affected meandering fluvial channels and flood plains (FA-B2) in the basal part of the succession; (ii) a mixed energy central basin zone, which consists of transitional fluvio-tidal channels (FA-B2), tidal flats, associated with tidal channels and bars (FA-B3) in the middle-upper part of the succession; and (iii) a wave-dominated outer estuary (coastal) zone (FA-B4 with FA-B3) in the upper part of the succession. Stacked progradational (P1, P2)-retrogradational (R1, R2) successions attest to one major base level fluctuation, leading to distinct transgressive-regressive (T-R) cycles with development of initial falling stage systems tract (FSST), followed by lowstand systems tract (LST) and successive transgressive systems tracts (TST-1 and TST-2). Shift in the depositional regime from regressive to transgressive estuarine system in the early Permian Barakar Formation is attributed to change in accommodation space caused by mutual interactions of (i) base level fluctuations in response to climatic amelioration and (ii) basinal tectonisms (exhumation/sagging) related to post-glacial isostatic adjustments in the riftogenic Gondwana basins.

  18. National Uranium Resource Evaluation: Hutchinson Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.; Gundersen, J.N.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were done within the Hutchinson Quadrangle, Kansas, to evaluate uranium favorability in accordance with National Uranium Resource Evaluation criteria. These studies were designed in part to follow up prior airborne radiometric, hydrogeochemical, and stream-sediment surveys. Over 4305 well records were examined in the subsurface phase of this study. The results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone deposits in rocks of Cretaceous age and for Wyoming and Texas roll-type deposits in sandstones of Pennsylvanian age. The Cretaceous sandstone environments exhibit favorable characteristics such as a bottom unconformity; high bedload; braided, fluvial channels; large-scale cross-bedding; and an anomalous outcrop. The Pennsylvanian sandstone environments exhibit favorable characteristics such as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated due to insufficient data include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  19. Sediment dynamics in the Rhine catchment : Quantification of fluvial response to climate change and human impact

    NARCIS (Netherlands)

    Erkens, G.

    2009-01-01

    Fluvial systems are strongly responsive to changes in climate and land use — but take their time to show it. Accurate prediction of the timing and degree of future fluvial response requires comprehensive understanding of fluvial response in the past. This PhD-thesis studied the response of the river

  20. River response to climate and sea level changes during the Late Saalian/Early Eemian in northern Poland – a case study of meandering river deposits in the Chłapowo cliff section

    Directory of Open Access Journals (Sweden)

    Moskalewicz Damian

    2016-03-01

    Full Text Available Fluvial sediments in the Chłapowo cliff section were studied in order to reconstruct their palaeoflow conditions and stratigraphical position. Lithofacies, textural and palaeohydraulic analyses as well as luminescence dating were performed so as to achieve the aim of study. Sedimentary successions were identified as a record of point bar cycles. The fluvial environment probably functioned during the latest Saalian, shortly after the retreat of the Scandinavian Ice Sheet. Discharge outflow was directed to the northwest. The river used the older fluvioglacial valley and probably was directly connected to the Eem Sea. Good preservation and strong aggradation of point-bar cycles were related to a rapid relative base level rise. The meandering river sediments recognised showed responses to climate and sea level changes as illustrated by stratigraphical, morphological and sedimentological features of the strata described. The present study also revealed several insights into proper interpretation of meandering fluvial successions, in which the most important were: specific lithofacies assemblage of GSt (St, Sp → Sl → SFrc → Fm (SFr and related architectural elements: channel/sandy bedforms CH/SB → lateral accretion deposits LA → floodplain fines with crevasse splays FF (CS; upward-fining grain size and decreasing content of denser heavy minerals; estimated low-energy flow regime with a mean depth of 1.6–3.3 m, a Froude number of 0.2–0.4 and a sinuosity of 1.5.

  1. GOEMORFOLOGIA FLUVIAL DA BACIA HIDROGRÁFICA DO RIO DE ONDAS

    Directory of Open Access Journals (Sweden)

    Ossifleres Silva Damasceno

    2011-10-01

    Full Text Available Os estudos de Geomorfologia Fluvial para analise de Bacias Hidrográficas vêm tendo nos últimos tempos grande importância, tanto para se conhecer as características de determinadas bacias como para se planejar o uso de tais recursos. Neste sentido, este trabalho foi efetuado no intuito de somar aos estudos anteriormente executados nessa bacia, levantando algumas características geomorfológicas, o uso e ocupação atual. Palavras-chaves: geomorfologia fluvial, hidrografia, agricultura irrigada.

  2. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: annual, decadal, centennial scales

    Science.gov (United States)

    Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.

    2015-01-01

    The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.

  3. Surficial geological tools in fluvial geomorphology: Chapter 2

    Science.gov (United States)

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  4. Near-census Delineation of Laterally Organized Geomorphic Zones and Associated Sub-width Fluvial Landforms

    Science.gov (United States)

    Pasternack, G. B.; Hopkins, C.

    2017-12-01

    A river channel and its associated riparian corridor exhibit a pattern of nested, geomorphically imprinted, lateral inundation zones (IZs). Each zone plays a key role in fluvial geomorphic processes and ecological functions. Within each zone, distinct landforms (aka geomorphic or morphological units, MUs) reside at the 0.1-10 channel width scale. These features are basic units linking river corridor morphology with local ecosystem services. Objective, automated delineation of nested inundation zones and morphological units remains a significant scientific challenge. This study describes and demonstrates new, objective methods for solving this problem, using the 35-km alluvial lower Yuba River as a testbed. A detrended, high-resolution digital elevation model constructed from near-census topographic and bathymetric data was produced and used in a hypsograph analysis, a commonly used method in oceanographic studies capable of identifying slope breaks at IZ transitions. Geomorphic interpretation mindful of the river's setting was required to properly describe each IZ identified by the hypsograph analysis. Then, a 2D hydrodynamic model was used to determine what flow yields the wetted area that most closely matches each IZ domain. The model also provided meter-scale rasters of depth and velocity useful for MU mapping. Even though MUs are discharge-independent landforms, they can be revealed by analyzing their overlying hydraulics at low flows. Baseflow depth and velocity rasters are used along with a hydraulic landform classification system to quantitatively delineate in-channel bed MU types. In-channel bar and off-channel flood and valley MUs are delineated using a combination of hydraulic and geomorphic indicators, such as depth and velocity rasters for different discharges, topographic contours, NAIP imagery, and a raster of vegetation. The ability to objectively delineate inundation zones and morphological units in tandem allows for better informed river management

  5. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    Science.gov (United States)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  6. Longitudinal Variation in Paleo-channel Complex Geometry and Associated Fill: Offshore South Carolina

    Science.gov (United States)

    Long, A. M.; Hill, J. C.

    2017-12-01

    In northeastern South Carolina, several shallow (migration of the ancestral Pee Dee River system along the southern limb of the Cape Fear Arch since the Pliocene. These paleo-channel complexes can be traced 80 km across the continental shelf via Boomer and Chirp subbottom data. The Murrells Inlet paleo-channel complex is the most well imaged offshore; and this data coverage provides an opportunity for a detailed seismic stratigraphic interpretation and analysis of downstream variability. Initial observations from this case study indicate that inner shelf incisions, where bedrock is folded and faulted, tend to be shallow with numerous channels, while the incisions across the middle shelf appear to be deeper and contains larger, more sinuous channels that are cut into broadly tilted strata with a gentle south-southeastward dip. This suggests the geometry and spatial distribution of the incisions were a function of the inherited fabric of the underlying basement, which created local deflection and areas of aggradation and degradation. The inner shelf paleo-channel complex fill is dominated by fluvial cut and fill seismic facies, while the middle shelf contains a wide variety of seismic facies (i.e. transparent, layered, chaotic, etc). This overall longitudinal fill pattern is most likely due to each location's general proximity to base level. The variation in the cut and fill seismic facies may be driven by substantial changes in discharge, driven locally by the joining of another major river or by climatic changes in the drainage basin. There also appears to be preferential reoccupation of previously filled paleo-channels, as the basement in this region is Tertiary and Cretaceous carbonates and siliciclastic rocks that are more resistant to erosion. The most recent occupation in any given paleo-channel tends to be on the southern margin, which may imply tectonic forcing from the uplift of the Cape Fear Arch. Preliminary results from this case study suggest that first

  7. Turning the tide: estuarine bars and mutually evasive ebb- and flood-dominated channels

    Science.gov (United States)

    Kleinhans, M. G.; Leuven, J.; van der Vegt, M.; Baar, A. W.; Braat, L.; Bergsma, L.; Weisscher, S.

    2015-12-01

    Estuaries have perpetually changing and interacting channels and shoals formed by ebb and flood currents, but we lack a descriptive taxonomy and forecasting model. We explore the hypotheses that the great variation of bar and shoal morphologies are explained by similar factors as river bars, namely channel aspect ratio, sediment mobility and limits on bar erosion and chute cutoff caused by cohesive sediment. Here we use remote sensing data and a novel tidal flume setup, the Metronome, to create estuaries or short estuarine reaches from idealized initial conditions, with and without mud supply at the fluvial boundary. Bar width-depth ratios in estuaries are similar to those in braided rivers. In unconfined (cohesionless) experimental estuaries, bar- and channel dynamics increase with increasing river discharge. Ebb- and flood-dominated channels are ubiquitous even in entirely straight sections. The apparent stability of ebb- and flood channels is partly explained by the inherent instability of symmetrical channel bifurcations as in rivers.

  8. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    Science.gov (United States)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  9. The Gediz River fluvial archive : A benchmark for Quaternary research in Western Anatolia

    NARCIS (Netherlands)

    Maddy, D.; Veldkamp, A.; Demir, T.; van Gorp, W.; Wijbrans, J.R.; van Hinsbergen, D.J.J.; Dekkers, M.J.; Schreve, D.; Schoorl, J.M.; Scaife, R.; Stemerdink, C.; van der Schriek, T.; Bridgland, D.R.; Aytaç, A.S.

    2017-01-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River

  10. Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion

    Science.gov (United States)

    Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike

    2013-04-01

    While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).

  11. Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: New evidence for late Pleistocene climate

    Science.gov (United States)

    Sancho, Carlos; Arenas, Concha; Pardo, Gonzalo; Peña-Monné, José Luis; Rhodes, Edward J.; Bartolomé, Miguel; García-Ruiz, José M.; Martí-Bono, Carlos

    2018-04-01

    Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity.

  12. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts

    Science.gov (United States)

    Restrepo, Juan D.; Escobar, Rogger; Tosic, Marko

    2018-02-01

    Fluxes of continental runoff and sediments as well as downstream deposition of eroded soils have severely altered the structure and function of fluvial and deltaic-estuarine ecosystems. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers important amounts of water and sediments into Cartagena Bay, a major estuarine system in northern Colombia. Until now, trends in fluvial fluxes into the bay, as well as the relationship between these tendencies in fluvial inputs and associated upstream changes in the Magdalena catchment, have not been studied. Here we explore the interannual trends of water discharge and sediment load flowing from the Magdalena River-Canal del Dique system into Cartagena Bay during the last three decades, forecast future scenarios of fluxes into the bay, and discuss possible connections between observed trends in fluvial inputs and trends in human intervention in the Magdalena River basin. Significant upward trends in annual runoff and sediment load during the mid-1980s, 1990s, and post-2000 are observed in the Magdalena and in the Canal del Dique flowing into Cartagena Bay. During the last decade, Magdalena streamflow and sediment load experienced increases of 24% and 33%, respectively, compared to the pre-2000 year period. Meanwhile, the Canal del Dique witnessed increases in water discharge and sediment load of 28% and 48%, respectively. During 26 y of monitoring, the Canal del Dique has discharged 177 Mt of sediment to the coastal zone, of which 52 Mt was discharged into Cartagena Bay. Currently, the Canal drains 6.5% and transports 5.1% of the Magdalena water discharge and sediment load. By 2020, water discharge and sediment flux from the Canal del Dique flowing to the coastal zone will witness increments of 164% and 260%, respectively. Consequently, sediment fluxes into Cartagena Bay will witness increments as high as 8.2 Mt y- 1 or 317%. Further analyses of upstream sediment load series for 21

  13. Morphology of channels and channel-sand bodies in the Glauconitic sandstone member (Upper Mannville), Little Bow area, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, J.C.; Hermanson, S.W.; Lawton, D.C.

    1982-12-01

    Large channels in the Glauconitic sandstone member of southern Alberta have proved to be difficult exploration targets because of an irregular distribution of reservoir sands within the channels. In the Little Bow area, two channels are present in the lower part of the Glauconitic member and have cut into the underlying Calcareous member. The channels can be recognized where they truncate regional markers of the Calcareous member -- the Bantry shale and Ostracod limestone, and where channel-fill deposits exhibit uniform geophysical log characters, indicating sandstone- or mudstone-filled reaches. Sediments of the Glauconitic member adjacent to the channels comprise a series of splay sandstones and mudstones that prograded into interdistributary bays of the lower delta plain. The two channels associated with these deposits are interpreted as distributary channels. Sand bodies within the channels formed as lateral bars and are isolated by mudstones which mark the abandoned stream course. Geological exploration for these discontinuous channel sandstones is difficult, and high-resolutio seismic data integrated with sound geologic modelling are critical for successful prospect delineation.

  14. Cellular modelling of river catchments and reaches: Advantages, limitations and prospects

    Science.gov (United States)

    Coulthard, T. J.; Hicks, D. M.; Van De Wiel, M. J.

    2007-10-01

    The last decade has witnessed the development of a series of cellular models that simulate the processes operating within river channels and drive their geomorphic evolution. Their proliferation can be partly attributed to the relative simplicity of cellular models and their ability to address some of the shortcomings of other numerical models. By using relaxed interpretations of the equations determining fluid flow, cellular models allow rapid solutions of water depths and velocities. These can then be used to drive (usually) conventional sediment transport relations to determine erosion and deposition and alter the channel form. The key advance of using these physically based yet simplified approaches is that they allow us to apply models to a range of spatial scales (1-100 km 2) and time periods (1-100 years) that are especially relevant to contemporary management and fluvial studies. However, these approaches are not without their limitations and technical problems. This paper reviews the findings of nearly 10 years of research into modelling fluvial systems with cellular techniques, principally focusing on improvements in routing water and how fluvial erosion and deposition (including lateral erosion) are represented. These ideas are illustrated using sample simulations of the River Teifi, Wales. A detailed case study is then presented, demonstrating how cellular models can explore the interactions between vegetation and the morphological dynamics of the braided Waitaki River, New Zealand. Finally, difficulties associated with model validation and the problems, prospects and future issues important to the further development and application of these cellular fluvial models are outlined.

  15. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition

    International Nuclear Information System (INIS)

    Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.

    2014-01-01

    Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm 2 V -1 s -1 , a subthreshold swing of 0.29 V/decade and an on/off current ratio of 10 9 .

  16. Upstream effects of dams on alluvial channels: state-of-the-art and future challenges

    Science.gov (United States)

    Liro, Maciej

    2017-04-01

    More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland

  17. Natural radionuclide behaviour in the fluvial environment

    International Nuclear Information System (INIS)

    Murray, A.S.; Olley, J.M.; Wallbrink, P.J.

    1992-01-01

    Variable concentrations of uranium and thorium series nuclides and 7 Be have been measured in soils and sediments. Strong correlations between 226 Ra and thorium series nuclides were found in sediments but not in soils. Laboratory measurements suggest the correlations arise from particle size and density dependent transport, and transport-related abrasion of iron oxide coatings. These correlations are characteristic of the sampled location, and provide a method for identifying the source areas which dominate the fluvial nuclide flux, and by implication, the associated sediment flux. Cosmogenic 7 Be (half-life 53 d) also contributes to nuclide fluxes. Over an 18 month period, individual rainstorms increased the 7 Be soil inventory by 10% on average. Dry precipitation contributed less than 10% to the total. Most 7 Be was retained within the top few millimetres of soil. It is deduced that 7 Be presence in fluvial sediments indicates a significant surface source contribution to the overall nuclide and sediment flux. (author)

  18. The influence of fluvial reservoir architecture on geothermal energy production in Hot Sedimentary Aquifers

    NARCIS (Netherlands)

    Willems, C.J.L.

    2014-01-01

    Currently six geothermal doublets are realized in the WNB. Five of these doublets target the same Lower Cretaceous fluvial sandstone interval, the Nieuwerkerk Formation. About 40 exploration licences are granted. Many of them also have sandstones in the same fluvial interval, the Nieuwerkerk

  19. Trends in publications in fluvial geomorphology over two decades: A truly new era in the discipline owing to recent technological revolution?

    Science.gov (United States)

    Piégay, Hervé; Kondolf, G. Mathias; Minear, J. Toby; Vaudor, Lise

    2015-01-01

    Trends in the field of fluvial geomorphology have been reviewed by a number of authors, who have emphasized the dramatic change occuring in the field in the last two decades of the twentieth century, largely as a result of technological advances. Nevertheless, no prior authors have systematically compiled data on publications in fluvial geomorphology over a long period and statistically analyzed the resulting data set. In this contribution we present a quantitative analysis of fluvial geomorphology papers published in the twenty-two-year period 1987–2009 in five journals of the discipline with a more specific focus on Geomorphology and Earth Surface Processes and Landforms (ESPL), identifying authorships, geographic origin of authors, and spatial and temporal scales covered. We also documented the tools employed, demonstrating the transformation of the field with the emergence of new tools over this period, and conducted a cluster to highlight links between tools and a set of factors (country of author's origin, journals, time, and spatial and temporal scales). Of the 1717 papers published in the five journals during this period, the results showed an increased diversity in the nationality of the first author, mainly when dealing with present time scale, and channel feature. Our data show a significant change in methods used in the field as a result of the increase in data availability and new sources of information from remote sensing (ground, airborne and, satellite). Clearly, a new era in knowledge production is observed since 2000, showing the emergence of a second period of active quantification and an internationalization of the fields.

  20. Rapid anthropogenic response to short-term aeolian-fluvial palaeoenvironmental changes during the Late Pleistocene-Holocene transition in the northern Negev Desert, Israel

    Science.gov (United States)

    Roskin, Joel; Katra, Itzhak; Agha, Nuha; Goring-Morris, A. Nigel; Porat, Naomi; Barzilai, Omry

    2014-09-01

    Archaeological investigations along Nahal Sekher on the eastern edge of Israel's northwestern Negev Desert dunefield revealed concentrations of Epipalaeolithic campsites associated respectively with ancient water bodies. This study, aimed at better understanding the connections between these camps and the water bodies, is concerned with a cluster of Natufian sites. A comprehensive geomorphological study integrating field mapping, stratigraphic sections, sedimentological analysis and optically stimulated luminescence (OSL) ages was conducted in the vicinity of a recently excavated Natufian campsite of Nahal Sekher VI whose artifacts directly overlay aeolian sand dated by OSL to 12.4 ± 0.7 and 11.7 ± 0.5 ka. Residual sequences of diagnostic silty sediments, defined here as low-energy fluvial fine-grained deposits (LFFDs), were identified within the drainage system of central Nahal Sekher around the Nahal Sekher VI site. LFFD sections were found to represent both shoreline and mid-water deposits. The thicker mid-water LFFD deposits (15.7 ± 0.7-10.7 ± 0.5 ka) date within the range of the Epipalaeolithic campsites, while the upper and shoreline LFFD units that thin out into the sands adjacent to the Nahal Sekher VI site display slightly younger ages (10.8 ± 0.4 ka-7.6 ± 0.4 ka). LFFD sedimentation by low-energy concentrated flow and standing-water developed as a result of proximal downstream dune-damming. These water bodies developed as a result of encroaching sand that initially crossed central Nahal Sekher by 15.7 ± 0.7 ka and probably intermittently blocked the course of the wadi. LFFD deposition was therefore a response to a unique combination of regional sand supply due to frequent powerful winds and does not represent climate change in the form of increased precipitation or temperature change. The chronostratigraphies affiliate the Natufian sites to the adjacent ancient water bodies. These relations reflect a rapid, but temporary anthropogenic response to a

  1. Depositional sequence stratigraphy and architecture of the cretaceous ferron sandstone: Implications for coal and coalbed methane resources - A field excursion

    Science.gov (United States)

    Garrison, J.R.; Van Den, Bergh; Barker, C.E.; Tabet, D.E.

    1997-01-01

    This Field Excursion will visit outcrops of the fluvial-deltaic Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale, known as the Last Chance delta or Upper Ferron Sandstone. This field guide and the field stops will outline the architecture and depositional sequence stratigraphy of the Upper Ferron Sandstone clastic wedge and explore the stratigraphic positions and compositions of major coal zones. The implications of the architecture and stratigraphy of the Ferron fluvial-deltaic complex for coal and coalbed methane resources will be discussed. Early works suggested that the southwesterly derived deltaic deposits of the the upper Ferron Sandstone clastic wedge were a Type-2 third-order depositional sequence, informally called the Ferron Sequence. These works suggested that the Ferron Sequence is separated by a type-2 sequence boundary from the underlying 3rd-order Hyatti Sequence, which has its sediment source from the northwest. Within the 3rd-order depositional sequence, the deltaic events of the Ferron clastic wedge, recognized as parasequence sets, appear to be stacked into progradational, aggradational, and retrogradational patterns reflecting a generally decreasing sediment supply during an overall slow sea-level rise. The architecture of both near-marine facies and non-marine fluvial facies exhibit well defined trends in response to this decrease in available sediment. Recent studies have concluded that, unless coincident with a depositional sequence boundary, regionally extensive coal zones occur at the tops of the parasequence sets within the Ferron clastic wedge. These coal zones consist of coal seams and their laterally equivalent fissile carbonaceous shales, mudstones, and siltstones, paleosols, and flood plain mudstones. Although the compositions of coal zones vary along depositional dip, the presence of these laterally extensive stratigraphic horizons, above parasequence sets, provides a means of correlating and defining the tops

  2. Life in the fluvial hinterland of the late Sarmatian Sea (middle Miocene): a rare terrestrial fossil site in the Styrian Basin (Austria)

    Science.gov (United States)

    Doubrawa, Monika; Gross, Martin; Harzhauser, Mathias

    2018-02-01

    This paper describes the section and fossil content of a former gravel pit in the Eastern Styrian Basin (SE Austria), which exposes sediments of a fluvial system, ranging from within channel to overbank environments. A predominately terrestrial gastropod fauna of 15 species so far, was recovered from a palaeosol formed in a moist and vegetated, floodplain or abandoned channel. Up-section, a shallow freshwater pond/lake developed within the floodplain, settled by fishes, molluscs and ostracods. By integrating regional geological and biostratigraphical data derived from the terrestrial gastropod fauna as well as from the other recovered biota, these strata are of late middle Miocene (late Sarmatian s.str.) age. Hence, this fossil site provides a rare insight into the terrestrial habitats in the hinterland of the Sarmatian Sea and their biota, which are otherwise barely known in Central Europe.

  3. Recovery of the Chaparral Riparian Zone After Wildfire

    Science.gov (United States)

    Frank W. Davis; Edward A. Keller; Anuja Parikh; Joan Florsheim

    1989-01-01

    After the Wheeler Fire in southern California in July 1985, we monitored sediment deposition and vegetation recovery in a section of the severely burned chaparral riparian zone of the North Fork of Matilija Creek, near Ojai, California. Increased runoff was accompanied by low magnitude debris flows and fluvial transport of gravel, most of which was added to the channel...

  4. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    Science.gov (United States)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  5. Gravel size matters: Early Middle Palaeolithic artefacts made from local Rhine and Meuse deposits in the central Netherlands

    NARCIS (Netherlands)

    van den Biggelaar, D.F.A.M.; van Balen, R.T.; Kluiving, S.J.; Verpoorte, A.; Alink, A

    2016-01-01

    The artefact size of the Early Middle Palaeolithic (EMP) assemblages in ice-pushed Rhine–Meuse deposits in the central Netherlands decreases northwestward. This trend correlates to the downstream fining direction of the Rhine–Meuse fluvial system, the source of the rock material, showing that

  6. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  7. Textural characteristics and sedimentary environment of sediment at eroded and deposited regions in the severely eroded coastline of Batu Pahat, Malaysia.

    Science.gov (United States)

    Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed

    2017-11-15

    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Middle-Upper Miocene fluvial-lacustrine rift sequence in the Song Ba Rift, Vietnam

    DEFF Research Database (Denmark)

    Lars H., Nielsen; Henrik I., Petersen; Nguyen D., Dau

    2007-01-01

    The small Neogene Krong Pa graben is situated within the continental Song Ba Rift, which is bounded by strike-slip faults that were reactivated as extensional faults in Middle Miocene time. The 500 m thick graben-fill shows an overall depositional development reflecting the structural evolution...... subsidence rate and possibly a higher influx of water from the axial river systems the general water level in the graben rose and deep lakes formed. High organic preservation in the lakes prompted the formation of two excellent oil-prone lacustrine source-rock units. In the late phase of the graben...... as carrier beds, whereas the braided fluvial sandstones and conglomerates along the graben margins may form reservoirs. The Krong Pa graben thus contains oil-prone lacustrine source rocks, effective conduits for generated hydrocarbons and reservoir sandstones side-sealed by the graben faults toward...

  9. Depositional environments as a guide to uranium mineralization in the Chinle formation, San Rafael Swell, Utah

    International Nuclear Information System (INIS)

    Lupe, R.

    1977-01-01

    The sedimentary textures resulting from depositional processes operating in low-energy environments appear to have influenced uranium mineralization. The Chinle consists of three fining-upward, fluvial-lacustrine sequences. Uranium minerals are concentrated in the lower part of the lowest sequence in areas where sediments of low-energy environment are complexly interbedded with sediments of other environments. Areas favorable for uranium exploration exist in the subsurface to the north, west, and south of the Chinle outcrop in the Swell. This determination is based on the spatial distribution of depositional environments and the pattern of Chinle deposition through time. 8 refs

  10. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    Science.gov (United States)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  11. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  12. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    International Nuclear Information System (INIS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.

    2012-01-01

    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In 2 O 3 . The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10 −6 cm 2V−1s−1 , the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  13. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments.

    Science.gov (United States)

    Perks, M T; Owen, G J; Benskin, C McW H; Jonczyk, J; Deasy, C; Burke, S; Reaney, S M; Haygarth, P M

    2015-08-01

    Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the

  14. Regional and long-term patterns of lead concentrations in fluvial, marine and terrestrial systems and humans in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, C. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2000-07-01

    Lead contamination of abiotic and biotic systems has been studied closely since the early 1970s, when lead was firstly perceived as an environmental problem. Lead emission reduction policies were implemented throughout Europe during that time. Nonetheless, analyses of lead loads in aquatic systems, such as the river Elbe, showed no decline over time in either suspended matter or surface sediments. Regional differences in lead concentrations of fluvial systems were found, due to tidal influence, runoff and local emissions. Lead contamination of sediments from the North Sea was highest in estuaries. Concentrations in sediment cores were quite stable down to the depth of background values, due to bioturbation, flow, waves and meandering channels. Terrestrial soils in Europe were highly polluted in industrial and ore mining areas and large cities. No decline in lead concentrations was evident in foraminifers, bladder wrack or fish. It was found that contamination in sediments, mammals and fish was higher in coastal zones than in the open sea. In contrast to in aquatic organisms, positive impacts of lead reduction regulations were detected in terrestrial plants, which adsorbed or took up lead mainly through atmospheric lead deposition. European lead concentrations in plants decreased coincidently with lead emissions. That trend could also be identified in the blood lead levels of the human population in Europe: since 1979 they have declined in every group of the population. Mainly influenced by age, sex and the living environment, overall, the lead loads of humans had never been high enough to cause health danger. (orig.)

  15. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    Science.gov (United States)

    East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2017-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  16. Inverted stream channels in the Western Desert of Egypt: Synergistic remote, field observations and laboratory analysis on Earth with applications to Mars

    Science.gov (United States)

    Zaki, Abdallah S.; Pain, Colin F.; Edgett, Kenneth S.; Giegengack, Robert

    2018-07-01

    Inverted relief landforms occur in numerous regions on Mars, ranging in age from Noachian to more recent Amazonian periods (channel features on Earth form, and the geologic records they preserve in arid settings, can yield insights into the development of inverted landforms on Mars. Inverted channel landforms in the Western Desert of Egypt are well represented across an area of ∼27,000 km2. We investigated inverted channel features at seven sites using remotely-sensed data, field observations, and lab analysis. Inverted channel features in the Western Desert record fluvial environments of differing scales and ages. They developed mainly via inversion of cemented valley floor sediment, but there is a possibility that inverted fluvial landforms in the Dakhla Depression might have been buried, lithified, and exhumed. A few examples, in the southeastern part of the Western Desert, record, instead, a resistance to erosion caused by surface armouring of uncemented valley floor sediment. We show that the grain-size distribution for investigated and reviewed inverted channels is highly variable, with boulders that are commonly 0.35 - 1 m in size; large particles provide high porosity that influences the cementation mechanism. The studied inverted channel sediments are mainly cemented with ferricrete, calcrete, gypcrete, and silcrete. Inverted channels are valuable for the reconstruction of paleoclimate cycles or episodes on Earth and Mars; observations from the Western Desert, when offered as analogs, add to the growing list of Earth examples that provide suites of observables relevant to reconstruction of paleoenvironmental conditions on Mars.

  17. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    Science.gov (United States)

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems

  18. Analysis of the pre-rift/rifte transition interval (Serraria and Barra de Itiuba formations) from the Sergipe-Alagoas basin; Analise da secao de transicao pre-rifte/rifte (formacoes Serraria e Barra de Itiuba) da Bacia Sergipe-Alagoas

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, C.B.; Mizusaki, A.M.P. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)]. E-mail: camilita@terra.com.br; ana.misuzaki@ufrgs.br; Garcia, A.J.V. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)]. E-mail: garcia@euler.unisinos.br

    2003-07-01

    The pre-rift/rift transition is represented by the Serraria and Barra de Itiuba formations. This interval was analyzed through qualitative and quantitative descriptions of cores, electric log analysis and studies of outcropping sections. The integration of surface and subsurface data allowed the stratigraphic characterization of sandstone bodies in the pre-rift/rift. These sandstones bodies were deposited by fluvial braided, lacustrine and deltaic systems (delta plain, delta front and pro delta). The sedimentary deposits characterized in the Serraria Formation are of channel, flooding of the fluvial system and eolic. The upper interval of this formation is characterized by to coarse medium-grained sandstones identified as the Caioba Sandstone. The Barra de Itiuba Formation contains lake, pro delta, frontal bar, distributary mouth, crevasse and distributary channel deposits. The sandstone units were specifically characterized in terms of their potential reservoir quality, and they were characterized the reservoirs R1 (good to medium quality) and Caioba (good quality) from the pre-rift phase, and reservoirs R2 (medium quality) and R3 (medium to good quality) from the rift phase. The reservoirs from pre-rift phase phase show the better reservoirs quality potential of the pre-rift/rift transition in the Sergipe-Alagoas Basin. (author)

  19. Ground Penetrating Radar investigation of depositional architecture: the São Sebastião and Marizal formations in the Cretaceous Tucano Basin (Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Larissa Natsumi Tamura

    Full Text Available ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.

  20. La géoarchéologie fluviale

    Directory of Open Access Journals (Sweden)

    Gilles Arnaud-Fassetta

    2008-03-01

    Full Text Available Les recherches des hydrogéomorphologues ont des applications nombreuses dans le vaste champ des sciences géoarchéologiques. Elles fournissent des réponses précises sur la façon dont l’environnement des anciens lieux de passage et de vie humaine a évolué. Le propos n’est pas seulement de définir les causes des grands changements environnementaux, mais aussi de juger de la vulnérabilité sociétale face aux contraintes hydroclimatiques. Pour cela, les méthodes d’étude doivent nécessairement prendre en compte les trois facettes de la géomorphologie fluviale : la paléohydrographie, la paléohydrologie et la paléohydraulique. La pertinence de cette approche est montrée en milieu rural et urbain dans les plaines deltaïques du Rhône (France du Sud et de l’Isonzo (Italie du Nord.Current research led by hydrogeomorphologists has numerous applications in the vast field of geoarchaeological sciences. It brings precise answers on environmental characteristics around the ancient places of passage and human life. The goal is not only to define the causes of global environmental changes, but also to precise the links between river dynamics and human societies in terms of fluvial risk. Therefore, the studied methods should simultaneously take into account the three facets of the fluvial geomorphology, i.e., the palaeohydrography, the palaeohydrology, and the palaeohydraulics. The pertinence of this combinatorial approach is deduced from the work of the author led both in rural and urban areas of the deltaic plains of the Rhône (South of France and Isonzo (northern Italy rivers.

  1. To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?

    Science.gov (United States)

    Cadieux, Sarah B.; Kah, Linda C.

    2015-03-01

    Craters within Arabia Terra, Mars, contain hundreds of meters of layered strata showing systematic alternation between slope- and cliff-forming units, suggesting either rhythmic deposition of distinct lithologies or similar lithologies that experienced differential cementation. On Earth, rhythmically deposited strata can be examined in terms of stratal packaging, wherein the interplay of tectonics, sediment deposition, and base level (i.e., the position above which sediment accumulation is expected to be temporary) result in changes in the amount of space available for sediment accumulation. These predictable patterns of sediment deposition can be used to infer changes in basin accommodation regardless of the mechanism of deposition (e.g. fluvial, lacustrine, or aeolian). Here, we analyze sedimentary deposits from three craters (Becquerel Crater, Danielson Crater, Crater A) in Arabia Terra. Each crater contains layered deposits that are clearly observed in orbital images. Although orbital images are insufficient to specifically determine the origin of sedimentary deposits, depositional couplets can be interpreted in terms of potential accommodation space available for deposition, and changes in the distribution of couplet thickness through stratigraphy can be interpreted in terms of changing base level and the production of new accommodation space. Differences in stratal packaging in these three craters suggest varying relationships between sedimentary influx, sedimentary base level, and concomitant changes in accommodation space. Previous groundwater upwelling models hypothesize that layered sedimentary deposits were deposited under warm climate conditions of early Mars. Here, we use observed stacking patterns to propose a model for deposition under cold climate conditions, wherein episodic melting of ground ice could raise local base level, stabilize sediment deposition, and result in differential cementation of accumulated strata. Such analysis demonstrates that

  2. A review on studies of the transport and the form of radionuclides in the fluvial environment

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-06-01

    The Japan Atomic Energy Research Institute has conducted studies with an aim to contribute to understanding the long-term behavior of atmospherically-derived radionuclides deposited on the ground. The present report reviews a series of studies among them which have especially dealt with the behavior of those radionuclides in a fluvial environment. The studies cited here include investigations of 1) the evaluation of the transport rate of the atmospherically-derived radionuclides from the ground via a river to the downstream areas where the affected water is consumed; 2) the physico-chemical form of the radionuclides in the fluvial environment. An investigation in the Kuji river watershed with {sup 137}Cs, {sup 210}Pb and {sup 7}Be has validated i) the importance of suspended particulate materials in the fluvial discharge of those radionuclides, and ii) a methodology to estimate the discharge of those radionuclides based on the regression analysis with the river water flow rate. From a viewpoint of their distribution between water and suspended particles, the form of radionuclides released by the Chernobyl accident in rivers and lakes in the vicinity of the Chernobyl Nuclear Power Plant were analyzed. As a result, a general reasonability and some cautions were suggested when commonly reported distribution ratios obtained in the laboratory and the different environment are applied to describe the partitioning of the radionuclides in specific natural environmental conditions. This experimental investigation in Chernobyl also revealed the role of natural dissolved organics in affecting the dissolution and transport of {sup 239,240}Pu, {sup 241}Am through complexation to form soluble species. Further, a chemical equilibrium model was applied to describe this complexation. The similar model was also applied for the behavior of iron and manganese (hydr)oxides in river recharged aquifers which can bear riverborne radionuclides and can influence their migration. The

  3. A review on studies of the transport and the form of radionuclides in the fluvial environment

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi

    2001-06-01

    The Japan Atomic Energy Research Institute has conducted studies with an aim to contribute to understanding the long-term behavior of atmospherically-derived radionuclides deposited on the ground. The present report reviews a series of studies among them which have especially dealt with the behavior of those radionuclides in a fluvial environment. The studies cited here include investigations of 1) the evaluation of the transport rate of the atmospherically-derived radionuclides from the ground via a river to the downstream areas where the affected water is consumed; 2) the physico-chemical form of the radionuclides in the fluvial environment. An investigation in the Kuji river watershed with 137 Cs, 210 Pb and 7 Be has validated i) the importance of suspended particulate materials in the fluvial discharge of those radionuclides, and ii) a methodology to estimate the discharge of those radionuclides based on the regression analysis with the river water flow rate. From a viewpoint of their distribution between water and suspended particles, the form of radionuclides released by the Chernobyl accident in rivers and lakes in the vicinity of the Chernobyl Nuclear Power Plant were analyzed. As a result, a general reasonability and some cautions were suggested when commonly reported distribution ratios obtained in the laboratory and the different environment are applied to describe the partitioning of the radionuclides in specific natural environmental conditions. This experimental investigation in Chernobyl also revealed the role of natural dissolved organics in affecting the dissolution and transport of 239,240 Pu, 241 Am through complexation to form soluble species. Further, a chemical equilibrium model was applied to describe this complexation. The similar model was also applied for the behavior of iron and manganese (hydr)oxides in river recharged aquifers which can bear riverborne radionuclides and can influence their migration. The obtained findings and the

  4. An analysis on half century morphological changes in the Changjiang Estuary: Spatial variability under natural processes and human intervention

    Science.gov (United States)

    Zhao, Jie; Guo, Leicheng; He, Qing; Wang, Zheng Bing; van Maren, D. S.; Wang, Xianye

    2018-05-01

    Examination of large scale, alluvial estuarine morphology and associated time evolution is of particular importance regarding management of channel navigability, ecosystem, etc. In this work, we analyze morphological evolution and changes of the channel-shoal system in the Changjiang Estuary, a river- and tide-controlled coastal plain estuary, based on bathymetric data between 1958 and 2016. We see that its channel-shoal pattern is featured by meandering and bifurcated channels persisting over decades. In the vertical direction, hypsometry curves show that the sand bars and shoals are continuously accreted while the deep channels are eroded, leading to narrower and deeper estuarine channels. Intensive human activities in terms of reclamation, embankment, and dredging play a profound role in controlling the decadal morphological evolution by stabilizing coastlines and narrowing channels. Even though, the present Changjiang Estuary is still a pretty wide and shallow system with channel width-to-depth ratios >1000, much larger than usual fluvial rivers and small estuaries. In-depth analysis suggests that the Changjiang Estuary as a whole exhibited an overall deposition trend over 59 years, i.e., a net deposition volume of 8.3 × 108 m3. Spatially, the pan-South Branch was net eroded by 9.7 × 108 m3 whereas the mouth bar zone was net deposited by 18 × 108 m3, suggesting that the mouth bar zone is a major sediment sink. Over time there is no directional deposition or erosion trend in the interval though riverine sediment supply has decreased by 2/3 since the mid-1980s. We infer that the pan-South Branch is more fluvial-controlled therefore its morphology responds to riverine sediment load reduction fast while the mouth bar zone is more controlled by both river and tides that its morphological response lags to riverine sediment supply changes at a time scale >10 years, which is an issue largely ignored in previous studies. We argue that the time lag effect needs

  5. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Gupta, S.; Malin, M. C.; Rubin, D. M.; Schieber, J.; Siebach, K.; Sumner, D. Y.; Stack, K. M.; Vasavada, A. R.; Arvidson, R. E.; Calef, F.; Edgar, L.; Fischer, W. F.; Grant, J. A.; Griffes, J.; Kah, L. C.; Lamb, M. P.; Lewis, K. W.; Mangold, N.; Minitti, M. E.; Palucis, M.; Rice, M.; Williams, R. M. E.; Yingst, R. A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.; Dietrich, W. E.; Dromart, G.; Edgett, K. S.; Ewing, R. C.; Gellert, R.; Hurowitz, J. A.; Kocurek, G.; Mahaffy, P.; McBride, M. J.; McLennan, S. M.; Mischna, M.; Ming, D.; Milliken, R.; Newsom, H.; Oehler, D.; Parker, T. J.; Vaniman, D.; Wiens, R. C.; Wilson, S. A.

    2015-10-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).

  6. The first polluted river? Repeated copper contamination of fluvial sediments associated with Late Neolithic human activity in southern Jordan.

    Science.gov (United States)

    Grattan, J P; Adams, R B; Friedman, H; Gilbertson, D D; Haylock, K I; Hunt, C O; Kent, M

    2016-12-15

    The roots of pyrometallurgy are obscure. This paper explores one possible precursor, in the Faynan Orefield in southern Jordan. There, at approximately 7000cal. BP, banks of a near-perennial meandering stream (today represented by complex overbank wetland and anthropogenic deposits) were contaminated repeatedly by copper emitted by human activities. Variations in the distribution of copper in this sequence are not readily explained in other ways, although the precise mechanism of contamination remains unclear. The degree of copper enhancement was up to an order of magnitude greater than that measured in Pleistocene fluvial and paludal sediments, in contemporary or slightly older Holocene stream and pond deposits, and in the adjacent modern wadi braidplain. Lead is less enhanced, more variable, and appears to have been less influenced by contemporaneous human activities at this location. Pyrometallurgy in this region may have appeared as a byproduct of the activity practised on the stream-bank in the Wadi Faynan ~7000years ago. Copyright © 2016. Published by Elsevier B.V.

  7. Sediment depositions upstream of open check dams: new elements from small scale models

    Science.gov (United States)

    Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain

    2015-04-01

    numbers that the flows tend to adopt? New small scale model experiments have been undertaken focusing on depositions processes and their related hydraulics. Accurate photogrammetric measurements allowed us to better describe the deposition processes3. Large Scale Particle Image Velocimetry (LS-PIV) was performed to determine surface velocity fields in highly active channels with low grain submersion4. We will present preliminary results of our experiments showing the new elements we observed in massive deposit dynamics. REFERENCES 1.Armanini, A., Dellagiacoma, F. & Ferrari, L. From the check dam to the development of functional check dams. Fluvial Hydraulics of Mountain Regions 37, 331-344 (1991). 2.Piton, G. & Recking, A. Design of sediment traps with open check dams: a review, part I: hydraulic and deposition processes. (Accepted by the) Journal of Hydraulic Engineering 1-23 (2015). 3.Le Guern, J. Ms Thesis: Modélisation physique des plages de depot : analyse de la dynamique de remplissage.(2014) . 4.Carbonari, C. Ms Thesis: Small scale experiments of deposition processes occuring in sediment traps, LS-PIV measurments and geomorphological descriptions. (in preparation).

  8. Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada

    Science.gov (United States)

    Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George

    2016-03-01

    The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.

  9. A model of plant strategies in fluvial hydrosystems

    NARCIS (Netherlands)

    Bornette, G.; Tabacchi, E.; Hupp, C.; Puijalon, S.; Rostan, J.C.

    2008-01-01

    1. We propose a model of plant strategies in temperate fluvial hydrosystems that considers the hydraulic and geomorphic features that control plant recruitment, establishment and growth in river floodplains. 2. The model describes first how the disturbance gradient and the grain-size of the river

  10. Implications of the fluvial history of the Wacheqsa River for hydrologic engineering and water use at Chavín de Húntar, Peru

    Science.gov (United States)

    Contreras, Daniel A.; Keefer, David K.

    2009-01-01

    Channeling of water through a variety of architectural features represents a significant engineering investment at the first millennium B.C. ceremonial center of Chavín de Huántar in the Peruvian Central Andes. The site contains extensive evidence of the manipulation of water, apparently for diverse purposes. The present configuration of the two local rivers, however, keeps available water approximately 9m below the highest level of water-bearing infrastructure in the site. Geomorphic and archaeological investigation of the fluvial history of the Wacheqsa River has revealed evidence that the Chavín-era configuration of the Wacheqsa River was different. A substantially higher water level, likely the result of a local impoundment of river water caused by a landslide dam, made the provision of water for the hydrologic system within the site a more readily practical possibility. We review what is known of that system and argue that the fluvial history of the Wacheqsa River is critical to understanding this aspect of hydrologic engineering and ritual practice at Chavín. This study demonstrates the relative rapidity and archaeological relevance of landscape change in a dynamic environment.

  11. The Quaternary alluvial systems tract of the Pantanal Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Mario Luis Assine

    Full Text Available ABSTRACT The Pantanal Basin is an active sedimentary basin in central-west Brazil that consists of a complex alluvial systems tract characterized by the interaction between different river systems developed in one of the largest wetlands in the world. The Paraguay River is the trunk river system that drains the water and part of the sediment load received from areas outside of the basin. Depositional styles vary considerably along the river profiles throughout the basin, with the development of entrenched meandering belts, anastomosing reaches, and floodplain ponds. Paleodrainage patterns are preserved on the surface of abandoned lobes of fluvial fans, which also exhibit many degradational channels. Here, we propose a novel classification scheme according to which the geomorphology, hydrological regime and sedimentary dynamics of these fluvial systems are determined by the geology and geomorphology of the source areas. In this way, the following systems are recognized and described: (I the Paraguay trunk-river plains; (II fluvial fans sourced by the tablelands catchment area; (III fluvial fans sourced by lowlands; and (IV fluvial interfans. We highlight the importance of considering the influences of source areas when interpreting contrasting styles of fluvial architectures in the rock record.

  12. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    Science.gov (United States)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  13. Sediment and Vegetation Controls on Delta Channel Networks

    Science.gov (United States)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  14. Implications from Sedimentary records in Fluvial Terraces for Geomorphological Evolution in the Puli Basin, Taiwan

    NARCIS (Netherlands)

    Tseng, C.H.; Wenske, D.; Böse, M.; Reimann, T.; Lüthgens, C.; Frechen, Manfred

    2013-01-01

    Fluvial terraces play an important role for research on previous geomorphic processes as their sediments can record various sedimentation stages. In the mountains of central Taiwan, however, the formation time of sediments in the Puli Basin is still unclear. In this study, we investigate the fluvial

  15. Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam

    Science.gov (United States)

    Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen

    2016-04-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of

  16. Sedimentology and sequence stratigraphy of the Lower Jurassic Kayenta Formation, Colorado Plateau, United States

    Science.gov (United States)

    Sanabria, Diego Ignacio

    2001-07-01

    Detailed outcrop analysis of the Lower Jurassic Kayenta Formation provides the basis for the formulation of a new sequence stratigraphic model for arid to semi-arid continental deposits and the generation of a comprehensive set of sedimentologic criteria for the recognition of ephemeral stream deposits. Criteria for the recognition of ephemeral deposits in the ancient record were divided into three categories according to the scale of the feature being considered. The first category takes into account sedimentary structures commonly found in the record of ephemeral stream deposits including hyperconcentrated and debris flow deposits, planar parallel bedding, sigmoidal cross-bedding, hummocky cross-bedding, climbing ripple lamination, scour-and-fill structures, convolute bedding, overturned cross-bedding, ball-and-pillow structures, pocket structures, pillars, mud curls, flaser lamination, algal lamination, termite nests, and vertebrate tracks. The second category is concerned with the mesoscale facies architecture of ephemeral stream deposits and includes waning flow successions, bedform climb, downstream accretion, terminal wadi splays, and channel-fill successions indicating catastrophic flooding. At the large-scale facies architecture level, the third category, ephemeral stream deposits are commonly arranged in depositional units characterized by a downstream decrease in grain size and scale of sedimentary structures resulting from deposition in terminal fan systems. Outcrops of the Kayenta Formation and its transition to the Navajo Sandstone along the Vermilion and Echo Cliffs of Northern Arizona indicate that wet/dry climatic cyclicity exerted a major control on regional facies architecture. Two scales of wet/dry climatic cyclicity can be recognized in northern Arizona. Three sequence sets composed of rocks accumulated under predominantly dry or wet conditions are the expression of long-term climatic cyclicity. Short-term climatic cyclicity, on the other hand

  17. Comparing particle-size distributions in modern and ancient sand-bed rivers

    Science.gov (United States)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical

  18. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  19. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  20. Stream Channel Stability.

    Science.gov (United States)

    1981-04-01

    Cycles of wetting and drying are also t ,v itiue swelling and shrinkage of the soil. S 11ied blocks or peds of soil fabric ,,ks. id downslope soil creep ...hydrographs of water and sediment at the point in question. By feeding the output from the hydrology-transport model into the finite element model...the banks as undercut banks fail. Channel irregularities such as seepage zones, cattle crossings, overbank drainage, buried channels, organic deposits

  1. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  2. Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario Formation, Mexico

    Science.gov (United States)

    Hansen, Larissa; Callow, Richard; Kane, Ian; Kneller, Ben

    2017-08-01

    Thin-bedded turbidites deposited by sediment gravity flows that spill from submarine channels often contain significant volumes of sand in laterally continuous beds. These can make up over 50% of the channel-belt fill volume, and can thus form commercially important hydrocarbon reservoirs. Thin-bedded turbidites can be deposited in environments that include levees and depositional terraces, which are distinguished on the basis of their external morphology and internal architecture. Levees have a distinctive wedge shaped morphology, thinning away from the channel, and confine both channels (internal levees) and channel-belts (external levees). Terraces are flat-lying features that are elevated above the active channel within a broad channel-belt. Despite the ubiquity of terraces and levees in modern submarine channel systems, the recognition of these environments in outcrop and in the subsurface is challenging. In this outcrop study of the Upper Cretaceous Rosario Formation (Baja California, Mexico), lateral transects based on multiple logged sections of thin-bedded turbidites reveal systematic differences in sandstone layer thicknesses, sandstone proportion, palaeocurrents, sedimentary structures and ichnology between channel-belt and external levee thin-bedded turbidites. Depositional terrace deposits have a larger standard deviation in sandstone layer thicknesses than external levees because they are topographically lower, and experience a wider range of turbidity current sizes overspilling from different parts of the channel-belt. The thickness of sandstone layers within external levees decreases away from the channel-belt while those in depositional terraces are less laterally variable. Depositional terrace environments of the channel-belt are characterized by high bioturbation intensities, and contain distinctive trace fossil assemblages, often dominated by ichnofabrics of the echinoid trace fossil Scolicia. These assemblages contrast with the lower

  3. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  4. Facies analysis and sequence stratigraphy of neoproterozoic Platform deposits in Adrar of Mauritania, Taoudeni basin, West Africa

    Science.gov (United States)

    Benan, C. A. A.; Deynoux, M.

    The Neoproterozoic and Palaeozoic Taoudeni basin forms the flat-lying and unmetamorphosed sedimentary cover of the West African Craton. In the western part of this basin, the Char Group and the lower part of the Atar Group make up a 400-m-thick Neoproterozoic siliciclastic succession which rests on the Palaeoproterozoic metamorphic and granitic basement. Five erosional bounding surfaces of regional extent have been identified in this succession. These surfaces separate five stratigraphic units with lithofacies associations ranging from fluvial to coastal and fluvial-, tide-, or wave-dominated shallow marine deposits. Owing to their regional extent and their position within the succession, the erosive bounding surfaces correspond to relative sea-level falls, and accordingly the five stratigraphic units they bound represent allocyclic transgressive-regressive depositional sequences (S1-S5). Changes in the nature of the deposits forming the transgressive-regressive cycles reflect landward or seaward shifts of the stacked sequences. These successive relative sea-level changes are related to the reactivation of basement faults and tilting during rifting of the Pan-Afro-Brasiliano supercontinent 1000 m.y. ago. The stromatolite bearing carbonate-shale sequences which form the rest of the Atar Group mark the onset of a quiet period of homogeneous subsidence contemporaneous with the Pan-African I oceanization 800-700 m.y. ago.

  5. Reconstructing ancient river dynamics from the stratigraphic record: can lessons from the past inform our future?

    Science.gov (United States)

    Hajek, E. A.; Chamberlin, E.; Baisden, T.

    2014-12-01

    The richness of the deep-time record and its potential for revealing important characteristics of ancient fluvial landscapes has been demonstrated time and again, including compelling examples of rivers altering their behavior in response to changes in vegetation patterns or abrupt shifts in water and sediment discharge. At present, reconstructions of ancient river and floodplain dynamics are commonly qualitative, and when quantitative metrics are used, it is often for comparison among ancient deposits. Without being able to reconstruct, more comprehensively, important aspects of ancient river and floodplains dynamics, this information has only anecdotal relevance for evaluating and managing present-day landscapes. While methods for reconstructing hydrodynamic and morphodynamic aspects of ancient rivers and floodplains are useful, uncertainties associated with these snapshots complicate the ability to translate observations from geologic to engineering scales, thereby limiting the utility of insight from Earth's past in decision-making and development of sustainable landscape-management practices for modern fluvial landscapes. Here, we explore the degree to which paleomorphodynamic reconstructions from ancient channel and floodplain deposits can be used to make specific, quantitative inferences about ancient river dynamics. We compare a suite of paleoenvironmental measurements from a variety of ancient fluvial deposits (including reconstructions of paleoflow depth, paleoslope, paleo-channel mobility, the caliber of paleo-sediment load, and paleo-floodplain heterogeneity) in an effort to evaluate sampling and empirical uncertainties associated with these methods and identify promising avenues for developing more detailed landscape reconstructions. This work is aimed at helping to develop strategies for extracting practicable information from the stratigraphic record that is relevant for sustainably managing and predicting changes in today's environments.

  6. Fluvial signatures of modern and paleo orographic rainfall gradients

    Science.gov (United States)

    Schildgen, Taylor; Strecker, Manfred

    2016-04-01

    The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to

  7. Fluvial geomorphology: where do we go from here?

    Science.gov (United States)

    Smith, Derald G.

    1993-07-01

    The evolution of geomorphology and in particular, fluvial geomorphology, is at a crossroads. Currently, the discipline is dismally organized, without focus or direction, and is practised by individualists who rarely collaborate in numbers significant enough to generate major research initiatives. If the discipline is to mature and to prosper, we must make some very difficult decisions that will require major changes in our ways of thinking and operating. Either the field stays in its current operational mode and becomes a backwater science, or it moves forward and adopts the ways of the more competitive sectors of the earth and biosciences. For the discipline to evolve, fluvial geomorphologists must first organize an association within North America or at the international level. The 3rd International Geomorphology Conference may be a start, but within that organization we must develop our own divisional and/or regional organizations. Within the Quaternary geology/geomorphology divisions of the Geological Socieity of America (GSA), Association of American Geographers (AAG), American Geophysical Union (AGU) and British Geomorphology Research Group (BGRG) the voice of fluvial geomorphology is lost in a sea of diverse and competitive interests, though there is reason for hope resulting from some recent initiatives. In Canada, we have no national geomorphology organization per se; our closest organization is Canqua (Canadian Quaternary Association). Next, fluvial researchers must collaborate, by whatever means, to develop "scientific critical mass" in order to generate ideas and long-range goals of modest and major scientific importance. These projects will help secure major research funding without which, research opportunities will diminish and initiating major new research will become nearly impossible. Currently, we are being surpassed by the glaciologists, remote sensors, ecologists, oceanographers, climatologists-atmospheric researchers and some Quaternary

  8. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    2017-01-01

    Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The results show...... Shield did not supply much sediment to the basin as opposed to what was previously believed. Sediment from the Variscan belt was transported by wind activity across the North German Basin when it was dried out during deposition of the aeolian part of the Volpriehausen Member (lower Bunter Sandstone......). Fluvial sand was supplied from the Ringkøbing-Fyn High to the basin during precipitation events which occurred most frequently when the Solling Member was deposited (upper Bunter Sandstone). Late Neoproterozoic to Carboniferous zircon ages predominate in the Volpriehausen Member where the dominant age...

  9. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

    Science.gov (United States)

    Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A

    2015-10-09

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). Copyright © 2015, American Association for the Advancement of Science.

  10. Transport and storage of bed material in a gravel-bed channel during episodes of aggradation and degradation: a field and flume study

    Science.gov (United States)

    Bonnie Smith Pryor; Thomas Lisle; Diane Sutherland Montoya; Sue Hilton

    2011-01-01

    The dynamics of sediment transport capacity in gravel-bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment-routing models in drainage systems. We examine transport-storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and...

  11. Grain-size evolution in suspended sediment and deposits from the 2004 and 2008 controlled-flood experiments in Marble and Grand Canyons, Arizona

    Science.gov (United States)

    Draut, Amy E.; Topping, David J.; Rubin, David M.; Wright, Scott A.; Schmidt, John C.

    2010-01-01

    Since the closure of Glen Canyon Dam in 1963, the hydrology, sediment supply, and distribution and size of modern alluvial deposits in the Colorado River through Grand Canyon have changed substantially (e.g., Howard and Dolan, 1981; Johnson and Carothers, 1987; Webb et al., 1999; Rubin et al., 2002; Topping et al., 2000, 2003; Wright et al., 2005; Hazel et al., 2006). The dam has reduced the fluvial sediment supply at the upstream boundary of Grand Canyon National Park by about 95 percent. Regulation of river discharge by dam operations has important implications for the storage and redistribution of sediment in the Colorado River corridor. In the absence of natural floods, sediment is not deposited at elevations that regularly received sediment before dam closure. There has been a systemwide decrease in the size and number of subaerially exposed fluvial sand deposits since the 1960s, punctuated by episodic aggradation during the exceptional high-flow intervals in the early 1980s and by sediment input from occasional tributary floods (Beus and others, 1985; Schmidt and Graf, 1990; Kearsley et al., 1994; Schmidt et al., 2004; Wright et al., 2005; Hazel et al., 2006). Fluvial sandbars are an important component of riparian ecology that, among other functions, enclose eddy backwaters that form native-fish habitat, provide a source for eolian sand that protects some archaeological sites, and are used as campsites by thousands of river-runners annually (Rubin et al., 1990; Kearsley et al., 1994; Neal et al., 2000; Wright et al., 2005; Draut and Rubin, 2008).

  12. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    Science.gov (United States)

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  13. The genesis of surficial uranium deposits

    International Nuclear Information System (INIS)

    Boyle, D.R.

    1984-01-01

    Surficial uranium deposits can form in such diverse environments as calcareous-dolomitic-gypsiferous fluvial and aeolian valley sediments in hot arid and semi-arid regions, oxidizing and reducing alkaline and saline playas, highly organic and/or clay-rich wetland areas, calcareous regoliths in arid terranes, laterites, lake sediments, and highly fractured zones in igneous and metamorphic basement complexes. Formation of ore is governed by the interrelationships between source of ore-forming elements, mechanisms of migration, environment of deposition, climate, preservation, tectonic history and structural framework. The principal factors controlling mobilization of ore-forming elements from source to site of deposition are the availability of elements in source rocks, presence of complexing agents, climate, nature of source rock regolith and structure of source rock terrane. The major processes governing precipitation of uranium in the surficial environment are reduction mechanisms, sorption processes, dissociation of uranyl complexes, change in redox states of ore-forming constituents, evaporation of surface and groundwaters, change in partial pressure of dissolved carbon dioxide, changes in pH, colloidal precipitation, and mixing of two or more surface and groundwaters. One or a number of these processes may be actively involved in ore formation. (author)

  14. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    Science.gov (United States)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    seasons. Thick mudstones and some coquinites below and above the sandy interval may represent lacustrine facies formed in probably more humid conditions. The taphonomic history of the preserved plants began with exceptional storms that caused fast-flowing high water in channels and far into the floodplains. In the eastern site region, many tree ferns only fell, thus sometimes covering and protecting plant litter and leaves from further fragmentation. Assemblages of the central and western sites suggest that the trees were uprooted and transported in suspension (floating) parallel to the flow. Heavier ends of stems (according to their form or because of attached basal bulbous root mantle or large apical fronds) were oriented to upstream because of inertial forces. During falling water stage, the stems were stranded on riverbanks, usually maintaining the previous transport orientation, and were slightly buried. The perpendicular or oblique positions of some stems may have been caused by interference with other stems or shallow bars. Rare observed stems were apparently waterlogged before the final depositional process and transported as bedload. The differences of interpreted channel orientations between the three sites are expected in a braided fluvial system, considering the very low gradients of the basin and the work scale in the order of tens of kilometers. The mean direction of the drainage probably was to east and the flows apparently became weaker downstream. This study seems to provide reliable data for paleocurrent interpretations, especially considering areas with scarce preserved sedimentary structures.

  15. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  16. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Science.gov (United States)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  17. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-01-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform

  18. Model Projections of Future Fluvial Sediment Delivery to Major Deltas Under Environmental Change

    Science.gov (United States)

    Darby, S. E.; Dunn, F.; Nicholls, R. J.; Cohen, S.; Zarfl, C.

    2017-12-01

    Deltas are important hot spots for climate change impacts on which over half a billion people live worldwide. Most of the world's deltas are sinking as a result of natural and anthropogenic subsidence and due to eustatic sea level rise. The ability to predict rates of delta aggradation is therefore critical to assessments of the extent to which sedimentation can potentially offset sea level rise, but our ability to make such predictions is severely hindered by a lack of insight into future trends of the fluvial sediment load supplied to their deltas by feeder watersheds. To address this gap we investigate fluvial sediment fluxes under future environmental change for a selection (47) of the world's major river deltas. Specifically, we employed the numerical model WBMsed to project future variations in mean annual fluvial sediment loads under a range of environmental change scenarios that account for changes in climate, socio-economics and dam construction. Our projections indicate a clear decrease (by 34 to 41% on average, depending on the specific scenario) in future fluvial sediment supply to most of the 47 deltas. These reductions in sediment delivery are driven primarily by anthropogenic disturbances, with reservoir construction being the most influential factor globally. Our results indicate the importance of developing new management strategies for reservoir construction and operation.

  19. Probing the Gaps: A Synthesis of Well-known and Lesser-known Hydrological Feedbacks Influencing Vegetation Patterning and Long-term Geomorphic Change in Low-gradient Fluvial Landscapes

    Science.gov (United States)

    Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.

    2017-12-01

    Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation

  20. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.

    Science.gov (United States)

    Stimson, A G; Allott, T E H; Boult, S; Evans, M G

    2017-02-15

    Inland water bodies are recognised as dynamic sites of carbon processing, and lakes and reservoirs draining peatland soils are particularly important, due to the potential for high carbon inputs combined with long water residence times. A carbon budget is presented here for a water supply reservoir (catchment area~9km 2 ) draining an area of heavily eroded upland peat in the South Pennines, UK. It encompasses a two year dataset and quantifies reservoir dissolved organic carbon (DOC), particulate organic carbon (POC) and aqueous carbon dioxide (CO 2 (aq)) inputs and outputs. The budget shows the reservoir to be a hotspot of fluvial carbon cycling, as with high levels of POC influx it acts as a net sink of fluvial carbon and has the potential for significant gaseous carbon export. The reservoir alternates between acting as a producer and consumer of DOC (a pattern linked to rainfall and temperature) which provides evidence for transformations between different carbon species. In particular, the budget data accompanied by 14 C (radiocarbon) analyses provide evidence that POC-DOC transformations are a key process, occurring at rates which could represent at least ~10% of the fluvial carbon sink. To enable informed catchment management further research is needed to produce carbon cycle models more applicable to these environments, and on the implications of high POC levels for DOC composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Numerical simulation of sediment deposition thickness at Beidaihe International Yacht Club

    Directory of Open Access Journals (Sweden)

    Cheng-gang Lu

    2010-09-01

    Full Text Available The finite element method (FEM was used to simulate sediment hydrodynamics at the Beidaihe International Yacht Club, and a two-dimensional model was established. The sediment movement and deposition were analyzed under many tidal conditions in conjunction with the hydrological regime of the Daihe River. The peak value of the sediment deposition thickness appears in the main channel and around the estuary. The sediment deposition thickness is essentially constant and relatively small in the project area. The sediment deposition thickness in the main channel, in the yachting area, and around the hotel is greater than the other areas in the project. Regular excavation and dredging of the channel is the best measure for mitigating the sedimentation.

  2. Monitoring fluvial erosion of the Oso landslide, Washington, using repeat Structure-from-Motion photogrammetry

    Science.gov (United States)

    Anderson, S. W.; Magirl, C. S.; Keith, M. K.

    2015-12-01

    On March 22, 2014, the Oso landslide, located in northwestern Washington State, catastrophically mobilized about 8 million m3 of mixed glacial sediment, creating a valley-wide blockage that impounded the North Fork Stillaguamish River to a height of 8 m. The river overtopped the landslide blockage within several days and incised a new channel through predominately fine-grained, cohesive glaciolacustrine sediment in the center of the deposit. Our research focuses on the evolution of this new channel. Using a consumer-grade digital camera mounted on a fixed wing-aircraft, we used structure-from-motion (SfM) photogrammetry to produce 25 cm digital elevation models (DEMs) of the channel at one-month intervals between November 2014 and July 2015. A large RTK GPS validation dataset and inter-survey comparisons documents sub-decimeter vertical and horizontal accuracies. In combination with aerial lidar surveys acquired in March and April 2014, this dataset provides a uniquely resolved look at the erosion of a landslide dam. The newly-formed channel incised rapidly, lowering to within a meter of its pre-slide elevation by May 2014 despite modest flows. During high flows of the 2014-2015 winter flood season, erosion was dominated by channel widening of tens of meters with an overall stable planform. Incision fully returned the channel to pre-slide elevations by December 2014. A total of 510,000 +/- 50,000 m3 of material was eroded between March 2014 and July 2015, split evenly between the initial period of incision and the later period of widening. Sediment yield and channel morphology showed asymptotic trends towards stability. Measurements of deposit bulk density and grain size allowed conversion of volumetric sediment yields to mass yields by size classes. Over the 16 months after the slide, the river eroded about 0.82 +/- 0.1 Mt of sediment, of which 0.78 Mt was finer than 2mm. This yield agrees within 15% of an independent estimate based on concurrent sediment gaging

  3. SISTEMA FLUVIAL E PLANEJAMENTO LOCAL NO SEMIÁRIDO

    Directory of Open Access Journals (Sweden)

    Jonas Otaviano Praça de Souza

    2012-01-01

    Full Text Available El presente estudio analiza un sistema fluvial semiárido y sus características físicas, centrándose en los procesos geomorfológicos y las formas resultantes, sino también en las relaciones con las actividades humanas, con el fin de utilizar dichos datos en la planificación local. La encuesta se llevó a cabo en el municipio de Belém do São Francisco, en Pernambuco, mesorregión del São Francisco en la cuenca del arroyo Mulungu, lugar expuesto a un clima semi-árido con lluvias de verano, y la cobertura del suelo con un predominio de la caatinga arbustiva abierta. Se tomó como procedimiento metodológico la cartografía geomorfológica a diferentes escalas y con diferentes énfasis, para evaluar la relación jerárquica entre los distintos compartimentos, sustratos geológicos y formas de uso de la tierra. De la información espacial obtenida en los distintos niveles de la cartografía detallada del sistema fluvial, se realizó una evaluación ambiental de la zona, teniendo como base la dinámica erosiva/deposicional a lo largo del canal y su relación con sus bancos. Se concluyó que las formas de acumulación en la llanura aluvial exhiben controles de origen antropogénico, vinculados a los tipos tradicionales de uso del suelo en la cuenca. Estos controles, como la construcción de represas a lo largo del canal, actúan cambiando a los procesos de creación de nuevas morfologías de depósito en el sistema fluvial, que a su vez comienzan a redefinir los tipos usos de la zona.

  4. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    Science.gov (United States)

    Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.

    2015-08-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by

  5. Deposition and diagenesis of the Hibernia member, Jeanne d'Arc Basin, offshore Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, C E

    1987-01-01

    The Jeanne d'Arc Basin was formed during Late Triassic to Early Cretaceous time by two episodes of rifting that caused repeated movement on one set of basin-forming faults. This resulted in up to 14 km of sediments, some of which contain huge reserves of hydrocarbons. The Hibernia member, the subject of this thesis, is a sandstone dominated zone within this basin-fill that contains a high proportion of the discovered hydrocarbons. Deposition of the Hibernia member is a result of two simultaneous and related events during Tithonian to Berriasian time: deep erosion of upthrown sides of the fault blocks, and a global eustatic rise of sea level. The provenance and depositional environment are interpreted from the examination of cores, cuttings, microfossils, and thin sections. The siliciclastics were derived from a southern source of sediments and sedimentary rocks that had an original metamorphic origin. They were deposited in a non-marine to brackish water environment of channels and associated floodplains in an anastomosed fluvial system. Rates of sedimentation and subsidence were high, and coupled with a contemporaneous eustatic sea level rise resulted in rapid aggradation and a thick sequence. The center of the basin currently has the highest geothermal gradient and thinnest oil window. Burial and thermal history curves show that the source rocks reached maturity first at the Ben Nevis well; early-formed hydrocarbons may have been lost during tectonic movements in Albian time. The source rocks underlying the Hibernia field are presently at peak oil-generating capability. Organic acids formed during the maturation of organic matter have produced excellent secondary porosity in the sandstones of the Hibernia field. However, at Ben Nevis, subsequent thermal degradation of carboxylic acids allowed late-stage cementation by ferroan calcite cement, destroying the reservoir porosity. 63 refs., 79 figs., 1 tab

  6. The Barreiras Group in the Northeastern coast of the State of Bahia, Brazil: depositional mechanisms and processes

    Directory of Open Access Journals (Sweden)

    GERALDO S. VILAS BÔAS

    2001-09-01

    Full Text Available The Barreiras Group is a Miocene to Lower Pleistocene continental terrigenous sedimentary deposit exhibiting a large occurrence along the Brazilian coast. In the Conde region, located in the northeastern part of the State of Bahia, the sedimentological characteristics of these sediments are indicative of a deposition as gravelly and sandy bed load in braided fluvial systems, related to alluvial fans, under an arid to semi-arid climate. The basal portion of the group is dominated by a gravelly-sandy lithofacies deposited by debris flows and pseudoplastic debris flows, with lesser occurrences of subaqueous deposits, characterizing a proximal fluvial system deposition. The upper portion is made up of gravelly-sandy sediments that include subaqueous, debris flows and pseudoplastic debris flows deposits. They suggest deposition in a more distal zone as indicated by the larger occurrence of subaqueous deposits and the presence, though rare, of downstream-accretion macroforms. Besides the climate control, deposition of the Barreiras Group was strongly influenced by the intraplate tectonism, which has been affecting the South America Platform since the Middle Miocene, when neotectonism began in Brazil.O Grupo Barreiras é uma cobertura sedimentar terrígena, de idade Miocênica a pleistocênica inferior, que tem grande ocorrência ao longo do litoral brasileiro. Na região de Conde, localizada na porção nordeste do Estado da Bahia, as características sedimentológicas desses depósitos são indicativas de uma deposição por sistemas fluviais de padrão entrelaçado, com carga de leito areno-cascalhosa, associados a leques aluviais, em condições de clima árido a semi-árido. A porção basal do grupo é dominada por litofácies areno-cascalhosas depositadas por fluxos de detritos e fluxos de detritos pseudoplásticos, com uma ocorrência menor de depósitos de fluxo subaquoso, caracterizando uma deposição em um sistema fluvial proximal. A por

  7. Computer simulations of channel meandering and the formation of point bars: Linking channel dynamics to the preserved stratigraphy

    Science.gov (United States)

    Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.

    2012-12-01

    Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001

  8. Method of removing crud deposited on fuel element clusters

    International Nuclear Information System (INIS)

    Yokota, Tokunobu; Yashima, Akira; Tajima, Jun-ichiro.

    1982-01-01

    Purpose: To enable easy elimination of claddings deposited on the surface of fuel element. Method: An operator manipulates a pole from above a platform, engages the longitudinal flange of the cover to the opening at the upper end of a channel box and starts up a suction pump. The suction amount of the pump is set such that water flow becomes within the channel box at greater flow rate than the operational flow rate in the channel box of the fuel element clusters during reactor operation. This enables to remove crud deposited on the surface of individual fuel elements with ease and rapidly without detaching the channel box. (Moriyama, K.)

  9. Stratigraphy of fluvial sediment sequences and their palaeoenvironmental information in the foreland of the Serra dos Órgãos, southeastern Brazil

    Science.gov (United States)

    Kirchner, André; Nehren, Udo; Heinrich, Jürgen

    2013-04-01

    In the hinterland of Rio de Janeiro city the rivers Guapiaçu, Macacu and Iconha originate in the Serra dos Órgãos mountain range and drain into the Atlantic Ocean. Since their channelization in the 1950s, higher flow velocities caused an incision of the rivers into the valley fills. These circumstances provide the possibility to study the alluvial deposits along the streams during low water level and allow conclusions on palaeoenvironmental change and landscape history. Sedimentological investigations of 13 exposures as well as AMS 14C measurements were carried out to investigate sediment properties and reconstruct the sedimentation history within the floodplains. These results enable to distinguish three different facies units. A late Pleistocene Unit I can be detected at the base of the observed exposures and consists of clast-supported fine to coarse gravels. It can be assumed that the gravel bodies were formed by a climatically induced erosional-depositional cycle within a braided river system. The gravels are overlaid by Unit II, a grayish to bluish loam mainly of mid-Holocene age. During generally drier climates these loams have been deposited during high water stages or flooding events as a splay facies proximal to the rivers. A reduced flow competence and relatively stable morphodynamic conditions are assumed for that period. Unit III accumulated in the late Holocene typically consists of several meters of planar or cross bedded sands to fine gravels, interfingered by loamy inclusions, buried peat bogs and organic debris. Fining-upward sequences can be frequently studied within Unit III which were completed by loamy sediments in the uppermost parts of the exposures. The increased flow competence from Unit II to Unit III seems to be a fluvial response to the increased humidity of the late Holocene as well as the enhancement of El Niño-Southern Oscillation (ENSO). Heavy rainfall likely caused higher sediment supply from the steep slopes as well as a

  10. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    Science.gov (United States)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  11. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  12. 3-D Characterization of Detrital Zircon Grains and its Implications for Fluvial Transport, Mixing, and Preservation Bias

    Science.gov (United States)

    Markwitz, V.; Kirkland, C. L.; Mehnert, A.; Gessner, K.; Shaw, J.

    2017-12-01

    Detrital zircon studies can suffer from selective loss of provenance information due to U-Pb age discordance, metamictization, metamorphic overprinting and fluviatile transport processes. The relationship between isotopic composition and zircon grain shape, and how grain shape is modified during transport, is largely unknown. We combine X-ray tomography with U-Pb geochronology to quantify how fluvial transport affects 3-D zircon shape, detrital age signature, and grain density along the Murchison River, whose catchment comprises Eoarchean to Early Paleozoic source rocks in Western Australia. We acquired tomographic volumes and isotopic data from 373 detrital zircons to document changes in size, shape and density in transport direction, and explore how grain shape, age spectra and the proportion of discordant material vary along the channel. Results show that shape characteristics are sensitive to transport distance, stream gradient, proximity to source material, and whether the source consists of primary or recycled zircons. With increasing transport distance, grain lengths decrease more than their widths. Furthermore, the loss of metamict grains occurs at a near constant rate, resulting in a linear increase of mean calculated zircon density by ca. 0.03 g/cm3 per 100 km transport distance. 3-D grain shape is therefore strongly linked to detrital age signature, and mean grain density is a function of the absolute transport distance. 3-D shape characteristics provide valuable information on detrital zircon populations, including the interaction between source materials with fluvial transport processes, which significantly affects preservation bias and, by inference, the representativeness of the sampled data.

  13. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    International Nuclear Information System (INIS)

    Coxon, T.M.; Odhiambo, B.K.; Giancarlo, L.C.

    2016-01-01

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight "2"1"0Pb and "1"3"7Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. - Highlights:

  14. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Coxon, T.M. [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Odhiambo, B.K., E-mail: bkisila@umw.edu [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Giancarlo, L.C. [Department of Chemistry, University of Mary Washington, Fredericksburg, VA 22401 (United States)

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight {sup 210}Pb and {sup 137}Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments

  15. Depositional Architecture of Late Pleistocene-Holocene Coastal Alluvial-fan System in the Coastal Range, Taiwan

    Science.gov (United States)

    Chen, S. T.; Chen, W. S.

    2016-12-01

    Since late Pleistocene, the Coastal Range (Philippine Sea plate) collided and overridden on the Central Range (Eurasian Plate) along the Longitudinal Valley Fault. Therefore, the Coastal Range is exposed widely the late Pleistocene-Holocene marine and fluvial terraces caused by the tectonic uplift. Based on the estimation of paleosea-level elevations (Δh), depositional paleodepth, altitude distribution of Holocene deposits (D), altitude of outcrops (H), and 14C dating of marine deposits (t), the uplift rate (=(Δh+H +d-D)/t) is about 5-10 mm/yr in the southern Coastal Range. In this study, we suggest through field logging that the deposits can be divided into alluvial, foreshore (intertidal), shoreface, and offshore environments. In Dulan area in the southern Coastal Range, the uplift rate was 6-7 mm/yr during 16,380-10,000 cal yr BP and 3-4 mm/yr after 7,000 cal yr BP. Results from the Dulan Coastal alluvial-fan system can be divided into five depositional stages: (1) 16,380-14,300 cal yr BP: The rate of global sea level rise (SLR) has averaged about 6-7 mm/yr, similar to the tectonic uplift rate. In this stage, the bedrock was eroded and formed a wide wave-cut platform. (2) 14,300-10,000 cal yr BP: SLR of about 14 mm/yr that was faster than tectonic uplift rate of 6-7 mm/yr. As a result of transgression, the beach-lagoon deposits about 5 m thick were unconformably overlain on the wave-cut platform. (3) 10,000-8,200 cal yr BP: The ongoing sea level rise (SLR: 11 mm/yr), the lagoon deposits were overlain by an offshore slump deposits representing a gradual deepening of the depositional environment. (4) 8,200-7,930 cal yr BP (SLR: 6-7 mm/yr): The tectonic uplift rate may occur at similar SLR. The alluvial-fan deposits have prograded over the shallow marine deposits. (5) After 7,000 cal yr BP (SLR: 1-0 mm/yr): SLR was much slower than tectonic uplift rate of 3-4 mm/yr. Thus, Holocene marine terraces are extensively developed in the coastal region, showing that the

  16. HEAVY MINERALS IN PLACER DEPOSIT IN SINGKAWANG WATERS, WEST Kalimantan, RELATED TO FELSIC SOURCE ROCK OF ITS COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Deny Setiady

    2017-07-01

    Full Text Available Placer deposits are physically accumulated by fluvial and marine processes in coastal area. Thirty six samples were selected from seventy seven samples of seafloor sediment of Singkawang waters. Those samples have been analyzed microscopically for heavy mineral contents. Based on this analysis, the heavy minerals can be divided into four groups: oxyde and hydroxyde, silicate, sulphide, and carbonate. The source of most heavy minerals in the study area is commonly formed by Felsic igneous rock and finally deposited on the seafloor sediments.

  17. Observations on sediment sources in the Lower Athabasca River basin: implications of natural hydrocarbons inputs from oil sands deposits

    International Nuclear Information System (INIS)

    Conly, F.M.

    1999-01-01

    Government, industry and public concern exists over the environmental consequences of the development of the oil sand deposits in the McMurray Formation in the lower Athabasca River basin, Alberta. The impact of this development is unclear and is undergoing investigation. Investigations to date have focussed on the nature of the effluent produced by the extraction industry and its effect on biotic systems, and on the spatial distribution of hydrocarbon contaminants associated with deposited fluvial sediments. Natural hydrocarbon outcrops may be responsible for observed biomarker responses in areas not exposed to industrial effluent. Given this source of hydrocarbons and doubt concerning its environmental impact, it is difficult to ascertain the impact of oil extraction activities within a fluvial system. A study was conducted to determine the nature and extent of natural hydrocarbon releases within the context of the sediment regime of the lower Athabasca River basin. A description is included of observations from the field and a context is set up for assessing sediment-bound hydrocarbon contaminants in the lower Athabasca River basin. Abstract only included

  18. A multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry.

    Science.gov (United States)

    Hortobágyi, Borbála; Corenblit, Dov; Vautier, Franck; Steiger, Johannes; Roussel, Erwan; Burkart, Andreas; Peiry, Jean-Luc

    2017-11-01

    Over the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life

    Science.gov (United States)

    Heinrich, Christoph A.

    2015-03-01

    The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial. Earth's atmosphere three billion years ago was oxygen free, but already sustained some of the oldest microbial life on land. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth's atmosphere.

  20. Residual Defect Density in Random Disks Deposits.

    Science.gov (United States)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.