WorldWideScience

Sample records for fluorophosphate-base laser glasses

  1. Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center

    International Nuclear Information System (INIS)

    Babu, S.; Seshadri, M.; Balakrishna, A.; Reddy Prasad, V.; Ratnakaram, Y.C.

    2015-01-01

    The multicomponent 49.5P 2 O 5 –10AlF 3 –10BaF 2 –10SrF 2 –10PbO–10M (M=Li 2 O, Na 2 O, K 2 O, ZnO and Bi 2 O 3 ) glasses doped with 0.5 mol% holmium were prepared by melt quenching technique. Their thermal behavior was examined from differential scanning calorimetry (DSC). It is found that bismuth fluoro-phosphate glass matrix has good thermal stability. Their structures were characterized by the X-ray diffraction with SEM analysis, fourier transform infrared (FTIR), Raman spectroscopy and magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. It was found that the phosphate network of these glasses was composed mainly of Q 2 and Q 3 phosphate tetrahedral units. The Judd–Ofelt parameters (J–O) (Ω 2 , Ω 4 and Ω 6 ) were evaluated from the intensities of the energy levels through optical absorption spectra. The most intense transitions are observed in the visible region of the spectrum. It is observed that the transition 5 I 8 → 5 G 6 is the hypersensitive transition for Ho 3+ ion. With these J–O parameters, various radiative properties like the probabilities of radiative transitions, radiative lifetimes and branching ratios have been calculated for different fluoro-phosphate glasses. The luminescence kinetics from excited holmium levels have been studied upon selective excitation through photoluminescence measurements. Holmium produces two visible laser emissions i.e. one is green ( 5 F 4 ( 5 S 2 )→ 5 I 8 ) and another one is red ( 5 F 5 → 5 I 8 ). The lifetimes of these levels have been experimentally determined through decay profile studies. The above results suggest that the prepared bismuth fluoro-phosphate glass system could be a suitable candidate for using it as a green laser source ( 5 F 4 ( 5 S 2 )→ 5 I 8 ) in the visible region of the spectrum. - Highlights: • Holmium doped different fluoro-phosphate glasses were prepared and characterized. • Structural, thermal and spectroscopic properties have been studied

  2. Thermal and optical properties of Nd{sup 3+} ions in K–Ca–Al fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Linganna, K. [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Viswanath, C.S. Dwaraka [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Narro-Garcia, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Querétaro Mexico (Mexico); Ju, S.; Han, W.-T. [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Jayasankar, C.K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Venkatramu, V., E-mail: vvramuphd@gmail.com [Department of Physics, Yogi Vemana University, Kadapa 516003, Andhra Pradesh (India)

    2015-10-15

    Fluorophosphate glasses of composition (P{sub 2}O{sub 5}–K{sub 2}O–Al{sub 2}O{sub 3}–CaO–CaF{sub 2})-doped with various Nd{sub 2}O{sub 3} concentrations were prepared by a melt quenching technique and their thermal, vibrational and optical properties were investigated. Thermal stability of the fluorophosphate glass has been determined from differential scanning calorimetric thermograph. The vibrational modes of the present glass have been studied using Raman spectrum. The intensity parameters, Ω{sub λ} (λ=2, 4 and 6) as well as radiative properties for the {sup 4}F{sub 3/2} level of Nd{sup 3+} ion, have been evaluated from the absorption spectra of 1.0 mol% Nd{sub 2}O{sub 3}-doped glass using the Judd–Ofelt theory. Strong near infrared emission at 1.06 =m attributed to {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} transition has been obtained for all the glasses upon 806 nm diode laser excitation. Decay analysis has been carried out and found that the lifetime for the {sup 4}F{sub 3/2} level of Nd{sup 3+} ion was found to be higher compared to the other Nd{sup 3+}-doped glass host matrices. The quantum efficiency and saturation intensity have been determined to be 93% and 2.32×10{sup 8} W/m{sup 2}, respectively for 1.0 mol% Nd{sub 2}O{sub 3}-doped glass. The results indicate that the present glasses could be useful for 1.06 µm laser applications. - Highlights: • Nd{sup 3+}-doped K–Al–Ca fluorophosphate glasses were prepared and characterized. • Raman and DSC measurements have been carried out. • Strong near infrared emission at 1.06 μm ({sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} transition) has been found. • Optical properties have been evaluated and compared to other host matrices. • Higher lifetime and quantum efficiency have been noticed in the studied glasses.

  3. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  4. Crystallization in lead tungsten fluorophosphate glasses

    International Nuclear Information System (INIS)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G.

    2014-01-01

    The glass forming ability was investigated in the ternary system NaPO 3 -WO 3 -PbF 2 with a constant NaPO 3 /WO 3 ratio of 3/2 and increasing amounts of PbF 2 . It has been found that glass samples can be obtained from PbF 2 contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF 2 is the lead fluorophosphates phase Pb 5 F(PO 4 ) 3 whereas the sample containing 60% of PbF 2 exhibits a preferential crystallization of cubic lead fluoride β-PbF 2 . (author)

  5. Crystallization in lead tungsten fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G., E-mail: gael.poirier@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    The glass forming ability was investigated in the ternary system NaPO{sub 3}-WO{sub 3}-PbF{sub 2} with a constant NaPO{sub 3}/WO{sub 3} ratio of 3/2 and increasing amounts of PbF{sub 2}. It has been found that glass samples can be obtained from PbF{sub 2} contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF{sub 2} is the lead fluorophosphates phase Pb{sub 5}F(PO{sub 4}){sub 3} whereas the sample containing 60% of PbF{sub 2} exhibits a preferential crystallization of cubic lead fluoride β-PbF{sub 2}. (author)

  6. Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+

    International Nuclear Information System (INIS)

    Gonçalves, Tássia S.; Moreira Silva, Raphaell J.; Oliveira Junior, Marcos de; Ferrari, Cynthia R.; Poirier, Gäel Y.; Eckert, Hellmut; Camargo, Andrea S.S. de

    2015-01-01

    Rare earth (RE 3+ )-doped fluorophosphate glasses are among the most promising candidates for high-efficiency laser generation in the near-infrared spectral region. By proper choice of composition, these materials can combine the advantages of fluorides (low phonon energies, low refractive indices, extensive optical window, low hygroscopicity) and of oxides (high chemical and mechanical stability and high dopant solubility), resulting in enhancement of the RE 3+ emissive properties. In this work, we present the synthesis and structural/spectroscopic investigation of new glasses with composition 25BaF 2 25SrF 2 (30-x)Al(PO 3 ) 3 xAlF 3 (20-z)YF 3 :zREF 3 , where x = 20 or 15, RE = Er 3+ and/or Yb 3+ , z = 0.25–5.0 mol%. Results indicate considerable improvement of the emissive properties of both ions when compared to phosphate or even other fluorophosphate host compositions. Long excited state lifetimes (τ = 10 ms for the Er 3+ level 4 I 13/2 , and τ = 1.3 ms for the Yb 3+ level 2 F 5/2 ) imply high fluorescence quantum efficiencies η (up to 85% for both ions). Structural characterization by Raman and multinuclear solid state NMR spectroscopies indicate that the metaphosphate-type chain structure of the Al(PO 3 ) 3 vitreous framework is partially depolymerized and dominated by Q (0) and Q (1) units crosslinked by six-coordinate Al species. As revealed by 27 Al{ 31 P} rotational echo double resonance (REDOR) NMR results the average local aluminum environment of the x = 20 sample comprises 1.6 phosphate and 4.4 fluoride species. These results indicate a clear bonding preference between aluminum and phosphorus, which is consistent with the desired dominance of fluoride species in the local environment of the rare earth and alkaline earth atoms in these glasses. - Highlights: • New fluorophosphate glass composition with excellent photophysical properties. • Detailed structural insights by multinuclear solid state NMR. • Rare earth bonding preference to

  7. Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass

    Directory of Open Access Journals (Sweden)

    Ju H. Choi

    2007-01-01

    Full Text Available We demonstrate new series of heavy metal containing fluorophosphate glass system. The fluorescence and nonradiative properties of Nd3+ ions are investigated as a function of Nd2O3 concentration. The variation of intensity parameters Ω2, Ω4, and Ω6 is determined from absorption spectra. The spontaneous probability (A and branching ratio (β are determined using intensity parameters. The emission cross sections for the 4F3/2→4I13/2 transition, which is calculated by Fuchtbabauer-Ladenburg method, decrease from 6.1×10−21 to 3.0×10−21(pm2 and those for the 4F3/2→4I11/2 transition decrease from 3.51×10−20 to 1.7×10−20 as Nd2O3 concentration increase up to 3 wt%. The nonradiative relaxation is analyzed in terms of multiphonon relaxation and concentration quenching due to energy transfer among Nd3+ ions. Finally, the above results obtained at 1 wt %Nd2O3 are compared with some of reported laser host glasses which indicated the potentials for broadband-amplifiers and high-power laser applications.

  8. Development of improved laser glasses which can be melted on a commercial scale. Annual progress report, September 15, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, C.F.; Huff, N.T.; Vergano, P.J.

    1978-04-01

    Large neodymium doped glass laser systems are presently being built for nuclear fusion research. However, the power which can be generated by these systems is generally limited by self focusing in the laser glass. This study was undertaken to develop laser glasses with a minimum nonlinear refractive index which would allow the generation of higher powers in these laser systems. Various fluorophosphate glass forming systems were investigated in order to develop laser glasses with ''optimum'' properties (low n/sub 2/, medium sigma, long tau, highly stable). In these fluorophosphate systems, the regions of glass formation were defined and glass composition-property correlation equations were derived which related the various properties (n/sub D/, n/sub 2/, sigma, the Nd/sup 3 +/ peak lambda, ..delta..lambda, effective ..delta..lambda, sigma and tau radiative) to the glass composition. Specific glass compositions were developed which had nonlinear refractive indices of about /sup 1///sub 3/ those of commercial silicate laser glasses but had comparable spectroscopic properties (i.e., sigma). These glasses were sufficiently stable to cast single pieces of glass weighing in excess of 50 lbs.

  9. Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er{sup 3+} and Yb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Tássia S.; Moreira Silva, Raphaell J.; Oliveira Junior, Marcos de; Ferrari, Cynthia R. [Physics Institute of São Carlos, University of São Paulo, São Carlos, SP 13566-590 (Brazil); Poirier, Gäel Y. [Science and Technology Institute, Federal University of Alfenas, Poços de Caldas, MG 37715-400 (Brazil); Eckert, Hellmut, E-mail: eckert@ifsc.usp.br [Physics Institute of São Carlos, University of São Paulo, São Carlos, SP 13566-590 (Brazil); Physical Chemistry Institute, Westfälische Wilhelms Universität Münster, Münster D-48149 (Germany); Camargo, Andrea S.S. de, E-mail: andreasc@ifsc.usp.br [Physics Institute of São Carlos, University of São Paulo, São Carlos, SP 13566-590 (Brazil)

    2015-05-01

    Rare earth (RE{sup 3+})-doped fluorophosphate glasses are among the most promising candidates for high-efficiency laser generation in the near-infrared spectral region. By proper choice of composition, these materials can combine the advantages of fluorides (low phonon energies, low refractive indices, extensive optical window, low hygroscopicity) and of oxides (high chemical and mechanical stability and high dopant solubility), resulting in enhancement of the RE{sup 3+} emissive properties. In this work, we present the synthesis and structural/spectroscopic investigation of new glasses with composition 25BaF{sub 2}25SrF{sub 2}(30-x)Al(PO{sub 3}){sub 3}xAlF{sub 3}(20-z)YF{sub 3}:zREF{sub 3}, where x = 20 or 15, RE = Er{sup 3+} and/or Yb{sup 3+}, z = 0.25–5.0 mol%. Results indicate considerable improvement of the emissive properties of both ions when compared to phosphate or even other fluorophosphate host compositions. Long excited state lifetimes (τ = 10 ms for the Er{sup 3+} level {sup 4}I{sub 13/2}, and τ = 1.3 ms for the Yb{sup 3+} level {sup 2}F{sub 5/2}) imply high fluorescence quantum efficiencies η (up to 85% for both ions). Structural characterization by Raman and multinuclear solid state NMR spectroscopies indicate that the metaphosphate-type chain structure of the Al(PO{sub 3}){sub 3} vitreous framework is partially depolymerized and dominated by Q{sup (0)} and Q{sup (1)} units crosslinked by six-coordinate Al species. As revealed by {sup 27}Al{"3"1P} rotational echo double resonance (REDOR) NMR results the average local aluminum environment of the x = 20 sample comprises 1.6 phosphate and 4.4 fluoride species. These results indicate a clear bonding preference between aluminum and phosphorus, which is consistent with the desired dominance of fluoride species in the local environment of the rare earth and alkaline earth atoms in these glasses. - Highlights: • New fluorophosphate glass composition with excellent photophysical properties.

  10. Measurements and modeling of gain coefficients for neodymium laser glasses

    International Nuclear Information System (INIS)

    Linford, G.J.; Saroyan, R.A.; Trenholme, J.B.; Weber, M.J.

    1979-01-01

    Small-signal gain coefficients are reported for neodymium in silicate, phosphate, fluorophosphate, and fluoroberyllate laser glasses. Measurements were made in a disk amplifier under identical conditions. Using spectroscopic data as the input, amplifier gain is calculated as a fucntion of flashlamp energy, pumping pulse duration, disk thickness, and Nd-doping. The agreement between predicted and measured gains is generally with ;plus or minus;10 percent, consistent with experimental uncertainties in the model and the parameters used. The operating conditions which optimize amplifier performance and efficiency for a given laser glass may be found using spectroscopic data alone. This process can be extended to derive the most cost-effective staging of amplifier chains for fusion lasers. A discussion of the model and examples of calculations are presented

  11. Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Ho3+ doped zinc fluorophosphate (ZFP) glasses with molar chemical compositions, (60-x) NH4H2PO4+20ZnO+10BaF2+10NaF+xHo2O3 (where x = 0.1, 0.3, 0.5, 1.0 and 1.5 mol%) were prepared by melt quenching technique. These glasses were characterized through physical, structural, optical, excitation, luminescence and decay curve analysis. From the absorption spectra, spectral intensities (fexp and fcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (AT), radiative lifetimes (τR) and branching ratios (βR) were evaluated for all Ho3+ doped ZFP glass matrices. From the photoluminescence spectra, peak stimulated emission cross-sections (σP) were calculated for all Ho3+ doped ZFP glasses. The Ho3+ doped ZFP glasses show strong green emission at 545 nm and red emission at 656 nm under excitation, 450 nm. The measured lifetimes (τmeas) of (5S2)5F4 level of Ho3+ doped ZFP glasses were obtained from decay profiles. The CIE color coordinates of Ho3+ doped ZFP glasses were calculated from emission spectra and 1.0 mol% of Ho3+ doped ZFP glass matrix gives green emission. Hence, these results confirm that the Ho3+ doped ZFP glasses could be considered as a promising candidate for visible green laser applications.

  12. Requirements and new materials for fusion laser systems

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n 2 ) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978

  13. Requirements and new materials for fusion laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n/sub 2/) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978.

  14. Analysis of structure origin and luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glass.

    Science.gov (United States)

    Chen, Fangze; Jing, Xufeng; Wei, Tao; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-08-14

    The near infrared luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glasses have been investigated. The various effects on structure and 1.53 μm emission were analyzed as a function of Yb(3+) concentration. The energy transfer mechanism was proposed. High measured lifetime (10.75 ms), large effective full widths at half maximum (73.71 nm) and large gain per unit length (62.8 × 10(-)(24)cm(2)s) have been achieved in prepared glass. The present glass co-doped with 6mol% YbF3 and 2 mol% ErF3 showed magnificent luminescence properties for telecommunication application. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Nova chain design and performance

    International Nuclear Information System (INIS)

    Simmons, W.W.; Glaze, J.A.; Trenholme, J.B.; Hagen, W.F.

    1980-01-01

    During the past year design of the Nova laser has undergone significant change as a result of developments in our laser glass and optical coating evaluation programs. Two notable aspects of the glass development program deserve emphasis. First, vendor qualification for production of fluorophosphate laser glass is progressing satisfactorily. There is a reasonable expectation that vendors can meet fluorophosphate glass specifications within Nova schedule constraints. Secondly, recent gain saturation measurements have shown that the saturation fluence of the fluorophosphate glass is larger than previously supposed (approx. 5.5 J/cm 2 ) and in fact is somewhat larger than Shiva silicate glasses. Hence, performance of Nova for pulses in the 3 ns and longer range should be satisfactory. For pulses in the 1 ns regime, of course, the fluorophosphate chain will have superior performance to that of silicate because of its low nonlinear index of refraction (approx. 30% that of silicate). These and other considerations have led us to choose a chain design based upon the use of fluorophosphate glass in our amplifiers

  16. Preparation and properties of Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruilin; Wang, Jinlong; Zhang, Liaolin; Liu, Chunxiao; Wei, Wei [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China)

    2016-07-15

    Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate glass-ceramics were prepared by the melt quenching and subsequent thermal treatment method. The formation of SrAlF{sub 5} nanocrystals in the glass was confirmed by X-ray diffraction and scanning electron microscope. The fluorescence intensity and lifetime of the glass-ceramics increased with the increase of size of nanocrystals. Importantly, by controlling growth of nanocrystals, an obvious enhancement of lifetime (725 μs) emerged in the glass-ceramics heat-treated at 510 C and the transmittance can reach to 72.2 % at 1049 nm. The enhanced fluorescence intensity and lifetime were ascribed to the comfortable local environment to the Nd{sup 3+} ion and scattering of the nanoparticle embedded into the glass matrix. (orig.)

  17. On the size and temperature dependence of the energy gap in cadmium-selenide quantum dots embedded in fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.; Nikonorov, N. V. [ITMO University (Russian Federation)

    2017-03-15

    The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.

  18. New fluorophosphate glasses co-doped with Eu{sup 3+} and Tb{sup 3+} as candidates for generating tunable visible light

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, T.B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Botelho, M.B.S. [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); University of Brasilia, 70910-900 Brasilia, DF (Brazil); Gonçalves, T.S.; Dousti, M. Reza [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); Camargo, A.S.S. de, E-mail: andreasc@ifsc.usp.br [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil)

    2015-10-25

    A series of optically active Eu{sup 3+} and Tb{sup 3+} doped fluorophosphate glasses with compositions (BaF{sub 2}){sub 0.25}(SrF{sub 2}){sub 0.25}(AlF{sub 3}){sub 0.10}[Al(PO{sub 3}){sub 3}]{sub 0.20}(YF{sub 3}){sub 0.20-x}(EuF{sub 3} and/or TbF{sub 3}){sub x} (x = 0 to 0.04) was prepared and characterized by optical spectroscopy. While embedded in the oxyfluoride host, the cited rare earth (RE) ions exhibit improved spectroscopic properties such as longer excited state lifetimes than in oxide glasses and intense emissions in the red ({sup 5}D{sub 0} → {sup 7}F{sub 2}, Eu{sup 3+}), green and blue ({sup 5}D{sub 4} → {sup 7}F{sub 5} and {sup 5}D{sub 3},{sup 5}G{sub 6} → {sup 7}F{sub 5},{sup 7}F{sub 4}, Tb{sup 3+}) spectral regions. Based on this fact, co-doped samples can be designed with appropriate concentrations of these two ions and generate tunable and white light upon excitation with suitable wavelengths, dispensing the need for a third blue emitting RE ion. Four co-doped samples with equal amounts of EuF{sub 3} and TbF{sub 3} and total concentration of 0.3, 0.5, 1.0 and 1.5 mol% were tested. Their CIE chromaticity coordinates were calculated for various excitation wavelengths in the region from 350 to 360 nm allowing tuned emission from blue to red. The long lifetime values of the emitting levels in these co-doped samples (τ ≈ 3.1 ms for Eu{sup 3+5}D{sub 0}, and τ ≈ 4.0 ms for Tb{sup 3+5}D{sub 4}), associated with fairly high quantum yields (Q.Y. = 5–12%) of the samples indicate that these materials could be efficiently pumped by high power LEDs around 355 nm. - Highlights: • Fluorophosphate glasses doped with Eu{sup 3+} and Tb{sup 3+} and excellent optical properties. • Tunable visible emission and white emission in co-doped samples. • Rare earth bonding preference to fluoride rather than phosphate ions.

  19. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  20. 2.3 µm laser potential of TeO2 based glasses

    Science.gov (United States)

    Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.

    2017-09-01

    Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.

  1. Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, M.A., E-mail: marzouk_nrc@yahoo.com [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); ElBatal, H.A. [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Ezz ElDin, F.M. [National Institute for Radiation Research & Technology, Nasr City, Cairo (Egypt)

    2015-10-15

    Combined optical, FTIR and photoluminescence spectra of varying Sm{sup 3+} ions in NaF–AlF{sub 3}–phosphate glasses were investigated before and after successive gamma irradiation. Optical (UV–visible) absorption of the base undoped glass reveals UV absorption which becomes broadened and strong with progressive gamma irradiation. The UV absorption of the undoped glass is related to unavoidable trace iron impurity (Fe{sup 3+}) contaminated within the chemicals used for its preparation. Upon gamma irradiation, ferrous ions present in noticeable percent within the impurity due to the reducing nature of phosphate glass interact with positive holes during the irradiation process and are transformed to ferric ions through photochemical reactions and the additionally formed Fe{sup 3+} ions impart their characteristic strong absorption in the UV region. Sm{sup 3+} containing glasses show characteristic small peaks arranged into two regions from about 350 to 900 nm and from about 1000 to 1600 nm. Such absorption peaks are more distinct with the increase of Sm{sub 2}O{sub 3} content. Most of the limited number of absorption peaks are due to transitions from the {sup 6}H{sub 5/2} level to the various excited {sup 2s+1}L{sub J} levels. The majority of the transitions in the spectra are assumed to originate from induced electric dipole (ED) interactions with the selection rule ∆J≤6. The intense band {sup 6}P{sub 3/2}←{sup 6}H{sub 5/2} around 25,000 cm{sup −1} (~400 nm) is spin-allowed. The emission spectra of Sm{sup 2+} ions were recorded under the excitation wavelength of 402 nm for all prepared Sm{sub 2}O{sub 3}-containing glasses. The photoluminescence spectra show four emission lines, of which three consist of strong bands while the last line is a weak band. The wavelengths of the four luminescence peaks occur at about 560, 596, 642 and 702 nm and they are assigned to transitions from {sup 4}G{sub 5/2} to {sup 6}H{sub 5/2}, {sup 6}H{sub 7/2}, {sup 6}H{sub 9

  2. X-ray induced Sm{sup 3+} to Sm{sup 2+} conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vahedi, Shahrzad; Okada, Go; Morrell, Brian; Muzar, Edward; Koughia, Cyril; Kasap, Safa [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 (Canada); Edgar, Andy; Varoy, Chris [School of Chemical and Physical Sciences and MacDiarmid Institute, Victoria University of Wellington, Kelburn Parade (New Zealand); Belev, George; Wysokinski, Tomasz [Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 0X4 (Canada); Chapman, Dean [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 (Canada)

    2012-10-01

    Fluorophosphate and fluoroaluminate glasses doped with trivalent samarium were evaluated as sensors of x-ray radiation for microbeam radiation therapy at the Canadian Light Source using the conversion of trivalent Sm{sup 3+} to the divalent form Sm{sup 2+}. Both types of glasses show similar conversion rates and may be used as a linear sensor up to {approx}150 Gy and as a nonlinear sensor up to {approx}2400 Gy, where saturation is reached. Experiments with a multi-slit collimator show high spatial resolution of the conversion pattern; the pattern was acquired by a confocal fluorescence microscopy technique. The effects of previous x-ray exposure may be erased by annealing at temperatures exceeding the glass transition temperature T{sub g} while annealing at T{sub A} < T{sub g} enhances the Sm conversion. This enhancement is explained by a thermally stimulated relaxation of host glass ionic matrix surrounding x-ray induced Sm{sup 2+} ions. In addition, some of the Sm{sup 3+}-doped glasses were codoped with Eu{sup 2+}-ions but the results show that there is no marked improvement in the conversion efficiency by the introduction of Eu{sup 2+}.

  3. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  4. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  5. A new layered iron fluorophosphate

    Indian Academy of Sciences (India)

    PO4]·2H2O, I has been prepared by the hydrothermal route. This compound contains iron fluorophosphate layers and the H2PO 4 − anions are present in the interlayer space along with the protonated amine and water molecules.

  6. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  7. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  8. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  9. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  10. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Recent developments in laser glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1983-01-01

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd 3 + - are reviewed

  12. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Science.gov (United States)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  13. Analysis of Nd3+:glass, solar-pumped, high-powr laser systems

    Science.gov (United States)

    Zapata, L. E.; Williams, M. D.

    1989-01-01

    The operating characteristics of Nd(3+):glass lasers energized by a solar concentrator were analyzed for the hosts YAG, silicate glass, and phosphate glass. The modeling is based on the slab zigzag laser geometry and assumes that chemical hardening methods for glass are successful in increasing glass hardness by a factor of 4. On this basis, it was found that a realistic 1-MW solar-pumped laser might be constructed from phosphate glass 4 sq m in area and 2 mm thick. If YAG were the host medium, a 1-MW solar-pumped laser need only be 0.5 sq m in area and 0.5 cm thick, which is already possible. In addition, Nd(3+) doped glass fibers were found to be excellent solar-pumped laser candidates. The small diameter of fibers eliminates thermal stress problems, and if their diameter is kept small (10 microns), they propagate a Gaussian single mode which can be expanded and transmitted long distances in space. Fiber lasers could then be used for communications in space or could be bundled and the individual beams summed or phase-matched for high-power operation.

  14. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  16. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  17. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  18. Laser amplifier based on a neodymium glass rod 150 mm in diameter

    Energy Technology Data Exchange (ETDEWEB)

    Shaykin, A A; Fokin, A P; Soloviev, A A; Kuzmin, A A; Shaikin, I A; Burdonov, K F; Khazanov, E A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Charukhchev, A V [Public Limited Company " Scientific research Institute for Optoelectronic Instrument Engineering" , Leningrad region (Russian Federation)

    2014-05-30

    A unique large-aperture neodymium glass rod amplifier is experimentally studied. The small-signal gain distribution is measured at different pump energies. The aperture-averaged gain is found to be 2.3. The stored energy (500 J), the maximum possible pump pulse repetition rate, and the depolarisation in a single pulse and in a series of pulses with a repetition rate of one pulse per five minutes are calculated based on the investigations performed. It is shown that the use of this amplifier at the exit of the existing laser can increase the output pulse energy from 300 to 600 J. (lasers)

  19. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  20. Measurement of stress-induced birefringence in glasses based on reflective laser feedback effect

    Science.gov (United States)

    Haisha, Niu; YanXiong, Niu; Jiyang, Li

    2017-02-01

    A glass birefringence measurement system utilizing the reflective laser feedback (RLF) effect is presented. The measurement principle is analyzed based on the equivalent cavity of a Fabry-Perot interferometer, and the experiments are conducted with a piece of quartz glass with applied extrusion force. In the feedback system, aluminum film used as a feedback mirror is affixed to the back of the sample. When the light is reflected back into the cavity, as the reinjected light is imprinted with the birefringence information in the sample, the gain and polarization states of the laser are modulated. The variation of optical power and polarization states hopping is monitored to obtain the magnitude of the stress. The system has advantages such as simplicity and low-cost with a precision of 1.9 nm. Moreover, by adjusting the position of the aluminum, large-area samples can be measured anywhere at any place.

  1. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  2. THE PROPERTIES OF GUIDED ELECTROMAGNETIC FIELD MODES ON THE GaAs-BASED FIBER GLASS AND LASERS

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1999-03-01

    Full Text Available On the lasers or fiber optic communication electromagnetic waves are transmitted by confining and guiding between special layer's or fiber glass respectively. It is desired that electric and magnetic waves are in the active region of the lasers and in the core of the fiber glass. It is obtained by making more larger the of refractive index of the regions. On this work, the behavior and varying of the electric and magnetic waves and the effects on the electromagnetic waves in the fiber glass and lasers are investigated.

  3. Composite polymer: Glass edge cladding for laser disks

    Science.gov (United States)

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  4. Composite polymer-glass edge cladding for laser disks

    Science.gov (United States)

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  5. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser system

    International Nuclear Information System (INIS)

    Campbell, J. H.; Ficini-Dorn, G.; Hawley-Fedder, R.; McLean, M. J.; Suratwala, T.; Trombert, J. H.

    1998-01-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1999

  6. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  7. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  8. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  9. Structural modification of silica glass by laser scanning

    International Nuclear Information System (INIS)

    Zhao Jian; Sullivan, James; Zayac, John; Bennett, Ted D.

    2004-01-01

    The thermophysical nature of rapid CO 2 laser heating of silica glass is explored using a numerical simulation that considers the structural state of the glass, as characterized by the fictive temperature. The fictive temperature reflects the thermodynamic temperature at which the glass structure would be in equilibrium. To demonstrate that the thermophysical model can accurately predict the structural change in the glass, the fictive temperature is measured experimentally utilizing the fact that the fictive temperature change corresponds to a change of glass properties that can be revealed through wet chemical etching. The relationship between the etch rate and the fictive temperature is determined by preparing and etching samples of known fictive temperature. Wet chemical etching is used to measure the fictive temperature over the entire laser affected zone and the results are found to compare favorably with the results of the thermophysical model. The model and experimental measurements demonstrate that rapid laser processing results in an increased fictive temperature near the surface of the glass. The fictive temperature increase is about 1000 K and is uniform to within 5% over the laser affected zone. Near the boundary of this zone, the fictive temperature transitions abruptly to the value of the surrounding untreated glass

  10. Composite polymer/glass edge claddings for new Nova laser disks

    International Nuclear Information System (INIS)

    Powell, H.T.; Campbell, J.H.; Edwards, G.

    1987-01-01

    Large Nd:glass laser disks like those used in Nova require an edge cladding which absorbs at 1 μm. This cladding prevents Fresnel reflections from the edges from causing parasitic oscillations which would otherwise reduce the gain. The original Nova disks had a Cu/sup 2+/-doped phosphate glass cladding which was cast at high temperature around the circumference of the disk. Although the performance of this cladding is excellent, it was expensive to produce. Consequently, in parallel with their efforts to develop Pt inclusion-free laser glass, the authors developed a composite polymer/glass edge cladding that can be applied at greatly reduced cost. Laser disks constructed with the new cladding design show identical performance to the previous Nova disks and have been tested for hundreds of shots without degradation. The new cladding consists of absorbing glass strips which are bonded to the edges of polygonal-rather that elliptical-shaped disks. The bond is made by an --25-μm thick clear epoxy adhesive whose index of refraction matches both the laser and absorbing glass. By blending aromatic and aliphatic epoxy constituents, they achieved an index-of-refraction match within approximately +-0.003 between the epoxy and glass. The epoxy was also chosen based on its damage resistance to flashlamp light and its adhesive strength to glass. The present cladding is a major improvement over a previous experimental cladding utilizing silicone rubber as a coupling agent. Early prototypes constructed without using the presented techniques exhibited failures from both mechanisms. Delamination failures occurred which clearly showed both surface and bulk-mode parasitic oscillation. Requirements on the polymer, disk size, and Nd doping to prevent these problems are presented

  11. Inspection of float glass using a novel retroreflective laser scanning system

    Science.gov (United States)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  12. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Multi-megajoule Nd: glass fusion laser design

    International Nuclear Information System (INIS)

    Manes, K.R.

    1986-01-01

    New technologies make multi-megajoule glass lasers economically feasible. Laser architectures using harmonic switchout, target plane holographic injection, phase conjugation, continuous apodization and higher amplifier efficiencies have been devised. A plan for a multi-megajoule laser which can be built for an acceptable cost relies on manufacturing economies of scale and the demonstration of the new technologies presented here. These include continuous pour glass production, rapid harmonic crystal growth, switching of large blocks of power using larger capcaitors packed more economically and by using large identical parts counts

  14. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  15. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  16. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  17. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  18. Janus neodymium glass laser operations manual

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Holmes, N.C.; Trainor, R.J.

    1978-01-01

    A manual, prepared to guide personnel in operating and maintaining the Janus glass laser system, is presented. System components are described in detail. Step-by-step procedures are presented for firing the laser and for performing routine maintenance and calibration procedures

  19. Tensile behavior of laser treated Fe-Si-B metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman; Katakam, Shravana; Collins, Peter C.; Dahotre, Narendra B., E-mail: narendra.dahotre@unt.edu [Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle 305310, Denton, Texas 76203-5017 (United States)

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treated metallic glass foils.

  20. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  1. Holes generation in glass using large spot femtosecond laser pulses

    Science.gov (United States)

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  2. Near-field enhanced femtosecond laser nano-drilling of glass substrate

    International Nuclear Information System (INIS)

    Zhou, Y.; Hong, M.H.; Fuh, J.Y.H.; Lu, L.; Lukyanchuk, B.S.; Wang, Z.B.

    2008-01-01

    Particle mask assisted near-field enhanced femtosecond laser nano-drilling of transparent glass substrate was demonstrated in this paper. A particle mask was fabricated by self-assembly of spherical 1 μm silica particles on the substrate surface. Then the samples were exposed to femtosecond laser (800 nm, 100 fs) and characterized by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The nano-hole array was found on the glass surface. The hole sizes were measured from 200 to 300 nm with an average depth of 150 nm and increased with laser fluence. Non-linear triple-photon absorption and near-field enhancement were the main mechanisms of the nano-feature formation. Calculations based on Mie theory shows an agreement with experiment results. More debris, however, was found at high laser fluence. This can be attributed to the explosion of silica particles because the focusing point is inside the 1 μm particle. The simulation predicts that the focusing point will move outside the particle if the particle size increases. The experiment performed under 6.84 μm silica particles verified that no debris was formed. And for all the samples, no cracks were found on the substrate surface because of ultra-short pulse width of femtosecond laser. This method has potential applications in nano-patterning of transparent glass substrate for nano-structure device fabrication

  3. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  4. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Surface plasmon resonance assisted rapid laser joining of glass

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  6. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  7. Depth estimation of laser glass drilling based on optical differential measurements of acoustic response

    Science.gov (United States)

    Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev

    2016-09-01

    We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.

  8. Glass marking with diode-pumped Nd:YLF laser; Handotai reiki Nd:YLF laser ni yoru glass marking

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Hayashi, K. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1996-08-20

    The compact marking system based on a beam scanning system in which the fourth harmonic (FHG: 262 nm in wavelength) of a diode-pumped Nd:YLF (Nd:LiYf4) laser is used for the source of ultraviolet light is described. The result of application to the glass marking that caused a problem due to the generation of cracks is also explained. The machining characteristics significantly vary depending on the type of glass. During actual marking, sample processing must be beforehand carried out to optimize the processing conditions after confirming that there is no problem in practical use. For marking on the glass used for liquid-crystal board, it is valid to improve the density of a dot and increase the number of shots per dot for obtaining high visibility. However, cracks may occur in the clearance of each dot because of the thermal effect. Therefore, the processing conditions must be optimized according to the glass type and crack generation state. The generation of cracks can be suppressed by setting the processing conditions to the optimum level. As a result, satisfactory marking is obtained. 8 refs., 6 figs.

  9. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  10. Forensic comparative glass analysis by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Bridge, Candice M.; Powell, Joseph; Steele, Katie L.; Sigman, Michael E.

    2007-01-01

    Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high

  11. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    Science.gov (United States)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  12. Laser diode pumped ND: Glass slab laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, M.; Kanabe, T.; Matsui, H.

    2001-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a laser-diode-pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd:glass slab is pumped from both sides by 803-nm AlGaAs laser-diode(LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 218 (max.) kW peak power with 2.6kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. (author)

  13. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    Science.gov (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  14. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  15. Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

    Directory of Open Access Journals (Sweden)

    Nikolay Nedyalkov

    2017-11-01

    Full Text Available We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps – laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems

  16. Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2018-01-01

    Full Text Available Bioactivity and ingrowth of ceramic implants is commonly enhanced by a suitable interconnected porous network. In this work, the laser machining of CaSiO3‒Ca3(PO42 biocompatible eutectic glass-ceramics and glasses was studied. For this purpose, 300 µm diameter craters were machined by using pulsed laser radiation at 532 nm with a pulsewidth in the nanosecond range. Machined samples were soaked in simulated body fluid for 2 months to assess the formation of a hydroxyapatite layer on the surface of the laser machined areas. The samples were manufactured by the laser floating zone technique using a CO2 laser. Morphology, composition and microstructure of the machined samples were described by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and micro-Raman Spectroscopy.

  17. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  18. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  19. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  20. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  1. Research and development of improving the pumping efficiency of phosphate laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.

    1985-01-01

    It is well known that Pt inclusion in laser glass remarkably lowers the damage threshold by laser beam. Present commercial laser glasses are produced so as to minimize the Pt inclusion. However, the damage due to small Pt inclusion, which has never seriously caused the laser damage in a lower fluence level, is getting to be a problem as the output fluence of laser increases. In NOVA system, most of laser glasses were damaged at fluence of 3 to 4 J/cm 2 . Since NOVA has been planned to operate at 10 J/cm 2 , this damage threshold is absolutely unacceptable and it should be increased. In this report we will show the basic conception to make a Pt inclusion free glass and its experimental results

  2. Development of composite polymer-glass edge claddings for Nova Laser Disks

    International Nuclear Information System (INIS)

    Campbell, J.H.; Edwards, G.; Frick, F.A.; Gemmell, D.S.; Gim, B.M.; Jancaitis, K.S.; Jessop, E.S.; Kong, M.K.; Lyon, R.E.; Murray, J.E.; Patton, H.G.; Pitts, J.H.; Powell, H.T.; Riley, M.O.; Wallerstein, E.P.; Wolfe, C.R.; Woods, B.W.

    1988-01-01

    Large Nd:glass laser disks for disk amplifiers require an edge cladding which absorbs at 1 μ m. This cladding prevents edge reflections from causing parasitic oscillations that would otherwise deplete the gain. The authors have developed a composite polymer-glass edge cladding that consists of absorbing glass strips bonded to the edges of laser glass disks using an epoxy adhesive. The edge cladding must survive a fluence of approximately 20 J/cm 2 in a 0.5-ms pulse. Failure can occur either by decomposition of the polymer or by mechanical failure from thermal stresses which leads to bond delamination. An epoxy has been developed that gives the required damage resistance, refractive index match and processing characteristics. A slight tilt of the disk edges greatly reduces the threat from parasitic oscillations and a glass surface treatment is used to promote bond adhesion. Laser disks fabricated with this new cladding show identical gain performance to disks using conventional fused-glass cladding and have been tested for over 2000 shots (equivalent to about a 4-year lifetime on Nova) with out degradation

  3. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  4. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Science.gov (United States)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  5. Laser glass: a key material in the search for fusion energy

    International Nuclear Information System (INIS)

    Campbell, J H

    1999-01-01

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation

  6. Stress relaxation damage in K9 glass plate irradiated by 1.06μm CW laser

    International Nuclear Information System (INIS)

    Luo Fu; Sun Chengwei

    2001-01-01

    Based on the stress relaxation model in 1D planar geometry and the visco-elastic constitutive equation, the temperature and stress histories in the K9 glass samples irradiated by CW laser beams (λ = 1.06 μm) have been calculated. The results indicate that the residual tensile stress due to the stress relaxation effect during cooling after the laser radiation may be greater than the tensile fracture strength of samples, while the maximum compression stress during the laser heating is less than the requirement for compression damage. For a K9 glass window of 3 mm thickness, its damage due to the stress relaxation may be induced by a laser radiation of 0.946 MW/cm 2 for 0.2s . Therefore, the stress relaxation should be regarded as the main mechanism of damage in K9 glass windows while a CW laser beam (λ = 1.06 μm) irradiates it with large spot

  7. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  8. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  9. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  10. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  11. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    International Nuclear Information System (INIS)

    Ficini, G.; Campbell, J.H.

    1996-01-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm 3 ) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology

  12. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  13. Low expansion and high gain Nd laser glasses

    International Nuclear Information System (INIS)

    Izumitani, Tetsuro; Peng, B.

    1995-01-01

    Due to the relationship between Judd-Ofelt intensity parameter and covalency, new laser glasses have been developed which have low expansion coefficients (85--91 x 10 -7 /cm C, 0--70 C) and high emission cross sections. They have good chemical properties, high Young's modulus and high thermal conductivities. These glasses are suitable for the National Ignition Facility

  14. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    Science.gov (United States)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  15. CO2 laser cutting of ultra thin (75 μm) glass based rigid optical solar reflector (OSR) for spacecraft application

    Science.gov (United States)

    Mishra, Shubham; Sridhara, N.; Mitra, Avijit; Yougandar, B.; Dash, Sarat Kumar; Agarwal, Sanjay; Dey, Arjun

    2017-03-01

    Present study reports for the first time laser cutting of multilayered coatings on both side of ultra thin (i.e., 75 μm) glass substrate based rigid optical solar reflector (OSR) for spacecraft thermal control application. The optimization of cutting parameters was carried out as a function of laser power, cutting speed and number of cutting passes and their effect on cutting edge quality. Systematic and in-detail microstructural characterizations were carried out by optical and scanning electron microscopy techniques to study the laser affected zone and cutting edge quality. Sheet resistance and water contact angle experiments were also conducted locally both prior and after laser cut to investigate the changes of electrical and surface properties, if any.

  16. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    International Nuclear Information System (INIS)

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-01-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag 2 O–0.4P 2 O 5 –0,1Nb 2 O 5 glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag 2 O–0.1Nb 2 O 5 –0.4P 2 O 5 and 0.55Ag 2 O–0.45P 2 O 5 glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown

  17. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  18. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  19. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  20. Diode-pumped glass laser (10 J X 10 HZ) development

    International Nuclear Information System (INIS)

    Tadashi Kanabe; Toshiyuki Kawashima; Masanobu Yamanaka; Masahiro Nakatsuka; Yasukazu Izawa; Takeshi Kanzaki; Hirofumi Kan; Sadao Nakai

    2002-01-01

    A high-energy, high beam quality, diode-pumped 1053-nm Nd:phosphate glass laser amplifier has been demonstrated in order to verify the conceptual design of HALNA (High Average-power Laser for Nuclear-fusion Application): a diode-pumped solid-state laser based on a water-cooled zig-zag slab optical geometry. This amplifier yielded 8.5 J output energy per pulse at 0.5 Hz in a 20 ns pulse of two times the diffraction limit beam quality with an optical-to-optical conversion efficiency of 10.9%. The experimental results revealed that the primary requirements for the IFE driver, such as diode-pumping, energy storage and extraction efficiencies, and beam quality have been fulfilled

  1. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  2. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  3. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  4. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  5. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    Science.gov (United States)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F

  6. Improvement of laser irradiation uniformity in GEKKO XII glass laser system

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Matsuoka, Shinichi; Ando, Akinobu; Amano, Shinji; Nakatsuka, Masahiro; Kanabe, Tadashi; Jitsuno, Takahisa; Nakai, Sadao

    1995-01-01

    The uniform laser irradiation is one of key issues in the direct drive laser fusion research. The several key technologies for the uniform laser irradiation are reported. This paper includes the uniformity performance as a result of the introduction of the random phase plate, the partially coherent light and the beam smoothing by spectral dispersion into the New Gekko XI glass laser system. Finally the authors summarize the overall irradiation uniformity on the spherical target surface by considering the power imbalance effect. The technologies developed for the beam smoothing and the power balance control enable them to achieve the irradiation nonuniformities of around 1% level for a foot pulse and of a few % for a main drive pulse, respectively

  7. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  8. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  9. Femtosecond laser-induced reduction in Eu-doped sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki-Soo [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: kslim@chungbuk.ac.kr; Lee, Sunkyun [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Trinh, Minh-Tuan [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Suk-Ho [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Myeongkyu [Departent of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749 (Korea, Republic of); Hamilton, Douglas S. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Gibson, George N. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2007-01-15

    In this work, we report permanent reduction of Eu{sup 3+} to Eu{sup 2+} in sodium borate glasses by irradiation of near-infrared femtosecond laser. Glass composition of sodium borate was 85B{sub 2}O{sub 3}-15Na{sub 2}O. The glasses were doped with 0.05, 0.1, and 0.5 mol% Eu{sub 2}O{sub 3}. Absorption and fluorescence dynamics were studied to investigate valence state change of europium ions and the energy transfer between Eu{sup 2+} and Eu{sup 3+} ions. As the femtosecond laser intensity or exposure time increases, the emission band at 400 nm becomes stronger. However, the photoreduction efficiency decreases as the dopant concentration increases. We discuss the photoreduction mechanism under multiphoton absorption.

  10. Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Reis, S.T.; Brow, R.K.; Martinez Vazquez, R.; Osellame, R.; Krol, D.M.

    2011-01-01

    We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman

  11. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    Science.gov (United States)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  12. Computational model of dual q-switching and lasing processes of the pulsed Cr4+:YAG laser pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the absorption and oscillation processes of intracavity Cr 4+ : YAG crystal pumped by Nd-glass laser has been developed, in order to describe the temporal behavior of laser-absorber system. The model has been assumed that the Cr 4+ ions excited to a higher level by excited state absorption, followed by relaxation directly to the upper laser level through fast channel, and indirectly through slow proposed intermediate channel at different lifetimes. The model offers simple kinetic mechanisms for pulsed solid state lasers and also the influence of the variations of the laser input parameters (pumping rate, maximum amplification coefficient and loss coefficient) on the output pulse characteristics of the passive Q-switched Nd-glass and pulsed Cr 4+ : YAG lasers. The model estimates the temporal behavior of the population densities of different levels and laser beam densities as well as predicts the nanosecond output laser pulses of passive Q-switched Nd-glass laser and pulsed Cr 4+ : YAG laser. The calculated results are in good agreement with the available experimental and theoretical data in the literature. (author)

  13. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  14. Laser and thermal bleaching of colour centres in sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bukharaev, A A; Yafaev, N R [AN SSSR, Kazan. Fiziko-Tekhnicheskij Inst.

    1978-12-01

    The maximum of the additional absorption band in ..gamma..- or UV-irradiated sodium borate glasses shifts to higher energy when the low-energy side of the band is bleached by a helium-neon laser, ..lambda.. = 632.8 nm. Simultaneously the half-width of the additional absorption band decreases. This phenomenon is associated with the fact that because of structural disorder of glasses there is a distribution of ground-state energies of trapped electrons forming the light-sensitive absorption band. The distribution interval of the activation energy for trapped electrons is estimated using the decomposition of the initial thermal bleaching curves into components. For UV irradiated glasses it is aproximately 0.24 eV, and for ..gamma..-irradiated glasses only 0.12 eV. These values correlate with the relative shift maximum of the absorption band at laser bleaching.

  15. The properties and structure of Sn---Ca---P---O---F glasses

    International Nuclear Information System (INIS)

    Ding, J.Y.; Shih, P.Y.; Yung, S.W.; Hsu, K.L.; Chin, T.S.

    2003-01-01

    Low melting modified calcium stannous fluorophosphate glasses based on a basic composition 40P 2 O 5 -25SnO-30SnF 2 -5CaF 2 (in mol%) with glass transition temperature T g ranging 220-240 deg. C have been prepared. The effect of Al(OH) 3 or SiO 2 addition on the properties of these glasses has also been determined. Aluminum and silicon compounds decrease the dissolution rate in water and thermal expansion coefficient while increase the density, T g and softening temperature. The effect of Al(OH) 3 addition on the increase of chemical durability is better for these glasses, due to the partial crystallization effect in stannous calcium silicofluorophosphate glasses. With an addition of 4 wt.% Al(OH) 3 , the dissolution rate of the glass in 30 deg. C water decreases from 1.0x10 -5 to 1.3x10 -7 g cm -2 min. The structure of Al(OH) 3 added glasses was studied by 27 Al and 31 P MAS NMR and Fourier transform IR (FTIR) spectroscopies to explain the relationship between glass properties and composition. The 27 Al spectra show three different aluminum environments [Al(OP) 6 , Al(OP) 5 and Al(OP) 4 ], and Al(OP) 6 species seem to be predominant in these glasses. The formation of P---O-Al covalent bond and more strongly ionic bonds increase the strength of the glass network in stannous calcium aluminofluorophosphate glasses. FTIR spectra indicate the presence of P--F bond in the short range glass structure

  16. Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser

    OpenAIRE

    Koch, R.; Clarkson, W.A.; Hanna, D.C.; Jiang, S.; Myers, M.J.; Rhonehouse, D.; Hamlin, S.J.; Griebner, U.; Schönnagel, H.

    1997-01-01

    By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature

  17. Micromachining of glass by the third harmonic of nanosecond Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Ramil, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)], E-mail: aramil@cdf.udc.es; Lamas, J.; Alvarez, J.C.; Lopez, A.J.; Saavedra, E.; Yanez, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)

    2009-03-01

    The ablation processing of glass was performed by using the third harmonic of nanosecond Nd:YVO{sub 4} laser. The objective of this work was the formation of deep holes with a high aspect ratio in soda lime glass; with this purpose different ways to raster the glass surface with the focused laser beam, i.e., single line, parallel lines and orthogonally crossing lines, have been tried and the effect of different parameters as the number of lines and number of scans in the depth and inclination of the sidewalls of the hole has been analyzed. Moreover, to reduce the time consumption in the laser processing of glass plates the relationship between penetration depths and overlapping factor has been studied and an optimum value of scan speed has been obtained for a particular case.

  18. Effect of temperature on surface error and laser damage threshold for self-healing BK7 glass.

    Science.gov (United States)

    Wang, Chu; Wang, Hongxiang; Shen, Lu; Hou, Jing; Xu, Qiao; Wang, Jian; Chen, Xianhua; Liu, Zhichao

    2018-03-20

    Cracks caused during the lapping and polishing process can decrease the laser-induced damage threshold (LIDT) of the BK7 glass optical elements, which would shorten the lifetime and limit the output power of the high-energy laser system. When BK7 glass is heated under appropriate conditions, the surface cracks can exhibit a self-healing phenomenon. In this paper, based on thermodynamics and viscous fluid mechanics theory, the mechanisms of crack self-healing are explained. The heat-healing experiment was carried out, and the effect of water was analyzed. The multi-spatial-frequency analysis was used to investigate the effect of temperature on surface error for self-healing BK7 glass, and the lapped BK7 glass specimens before and after heat healing were detected by an interferometer and atomic force microscopy. The low-spatial-frequency error was analyzed by peak to valley and root mean square, the mid-spatial-frequency error was analyzed by power spectral density, and the high-spatial-frequency error was analyzed by surface roughness. The results showed that the optimal heating temperature for BK7 was 450°C, and when the heating temperature was higher than the glass transition temperature (555°C), the surface quality decreased a lot. The laser damage test was performed, and the specimen heated at 450°C showed an improvement in LIDT.

  19. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    Science.gov (United States)

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  20. Scratch test induced shear banding in high power laser remelted metallic glass layers

    NARCIS (Netherlands)

    Matthews, D. T. A.; Ocelik, V.; de Hosson, J. Th. M.

    Laser remelted surface layers of a Cu-based metallic glass forming alloy have been produced with fully amorphous depths up to 350 mu m for single track widths of around 1.3 mm and have been checked by transmission of synchrotron radiation. They have been subjected to indentation hardness and scratch

  1. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  2. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  3. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-01-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  4. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    As a new member of laser glass family, bismuth-doped glasses have received rising interests due to the application of fiber amplifiers and laser sources in the new spectral range for the next-generation optical communication system. For practical application of the glasses, it must be considered ...

  5. Catalytic center of lecithin:cholesterol acyltransferase: isolation and sequence of diisopropyl fluorophosphate-labeled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.B.; Yueksel, U.G.; Gracy, R.W.; Lacko, A.G.

    1987-02-27

    Lecithin:cholesterol acyltransferase (LCAT) was purified from hog plasma and subsequently reacted with (/sup 3/H)-Diisopropyl fluorophosphate (DFP). The labeled enzyme was digested with pepsin and the peptides separated by high performance liquid chromatography (HPLC). Two radioactive peptides were isolated, subjected to automated amino acid sequencing and yielded the following data: A) Ile-Ser-Leu-Gly-Ala-Pro-Trp-Gly-Gly-Ser, and B) Tyr-Ile-Phe-Asp-x-Gly-Phe-Pro-Tyr-x-Asp-Pro-Val. Both of these sequences represent very highly conserved regions of the enzyme when compared to the sequence of human LCAT. Peptide (A) is considered to represent the catalytic center of LCAT based on comparisons with data reported in the literature.

  6. Passively Q-switched 1.6 µm Er:YAG laser with a γ-Ga2O3:Co-based glass-ceramics as a saturable absorber

    Science.gov (United States)

    Shi, Yang; Gao, Chunqing; Ye, Qing; Wang, Shuo; Wang, Qing; Gao, Mingwei; Loiko, Pavel; Skoptsov, Nikolai; Dymshits, Olga; Zhilin, Alexander; Zapalova, Svetlana; Tsenter, Marina; Vitkin, Vladimir; Mateos, Xavier; Yumashev, Konstantin

    2018-04-01

    A resonantly pumped passively Q-switched Er:YAG laser operating at 1.617 and 1.645 µm is reported with γ-Ga2O3:Co2+-based glass-ceramics (GCs) as a saturable absorber. The maximum average output power achieved from this laser was 273 mW; the highest pulse energy was 5.9 µJ, corresponding to a pulse duration of 3.0 µs at a repetition frequency of 31 kHz. To the best of our knowledge, this is the first time to use the γ-Ga2O3:Co2+-based GC as a passive Q-switcher for Er:YAG lasers and this is also the first time to obtain 1.617 µm and 1.645 µm pulses with a GC-based saturable absorber.

  7. Effects of various polishing media and techniques on the surface finish and behavior of laser glasses

    International Nuclear Information System (INIS)

    Landingham, R.L.; Casey, A.W.; Lindahl, R.O.

    1978-01-01

    The advance of high-power laser technology is dependent on the rate of advancement in laser glass forming and surface preparation. The threshold damage of glass surfaces continues to be a weak link in the overall advancement of laser technology. Methods were developed and used in the evaluation of existing glass surface preparation techniques. Modified procedures were evaluated to reduce surface contamination and subsurface defects. Polishing rates were monitored under controlled polishing conditions (purity, pH, particle size distribution, particle concentration, etc.). Future work at LLL for this ongoing investigation is described

  8. Development of laser diode pumped Nd:glass slab laser driver for the inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Yasuhara, Ryo

    2002-01-01

    A diode-pumped solid state laser (DPSSL) is promising candidate of reactor driver for Inertial Fusion Energy (IFE). As a first step of a driver development for the IFE, we are developing a laser diode pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generated an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig zag Nd:glass slab is pumped from both sides by 803 nm AIGaAs laser diode (LD) module, each LD module has an emitting area of 420 mm x 10 mm and two LD modules generate in total 218 (max.) kW peak power with 2.6 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in first-stage experiment 8.5 J output energy at 0.5 Hz with a beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. Since the key issue for the IFE DPSSL drive module were almost satisfactory, we have a confidence that a next 100 J x 10 Hz DPSSL module (HALNA 100) can be constructed. Thermal effects in laser slab, Faraday rotator, Faraday isolator and Pockets cell and their managements are discussed.

  9. Cutting thin glass by femtosecond laser ablation

    Science.gov (United States)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  10. Cladding glass ceramic for use in high powered lasers

    Science.gov (United States)

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  11. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  12. Retrofit of a high power Nd:glass laser system with liquid crystal polarizers

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Kessler, T.J.; Seka, W.; Bahr, R.

    1985-03-01

    The glass development laser (GDL), has been operating at the Laboratory for Laser Energetics since 1978. This Nd:phosphate glass system produces high peak power optical radiation at lambda = 1054 nm or lambda = 351 nm for use in studying the interaction physics of intense laser beams with matter. The amplifier staging incorporates the propagation of linearly and circularly polarized light in rod amplifiers which vary in diameter from 16 mm to 90 mm. Numerous quartz or mica quarter waveplates and Brewster angle dielectric thin film polarizers are required to limit accumulated phase retardation between amplification stages and to accommodate interstage Pockels' cell isolation switches. We have recently replaced most of the waveplate-dielectric polarizer combinations in GDL with liquid crystal polarizers. Comprised of 11 μm thick cholesteric fluids sandwiched between optical quality glass plates, liquid crystal polarizers provide excellent polarization properties, low insertion loss, angular insensitivity, and laser damage resistance at lambda = 1054 nm. The design, fabrication, and performance of left-handed and right-handed circular polarizers will be discussed

  13. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  14. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    Science.gov (United States)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  15. Bismuth silicate glass: A new choice for 2 μm fiber lasers

    Science.gov (United States)

    Ding, Jia; Zhao, Guoying; Tian, Ying; Chen, Wei; Hu, Lili

    2012-11-01

    We report on a new Yb3+/Tm3+/Ho3+ co-doped bismuth silicate glass: SiO2-Bi2O3-R2O (R = Li, Na, K) for 2 μm fiber lasers. Bi2O3 was introduced into alkali silicate glass to optimize 2 μm emission properties. Physical, chemical and spectroscopic properties of Yb3+/Tm3+/Ho3+ co-doped SiO2-Bi2O3-R2O (SBR) glass were presented. The Yb3+/Tm3+/Ho3+ co-doped SBR glass shows excellent thermal stability (ΔT = 162 °C), an intense 2.0 μm emission pumped by 980 nm LD with a lifetime of 1.33 ms and width of 168 nm, large maximum emission cross section of Ho3+ (5.3 × 10-21 cm2), thus large σemτ product (7.049 × 10-24 cm2 s), which suggest its application in 2 μm fiber lasers.

  16. Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi

    2017-08-01

    We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.

  17. 100 TW CPA Nd: Glass laser for fast ignition research

    International Nuclear Information System (INIS)

    Fujita, H.; Daido, H.; Jitsuno, T.

    2001-01-01

    A 100 TW chirped pulse amplification (CPA) Nd:glass laser has been developed to investigate the fast ignition concept. The ultrashort-pulse (60 TW, 42 J, 0.7 ps) was focused on plane targets, plane targets with preformed plasma, and high density compressed plasmas produced by the GEKKO-XII (12 beam, 20 kJ) laser. Focus intensity of >10 19 W/cm 2 has been achieved. (author)

  18. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    Energy Technology Data Exchange (ETDEWEB)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  19. Computer simulations of rare earth sites in glass: experimental tests and applications to laser materials

    International Nuclear Information System (INIS)

    Weber, M.J.

    1984-11-01

    Computer simulations of the microscopic structure of BeF 2 glasses using molecular dynamics are reviewed and compared with x-ray and neutron diffraction, EXAFS, NMR, and optical measurements. Unique information about the site-to-site variations in the local environments of rare earth ions is obtained using optical selective excitation and laser-induced fluorescence line-narrowing techniques. Applications and limitations of computer simulations to the development of laser glasses and to predictions of other static and dynamic properties of glasses are discussed. 35 references, 2 figures, 2 tables

  20. Field-glass range finder with a semiconductor laser

    Science.gov (United States)

    Iwanejko, Leszek; Jankiewicz, Zdzislaw; Jarocki, Roman; Marczak, Jan

    1995-03-01

    This paper presents the project of a laboratory model of a field-glasses range-finger. The optical transmitter of the device contains a commercial pulse semiconductor laser which generates IR wavelength around 905 nm. Some of the technical parameters of this device are: a maximum range of up to 3 km; an accuracy of +/- 5 m, divergence of a laser beam of 1 mrad; a repetition rate of 1 kHz. Dichroic elements of the receiver ensure a capability of an optimization of a field of view, without the worsening of luminance and size of an observation field.

  1. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  2. Performance results for Beamlet: A large aperture multipass Nd glass laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Barker, C.E.; VanWonterghem, B.M.; Speck, D.R.; Behrendt, W.C.; Murray, J.R.; Caird, J.A.; Decker, D.E.; Smith, I.C.

    1995-01-01

    The Beamlet laser is a large aperture, flashlamp pumped Nd: glass laser that is a scientific prototype of an advanced Inertial Fusion laser. Beamlet has achieved third harmonic, conversion efficiency of near 80% with its nominal 35cm x 35cm square beam at mean 3ω fluences in excess of 8 J/cm 2 (3-ns). Beamlet uses an adaptive optics system to correct for aberrations and achieve less than 2 x diffraction limited far field spot size

  3. Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.

    Science.gov (United States)

    Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V

    2018-03-19

    The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.

  4. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    Science.gov (United States)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  5. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    Science.gov (United States)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  6. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  7. Effect Of Laser CO2 Parameters In Marking Of Glass

    International Nuclear Information System (INIS)

    Khanafi-Benghalem, Nafissa; Boudoukha, Hassina; Benghalem, Kamel

    2008-01-01

    Currently many techniques of marking are exploited in a great number of sectors, on various materials (cardboard, textile, wood, leather, plastic, metal, ceramics and glass). The printing is done on supports of great or small dimension for all geometrical forms (plane, round, conical and ovalised). We can print colour as much than we wish. The marking technology for the identification of the glass parts knows a remarkable development carried by the new needs for the industrialists using transparent materials such as the optical, chemical, pharmaceutical sectors, the luxury and drink industries or publicity and decoration (neon signs, advertising mirrors). The objective of our work consists particularly in engraving on glass the measurement scales forming a whole of ordered graduation which the goal is to carry out reading systems of measuring apparatus about 1/10 μm of precision. We used as tool for marking the laser CO 2 . Our choice is justified by the flexibility of the laser, the permanent lifespan of the graduations carried out and the guarantee of the facility of reading incidentally the precision and the accuracy of the measuring apparatus. The study parameters of the laser beam are the velocity (400, 600, 800, 1000 m/s.), the power (25, 75 and 80% of 25W) and the numbers pass (one, two and three pass). The optical observations results obtained suggest that the highest and the average power used remain the favourable parameters for the quality of the graduations carried out.

  8. Fluoride materials for high peak power lasers, 17 May 1976--31 January 1977

    International Nuclear Information System (INIS)

    Folweiler, R.C.

    1977-02-01

    Single crystal fluoride optical materials were grown for potential application to laser fusion. Fluoride materials are of interest for this application, in general, because their low non-linear indices of refraction permit their use in optical components which can sustain very high peak powers without causing beam distortion. Emphasis was placed on Nd:YLF because its emission wave-lengths match the gain curve of promising amplifier materials. In addition to material growth, new feed preparation techniques were investigated and developed and certain material properties measured. The laser material, Nd:YLF, (Nd 3+ in LiYF 4 ) was grown and fabricated into laser rods. This material has laser emission at 1.047 μm and 1.053 μm, depending on the polarization selected. The former wavelength matches the peak emission wavelength of developmental Nd fluoroberyllate glasses, the latter matches Nd phosphate and fluorophosphate glasses that have low values of n 2 . The non-linear index of pure LiYF 4 was measured by Milam and Weber as 0.59 x 10 -13 esu. The concentration of Nd 3+ was varied from 1% to 4%. At higher concentrations and larger diameters a radial strain was found, sufficient to cause spiral cracking. This strain was apparently generated by a radial gradient of Nd 3+ ions. The distribution coefficient observed in one sample was 0.38. The stimulation emission coefficients were determined. Boules of KY 3 F 10 and KTb 3 F 10 were grown, with the latter suitable as a Faraday rotator material with projected low n 2 and larger Verdet constant. Experiments were performed on the systemKF-CeF 3 as a potential Faraday rotator material, and a cubic phase observed. The Ce 3+ ion has slightly lower rotary power/ion, but significantly lower cost

  9. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass

    Science.gov (United States)

    Fedotov, S. S.; Drevinskas, R.; Lotarev, S. V.; Lipatiev, A. S.; Beresna, M.; ČerkauskaitÄ--, A.; Sigaev, V. N.; Kazansky, P. G.

    2016-02-01

    Self-assembled nanostructures created by femtosecond laser irradiation are demonstrated in alkali-free aluminoborosilicate glass. The growth of the induced retardance associated with the nanograting formation is three orders of magnitude slower than in silica glass and is observed only within a narrow range of pulse energies. However, the strength of retardance asymptotically approaches the value typically measured in pure silica glass, which is attractive for practical applications. A similar intensity threshold for nanograting formation of about 1 TW/cm2 is observed for all glasses studied. The radially polarized vortex beam micro-converter designed as a space-variant quarter-wave retarder for the near-infrared spectral range is imprinted in commercial Schott AF32 glass.

  10. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  11. Automated characterization of glass microspheres used for laser fusion experiments

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Norimatsu, Takayoshi; Izawa, Yasukazu; Yamanaka, Chiyoe.

    1985-01-01

    In laser fusion experiments glass microspheres of 100 to 1000 μm in diameter and 1 to 20 μm in wall thickness are most commonly used as fuel containers. The glass microspheres should be characterized precisely to meet stringent experimental requirements. Much time is consumed to characterize and select good quality spheres among thousands of spheres. We have developed an automated system to characterize and select glass microspheres. The system consists of charger, quadrupole rail, image processing and X-Y stage control with micro-computer. Total processing time primarily depends on the time required for image analysis, which should be compromised with the accuracy of characterization. The time for simple characterization requires about 10 sec. at present. (author)

  12. Proceedings of the national conference on functional glasses/glass-ceramics and ceramics: souvenir

    International Nuclear Information System (INIS)

    2015-01-01

    This conference deals with issues relevant to functional glasses and glass ceramics which are technologically important materials for lasers, radioactive waste immobilization, radiation shielding, bio-glasses etc. It covers wide range of subjects and their applications right from managing the side effects of nuclear wastes and shielding the radiation, to sol-gel based bio-glass and its composites. Papers relevant to INIS are indexed separately

  13. Faraday rotation influence factors in tellurite-based glass and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuling; Wang, Qingwei [Henan University of Technology, School of Materials Science and Engineering, Zhengzhou, Henan (China); Wang, Hui; Chen, Qiuping [Politecnico di Torino, Department of Applied Science and Technology, Turin (Italy)

    2015-09-15

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO{sub 2}-ZnO-Na{sub 2}O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  14. Faraday rotation influence factors in tellurite-based glass and fibers

    International Nuclear Information System (INIS)

    Chen, Qiuling; Wang, Qingwei; Wang, Hui; Chen, Qiuping

    2015-01-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO 2 -ZnO-Na 2 O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  15. Laser annealing of ion implanted silicon by the aid of a Q-switched neodymium glass laser

    International Nuclear Information System (INIS)

    Exner, H.; Laemmel, B.; Zscherpe, G.

    1984-01-01

    Experimental results of laser annealing of arsenic implanted silicon are presented. Different depths of melting are obtained by varying the energy flux density of the Q-switched neodymium glass laser. The annealed samples are studied by the aid of optical microscopy, scanning electron microscopy, Rutherford backscattering spectrometry (RBS) combined with ion channeling, and of resistance measurements. Not any defect could be found by RBS and no surface structure could be determined by microscopy

  16. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    International Nuclear Information System (INIS)

    Palomar, T.; Oujja, M.; García-Heras, M.; Villegas, M.A.; Castillejo, M.

    2013-01-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers

  17. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    Energy Technology Data Exchange (ETDEWEB)

    Palomar, T. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Oujja, M., E-mail: m.oujja@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain); García-Heras, M.; Villegas, M.A. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Castillejo, M. [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-09-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers.

  18. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    International Nuclear Information System (INIS)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-01-01

    Highlights: • Er 3+ doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er 3+ activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er 3+ : 4 I 11/2 → 4 I 13/2 transition, high spontaneous radiative transition probability (30.09 s −1 ), large emission cross section ((14.84 ± 0.10) × 10 −21 cm 2 ) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier

  19. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  20. Effect of focusing condition on molten area characteristics in micro-welding of borosilicate glass by picosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, I.H.W.; Okamoto, Y.; Okada, A.; Takekuni, T. [Okayama University, Graduate School of Natural Science and Technology, Okayama (Japan); Sakagawa, T. [Kataoka Corporation, Yokohama (Japan)

    2016-05-15

    The characteristics of the molten area are attributed not only by laser energy condition but also the focusing condition. In this study, a picosecond pulsed laser of 1064 nm in wavelength and 12.5 ps in pulse duration was used as a laser source for joining glass material. Influence of focusing condition on micro-welding of glasses was experimentally investigated by using an objective lens with and without spherical aberration correction, and its molten area was characterized. The usage of objective lens with spherical aberration correction led to a larger molten area inside the bulk material of glass even under the same pulse energy, which related to the efficient micro-welding of glass materials. In addition, an optical system with the spherical aberration correction led to a stable absorption of laser energy inside the bulk glass material, stabilizing the shape of molten area, which resulted in the reliable weld joint. On the other hand, breaking strength of the specimens with spherical aberration correction was higher than that without spherical aberration correction. Therefore, it is concluded that the focusing condition with spherical aberration correction led to the larger and stable molten area, which resulted in higher joining strength in micro-welding of glass materials. (orig.)

  1. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac.uk [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Carter, Richard M. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Prangnell, Philip B. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Hand, Duncan P. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

    2016-10-15

    Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was found to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.

  2. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  3. Temperature profiles for laser-induced heating of nanocrystals embedded in glass matrices

    Science.gov (United States)

    Bhatnagar, Promod K.; Nagpal, Swati

    2001-05-01

    Quantum confined nanostructures are very important because of their application towards optoelectronic devices. Commercial colored glass filters, which have large semiconductor particles, are being used to manufacture nanocrystals by suitable heat treatments. The progress in this area has been hampered by high size dispersion of these dots in the glass matrix which leads to reduction in higher order susceptibility thereby reducing non-linearity. In the present paper attempt has been made to theoretically model the temperature profiles of a laser irradiated CdS doped Borosilicate sample. Laser being used has a beam diameter of 1.5 mm and energy for 10 nsec pulse is 10 mJ. Two different particle radii of 5 nm and 10 nm have been considered. It is found that larger particles reach higher temperatures for the same pulse characteristics. This is because smaller particles have larger surface to volume ratio and hence dissipates out heat faster to the surrounding. Hence bigger particles will reach dissolution temperature faster than smaller particle and particle beyond a certain size should dissolve in the glass matrix when a sample is heat treated by laser. This could lead to a reduction in size dispersion of the nanocrystals. Also photodarkening effect found in semiconductor doped glasses is a big handicap for practical application of these materials in fast optical switching and non-linear optical devices. Photodarkening effect has been established to be a photochemical effect and it is important to study the temperature profiles around a particle since it will effect the impurity migration.

  4. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser......-machined surfaces, normalized bearing area curves and parameters are used to characterize the surface quantitatively. The range of normalized bearing area curve parameters for plate-able surface is suggested. PBT/PET with 40 % glass fiber was used as the substrate material. For all of the studied lasers......, the parameters were varied in a relatively large range, and matrixes of the laser-machined surface were obtained. The topography of those laser-machined surfaces was examined by scanning electronic microscope (SEM). For each sample examined by SEM, there was an identical workpiece plated by for 90 min...

  5. Modifications in silver-doped silicate glasses induced by ns laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzza, E., E-mail: cattaruz@unive.it [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Mardegan, M. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Trave, E. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Battaglin, G. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Calvelli, P. [Physical Chemistry Department, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Enrichi, F. [Associazione CIVEN and Nanofab S.c.a.r.l., via delle Industrie 5, I-30175 Venezia-Marghera (Italy); Gonella, F. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy)

    2011-04-01

    Glass layers for planar light waveguides prepared by Ag-Na ion exchange of different silicate glasses in molten salt baths are annealed and/or irradiated with a laser beam in the UV region, with different energy density values and total pulse numbers. The samples are mainly characterized by optical absorption spectroscopy, luminescence spectroscopy, and Rutherford backscattering spectrometry, in order to determine the role of irradiation parameters and of the host matrix structure in the aggregation phenomena. Photoluminescence spectroscopy gave information regarding the presence of Ag multimeric aggregates, the primal seeds for the growing (nano)crystals. The appearance of the plasmon resonance band in the optical absorption spectra proved the formation of Ag clusters and allowed the evolution steps of the clusterization process to be followed as a function of the energy deposited during the laser irradiation.

  6. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    International Nuclear Information System (INIS)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R

    2007-01-01

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials

  7. [Influence of cations on the laser Raman spectra of silicate glasses].

    Science.gov (United States)

    Xiong, Yi; Zhao, Hong-xia; Gan, Fu-xi

    2012-04-01

    Na2O(K2O)-CaO(MgO)-SiO2, Na2O(K2O)-Al2O3-SiO2, Na2O(K2O)-B2O3-SiO2, Na2O(K2O)-PbO-SiO2 and PbO-BaO-SiO2 glass systems were investigated using laser Raman spectroscopic technique. The modification of short-range structure of glass caused by network modifier cations will influence Raman signature. Alkali and alkali-earth ions can weaken the bridging oxygen bond, thus lower the frequency of Si-O(b)-Si anti-symmetric stretching vibration. When coordina ted by oxygen ions, B3+ can form [BO4] tetrahedron and enter the silicon-oxygen network, but this effect had little impact on the frequency of Raman peaks located in the high-frequency region. Al3+ can also be coordinated by oxygen ions to form [AlO4] tetrahedron. [AlO4] will increase the disorder degree of network while entering network. Ba2+ can increase the density of electron cloud along the Si-O(nb) bond when it bonds with non-bridging oxygen, which will lead to a higher peak intensity of O-Si-O stretching vibration. The Raman peaks of alkli- and alkali-earth silicate glasses are mainly distributed in the region of 400 - 1 200 cm(-1), while in the spectrum of Na2O(K2O)-PbO-SiO2 glass system a 131 cm(-1) peak existed. The authors assigned it to the Pb-O symmetric stretching vibration. Some of the samples were produced in the laboratory according to the average compositions of ancient glasses, so this research is very significant to discriminating ancient silicate glasses of different systems by Laser Raman spectroscopic technique.

  8. Laser-fusion 40Ar/39Ar Ages of Darwin Impact Glass

    Science.gov (United States)

    Lo, Ching-Hua; Howard, Kieren T.; Chung, Sun-Lin; Meffre, Sebastien

    2002-11-01

    Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single-grain laser fusion technique, yielding isochron ages of 796-815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761-816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.

  9. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses

    Science.gov (United States)

    da Silva, Diego Silvério; Wetter, Niklaus Ursus; de Rossi, Wagner; Kassab, Luciana Reyes Pires; Samad, Ricardo Elgul

    2018-01-01

    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 μJ, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - PbO waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10-4, and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.

  10. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing, E-mail: shiqingxu@cjlu.edu.cn; Zhang, Junjie, E-mail: jjzhang@cjlu.edu.cn

    2015-03-25

    Highlights: • Er{sup 3+} doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er{sup 3+} activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition, high spontaneous radiative transition probability (30.09 s{sup −1}), large emission cross section ((14.84 ± 0.10) × 10{sup −21} cm{sup 2}) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier.

  11. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  12. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  13. Development of Faraday rotators for high power glass laser systems

    International Nuclear Information System (INIS)

    Yoshida, Kunio; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1980-01-01

    As a new approach to nuclear fusion, laser-induced fusion has been recently highlighted. It is no exaggeration to say that the future success of this technique depends on the development of high power laser as the energy driver. Faraday rotators are used as photo-diodes to prevent amplifiers and oscillator assemblies from the possibility to be broken by reversely transmitting light. The authors were able to increase the isolation ratio by about 10 times as compared with conventional one by employing the large performance index, disc type Faraday glass, FR-5. In this paper, first, Faraday glasses which are the composing element of Faraday rotators and the optical characteristics of dielectric thin-film polarizers are described, and next, the design of a magnetic coil and its resulting coil characteristics are reported. Then the dominant causes limiting the isolation ratio of Faraday rotators are investigated, and it is clarified that the residual strain in Faraday glasses and the non-uniformity of magnetic field affect predominantly. The measured results are as follows: The magnetic flux densities required to rotate by 45 deg the polarizing plane of the light transmitted through the Faraday rotators A and B are both 27 kG; and the isolation ratios over the whole effective plane are 36 and 32 dB, respectively. (Wakatsuki, Y.)

  14. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Zhukov, V.P.; Collins, A.R.; Rostohar, Danijela; Derrien, Thibault; Mocek, Tomáš

    2015-01-01

    Roč. 336, May (2015), s. 364-374 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : laser material processing * high power lasers * glass cutting * laser-matter interaction * biwave length irradiation * ambient gas ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.150, year: 2015

  15. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-01

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  16. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    International Nuclear Information System (INIS)

    Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Santamato, Enrico; Marrucci, Lorenzo

    2011-01-01

    Samples of Ag + /Na + ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  17. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  18. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  19. Pulsed-laser deposition of smooth thin films of Er, Pr and Nd doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Epurescu, G. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)], E-mail: george@nipne.ro; Vlad, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Bodea, M.A. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Vasiliu, C. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dumitrescu, O. [University Politehnica of Bucharest, Faculty of Industrial Chemistry, Science and Engineering of Oxide Materials Department, Polizu Str. 1, sect. 1, Bucharest (Romania); Niciu, H. [National Institute of Glass, Department for Laser Glass Technology, 47 Th. Pallady Str., Sect.3, Bucharest (Romania); Elisa, M. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Siraj, K.; Pedarnig, J.D.; Baeuerle, D. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Filipescu, M.; Nedelcea, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Galca, A.C. [National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG 07, RO- 77125, Magurele (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)

    2009-03-01

    Thin films of complex oxides have been obtained by pulsed-laser deposition (PLD) from glass targets belonging to the system Li{sub 2}O-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-(RE){sub 2}O{sub 3}, with RE = Nd, Pr, Er. The films were deposited on quartz, silicon and ITO/glass substrates using a F{sub 2} laser ({lambda} = 157 nm, {iota} {approx} 20 ns) for ablation in vacuum. The structural, morphological and optical properties of the oxide films were investigated through IR and UV-VIS spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Spectroscopic Ellipsometry. The laser wavelength was found to be the key parameter to obtain thin films with very smooth surface. In this way new possibilities are opened to grow multilayer structures for photonic applications.

  20. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  1. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

    Science.gov (United States)

    Amann, Philipp M; Marquardt, Yvonne; Steiner, Timm; Hölzle, Frank; Skazik-Voogt, Claudia; Heise, Ruth; Baron, Jens M

    2016-04-01

    Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.

  2. Homogeneity testing and quantitative analysis of manganese (Mn in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    V. K. Unnikrishnan

    2014-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×109 W/cm2. The spatially integrated plasma emission was collected and imaged on to the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.

  3. Luminescent properties of Tb3+- doped TeO2-WO3-GeO2 glasses for green laser applications

    Science.gov (United States)

    Subrahmanyam, T.; Rama Gopal, K.; Padma Suvarna, R.; Jamalaiah, B. C.; Vijaya Kumar, M. V.

    2018-06-01

    Different concentrations of Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique and characterized for green laser applications. The Judd-Ofelt theory was applied to evaluate various spectroscopic and radiative parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm radiation. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τR) were determined using the three phenomenological Judd-Ofelt intensity parameters. The fluorescence decay profiles of 5D4 metastable level exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+ -doped TWGTb glass could be a suitable laser host material to emit intense green luminescence at 545 nm.

  4. [Glass Development Laser (GDL) Facility upgrade.] LLE Review. Quarterly report, October-December 1984. Volume 21

    International Nuclear Information System (INIS)

    Kim, H.

    1984-01-01

    This volume of the LLE Review contains articles on the upgrade of the GDL (Glass Development) system, theoretical advances in the laser fusion effort, improved target fabrication capabilities, x-ray laser research, developments in the picosecond optics research of the LLE advanced technology program, and on the National Laser Users Facility activities for October-December 1984. 56 refs., 31 figs., 3 tabs

  5. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  6. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: bulgakova@fzu.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073 Novosibirsk (Russian Federation); Collins, Adam R. [NCLA, NUI Galway, Galway (Ireland); Rostohar, Danijela; Derrien, Thibault J.-Y.; Mocek, Tomáš [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2015-05-01

    Highlights: • The factors influencing laser micromachining of transparent materials are analyzed. • Important role of ambient gas in laser processing is shown by numerical simulations. • The large potential of bi-wavelength laser processing is demonstrated. - Abstract: The interaction of short and ultrashort pulse laser radiation with glass materials is addressed. Particular attention is paid to regimes which are important in industrial applications such as laser cutting, drilling, functionalization of material surfaces, etc. Different factors influencing the ablation efficiency and quality are summarized and their importance is illustrated experimentally. The effects of ambient gas ionization in front of the irradiated target are also analyzed. A possibility to enhance laser coupling with transparent solids by bi-wavelength irradiation is discussed.

  7. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    International Nuclear Information System (INIS)

    Xu, M.Y.; Li, J.; Herman, P.R.; Lilge, L.D.

    2006-01-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F 2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm 2 to an optimized single pulse fluence of 4.5 J/cm 2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F 2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. (orig.)

  8. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  9. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  10. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    International Nuclear Information System (INIS)

    Elteren, Johannes T. van; Tennent, Norman H.; Selih, Vid S.

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO 2 , the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO 2 as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 μg g -1 elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base composition of the

  11. Synthesis and characterization of silver-containing glasses: evolution under ionizing irradiation and femtosecond laser multi-scale structuring

    International Nuclear Information System (INIS)

    Desmoulin, Jean-Charles

    2016-01-01

    The silver-containing phosphate glasses allowed original developments throughout the micro-structuring of architectures for innovative photonic in the volume, at the surface or in the fibered material. The chemical engineering of the material plays an important role from this point of view. An increasing silver oxide ratio leads to an important quantity of pairs in the pristine glass matrix. This dimer in favor of the aggregation process bringing to the production of species during the interaction between the glass and the infrared femtosecond laser. A study conducted by EPR spectroscopy on irradiated samples (ionizing sources) demonstrated that the dose rate is predominant for the control of the involved chemical process. Mainly, electron and holes are stabilized at low dose rate whereas the formation of luminescent silver clusters occurs for high peak power typical of ultra-short lasers. The Direct Laser Writing process allows local structuring of the matter and resulted in original tridimensional patterns. The fine chemical distribution analysis inside annular fluorescent objects clearly showed a depletion zone of the silver concentration in the center. Ionic migration effects from the center towards the edges of the laser beam are then highlighted. The Eu 3+ -doped photosensitive glasses emphasized a synergy between photo-induced silver clusters and trivalent lanthanides. Indeed, a luminescence exaltation associated to the europium emission is measured. (author)

  12. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping; Gao, Yangqin; Ng, Tien Khee; Ooi, Boon S.; Chew, Basil; Hedhili, Mohamed N.; Zhao, Donghui; Jain, Himanshu

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film

  13. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  14. Power neodymium-glass amplifier of a repetitively pulsed laser

    International Nuclear Information System (INIS)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-01-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ∼40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ∼3.2, the linear gain ∼0.031 cm -1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm -3 . The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  15. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    International Nuclear Information System (INIS)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Paleari, Alberto; Lorenzi, Roberto

    2013-01-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications. (paper)

  16. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    Science.gov (United States)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  17. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    International Nuclear Information System (INIS)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-01-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters

  18. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-11-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters.

  19. Glass-based confined structures enabling light control

    Energy Technology Data Exchange (ETDEWEB)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Lukowiak, Anna [Institute of Low Temperature and Structure Research PAS, Okolna St. 2, 50-422 Wroclaw (Poland); Vasilchenko, Iustyna [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, via Sommarive 14 Povo, 38123Trento (Italy); Ristic, Davor [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Boulard, Brigitte [IMMM, CNRS Equipe Fluorures, Université du Maine, Av. Messiaen, 72085 Le Mans cedex 9 (France); Dorosz, Dominik [Department of Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology, Wiejska Street 45D, 15-351 Bialystok (Poland); Scotognella, Francesco [Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan (Italy); Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vaccari, Alessandro [FBK -CMM, ARES Unit, 38123 Trento (Italy); Taccheo, Stefano [College of Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea (United Kingdom); Pelli, Stefano; Righini, Giancarlo C. [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Museo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma (Italy); Conti, Gualtiero Nunzi [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Ramponi, Roberta [Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); and others

    2015-04-24

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.

  20. Glass-based confined structures enabling light control

    International Nuclear Information System (INIS)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro; Lukowiak, Anna; Vasilchenko, Iustyna; Ristic, Davor; Boulard, Brigitte; Dorosz, Dominik; Scotognella, Francesco; Vaccari, Alessandro; Taccheo, Stefano; Pelli, Stefano; Righini, Giancarlo C.; Conti, Gualtiero Nunzi; Ramponi, Roberta

    2015-01-01

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties

  1. Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films

    International Nuclear Information System (INIS)

    Lee, Keunhee; Ki, Hyungson

    2016-01-01

    We report a laser-based method for directly fabricating large-area, transparent conductive films with customizable electrical resistance on glass. In this method, a diamond-like carbon (DLC) film is deposited first on a glass substrate by pulsed laser deposition, which is then annealed in a helium shielding environment by a 2 kW continuous-wave fiber laser with a wavelength of 1070 nm, which is transparent to glass but is absorbed by DLC to transform the amorphous carbons to graphene. When a 510 nm thick film was annealed at a scanning speed of 1 m/s by a 200 μm top-hat laser beam, the sp 3 fraction was decreased from 43.1% to 8.1% after the annealing process, and the transformed film showed a transparency of ∼80% (at 550 nm) and a sheet resistance of ∼2050 Ω/sq. We also showed that sheet resistance and transparency can be controlled by changing processing parameters. To show the scalability of the method, a 15 mm wide line beam was used to produce a 15 mm × 15 mm film. This method is simple, fully scalable, transfer-free and catalyst-free, and we believe that the fabricated films can have many applications with further research, such as transparent heating films, electromagnetic shielding films, and transparent electrodes.

  2. A novel laser-based method for controlled crystallization in dental prosthesis materials

    Science.gov (United States)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  3. Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.

    Science.gov (United States)

    Liger-Belair, Gérard

    2016-04-21

    Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.

  4. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    Science.gov (United States)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  5. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss.

    Science.gov (United States)

    Lee, G-Y; Lee, S-J; Kim, W-S

    2011-12-01

    Female pattern hair loss (FPHL) is the most common cause of hair loss in women, and its prevalence increases with advancing age. Affected women may experience psychological distress and social withdrawal. A variety of laser and light sources have been tried for treatment of hair loss, and some success has been reported. The purpose of this study was to determine the efficacy and safety of a 1550 nm fractional erbium-glass laser in treatment of female pattern hair loss. Twenty eight ethnic South Korean patients with varying degrees of FPHL were enrolled in the study. Patients received ten treatments with a 1550 nm fractional Er:Glass Laser (Mosaic, Lutronic Co., Ltd, Seoul, South Korea) at 2-weeks intervals using the same parameters (5-10 mm tip, 6 mJ pulse energy, 800 spot/cm(2) density, static mode). Phototrichogram and global photographs were taken at baseline and at the end of laser treatment, and analysed for changes in hair density and hair shaft diameter. Global photographs underwent blinded review by three independent dermatologists using a 7-point scale. Patients also answered questionnaires assessing hair growth throughout the study. All adverse effects were reported during the study. Twenty seven patients completed a 5-month schedule of laser treatment. One patient was excluded during treatment due to occurrence of alopecia areata. At the initial visit, mean hair density was 100 ± 14/cm(2) , and mean hair thickness was 58 ± 12 μm. After 5 months of laser treatment, hair density showed a marked increase to 157 ± 28/cm(2) (P laser treatment; however, these resolved within 2 h. A 1550 nm fractional erbium-glass laser irradiation may be an effective and safe treatment option for women with female pattern hair loss. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  6. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  7. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    International Nuclear Information System (INIS)

    Odem, R.R.; Willand, J.L.; Polakoski, K.L.

    1990-01-01

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm

  8. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    Energy Technology Data Exchange (ETDEWEB)

    Odem, R.R.; Willand, J.L.; Polakoski, K.L. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1990-02-01

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm.

  9. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.

    Science.gov (United States)

    Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen

    2015-03-07

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.

  10. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  11. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  13. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    Science.gov (United States)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  14. Investigation of platinum alloys for melting of inclusion free laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1986-01-01

    The objective of this work is to evaluate the suitability of Pt alloys as crucible materials for melting LHG-8 phosphate laser glass. The tendency of forming metallic inclusions and ionic dissolution of alloy components in the glass is to be compared with that of pure Pt. Ionic Pt is introduced into the glass melt by direct dissolution of Pt at the crucible-melt interface and by vapor phase transport. It was felt that a Pt-alloy may behave sufficiently differently from Pt that a number of alloys should be studied. Pt inclusions may originate from Pt which reprecipitates from the glass melt on cooling or change in redox-conditions; from volatilized Pt which deposits in colder zones of the melting environment as crystallites which may drop back into the glass melt; and/or from Pt particles which are mechanically removed from the crucible and drop into the glass melt. Besides pure Pt, the following alloys have been tested: Pt/ 10 Ir, Pt/ 10 Rh, Pt/ 5 Au, Pt-ZGS, Pt/ 5 Au-ZGS, Pt/ 10 Rh-ZGS

  15. 3D features of modified photostructurable glass-ceramic with infrared femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serrano, D.; Bosch, S.; Morenza, J.L.; Serra, P. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    The exclusive ability of laser radiation to be focused inside transparent materials makes lasers a unique tool to process inner parts of them unreachable with other techniques. Hence, laser direct-write can be used to create 3D structures inside bulk materials. Infrared femtosecond lasers are especially indicated for this purpose because a multiphoton process is usually required for absorption and high resolution can be attained. This work studies the modifications produced by 450 fs laser pulses at 1027 nm wavelength focused inside a photostructurable glass-ceramic (Foturan) at different depths. Irradiated samples were submitted to standard thermal treatment and subsequent soaking in HF solution to form the buried microchannels and thus unveil the modified material. The voxel dimensions of modified material depend on the laser pulse energy and the depth at which the laser is focused. Spherical aberration and self-focusing phenomena are required to explain the observed results.

  16. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching

    NARCIS (Netherlands)

    Lenssen, B.L.K.; Bellouard, Y.

    2012-01-01

    Femtosecond laser manufacturing combined with chemical etching has recently emerged as a flexible platform for fabricating three-dimensional devices and integrated optical elements in glass substrates. Here, we demonstrate an optically transparent micro-actuator fabricated out of a single piece of

  17. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  18. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  19. Lecture-Room Interference Demo Using a Glass Plate and a Laser Beam Focused on It

    Science.gov (United States)

    Ageev, Leonid A.; Yegorenkov, Vladimir D.

    2010-01-01

    We describe a simple case of non-localized interference produced with a glass plate and a laser beam focused on it. The proposed setup for observing interference is compact when semiconductor lasers are employed, and it is well suited for demonstration and comparison of interference in reflected and transmitted light in a large lecture-room. This…

  20. Development of LD pumped 10 J x 10 Hz Nd: Glass slab laser system

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Matsui, Hideki

    2000-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a diode-pumped zig-zag Nd: glass slab laser amplifier system which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd: glass slab is pumped from both sides by 803-nm AlGaAs laser-diode (LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 200 kW peak power with 2.5 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern. (author)

  1. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  2. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  3. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    Science.gov (United States)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  4. Laser-induced dendritic microstructures on the surface of Ag+-doped glass

    International Nuclear Information System (INIS)

    Nahal, A.; Mostafavi-Amjad, J.; Ghods, A.; Khajehpour, M. R. H.; Reihani, S. N. S.; Kolahchi, M. R.

    2006-01-01

    Fractal dendritic silver microstructures are observed on the surface of the Ag + -doped glasses as a result of a photothermal interaction with a focused multiline cw high-power (P max =8 W) Ag + laser beam. It is found that evolution of the structures depends on the exposure time and also on the concentration of the silver ions in the sample. The fractal dimension of the generated dendritic microstructures increases with the exposure time. Instability of the contact line of the molten silver flow toward the periphery of the interaction area is discussed as a result of the temperature gradient, due to the Gaussian intensity distribution across the laser beam

  5. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    International Nuclear Information System (INIS)

    Zamuruyev, Konstantin O; Zrodnikov, Yuriy; Davis, Cristina E

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µ m; minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µ m. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µ m in borosilicate glass), feature under etch ratio in isotropic etch (∼1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility. (paper)

  6. Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications

    Science.gov (United States)

    Serhatlioglu, Murat; Elbuken, Caglar; Ortac, Bulend; Solmaz, Mehmet E.

    2017-02-01

    Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems.

  7. Femtosecond laser-written double line waveguides in germanate and tellurite glasses

    Science.gov (United States)

    S. da Silva, Diego; Wetter, Niklaus U.; de Rossi, Wagner; Samad, Ricardo E.; Kassab, Luciana R. P.

    2018-02-01

    The authors report the fabrication and characterization of passive waveguides in GeO2-PbO and TeO2-ZnO glasses written with a femtosecond laser delivering pulses with 3μJ, 30μJ and 80fs at 4kHz repetition rate. Permanent refractive index change at the focus of the laser beam was obtained and waveguides were formed by two closely spaced laser written lines, where the light guiding occurs between them. The refractive index change at 632 nm is around 10-4 . The value of the propagation losses was around 2.0 dB/cm. The output mode profiles indicate multimodal guiding behavior. Raman measurements show structural modification of the glassy network. The results show that these materials are potential candidates for passive waveguides applications as low-loss optical components.

  8. Oscillator and system development on the VULCAN glass laser system for the plasma beat-wave program

    International Nuclear Information System (INIS)

    Danson, C.N.

    1990-03-01

    This thesis describes the oscillator and system development on the VULCAN glass laser undertaken in support of the RAL Plasma Beat-wave experiments. This program seeks to evaluate advanced particle acceleration schemes for a new generation of machines for fundamental research in high energy physics. The experiments required two synchronised high power laser pulses of slightly different wavelength. These pulses were generated using two different laser media; Nd:YAG and Nd:YLF operating at 1.064 and 1.053 microns respectively. The first oscillator system developed operated with both lasing media housed in the same laser cavity. Problems with the stability of the optical output required the development of a second system which housed the two lasing media in separate cavities. The second aspect of the development work, described in this thesis, was the reconfiguration of the VULCAN glass laser system to amplify the two laser pulses to power levels of 0.5 TW per pulse. The first scheduled experiment required the two pulses to be propagated co-linearly. To amplify the pulses to the high output powers required two amplifying media to be used which preferentially amplify the two lasing wavelengths. For the later experiments the two laser pulses were amplified in separate amplifier chains which required the design of an efficient beam combiner. (author)

  9. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  11. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  12. [COMPARATIVE SENSITIVITY OF CHOLINESTERASES IN VERTEBRATES AND INVERTEBRATES TO HIGHLY SPECIFIC ORGANOPHOSPHORUS INHIBITORS DIISOPROPYL FLUOROPHOSPHATE (DFP) AND (2-ETHOXYMETHYL PHOSPHORYL THIOETHYL) ETHYL (METHYL) SULPHONIUM SULPHOMETHYLAT (GD-42)].

    Science.gov (United States)

    Basova, N E; Kormilitsyn, B N; Perchenok, A Yu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2015-01-01

    The review presents data on comparative reactivity of 68 cholinesterase preparation from various organs and tissues in a number of vertebrates and invertebrates based on sensitivity to two highly specific and most studied organophosphorus inhibitors--diisopropyl fluorophosphates (DFP) and (2-ethoxymethyl phosphoryl thioethyl) ethyl (methyl) sulphonium sulphomethylat (GD-42). Analysis of these data suggests a great diversity in enzymologic characteristics of cholinesterase preparation in representatives of vertebrates and invertebrates, this variety observed even for closely related enzymes in animals of almost the same level of development.

  13. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.

    Science.gov (United States)

    Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica

    2016-10-01

    The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p properties of GFPs.

  14. Treatment of tooth fracture by medium-energy CO2 laser and DP-bioactive glass paste: the interaction of enamel and DP-bioactive glass paste during irradiation by CO2 laser.

    Science.gov (United States)

    Lin, C P; Tseng, Y C; Lin, F H; Liao, J D; Lan, W H

    2001-03-01

    Acute trauma or trauma associated with occlusal disturbance can produce tooth crack or fracture. Although several methods are proposed to treat the defect, however, the prognosis is generally poor. If the fusion of a tooth fracture by laser is possible, it will offer an alternative to extraction or at least serve as an adjunctive treatment in the reconstruction. We have tried to use a continuous-wave CO2 laser and a newly developed DP-bioactive glass paste (DPGP) to fuse or bridge tooth crack or fracture lines. Both the DP-bioactive glass paste and tooth enamel have strong absorption bands at the wavelength of 10.6 microm. Therefore, under CO2 laser, DPGP and enamel should have an effective absorption and melt together. The interface between DPGP and enamel could be regarded as a mixture of DPGP and enamel (DPG-E). The study focused on the phase transformation, microstructure, functional group and thermal behavior of DPG-E with or without CO2 laser irradiation, by the analytical techniques of XRD, FTIR, DTA/TGA, and SEM. The results of XRD showed that the main crystal phase in the DPG-E was dicalcium phosphate dihydrate (CaHPO4.2H2O). It changed into CaHPO4, gamma-Ca2P2O7, beta-Ca2P2O7 and finally alpha-Ca2P2O7 with increasing temperature. In the FTIR analysis, the 720 cm(-1) absorption band ascribed to the P-O-P linkage in pyrophosphate rose up and the intensities of the OH- bands reduced after laser irradiation. In regard to the results of DTA/TGA after irradiation, the weight loss decreased due to the removal of part of absorption water and crystallization water by the CO2 laser. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight chemical bond between the enamel and DPGP. We expect that DPGP with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture.

  15. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  16. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters

    International Nuclear Information System (INIS)

    Maki, D.; Ishii, T.; Sato, F.; Kato, Y.; Yamamoto, T.; Iida, T.

    2011-01-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using 241 Am alpha rays. The spatial resolution of this system was ∼3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image. (authors)

  17. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    Science.gov (United States)

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  18. Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan K

    2009-01-01

    Full Text Available Abstract We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma.

  19. Reduction of Residual Stresses in Sapphire Cover Glass Induced by Mechanical Polishing and Laser Chamfering Through Etching

    Directory of Open Access Journals (Sweden)

    Shih-Jeh Wu

    2016-10-01

    Full Text Available Sapphire is a hard and anti-scratch material commonly used as cover glass of mobile devices such as watches and mobile phones. A mechanical polishing using diamond slurry is usually necessary to create mirror surface. Additional chamfering at the edge is sometimes needed by mechanical grinding. These processes induce residual stresses and the mechanical strength of the sapphire work piece is impaired. In this study wet etching by phosphate acid process is applied to relief the induced stress in a 1” diameter sapphire cover glass. The sapphire is polished before the edge is chamfered by a picosecond laser. Residual stresses are measured by laser curvature method at different stages of machining. The results show that the wet etching process effectively relief the stress and the laser machining does not incur serious residual stress.

  20. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  1. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  2. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    Science.gov (United States)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  3. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  4. Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser

    International Nuclear Information System (INIS)

    Kessler, T.J.

    1984-01-01

    Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab

  5. Use of 1540nm fractionated erbium:glass laser for split skin graft resurfacing: a case study.

    Science.gov (United States)

    Narinesingh, S; Lewis, S; Nayak, B S

    2013-09-01

    The field of laser skin resurfacing has evolved rapidly over the past two decades from ablative lasers, to nonablative systems using near-infrared, intense-pulsed light and radio-frequency systems, and most recently fractional laser resurfacing. Although fractional thermolysis is still in its infancy, its efficacy in in the treatment of skin disorders have been clearly demonstrated. Here we present a case report on the safety and efficacy of a 1540nm erbium:glass laser in the treatment of the waffle pattern of a meshed skin graft in a 38-year-old patient with type V skin in the Caribbean.

  6. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  7. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    Science.gov (United States)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  8. Science and Engineering Research Council Central Laser Facility

    International Nuclear Information System (INIS)

    1981-03-01

    This report covers the work done at, or in association with, the Central Laser Facility during the year April 1980 to March 1981. In the first chapter the major reconstruction and upgrade of the glass laser, which has been undertaken in order to increase the versatility of the facility, is described. The work of the six groups of the Glass Laser Scientific Progamme and Scheduling Committee is described in further chapters entitled; glass laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  9. Spectral-luminescence properties of trivalent titanium in aluminum-sodium phosphate glass

    International Nuclear Information System (INIS)

    Sukhanov, S.B.; Batyaev, I.M.

    1992-01-01

    Since development of the first crystal laser, Al 2 O 3 crystals remain the most widely used in quantum electronics. In the present work, the aluminum-sodium phosphate glass, Al 2 O 3 -Na 2 O 3 -P 2 O 5 , was studied with different proportions of components. A luminescence medium is obtained based on phosphate glass doped by Ti 3+ ions with intense emission in the 700-900-nm spectral range. This glass is a promising lasing medium for tunable solid-state lasers. 12 refs., 2 figs

  10. Laser Setup for Volume Diffractive Optical Elements Recording in Photo-Thermo-Refractive Glass

    Science.gov (United States)

    2016-04-14

    Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of...3 1b 2 3 a b Fig. 14. Schematic of a DBR (a) and DFB (b) lasers in Yb doped PTR glass. 1a and 1b – dichroic beam splitters with HR at 1066 nm and HT

  11. The long-term effect of 1550 nm erbium:glass fractional laser in acne vulgaris.

    Science.gov (United States)

    Liu, Yale; Zeng, Weihui; Hu, Die; Jha, Smita; Ge, Qin; Geng, Songmei; Xiao, Shengxiang; Hu, Guanglei; Wang, Xiaoxiao

    2016-04-01

    We evaluated the short-term and long-term effects of the 1550 nm erbium:glass (Er:glass) fractional laser in the treatment of facial acne vulgaris. Forty-five (9 male and 36 female) acne patients were treated 4 times at 4-week intervals with the following parameters: 169 spot density and 15-30 mJ/cm(2) fluence. There was no control group. The laser spots were adjustable (maximum overlap: 20%) according to the treatment area, and delivered in rows in order to cover all the face. Clinical photographs were taken. The IGA scores and lesion counts were performed for each treatment. Their current state was obtained by phone call follow-up to determine the long-term effect and photographs were offered by themselves or taken in hospital. After four treatments, all patients had an obvious reduction of lesion counts and IGA score and the peak lesion counts decreased to 67.7% after the initial four treatment sessions. For long-term effect, 8 patients lost follow-up, hence 37 patients were followed-up. 8 patients were 2-year follow up, 27 at the 1-year follow-up, and all patients at the half-year follow-up. The mean percent reduction was 72% at the half-year follow-up, 79 at the 1-year follow-up and 75% at the 2-year follow-up. Side effects and complications were limited to transient erythema and edema, and few patients suffered from transient acne flare-ups and sensitivity. All patients responded that their skin was less prone to oiliness. In conclusion, acne can be successfully treated by 1550 nm Er:glass fractional laser, with few side effects and prolonged acne clearing.

  12. Treatment of burn scars in Fitzpatrick phototype III patients with a combination of pulsed dye laser and non-ablative fractional resurfacing 1550 nm erbium:glass/1927 nm thulium laser devices.

    Science.gov (United States)

    Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca

    2018-01-01

    Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.

  13. Laser fusion experiments at 2 TW. [Argus system; implosion of D-T filled glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-10-01

    The Lawrence Livermore Laboratory Solid State Laser System, Arqus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10/sup 8/ per event. Neutron and ..cap alpha.. time-of-flight measurements indicate that D-T ion temperatures of approximately 5-6 keV and a density confinement time product (n tau) of approximately 1 x 10/sup 12/ were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 ..mu..m light were focused on targets using 20 cm aperture f/1 lenses, producing intensities at the target in excess of 10/sup 16/ W/cm/sup 2/. An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 ..mu..m or less. The symmetry of the thermonuclear burn region is investigated by monitoring the ..cap alpha..-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments.

  14. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method

    Directory of Open Access Journals (Sweden)

    M. Ghandehari

    2012-01-01

    Full Text Available Objective: One of the main criteria in evaluating the restorative materials is the degree of microleakage. The aim of this study was to compare the microleakage of glass ionomer restored cavities prepared by Er:YAG laser or turbine and bur.Materials and Methods: Twenty extracted caries-free deciduous posterior teeth were selected for this study. The teeth were randomly divided into two groups for cavity preparation. Cavities in group one were prepared by high speed turbine and bur. In the second group, Er:YAG laser with a 3W output power, 300 mJ energy and 10 Hz frequency was used. Cavities were restored with GC Fuji II LC. After thermocycling, the samples were immersed into 0.5% methylene blue solution. They were sectioned for examination under optic microscope.Results: The Wilcoxon signed ranks test showed no significant difference between microleakage of the laser group and the conventional group (P>0.05.Conclusion: Er:YAG laser with its advantages in pediatric dentistry may be suggested as an alternative device for cavity preparation.Key Words: Er:YAG laser, Glass ionomer, Microleakage

  15. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film. Film samples were exposed to focused above bandgap light with wavelength at 405 nm using different fluence adjusted by laser power and exposure time. The index of refraction before and after laser irradiation was calculated by fitting the experimental data obtained from Spectroscopic Ellipsometer (SE) measurement to Tauc-Lorenz dispersion formula. A positive change in refractive index (Δn = 0.19 at 1.55 μm) as well as an enhancement in anisotropy was achieved in As2S3 film by using 10 mW, 0.3 μs laser irradiation. With further increasing the fluence, refractive index increased while anisotropic property weakened. Due to the rapid and large photo-induced modification of refractive index obtainable with high spatial resolution, this process is promising for integrated optic device fabrication.

  16. Identification of a trypsin-like site associated with acetylcholinesterase by affinity labelling with (/sup 3/H)diisopropyl fluorophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Small, D.H.; Chubb, I.W.

    1988-07-01

    In addition to its ability to hydrolyze acetylcholine, purified eel acetylcholinesterase possesses a trypsin-like endopeptidase activity. The tryptic activity is associated with a serine residue at a site that is distinct from the esteratic site. To label both the esteratic and tryptic sites, the enzyme was incubated with the serine hydrolase inhibitor (/sup 3/H)diisopropyl fluorophosphate. This compound labelled the protein in a biphasic manner, with both slow and rapid labelling kinetics. The time course of the rapid phase was similar to the time course of inactivation of the esteratic activity. The time course of the slow phase was similar to the time course of inactivation of the tryptic activity. Labelling of the nonesteratic site was inhibited by the trypsin inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone. The total number of sites labelled by (/sup 3/H)diisopropyl fluorophosphate on eel acetylcholinesterase was 2.6 mol/280,000 g protein, whereas the number of tryptic sites was less (0.52 mol/280,000 g). The results suggest that a subpopulation of acetylcholinesterase molecules may possess tryptic activity. Extensive chromatography of the purified enzyme by ion-exchange and gel filtration failed to separate the labelled tryptic component from acetylcholinesterase. On sodium dodecyl sulfate-polyacrylamide gels, the labelled tryptic component comigrated with a polypeptide of 50,000 molecular weight, which is a major proteolytic digestion product derived from the intact acetylcholinesterase monomer. Because of its localization in many noncholinergic peptide-containing cells, acetylcholinesterase could act as a neuropeptide processing enzyme in these cells.

  17. Radiation processes in glass of Ba(PO/sub 3/)/sub 2/-MgF/sub 2/-LiF system. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bocharova, T.V.; Karapetyan, G.O.; Khalilev, V.D.

    1984-11-01

    Optical spectra of additional absorption of glasses of Ba(PO/sub 3/)/sub 2/-MgF/sub 2/-LiF system ..gamma..-irradiated up to 10/sup 6/ R dose are presented. It was established that introduction of up to 70 mol% of fluorides into phosphate glass doesn't result in occurrence of AAB (additional absorption band) in spectra, related to color centers similar to F-centers in MgF/sub 2/ and LiF crystals. It was shown that occurring color centers in phosphate matrix form nonelementary AAB in approximately 20,000 cm/sup -1/ spectrum region. The contribution to the total spectrum of additional absorption in visible region is made, besides (PO)/sub 4/-centers, by radiation color centers related with the presence of Mg/sup +2/ ions near PO/sub 4/ tetrahedrons. It was assumed that change of AAB position and intensity with ..gamma..sub(max) approximately 20,000 cm/sup -1/ in fluorophosphate glass with regularly changed composition reflects structural rebuilding of glass network taking place simultaneously with fluoride introduction. The obtained results support the conclusion, that MgF/sub 2/ takes part in formation of structural glass network whereas LiF acts as a component which breaks phosphate chains.

  18. Fabrication of polycrystalline silicon thin films on glass substrates using fiber laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Vinh Ai; Han, Kuymin; Heo, Jongkyu; Kyeong, Dohyeon; Kim, Jaehong; Lee, Youngseok; Kim, Yongkuk; Jung, Sungwook; Kim, Kyunghae [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.k [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of)

    2009-05-29

    Laser crystallization of amorphous silicon (a-Si), using a fiber laser of {lambda} = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave ({lambda} = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeO{sub x}, a-SiN{sub x}, and a-SiO{sub x}) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiO{sub x} as the capping layer.

  19. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    Science.gov (United States)

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  20. Investigation on Er{sup 3+}/Ho{sup 3+} co-doped silicate glass for ~2 µm fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueqiang; Huang, Feifei; Cheng, Jimeng; Fan, Xiaokang; Gao, Song [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Science, Beijing 100039 (China); Zhang, Junjie [College of Materials Science and Technology, China Jiliang University, Hangzhou 310018 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Danping, E-mail: dpchen2008@aliyun.com [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-15

    A stable Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass is developed. Luminescent properties are recorded under pumping with 808 and 1550 nm lasers. Energy-transfer mechanism and efficiency are analyzed. Energy-transfer efficiency from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7} reaches 93.8% at 3 mol% Ho{sub 2}O{sub 3} doping concentration. Strong luminescence is detected when pumped at 1550 nm because of efficient energy transfer from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7}. Peak gain coefficient at 2056 nm is detected as 1.62 cm{sup −1}. The excellent luminescent property and high stability indicate that Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass can be applied in 2 µm fiber lasers. - Highlights: • Er{sup 3+}/Ho{sup 3+} co-doped silicate glasses with high stability are prepared. • Strong luminescence is detected under pump of 1550 nm lasers owing to efficient energy transfer from Er{sup 3+} to Ho{sup 3+}. • Transfer efficiency is calculated to be 93.8% when Ho{sub 2}O{sub 3} doping concentration is up to 3 mol%. • Gain coefficient peaks at 2056 nm to be 1.62 cm{sup −1}.

  1. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

    International Nuclear Information System (INIS)

    Caird, J.A.; Ramponi, A.J.; Staver, P.R.

    1991-01-01

    Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd 3+ -doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Foerster--Dexter dipole--dipole energy-transfer theory. The Foerster--Dexter critical range for nonradiative excitation hopping was found to be R DD =11 A, while the critical range for cross relaxation was close to R DA =4 A in these glasses. The quantum efficiency at low Nd 3+ concentrations was (92±5)%, implying a nonradiative relaxation rate of 210±150 s -1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements

  2. ZrCuAl Bulk Metallic Glass spall induced by laser shock

    Science.gov (United States)

    Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe

    2017-06-01

    To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.

  3. Assessment and forensic application of laser-induced breakdown spectroscopy (LIBS) for the discrimination of Australian window glass.

    Science.gov (United States)

    El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris

    2014-08-01

    A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  5. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    Science.gov (United States)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  6. Photosensitivity of the Er/Yb-Codoped Schott IOG1 Phosphate Glass Using 248 nm, Femtosecond, and Picosecond Laser Radiation

    International Nuclear Information System (INIS)

    Pissadakis, S.; Michelakaki, I.

    2009-01-01

    The effect of 248 nm laser radiation, with pulse duration of 5 picoseconds, 500 femtosecond, and 120 femtosecond, on the optical properties and the Knoop hardness of a commercial Er/Yb-codoped phosphate glass is presented here. Refractive index changes of the order of few parts of 10-4 are correlated with optical absorption centers induced in the glass volume, using Kramers-Kroning relationship. Accordingly, substantially lower refractive index changes are measured in volume Bragg gratings inscribed in the glass, indicating that, in addition to the optical density changes, volume dilation changes of negative sign may also be associated with the 248 nm ultrafast irradiation. The Knoop hardness experimental results reveal that the glass matrix undergoes an observable initial hardening and then a reversing softening and volume dilation process for modest accumulated energy doses, where the Knoop hardness follows a nonmonotonic trend. Comparative results on the Knoop hardness trend are also presented for the case of 193 nm excimer laser radiation. The above findings denote that the positive or negative evolution of refractive index changes induced by the 248 0nm ultrafast radiation in the glass is dominated by the counteraction of the color center formation and the volume modification effects.

  7. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  8. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies

    International Nuclear Information System (INIS)

    Khattak, G.D.; Mekki, A.; Gondal, M.A.

    2010-01-01

    The effect of laser irradiation using three different wavelengths (IR, visible and UV) generated from Nd:YAG laser on the local glass structure as well as on the valence state of the copper ions in copper phosphate glass containing CuO with the nominal composition 0.30(CuO)-(0.70)(P 2 O 5 ), has been investigated by X-ray photoelectron spectroscopy (XPS). The presence of asymmetry and satellite peaks in the Cu 2p spectrum for the unirradiated sample is an indication of the presence of two different valence states, Cu 2+ and Cu + . Hence, the Cu 2p 3/2 spectrum was fitted to two Gaussian-Lorentzian peaks and the corresponding ratio, Cu 2+ /Cu total , determined from these relative areas clearly shows that copper ions exist predominately (>86%) in the Cu 2+ state for the unirradiated glass sample under investigation. For the irradiated samples the symmetry and the absence of satellite peaks in the Cu 2p spectra indicate the existence of the copper ions mostly in Cu + state. The O 1s spectra show slight asymmetry for the irradiated as well as unirradiated glass samples which result from two contributions, one from the presence of oxygen atoms in the P-O-P environment (bridging oxygen BO) and the other from oxygen in an P-O-Cu and P=O environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with laser power.

  9. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  10. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    International Nuclear Information System (INIS)

    Sjåstad, Knut-Endre; Andersen, Tom; Simonsen, Siri Lene

    2013-01-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  11. EUROPIUM ION INFLUENCE ON THE FORMATION OF Ag-NANOPARTICLES IN FLUORINE PHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    R. O. Pysh'ev

    2015-05-01

    Full Text Available The paper deals with research of formation characteristics of silver nanoparticles in fluorophosphate glasses 0.25 Na2O - 0.5 P2O5 - 0.10 Ga2O3 - 0.075 AlF3 - 0.025 NaF - 0.05 ZnF2 doped with EuF3 (0.8 and 4 wt.% and without them. The synthesis was carried out in closed glassy carbon crucibles in argon atmosphere. Nanoparticles were formed after a low temperature process of Ag+ → Na+ ion-exchange (320 °C and subsequent heat treatment. It was shown that in the initial glasses doped with EuF3, rare earth ions exist in two valence forms (Eu2+ and Eu3+ in dynamic equilibrium and the concentration of Eu2+ increases proportionally to the total concentration of fluoride. It was shown that sizes of molecular clusters or metal nanoparticles depend on the concentration of europium fluoride and duration of ion exchange. The metallic Ag-nanoparticles sizes were defined for different times of heat treatment and ion exchange. The possibility of the stimulating growth of nanoparticles through the introduction of additional EuF3 in the glass was proved. The possibility of obtaining nanoparticles without the heat treatment in glasses with a high concentration of EuF3 was shown. Chemical mechanism for the formation of Ag-nanoparticles during the ion exchange was suggested.

  12. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics

    DEFF Research Database (Denmark)

    Morris, James M.; Mackenzie, Mark D.; Petersen, Christian Rosenberg

    2018-01-01

    Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero-dispersi...... ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.......Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero......-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, midIR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 mu m. Supercontinuum spanning approximately 4 mu m from 2.5 to 6...

  13. Femtosecond laser three-dimensional micro- and nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Koji, E-mail: ksugioka@riken.jp [RIKEN Center for Advanced Photonics, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Cheng, Ya, E-mail: ya.cheng@siom.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  14. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    International Nuclear Information System (INIS)

    Ramanathan, Madhumati; Wang Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2010-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 μM DFP.

  15. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Madhumati [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States); Wang Lin [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Wild, James R. [Biochemistry and Biophysics Department, Texas A and M University Texas AgriLife Research Program, College Station, TX 77843-2128 (United States); Meyeroff, Mark E. [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Simonian, Aleksandr L., E-mail: simonal@auburn.edu [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States)

    2010-05-14

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 {mu}M DFP.

  16. A study on fractional erbium glass laser therapy versus chemical peeling for the treatment of melasma in female patients

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2013-01-01

    Full Text Available Introduction: Melasma is a commonly acquired hypermelanosis and a common dermatologic skin disease that occurs on sun-exposed areas of face. Aims: To assess the efficacy and safety of non-ablative 1,550 nm Erbium glass fractional laser therapy and compare results with those obtained with chemical peeling. Materials and Methods: We selected 30 patients of melasma aged between 20 years and 50 years for the study. The patients were divided into two groups of 15 patients each. Group I patients were subjected to four sessions of 1,550 nm Erbium glass non-ablative fractional laser at 3 weeks interval. In group II patients, four sessions of chemical peeling with 70% glycolic acid was performed. Results: After 12 weeks of treatment, percentage reduction in Melasma Area and Severity Index (MASI score was seen in 62.9% in the laser group and 58.7% in the peels group. Conclusion: It was observed that 1,550 nm fractional laser is as effective as 70% glycolic acid peel in reducing MASI score in patients with melasma.

  17. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    Science.gov (United States)

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  18. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO{sub 2} laser polishing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hun-Kook [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Chosun University, Gwangju (Korea, Republic of); Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Jin-Tae [Chosun University, Gwangju (Korea, Republic of); Ahsan, Shamim [Khulna University, Khulna (Bangladesh)

    2014-11-15

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO{sub 2} laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO{sub 2} laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO{sub 2} laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  19. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    International Nuclear Information System (INIS)

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-01-01

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2)  ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired

  20. Gain measurements at 182 /angstrom/ in C VI generated by a Nd/glass laser

    International Nuclear Information System (INIS)

    Kim, D.; Skinner, C.H.; Umesh, G.; Suckewer, S.

    1988-11-01

    We present recent gain measurements in C VI at 182 A for a soft x-ray amplifier produced by a line-focused glass laser(1.053 μm) on a solid carbon target. The maximum gain measured was 8 +- 1 cm/sup /minus/1/ in the recombining plasma column with additional radiation cooling by iron impurities. 10 refs., 3 figs

  1. Photo-induced changes of silicate glasses optical parameters at multi-photon laser radiation absorption

    International Nuclear Information System (INIS)

    Efimov, O.M.; Glebov, L.B.; Mekryukov, A.M.

    1995-01-01

    In this paper the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to the intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center open-quotes S. I. Vavilov State Optical Instituteclose quotes during last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three- or more photon matrix ionization of these glasses, but they were failed. However it was established that in the lead silicate glasses the long-wave carriers mobility boundary (> 5.6 eV) is placed considerably higher the fundamental absorption edge (∼ 3.5 eV) of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed

  2. Dynamic fracture characteristics of Fe78Si9B13 metallic glass subjected to laser shock loading

    International Nuclear Information System (INIS)

    Zheng, Chao; Sun, Sheng; Song, Libin; Zhang, Guofang; Luan, Yiguo; Ji, Zhong; Zhang, Jianhua

    2013-01-01

    The response of the Fe 78 Si 9 B 13 metallic glass under different ratio of laser beam diameter (d) to die hole diameter (D) in micro scale laser punching was investigated. The typical fracture surface morphologies were observed using scanning electron microscope. The influence of the ratio d/D on dynamic deformation and fracture of metallic glasses foils was characterized. The results show that the dynamic fracture behavior of the Fe 78 Si 9 B 13 metallic glass is sensitive to the ratio d/D. In the case of d/D = 1.75, the fracture surface is occupied by numerous liquid droplets, indicating that the temperature rise in an adiabatic shear band is beyond the melting temperature of the material. On the other hand, the fracture surface is covered dominantly with a mixture of shear steps, cellular patterns, liquid droplets and melted belts at d/D = 0.70. According to the general mechanical analysis, the specimen fails in a shear fracture mode at d/D = 1.75 due to the existence of shear stresses, while the fracture occurs in a tensile fracture mode at d/D = 0.70 under the effect of bidirectional tensile stresses.

  3. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    Science.gov (United States)

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.

  4. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    Science.gov (United States)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  5. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.

    Science.gov (United States)

    Li, Kefeng; Zhang, Guang; Hu, Lili

    2010-12-15

    We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.

  6. Ablation of (GeS2)0.3(Sb2S3)0.7 glass with an ultra-violet nano-second laser

    International Nuclear Information System (INIS)

    Knotek, P.; Navesnik, J.; Cernohorsky, T.; Kincl, M.; Vlcek, M.; Tichy, L.

    2015-01-01

    Highlights: • The interaction of (GeS 2 ) 0.3 (Sb 2 S 3 ) 0.7 bulk glass and film with UV nanosecond laser. • Ablation process, topography of crater and structure of the material were studied. • Ablation threshold fluencies changed with the spot diameter and number of pulses. • The photo-thermal expansion of the material occurred for low laser fluency. • Laser direct writing process applicable for fabrication of passive optical elements. - Abstract: The results of an experimental study of the laser ablation of bulk and thin films of a GeSbS chalcogenide glass using UV nanosecond pulses are reported. The response of the samples to illumination conditions was studied through the use of atomic force spectroscopy, digital holographic microscopy, Raman scattering and scanning electron microscopy. The multi-pulse ablation thresholds were determined for both the bulk and thin film samples for varying number of pulses and illuminated spot diameter. The possible application of direct laser writing into the bulk and thin films of this material is presented

  7. Quantitative analysis of manganese concentration in manganese-doped glasses by laser-induced breakdown spectroscopy using a nanosecond ultraviolet Nd:YAG laser

    International Nuclear Information System (INIS)

    Unnikrishnan, V.K.; Nayak, Rajesh; Kartha, V.B.; Santhosh, C.; Sonavane, M.S.; Yeotikar, R.G.; Gupta, G.P.; Suri, B.M.

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been well recognized as a simple, fast and direct analytical technique for the analysis of elemental analysis of multi-element materials by a number of research groups all over the world. It is based on the focusing of a high-power pulsed laser beam with a power density > 100 MW/cm 2 onto a sample surface followed by optical emission spectroscopy of the plasma produced over the surface. During the last two decades, LIBS has attracted a lot of attention, leading to an ever increasing list of applications, both in laboratory and in industry. In this work, the quantitative analysis of manganese in manganese-doped glass samples in air at atmospheric pressure has been carried out by the LIBS system assembled and optimized in the laboratory. The plasma is generated using a nanosecond ultraviolet Nd:YAG laser with an irradiance of 1x10 9 W/cm 2 on the sample surface. The spatially integrated plasma light emission was collected and imaged on to the spectrograph slit using an optical-fibre-based collection system. An Echelle spectrograph-ICCD system (Andor Mechelle ME5000-DH734-18U-03PS150) was used to record the emission spectrum. The spectrograph with an Echelle grating covers 200-975 nm spectral range in a single shot with a good wavelength resolution (0.05 nm). The detector was gated in synchronization with the laser pulse to get maximum signal-to-background (S/B) ratio. The detector gate width of 2 μs and the detector gate delay of 2 μs were chosen for recording the plasma emission signals, discriminating the continuum radiation which is intense at initial delay time less than 300 ns and decreases at later time

  8. High-Purity Glasses Based on Arsenic Chalcogenides

    Science.gov (United States)

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  9. Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shujing; Song Feng; Cai Hong; Li Teng; Tian Bin; Wu Zhaohui; Tian Jianguo [Photonics Center, Nankai University, Tianjin 300071 (China); Key Laboratory of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials (Ministry of Education), Nankai University, Tianjin 300457 (China)

    2008-02-07

    The theoretical values of the thermal focal length and laser beam waist are derived from the theoretical model and transformation theory, respectively. The values of thermal focal length, laser beam waist and the far field divergence angle were experimentally measured in a laser diode (LD) pumped erbium-ytterbium(Er-Yb)-codoped phosphate microchip glass laser. As an extension of thermal effect studies, we investigate the role of thermal lens on beam quality and the mode matching between the pump and the laser, which affects laser efficiency in TEM{sub 00} operation. The study shows that the experimental data are in good agreement with the theoretical predictions.

  10. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  11. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    Science.gov (United States)

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified

  12. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  13. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement

    International Nuclear Information System (INIS)

    Toda, Maria Aparecida

    2003-01-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 μm diameter; fluency of 99,52 J/ cm 2 , assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  14. Application of lanthanide ions doped in different glasses

    International Nuclear Information System (INIS)

    Dhondiyal, Charu Chandra

    2015-01-01

    The transfer of optical excitation energy from one ion/molecule to another ion/molecule has proved to be of potential importance in industrial application as well as research. Rare earth elements (RE) although not as rare as some of them occur more prevalently then other well known material (e.g. silver, tin, tungsten) are special group of elements of the periodic table comprising lanthanide series (from lanthanum to lutetium) and actinide series (from actinium to lawrencium). Most of the actinides are highly radioactive hence their uses are limited. Fluorescence is the particular optical property of lanthanide (RE) ions. The narrow absorption and emission lines exhibited by the RE ions in crystals, glasses and solutions have always made these ions attractive as sensitive probes of solids and liquid state and also makes them useful in laser technology, CRT displays, UV to visible converters and optical communications etc. In recent years there has been a special interest to study the properties and applications of rare earth doped in glasses. Lanthanide ions in glasses play an important role, especially by retaining their emission capabilities, in the host matrix. Glass as a dielectric material plays an important role in science and industry. Its chemical, physical and particular optical properties make it suitable for applications such as opto-electronic materials, laboratory equipment, laser gain media, etc. Photoluminescence from rare earth doped glasses are of major interest in the research area of optoelectronic device applications like phosphors, display monitors, lasers and amplifiers for communication systems. Now a days, development of optical devices based on rare-earth ions doped materials is one of the interesting fields of research. Rare earth doped glasses are widely used as laser materials, optical amplifiers, optical memory devices, magneto-optical devices, medical lasers, eye safe lasers, flat panel displays, fluorescent lamps, white LED's etc

  15. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  16. Infrared Supercontinuum Generation in Soft-glass Fibers

    DEFF Research Database (Denmark)

    Agger, Christian

    This Ph.D.-project presents numerical simulations of supercontinuum (SC) generation in optical fiber laser systems based on various soft-glass materials. Extensive numerical modeling is performed in order to understand and characterize the generated SC. This includes a review of the generalized...

  17. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  18. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  19. Liquid-crystal laser optics: design, fabrication, and performance

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Marshall, K.L.; Schmid, A.; Guardalben, M.J.; Skerrett, K.J.

    1988-01-01

    We describe the development of laser optics utilizing liquid crystals. Devices discussed constitute passive optical elements for both low-power and high-power laser systems, operating in either the pulsed or cw mode. Designs and fabrication methods are given in detail for wave plates, circular polarizers, optical isolators, laser-blocking notch filters, and soft apertures. Performance data in the visible to near infrared show these devices to be useful alternatives to other technologies based on conventional glasses, crystals, or thin films. The issue of laser damage is examined on the basis of off-line threshold testing and daily use in OMEGA, the 24-beam Nd:glass laser system at the Laboratory for Laser Energetics. Results demonstrate that long-term survivability has been achieved

  20. High-energy glass lasers

    International Nuclear Information System (INIS)

    Glaze, J.A.

    1975-01-01

    In order to investigate intense pulse propagation phenomena, as well as problems in laser and system design, a prototype single chain laser called CYCLOPS was constructed. This laser employs a 20-cm clear aperture disk amplifier in its final stage and produces a terawatt pulse whose brightness exceeds 10 18 watts/cm 2 -ster. The CYCLOPS system is summarized and aspects of nonlinear propagation phenomena that are currently being addressed are discussed. (MOW)

  1. Annual report to the Laser Facility Committee 1979

    International Nuclear Information System (INIS)

    1979-03-01

    The report covers the work done at the Central Laser Facility, Rutherford Laboratory during the year preceding 31 March 1979. Preliminary work already undertaken on the upgrade of the glass laser and target areas consisting of the relocation of the two beam target chamber and tests on phosphate glass and also the completion of the electron beam generator for use by researchers on high power gas laser systems, are described. Work of the groups using the glass laser facility are considered under the headings; glass laser development, gas laser development, laser plasma interactions, transport and particle emission, ablative compression studies, atomic and radiation physics, XUV lasers, theory and computation. (U.K.)

  2. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  3. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  4. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  5. Formation of Infrared Femtosecond Laser Induced Colour Centres in Tb3+-Doped and Tb3+/Ce3+-Codoped Heavy Germanate Glasses

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-Rong(陈国荣); YANG Yun-Xia(杨云霞); QIU Jian-Rong(邱建荣); JIANG Xiong-Wei(姜雄伟); K.Hirao

    2003-01-01

    The formation of infrared femtosecond laser induced colour centres was observed in Tb3+-doped and Tb3+ /Ce3+-codoped heavy germanate glasses.A rectangular scan was made by focusing the laser beam inside the glass samples.A three-dimensional yellowish block was created from the path and it corresponded to the appearance of broad absorption bands in the absorption spectra.The irradiation induced absorption coefficient μ(λ)was used to characterize the distribution of radiation induced colour centres in the samples,whose peak was located at 380nm and extended to the longer wavelength.Ce3+ ions were found not only to inhibit the formation of colour centres,but also to enhance the recovery.

  6. Thermal behaviors of liquid La-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. W.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, L. W. [Institute of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  7. Raman Spectroscopic Study on Decorative Glasses in Thailand

    International Nuclear Information System (INIS)

    Won-In, K.; Ponkrapan, S.; Dararutana, P.

    2011-01-01

    Glasses have been used as decorative objects in Thailand for several hundred years. Decorative glasses can generally be seen as architectural components in old styled palaces and Buddhist objects. There were various colors ranging from transparent to amber, blue, green and red with different shades among glass of different colors. Fragments of archaeological glass samples were characterized for the first time using Raman microscopy with the aim of obtaining information that would lead to identification of the glass samples by means of laser scattering. The samples were also investigated using other techniques, such as particle induced X-ray emission spectroscopy and scanning electron microscope operated with energy dispersive X-ray fluorescence spectrometer. They were mostly lead-silica based glasses. The colors resulted from metal ions. The difference in chemical composition was confirmed by Raman signature spectra. (author)

  8. Discrimination of side-window glass of Korean autos by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lee, Sin-Woo; Ryu, Jong-Sik; Min, Ji-Sook; Choi, Man-Yong; Lee, Kwang-Sik; Shin, Woo-Jin

    2016-07-15

    Fragments of glass from cars are often found at crime scenes and can be crucial evidence for solving the crime. The glass fragments are important as trace evidence at crime scenes related to car accidents and burgled homes. By identifying the origin of glass fragments, it is possible to infer the identity of a suspect. Our results represent a promising approach to a thorough forensic investigation of car glass. Thirty-five samples from the side windows of cars produced and used in South Korea were collected from the official agencies of five car manufacturers and from two glassmakers. In addition, 120 samples from side mirrors were collected from the same suppliers as well as from small businesses. Their chemical compositions (including Pb isotopes) were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and linear discriminant analysis (LDA) was performed. The percentages of major elements (Si, Ca, and Fe) in side-window glass varied within narrow ranges (30.0 ± 2.36%, 5.93 ± 0.52%, and 0.33 ± 0.05%, respectively), while the differences among Pb isotope ratios were not significant. In contrast, light rare earth elements (LREEs) were different from each glassmaker. From the LDA, the types of side-window glass were successfully discriminated according to car manufacturer, glassmaker, and even glass thickness. However, glass from side mirrors cannot be used for good forensic identifiers. Discrimination techniques for side-window glass, although not for side mirrors, using chemical compositions combined with multivariate statistical analyses provide evidence for forensic investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    International Nuclear Information System (INIS)

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  10. Investigations on optical properties of Eu3+ ion doped magnesium telluroborate glasses for red laser applications

    Science.gov (United States)

    Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-04-01

    Eu3+ doped Magnesium telluroborate glasses were prepared with the chemical composition (40-x)H3BO3+35 TeO2+15MgCO3+10MgF2+xEu2O3 (where x = 0.1, 0.5, 1.0 and 2.0 in wt%) following the melt quenching technique and labeled as MTB0.1Eu, MTB0.5Eu, MTB1.0Eu and MTB2.0Eu respectively. The absorption spectra exhibit seven peaks in the visible and NIR region. Five emission peaks corresponding to the 5D0→7FJ (J=0, 1, 2, 3, 4) transitions were observed while exciting at 465 nm. The luminescence intensity ratio (R) and Ω2 parameter values were found to be higher for the MTB0.5Eu glass thus indicates the higher asymmetry around the Eu3+ ions site compared to other prepared glasses. The CIE color chromaticity coordinates of the present glasses are found to lie in the prominent red region in the chromaticity diagram. The stimulated emission cross-section value of the MTB0.5Eu glass was found to be higher pertaining to the 5D0 → 7F2 transition compared to the other prepared glasses and reported literature thus suggests its suitability for red laser applications.

  11. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  12. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    Science.gov (United States)

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  13. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  14. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  15. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  16. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Science.gov (United States)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  17. Investigation of matrix effects in 193 nm laser ablation-inductively coupled plasma-mass spectrometry analysis using reference glasses of different transparencies

    International Nuclear Information System (INIS)

    Czas, J.; Jochum, K.P.; Stoll, B.; Weis, U.; Yang, Q.-C.; Jacob, D.E.; Andreae, M.O.

    2012-01-01

    The degree of transparency of glasses, which depends on the Fe content, may influence the ablation behavior during laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis. To test possible matrix effects when using a 193 nm Nd:YAG laser, we have analyzed transparent and opaque NIST, BAM and USGS reference glasses. These reference materials are ideal for such investigations, because they are well characterized, most elements are homogeneously distributed at the micrometer scale, and their Fe content varies over a very large range, from 16 to 130,000 μg g −1 . Our measurements show that the fractionation factors of refractory and volatile lithophile elements, such as Sr, Ba, and Rb, are 1.00 ± 0.03 and independent of the degree of transparency. However, for volatile chalcophile/siderophile elements (e.g., Zn and Pb) the fractionation factors vary significantly between 0.7 and 1, depending on the spot sizes and the transparency of the material. Mass-load-induced matrix effects may also influence the accuracy of LA-ICP-MS analysis. They are less than 2% for the lithophile and up to 10% for volatile chalcophile/siderophile elements when the mass load varies by a factor 2.4. Relative sensitivity factors used for calibration of lithophile elements agree within uncertainty limits for transparent and opaque glasses when using a 193 nm laser. Even for volatile/chalcophile elements they differ only by 5–10%. The reliability of the LA-ICP-MS analyses is demonstrated by presenting concentration data of 27 trace elements in the NIST, BAM and USGS reference glasses using NIST SRM 612 for calibration, where highly accurate reference values are available. For trace element concentrations in the range between 1 and 500 μg g −1 , the reproducibility and the uncertainties at the 95% confidence level of the measurements vary between 1–4%, and 7–10%, respectively. - Highlights: ► Matrix effects are low for lithophile elements using a 193 nm laser

  18. Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass

    International Nuclear Information System (INIS)

    Vishnubhatla, K C; Kumar, R Sai Santosh; Rao, D Narayana; Rao, S Venugopal; Osellame, R; Ramponi, R; Bhaktha, S N B; Mattarelli, M; Montagna, M; Turrell, S; Chiappini, A; Chiasera, A; Ferrari, M; Righini, G C

    2009-01-01

    The femtosecond laser direct writing technique was employed to inscribe gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Using the butt coupling technique, a systematic study of waveguide loss with respect to input pulse energy and writing speed was performed to achieve the best waveguide with low propagation loss (PL). By pumping at 980 nm, we observed signal enhancement in these active waveguides in the telecom spectral region. The refractive index change was smooth and we estimated it to be ∼10 -3 . The high quantum efficiency (∼80%) and a best PL of ∼0.9 dB cm -1 combined with signal enhancement makes Baccarat glass a potential candidate for application in photonics.

  19. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    International Nuclear Information System (INIS)

    Wiedlocher, D.E.; Kinser, D.L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic

  20. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  1. Study of lanthanum aluminum silicate glasses for passive and active optical fibers

    Science.gov (United States)

    Schuster, K.; Litzkendorf, D.; Grimm, S.; Kobelke, J.; Schwuchow, A.; Ludwig, A.; Leich, M.; Jetschke, S.; Dellith, J.; Auguste, J.-L.; Leparmentier, S.; Humbert, G.; Werner, G.

    2013-03-01

    We report on SiO2-Al2O3-La2O3 glasses - with and without Yb2O3 - suitable for nonlinear and fiber laser applications. We also present successful supercontinuum generation and fiber laser operation around 1060 nm in step-index fibers. We have optimized the glass compositions in terms of thermal and optical requirements for both a high La2O3 (24 mol%) and Yb2O3(6 mol%) concentration. The aluminum concentration was adjusted to about 21 mol% Al2O3 to increase the solubility of lanthanum and ytterbium in the glass beyond possible MCVD based techniques. The glasses have been characterized by dilatometrical methods to find transition temperatures from 860 to 880°C and thermal expansion coefficients between 4.1 and 7.0 × 10-6 K-1. Structured step index fibers with a SiO2-Al2O3-La2O3 core and silica cladding have been realized showing a fiber loss minimum of about 500 dB/km at 1200 nm wavelength. The chromatic dispersion could be adjusted to shift the zero dispersion wavelength (ZDW) close to the pump wavelength of 1550 nm in a supercontinuum generation setup. First fiber laser experiments show an efficiency of about 41 % with a remarkably reduced photodarkening compared to MCVD based fibers.

  2. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2016-07-07

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.

  3. Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams

    Directory of Open Access Journals (Sweden)

    Cheng Guanghua

    2013-11-01

    Full Text Available We report on the fabrication of the stressed optical waveguide with tubular depressed-refractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.

  4. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.

    2007-01-01

    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction

  5. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  6. Regulation of apoptosis and priming of neutrophil oxidative burst by diisopropyl fluorophosphate

    Directory of Open Access Journals (Sweden)

    Tsang Jennifer LY

    2010-07-01

    Full Text Available Abstract Background Diisopropyl fluorophosphate (DFP is a serine protease inhibitor that is widely used as an inhibitor of endogenous proteases in in vitro neutrophil studies. Its effects on neutrophil function are unclear. We sought to determine the biological effects of DFP on human neutrophil apoptosis and oxidative burst. Methods We isolated neutrophils from healthy volunteers, incubated them with DFP (2.5 mM, and evaluated neutrophil elastase (NE activity, neutrophil degranulation, apoptosis as reflected in hypodiploid DNA formation and exteriorization of phosphatidylserine (PS, processing and activity of caspases-3 and -8, oxidative burst activity and hydrogen peroxide release. Results Consistent with its activity as a serine protease inhibitor, DFP significantly inhibited NE activity but not the degranulation of azurophilic granules. DFP inhibited constitutive neutrophil apoptosis as reflected in DNA fragmentation, and the processing and activity of caspases-3 and -8. DFP also inhibited priming of neutrophils for oxidative burst activity and hydrogen peroxide release. However, DFP enhanced the exteriorization of PS in a dose-dependent manner. Conclusion We conclude that DFP exerts significant effects on neutrophil inflammatory function that may confound the interpretation of studies that use it for its antiprotease activity. We further conclude that endogenous proteases play a role in the biology of constitutive neutrophil apoptosis.

  7. Laser micromachining of screen-printed graphene for forming electrode structures

    International Nuclear Information System (INIS)

    Chang, Tien-Li; Chen, Zhao-Chi; Tseng, Shih-Feng

    2016-01-01

    Highlights: • Homogeneous graphene films were prepared by the screen-printing process. • Optimal single-line ablation was performed by ultraviolet nanosecond laser pulses. • Influence of ablation parameters on graphene/glass substrate was clarified. • Electrical measurements of ablated graphene-based device can be investigated. - Abstract: There has been increasing research interest in electronic applications of graphene-based devices fabricated using electrode patterning techniques. This study presents a laser ablation technique along with a screen printing process for fabricating graphene patterns on a glass substrate. First, homogeneous multilayer films on the glass substrate are coated with graphene ink by using the screen printing process. Subsequently, optimal ablation was performed using an ultraviolet nanosecond laser, and the effective number of pulses decreased with an increase in the scanning speed and a decrease in the overlapping rate. Here, the pulsed overlap of a laser spot was determined to be approximately 90% for 75 pulses at a scanning speed of 250 mm/s. Experimental results showed continuous single-line ablation along the laser scanning path in the graphene films. Furthermore, linear current–voltage (I–V) curves showed the multilayer graphene characteristics of ablated devices for forming electrode structures.

  8. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  9. YAG Laser or bur

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... for the clinical durability of resin-based dental restorations.[1]. Microleakage ... studies evaluating the use of laser systems in primary teeth for cavity ... sealed with glass ionomer restorative material (Fuji. II LC, GC Corporation ...

  10. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing.

    Science.gov (United States)

    Cao, Jing; Poumellec, Bertrand; Brisset, François; Lancry, Matthieu

    2018-03-19

    Femtosecond laser-induced refractive index changes in lithium niobium silicate glass were explored at high repetition rate (300 fs, 500 kHz) by polarized light microscopy, full-wave retardation plate, quantitative birefringence microscopy, and digital holographic microscopy. We found three regimes on energy increase. The first one corresponds to isotropic negative refractive index change (for pulse energy ranging 0.4-0.8 μJ/pulse, 0.6 NA, 5μm/s, 650μm focusing depth in the glass). The second one (0.8-1.2 μJ/pulse) corresponds to birefringence with well-defined slow axis orientation. The third one (above 1.2 μJ/pulse) is related to birefringence direction fluctuation. Interestingly, these regimes are consistent with crystallization ones. In addition, an asymmetric orientational writing effect has been detected on birefringence. These topics extend the possibility of controlling refractive index change in multi-component glasses.

  11. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    Science.gov (United States)

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.

  12. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  13. New gadolinium based glasses for gamma-rays shielding materials

    International Nuclear Information System (INIS)

    Kaewjang, S.; Maghanemi, U.; Kothan, S.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • Gd 2 O 3 based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd 2 O 3. • All the glasses of Gd 2 O 3 compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd 2 O 3 based glass matrices. - Abstract: In this work, Gd 2 O 3 based glasses in compositions (80−x)B 2 O 3 -10SiO 2 -10CaO-xGd 2 O 3 (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd 2 O 3 concentration. The experimental values of mass attenuation coefficients (μ m ), effective atomic number (Z eff ) and effective electron densities (N e ) of the glasses were found to increase with the increasing of Gd 2 O 3 concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd 2 O 3 compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials

  14. Red luminescence from Eu3+-doped TeO2-WO3-GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-05-01

    Eu3+-doped oxyfluoro tellurite (TWGEu) glasses were prepared by conventional melt quenching method. The optical band gap energy and covalence between Eu3+ and O2-/F- ions were determined from optical absorption spectra. Using the 5D0 → 7F1,2,4 emission transitions, the Ω2 and Ω4 intensity parameters were determined. These intensity parameters were used to evaluate the radiative parameters such as emission probability rate (AR), luminescence branching ratio (βR) and radiative life time (τR) of 5D0 → 7FJ transitions. The laser characteristic parameters such as stimulated emission cross-section, gain bandwidth and quantum efficiency were determined. The luminescence decay profiles of 5D0 emission level were well fitted to single exponential function for all the concentrations. The experimental results show that the 0.5 mol% of Eu3+-doped TWGEu glass could be the best choice to design red laser sources.

  15. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  16. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    Science.gov (United States)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  17. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    International Nuclear Information System (INIS)

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  18. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  19. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    Science.gov (United States)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  20. Annual report to the Laser Facility Committee, 1982

    International Nuclear Information System (INIS)

    1982-03-01

    The report covers the work done at, or in association with, the Central Laser Facility during the year April 1981 to March 1982 under the headings; glass laser facility development, gas laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and, theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  1. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Bukharin, M.A. [Moscow Institute of Physics and Technology, Moscow Region (Russian Federation); Optosystems Ltd., Troitsk, Moscow (Russian Federation); Khudyakov, D.V. [Optosystems Ltd., Troitsk, Moscow (Russian Federation); Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation); Vartapetov, S.K. [Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation)

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 x 10{sup -3} up to 6.5 x 10{sup -3} in fused silica and from -6 x 10{sup -3} to -9 x 10{sup -3} in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 x 10{sup -3}. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data. (orig.)

  2. Thermal fracture and pump limit of Nd: glass

    International Nuclear Information System (INIS)

    Wang Mingzhe; Ma Wen; Tan Jichun; Zhang Yongliang; Li Mingzhong; Jing Feng

    2011-01-01

    Based on published fracture experiments and 3D transient finite-element analyses, and taking the first principal stress as the criterion and the Griffith crack theory to determine the critical fracture stress, a Weibull statistical model is established to predict the fracture possibility of Nd: glass with certain pump parameters. Other issues which limit the pump power are also presented. The results show that the fracture limit of laser medium depends on the optical polishing technology. For a short pulse and high energy Nd: glass laser, taking America's polishing technology in the 1990s as reference,the pump saturation limits the pump power to 18 kW/cm 2 when the repetition rate is lower than 1 Hz, while the thermal fracture limits the pump power when the repetition rate is higher than 10 Hz. (authors)

  3. Application of Judd-Ofelt Theory Upon Chlofluorophosphate Glass ...

    African Journals Online (AJOL)

    A series of erbium doped glasses chlorofluorophosphates were prepared and characterized. The absorption spectra were analyzed to determine the Judd-Ofelt parameters. The optical performance of these doped glasses suggesting the relevance of these glasses for optical fiber/ wave guide lasers and optical amplifiers.

  4. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  5. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    Science.gov (United States)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  6. Crystallization behaviors and seal application of basalt based glass-ceramics

    Science.gov (United States)

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  7. A short review on the pulsed laser deposition of Er3+ ion doped oxide glass thin films for integrated optics

    International Nuclear Information System (INIS)

    Irannejad, M.; Zhao, Z.; Jose, G.; Steenson, D.P.; Jha, A.

    2010-01-01

    Short pulsed (ns) excimer laser was employed as a technique for the deposition of more than 2 μm thick glassy films from phosphorous pentoxide and tungsten lanthanum modified tellurite bulk glasses. High quality glass thin films with measured propagation loss less than 0.15, 0.71 and 2.3 dB.cm -1 were obtained after optimization of deposition parameters for silica, siloxane and semiconductor substrates. The optical, spectroscopic and microstructural properties of deposited thin films were compared with bulk glass materials for demonstrating the differences in the properties, which must be optimized for device engineering. Channel waveguides were fabricated after using reactive ion etching technique, up to 2 μm thickness by using CHF 3 and Ar gas mixture

  8. Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion

    Science.gov (United States)

    Azam, Mohd; Rai, Vineet Kumar

    2017-04-01

    The optical absorption and frequency upconversion emission in the Ho3+/Yb3+ codoped TeO2-ZnO (TZ), TeO2-ZnO-WO3 (TZW) and TeO2-ZnO-WO3-TiO2 (TZWTi) glasses prepared by melting and quenching method has been studied. Judd-Ofelt theory has been used to calculate the Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), transition probabilities, radiative lifetimes, absorption cross sections and the branching ratios. Upconversion (UC) emission bands centered at ∼ 549 nm, ∼658 nm and ∼754 nm are observed upon 980 nm excitation. On codoping with the Yb3+ ions at 3.0 mol% the upconversion emission intensity enhancement of about ∼57 times, ∼342 times and ∼480 times for the green band whereas for the red band arising from the Ho3+ ions it is about ∼71 times, ∼438 times and ∼707 times respectively have been observed. The enhancement observed in the UC emission intensity is explained on the basis of efficient energy transfer from Yb3+ to Ho3+, larger absorption cross section, larger oscillator strengths and increase in the local field corrections factor. The spectroscopic quality factor Ω4/Ω6 has been calculated to get the information about the developed materials for laser applications. The upconversion emission cross section determined on the basis of Judd-Ofelt analysis is found to be maximum for Ho-Yb-TZWTi glass. The nephelauxetic ratio, bonding and covalency parameters have been calculated to know the nature of bonding between the rare earth ions and neighbouring oxygen atoms. The high color purity 83.8% has been reported in the codoped glasses at ∼81.2 W/cm2 pump power density.

  9. Positron annihilation study on ZnO-based scintillating glasses

    Science.gov (United States)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  10. Ablation of (GeS{sub 2}){sub 0.3}(Sb{sub 2}S{sub 3}){sub 0.7} glass with an ultra-violet nano-second laser

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, P., E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, Studentska 573, 532 10 Pardubice (Czech Republic); Navesnik, J.; Cernohorsky, T. [University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, Studentska 573, 532 10 Pardubice (Czech Republic); Kincl, M.; Vlcek, M.; Tichy, L. [Institute of Macromolecular Chemistry, AS CR, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2015-04-15

    Highlights: • The interaction of (GeS{sub 2}){sub 0.3}(Sb{sub 2}S{sub 3}){sub 0.7} bulk glass and film with UV nanosecond laser. • Ablation process, topography of crater and structure of the material were studied. • Ablation threshold fluencies changed with the spot diameter and number of pulses. • The photo-thermal expansion of the material occurred for low laser fluency. • Laser direct writing process applicable for fabrication of passive optical elements. - Abstract: The results of an experimental study of the laser ablation of bulk and thin films of a GeSbS chalcogenide glass using UV nanosecond pulses are reported. The response of the samples to illumination conditions was studied through the use of atomic force spectroscopy, digital holographic microscopy, Raman scattering and scanning electron microscopy. The multi-pulse ablation thresholds were determined for both the bulk and thin film samples for varying number of pulses and illuminated spot diameter. The possible application of direct laser writing into the bulk and thin films of this material is presented.

  11. New Er{sup 3+} doped antimony oxide based glasses: Thermal analysis, structural and spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Ouannes, K. [Faculté des Sciences et de la Technologie, Université de Biskra, BP 145 RP, 07000, Biskra (Algeria); Lebbou, K., E-mail: kheirreddine.lebbou@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne (France); Walsh, Brian-M. [NASA Langley Research Center, Hampton, VA, 23681 (United States); Poulain, M. [UMR 6226- Verres et Céramiques – Campus de Beaulieu, Université de Rennes1, 35042, Rennes (France); Alombert-Goget, G.; Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne (France)

    2015-11-15

    The novel oxide glass compositions based on Sb{sub 2}O{sub 3} are elaborated and characterized, in the system (90-X)Sb{sub 2}O{sub 3}–10Na{sub 2}O–XBi{sub 2}O{sub 3} (SNB). We are interested in bismuth rates incorporated into the glass, its effect on the different physical properties that have been measured, and especially, in radiative and spectroscopic properties of erbium doped SNB glasses. Differential scanning calorimeter (DSC) measurements show an improvement of the stability factor,ΔT, of the glasses, which can indicate a reinforcement of the network. Both FTIR and Raman spectra have also been considered in terms of bismuth influence. As a function of composition, we have principally measured optical absorption, visible and infrared emission, and lifetime. The Judd–Ofelt parameters measured from the absorption spectra have been used to calculate the radiative lifetime (τ{sub r}) and the stimulated emission cross section. The spectroscopic quality factor χ = Ω{sub 4}/Ω{sub 6} = 0.73, low phonon energy of ∼600–700 cm{sup −1}, a reduced quenching effect, and a high quantum efficiency of 90% for the 1.53 μm measured emission, by pumping at 980 nm, are in favor of promising laser applications. - Highlights: • Glass belonging to Er-doped Sb{sub 2}O{sub 3}–Na{sub 2}O–Bi{sub 2}O{sub 3} (SNB) system are elaborated and characterized. • The intensity parameters Ωt were obtained via the Judd–Ofelt theory. • The optical properties were studied as a function of glass composition.

  12. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  13. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    Science.gov (United States)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  14. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Science.gov (United States)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  15. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  16. Positron annihilation study on ZnO-based scintillating glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nie Jiaxiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Yu Runsheng; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ou Yuwen [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Zhong Yurong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Xia Fang [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China)

    2009-04-15

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO{sub 2}-45ZnO-xBaF{sub 2} (x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components {tau}{sub 1}, {tau}{sub 2}, and {tau}{sub 3} are {approx}0.23 ns, {approx}0.45 ns, and {approx}1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF{sub 2} concentration from 5 mol% to 10 mol%, then decreases as BaF{sub 2} further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF{sub 2} contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  17. Laser cladding to select new glassy alloys

    International Nuclear Information System (INIS)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P.; Ramasco, B.

    2016-01-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh 1/2 . The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  18. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    Science.gov (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  19. Upconversion studies of Er3+/Yb3+ doped SrO.TiO2 borosilicate glass ceramic system

    International Nuclear Information System (INIS)

    Maheshwari, Aditya; Om Prakash; Kumar, Devendra; Rai, S.B.

    2011-01-01

    Upconversion behaviour has been studied in various matrices and fine powders of SrTiO 3 by previous workers. In present work, Er 3+ /Yb 3+ were doped in appropriate ratio in SrO.TiO 2 borosilicate glass ceramic system to study the upconversion phenomenon. Dielectric properties of this class of glass ceramic system have been extensively investigated by Thakur et al. It has been observed that both upconversion efficiency and dielectric constant increases with transformation of glass into glass ceramic. Therefore, present investigation is based upon the study of optical as well as the electrical properties of same glass ceramic system. In order to prepare different crystalline matrices, two different Er 3+ /Yb 3+ :SrO.TiO 2 borosilicate glasses with same amount of Er 2 O 3 and Yb 2 O 3 were prepared by melt quench method. Glasses were transparent with light-wine colour. Glass ceramics were prepared from the glasses by heat treatment based on DTA (Differential thermal analysis) results. Glass ceramics were fully opaque with brownish-cream colour. Powder X-ray diffraction (XRD) patterns confirmed that two different crystalline matrices, Sr 3 Ti 2 O 7 , Ti 10 O 19 and SrTiO 3 , TiO 2 were present in two glass ceramic samples respectively. Luminescence properties of glass and glass ceramic samples with 976nm laser irradiation showed that the intensities of the green and red emission increased multiple times in glass ceramic than that of the glass. Possible mechanisms responsible for upconversion eg. Energy Transfer (ET) and Excited State Absorption (ESA), were studied through laser pumping power log dependence

  20. Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver

    International Nuclear Information System (INIS)

    Floch, H.G.; Belleville, P.F.; Pegon, P.M.; Dijonneau, C.S.; Guerain, J.

    1995-01-01

    It is well established by manufacturers and users that optical coatings are generally prepared by the well known Physical Vapor Deposition (PVD) technology. In the authors' opinion sol-gel technology is an effective and competitive alternative. The aim of this paper is to emphasize on the sol-gel thin film work carried out at Centre d'Etudes de Limeil-Valenton (CEL-V) and concerning the technology for high power lasers. The authors will briefly discuss the chemistry of the sol-gel process, the production of optical coatings and the related deposition techniques. Finally, the paper describes the preparation and performance of sol-gel optical coatings they have developed to fulfill the requirements of a future 2 MJ/500 TW (351 nm) pulsed Nd:glass laser so-called LMJ (Laser MegaJoules). This powerful laser is to be used for their national Inertial Confinement Fusion (ICF) program, to demonstrate at the laboratory scale, ignition of deuterium-tritium fusion fuel. Moreover, the aim of this article is, hopefully, to provide a convincing argument that coatings and particularly optical coatings, are some of the useful products available from sol-gel technology, and that exciting developments in other areas are almost certain to emerge within the coming decade

  1. Supporting Inquiry-based Learning with Google Glass (GPIM)

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Kalz, Marco; Specht, Marcus

    2015-01-01

    Wearable technology is a new genre of technology that is appearing to enhance learning in context. This manuscript introduces a Google Glass application to support Inquiry-based Learning (IBL). Applying Google Glass to IBL, we aim to transform the learning process into a more seamless, personal and

  2. Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, D. [Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics, Bijenička c. 54, Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Research unit New Functional Materials, Bijenička c. 54, Zagreb (Croatia); Berneschi, S.; Camerini, M. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Farnesi, D.; Pelli, S. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Trono, C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Chiappini, A.; Chiasera, A.; Ferrari, M. [CSMFO Group, Istituto di Fotonica e Nanotecnologie, IFN-CNR, Via alla Cascata 56/C, 38050 Povo-Trento (Italy); Lukowiak, A. [Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, Wroclaw 50-950 (Poland); Dumeige, Y.; Féron, P. [Laboratoire d' Optronique, (CNRS-UMR 6082-Foton), ENSSAT, 6 rue de Kérampont, 22300 Lannion (France); Righini, G.C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Soria, S., E-mail: s.soria@ifac.cnr.it [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Conti, G. Nunzi [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy)

    2016-02-15

    We report experimental results regarding the development of Er{sup 3+}-doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er{sup 3+}-doped glass powders, synthesis of Er{sup 3+}-doped monolithic microspheres by drawing Er{sup 3+}-doped glass, and coating of silica microspheres with an Er{sup 3+}-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er{sup 3+}-doped glass microspheres. - Highlights: • Different approaches in microsphere fabrication and various types of post-processing. • Trimming of photorefractive glass microsphere lasers with UV light. • Peak power record of 90 μW by pumping at 1480 nm.

  3. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method

    Science.gov (United States)

    Zhang, Minghui; Yu, Jianding; Jiang, Wan; Liu, Yan; Ai, Fei; Wen, Haiqin; Jiang, Meng; Yu, Huimei; Pan, Xiuhong; Tang, Meibo; Gai, Lijun

    2017-10-01

    Aerodynamic levitation method was employed to prepare Er3+/Tm3+/Yb3+-doped titanate-based glasses. DTA results show that the glass performs high thermal stability with the glass transition temperature of 799 °C. The interaction among rare earth ions has been discussed by adjusting the relative concentration. Er3+ ions can quench the upconversion luminescence of Tm3+ ions. Tm3+ ions play a strong role in quenching the emissions of Er3+ and Tm3+ when the content of Tm3+ ions is greater than or equal 0.05. From the view of the ratio of red emission to green emission, Tm3+ ions can improve the red emission of Er3+ ions to some extent in contrast with the green emissions of Er3+ ions. 980 nm incident laser can be efficiently absorbed by Yb3+ ions. The relative intensity of red, green, and blue upconversion luminescence has been tuned to obtain white light. The composition with white upconversion luminescence of the color coordinate (0.291, 0.3292) has been found. Moreover, white upconversion luminescence mechanism is a two-photon process of ET, ESA, and cooperative sensitization. Rare earth ions doped titanate-based glasses with bright upconversion luminescence perform potential applications in color display, back light, et al.

  4. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    Science.gov (United States)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  5. Phosphate-based glasses: Prediction of acoustical properties

    Science.gov (United States)

    El-Moneim, Amin Abd

    2016-04-01

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  6. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  7. Effect of F- ions on physical and spectroscopic properties of Yb3+-doped TeO2-based glasses

    International Nuclear Information System (INIS)

    Wang Guonian; Dai Shixun; Zhang Junjie; Xu Shiqing; Hu Lili; Jiang Zhonghong

    2005-01-01

    The effects of F - ions on physical and spectroscopic properties of the Yb 3+ in tellurite glass system are investigated. The results show that the glass system takes on good thermal stability with the content of ZnF 2 lower than 15 mol%, both the emission cross-section and the fluorescence lifetime of Yb 3+ ions increase evidently which indicate that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and OH - groups in this glass system. Analysis demonstrates that addition of fluoride decreases the symmetry of the structure of tellurite glasses which increases the emission cross-section and removes the OH - groups, and which improves the measured fluorescence lifetime of Yb 3+ ions

  8. Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles

    International Nuclear Information System (INIS)

    Eshraghi, Nicolas; Caes, Sebastien; Mahmoud, Abdelfattah; Cloots, Rudi; Vertruyen, Benedicte; Boschini, Frédéric

    2017-01-01

    Highlights: • Sodium vanadium fluorophosphate Na 3 V 2 (PO 4 ) 2 F 3 was prepared by spray-drying. • Crystallization was optimum after 2 hours at 600 °C in argon. • Addition of carbon nanotubes to the spray drying solution to prepare a composite. • The CNT network inside the Na 3 V 2 (PO 4 ) 2 F 3 particles provides electronic conductivity. • The composite shows good specific capacity, rate capability and cycling stability. - Abstract: We successfully prepared NASICON-type Na 3 V 2 (PO 4 ) 2 F 3 (NVPF) and a Na 3 V 2 (PO 4 ) 2 F 3 /carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of CNT in the spray-drying solution creates a CNT network within the NVPF particles. After grinding, the smaller NVPF particles remain linked by CNT. Thanks to this conducting network, the composite powder displays competitive electrochemical performance when cycled against lithium in hybrid-ion batteries (2–4.6 V vs. Li + /Li) with specific capacities of 125 mAh g −1 at C/10, 103 mAh g −1 at 1C and 91 mAh g −1 at 4C, together with 97.5% capacity retention at 1C over 100 cycles with coulombic efficiency of 99.4%. These results demonstrate that sodium vanadium (III) fluorophosphate electrode material can be obtained in a time-efficient way using the easily up-scalable spray-drying method.

  9. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Calin, Mariana; Gebert, Annett; Ghinea, Andreea Cosmina; Gostin, Petre Flaviu; Abdi, Somayeh; Mickel, Christine; Eckert, Jürgen

    2013-01-01

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15 . The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  10. Laser cladding to select new glassy alloys; Uso do metodo de revestimento por laser na selecao de novas ligas vitreas

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P., E-mail: eomedranos@hotmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais; Vilar, R. [Instituto Superior Tecnico, Departamento de Engenharia Quimica, Lisboa (Portugal); Ramasco, B. [Whirlpool Latin America, Rio Claro, SP (Brazil)

    2016-07-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh{sup 1/2}. The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  11. Solar pumping of solid state lasers for space mission: a novel approach

    Science.gov (United States)

    Boetti, N. G.; Lousteau, J.; Negro, D.; Mura, E.; Scarpignato, G. C.; Perrone, G.; Milanese, D.; Abrate, S.

    2017-11-01

    Solar pumped laser (SPL) can find wide applications in space missions, especially for long lasting ones. In this paper a new technological approach for the realization of a SPL based on fiber laser technology is proposed. We present a preliminary study, focused on the active material performance evaluation, towards the realization of a Nd3+ -doped fiber laser made of phosphate glass materials, emitting at 1.06 μm. For this research several Nd3+ -doped phosphate glass samples were fabricated, with concentration of Nd3+ up to 10 mol%. Physical and thermal properties of the glasses were measured and their spectroscopic properties are described. The effect of Nd3+ doping concentration on emission spectra and lifetimes was investigated in order to study the concentration quenching effect on luminescence performance.

  12. Wafer-level manufacturing technology of glass microlenses

    Science.gov (United States)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  13. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    Science.gov (United States)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  14. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  15. Design, development and characterization studies of a large aperture high power Nd : glass rod amplifier stage

    International Nuclear Information System (INIS)

    Gopi, N.; Bapna, R.C.; Murali, C.G.; Narayan, B.S.; Dhareshwar, L.J.

    1992-01-01

    Laser-plasma interaction studies and experiments related to laser driven shocks as well as laser induced inertially confined thermonuclear fusion have resulted in an ever increasing demand for high brightness lasers capable of producing nanosecond pulse with energy of hundreds of kilo joules. High power Nd-glass laser chains with a master oscillator followed by a number of amplifier stages made up of rods, disks, slabs etc. are in operation in many leading laboratories in the world. This report describes the design, development and characterisation studies of a large aperture Nd:glass laser amplifier which is to be incorporated on line with the existing 40 J, 5 ns high power laser chain built for laser-plasma interaction and laser driven shock wave studies in the Laser and Plasma Technology Division. The development work described in this report discusses the design based on optimum material selection, optimisation of various sub components, ease of maintenance and smooth operation. The necessary operational electronics has also been described. The characterization studies mainly include measurement of spatial gain uniformity, thermally induced depolarization effects, and thermal relaxation studies. (author). 37 refs., 14 figs., 5 tabs

  16. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  17. Rare-earth-doped fluorozirconate fiber lasers

    International Nuclear Information System (INIS)

    Brierly, M.C.; France, P.W.; Moore, M.W.; Davey, S.T.

    1988-01-01

    Rare-earth-doped fiber lasers fabricated using silica-based fibers are rapidly becoming an established technology. Simultaneously, in the search for lower losses to achieve longer repeaterless communications links, another fiber technology based on fluorozirconate glasses is emerging. Fluorozirconate glass systems are known to be suitable laser hosts, and the authors have already reported Nd-doped fiber lasers using this technology. Recently the authors have used a 0.5-m length of 44-μm core fluorozirconate fiber doped with 1000 ppm of Nd 3+ ions in a longitudinally pumped Fabry-Perot cavity with a 90% output coupler. They observed lasing at 1.05 μm with a threshold of 33-mW launched power at 514 nm and a slope efficiency of 16.8%. The authors attribute this improvement to the higher dopant concentration, better fiber to mirror coupling, and more optimum output coupler reflectivity. In addition the same fiber used with two high-reflector mirrors at 1.35μm produced lasing at 1.35μm with a threshold of 60-mW launched power

  18. Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique

    International Nuclear Information System (INIS)

    Mojdehi Masoumeh Shokati; Yunus Wan Mahmood Mat; Talib Zainal Abidin; Tamchek, N.; Fhan Khor Shing

    2013-01-01

    The nonlinear optical properties of a phosphate vitreous system [(ZnO) x − (MgO) 30−x − (P 2 O 5 ) 70 ], where x = 8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10 −10 cm 2 ·W −1 . The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n 2 ) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching

  19. High power operation of cladding pumped holmium-doped silica fibre lasers.

    Science.gov (United States)

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  20. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    Science.gov (United States)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  1. Phase equilibria in the NaF-CdO-NaPO{sub 3} system at 873 K and crystal structure and physico-chemical characterizations of the new Na{sub 2}CdPO{sub 4}F fluorophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Aboussatar, Mohamed [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Mbarek, Aïcha [Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP W3038, 3000 Sfax (Tunisia); Naili, Houcine [Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); El-Ghozzi, Malika [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Chadeyron, Geneviève [Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS/UBP/SIGMA, BP 10448, F-63000 Clermont-Ferrand (France); Avignant, Daniel [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Zambon, Daniel, E-mail: Daniel.Zambon@univ-bpclermont.fr [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France)

    2017-04-15

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO{sub 3} system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO{sub 4} side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na{sub 2}CdPO{sub 4}F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na{sub 2}CaPO{sub 4}F and the fluorosilicate Ca{sub 2}NaSiO{sub 4}F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na{sub 2}M{sup II}PO{sub 4}F (M{sup II}=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and {sup 19}F, {sup 23}Na, {sup 31}P MAS NMR characterizations of Na{sub 2}CdPO{sub 4}F have been investigated. - Graphical abstract: The structure of the compound Na{sub 2}CdPO{sub 4}F, discovered during the study of the phase relationships in the NaF-CdO-NaPO{sub 3} system, has been determined and compared with other Na{sub 2}M{sup II}PO{sub 4}F fluorophosphates. - Highlights: • XRD analysis of the isothermal section of the NaF-CdO-NaPO{sub 3} system at 923 K. • Rietveld refinement of the high temperature polymorph β-NaCdPO{sub 4}. • Crystal structure of the new Na{sub 2}CdPO{sub 4}F fluorophosphate determined from powder XRD. • Crystal structure - composition relationships of Na{sub 2}M{sup II}PO{sub 4}F compounds

  2. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  3. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  4. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    Science.gov (United States)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  5. High power laser research and development at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    Soures, J.M.; McCrory, R.L.; Cerqua, K.A.

    1986-01-01

    As part of its research mission - to investigate the interaction of intense radiation with matter - the Laboratory for Laser Energetics (LLE) of the University of Rochester is developing a number of high-peak power and high-average-power laser systems. In this paper we highlight some of the LLE work on solid-state laser research, development and applications. Specifically, we discuss the performance and operating characteristics of Omega, a twenty-four beam, 4000 Joule, Nd:glass laser system which is frequently tripled using the polarization mismatch scheme. We also discuss progress in efforts to develop high-average-power solid-state laser systems with active-mirror and slab geometries and to implement liquid-crystal devices in high-power Nd:glass lasers. Finally we present results from a program to develop a compact, ultrahigh-peak-power solid-state laser using the concept of frequency chirped pulse amplification

  6. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    Science.gov (United States)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  7. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  8. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  9. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  10. Analysis of the laser oxidation kinetics process of In-In(2)O(3) MTMO photomasks by laser direct writing.

    Science.gov (United States)

    Xia, Feng; Zhang, Xinzheng; Wang, Meng; Liu, Qian; Xu, Jingjun

    2015-11-02

    One kind of novel grayscale photomask based on Metal-transparent-metallic-oxides (MTMOs) system fabricated by laser direct writing was demonstrated recently. Here, a multilayer oxidation model of In-In(2)O(3) film with a glass substrate was proposed to study the pulsed laser-induced oxidation mechanism. The distribution of the electromagnetic field in the film is calculated by the transfer matrix method. Temperature fields of the model are simulated based on the heat transfer equations with the Finite-Difference Time-Domain method. The oxidation kinetics process is studied based on the laser-induced Cabrera-Mott theory. The simulated oxidation processes are consistent with the experimental results, which mean that our laser-induced oxidation model can successfully interpret the fabrication mechanism of MTMO grayscale photomasks.

  11. Innovative laser based solar cell scribing

    Science.gov (United States)

    Frei, Bruno; Schneeberger, Stefan; Witte, Reiner

    2011-03-01

    The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.

  12. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  13. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 1, Discussion and glass durability data

    International Nuclear Information System (INIS)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. Data collected throughout the world are included in the data base; current emphasis is on waste glasses and their properties. The goal is to provide a data base of properties and compositions and an analysis of dominant property trends as a function of composition. This data base is a resource that nuclear waste producers, disposers, and regulators can use to compare properties of a particular high-level nuclear waste glass product with the properties of other glasses of similar compositions. Researchers may use the data base to guide experimental tests to fill gaps in the available knowledge or to refine empirical models. The data are incorporated into a computerized data base that will allow the data to be extracted based on, for example, glass composition or test duration. 3 figs

  14. Annual report to the Laser Facility Committee 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The report describes the work carried out at, or in association with, the Central Laser Facility (CLF), during the year ending March 1984. The CLF programme is divided into three main sections. The first, the glass laser scientific programme, is concerned with applications of the high power Nd glass laser. The second, the ultra violet radiation facility scientific programme, involves the excimer pumped frequency tunable lasers. The last, high power KrF laser development, describes Research and development work on this laser. (U.K.)

  15. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  16. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  17. Laser streaming: Turning a laser beam into a flow of liquid.

    Science.gov (United States)

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  18. Superconducting phase of YBa2Cu3O7-δ films in high magnetic fields: Vortex glass or Bose glass

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Swueste, J.; de Wijn, H.W.

    1993-01-01

    Nonlinear current-voltage (I-V) curves are measured in laser-ablated YBa 2 Cu 3 O 7-δ films deposited onto SrTiO 3 . The measurements are performed near the glass phase transition in a magnetic field of 5 T at various angles from the c axis. From a critical scaling analysis, the angular dependencies of the glass transition temperature and the critical glass exponents are extracted. At small angles, these results distinguish between a vortex glass, caused by random pointlike disorder, and a Bose glass, caused by linelike disorder. The results can be understood in terms of the vortex-glass model only. No evidence is found for the existence of a Bose-glass phase

  19. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    Science.gov (United States)

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  20. ∼2 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in silicate glass

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hao, Wei; Hu, Lili; Zhang, Junjie

    2014-01-01

    Graphical abstract: - Highlights: • A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability (k gl = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er 3+ to Tm 3+ in STFE glass is 13.39 × 10 −40 cm 6 /s. - Abstract: A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er 3+ /Tm 3+ co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er 3+ and Tm 3+ ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er 3+ /Tm 3+ co-doped silicate glasses due to the efficient energy transfer from Er 3+ to Tm 3+ ions. The energy transfer coefficient from Er 3+ to Tm 3+ ions can reach as high as 13.39 × 10 −40 cm 6 /s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er 3+ /Tm 3+ co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser

  1. Calorimeters for diagnosis of laser-fusion experiments

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1976-01-01

    A variety of calorimeters have been developed for measuring ions, x-rays, and scattered radiation emanating from laser-pulse-imploded fusion targets. The ion and x-ray calorimeters use metal or glass absorbers to reflect or transmit most of the scattered laser radiation; the versions using metal absorbers also incorporate a differential construction to compensate for the fraction of the scattered laser radiation that is absorbed. The scattered-radiation calorimeters use colored glass to absorb the radiation and a transparent glass shield to remove ions and x rays. Most of the calorimeters use commercial semiconductor thermoelectric modules as the temperature sensors

  2. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  3. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  4. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  5. Laser-based additive manufacturing of metals

    CSIR Research Space (South Africa)

    Kumar, S

    2010-11-01

    Full Text Available For making metallic products through Additive Manufacturing (AM) processes, laser-based systems play very significant roles. Laser-based processes such as Selective Laser Melting (SLM) and Laser Engineered Net Shaping (LENS) are dominating processes...

  6. Study of absorption and IR-emission of Er3+, Dy3+, Tm3+ doped high-purity tellurite glasses

    Science.gov (United States)

    Motorin, S. E.; Dorofeev, V. V.; Galagan, B. I.; Sverchkov, S. E.; Koltashev, V. V.; Denker, B. I.

    2018-04-01

    A study of high-purity TeO2-ZnO based tellurite glasses doped with Er3+, Dy3+ or Tm3+ that could be used as laser media in the 2-3 μm spectral range is presented. The glasses are prepared by melting the oxides mixture inside a silica glass reactor in an atmosphere of purified oxygen. The low level of hydroxyl groups absorption allowed to measure correctly the luminescence decay characteristics of the dopants. The rare-earth ions absorption bands, the luminescence spectra and kinetic characteristics of emission from the levels 4I11/2, 4I13/2 of Er3+, 6H13/2 of Dy3+ and 3H4, 3H5, 3F4 of Tm3+ ions are investigated. The results confirm the high potential of tellurite glasses as an active media for bulk, planar waveguide and fiber lasers.

  7. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement; Selamento de fossulas e fissura de segundo molar deciduo inferior com laser de Nd: YAG, acido fosforico e cimento de ionomero de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Maria Aparecida

    2003-07-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 {mu}m diameter; fluency of 99,52 J/ cm{sup 2}, assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  8. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement; Selamento de fossulas e fissura de segundo molar deciduo inferior com laser de Nd: YAG, acido fosforico e cimento de ionomero de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Maria Aparecida

    2003-07-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 {mu}m diameter; fluency of 99,52 J/ cm{sup 2}, assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  9. Thermonuclear fusion plasma produced by lasers

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yokoyama, M.; Nakai, S.; Sasaki, T.; Yoshida, K.; Matoba, M.; Yamabe, C.; Tschudi, T.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.; Nishikawa, K.

    1975-01-01

    Recently, much attention has been focused on laser fusion schemes using high-density plasmas produced by implosion. Scientific-feasibility laser-fusion experiments are now in time. But the physics of interaction between laser and plasma, the high-compression technique and the development of high-power lasers are still important problems to be solved if laser fusion is to make some progress. In the field of laser-plasma coupling, experiments were carried out in which hydrogen and deuterium sticks were bombarded by laser beams; in these experiments, a glass-laser system, LETKKO-I, with an energy of 50 J in a nanosecond pulse, and a double-discharge TEA CO 2 laser system with an energy of 100 J in a 100-ns pulse were used. A decrease in reflectivity occurred at a laser intensity one order of magnitude higher than the parametric-instability threshold. Self-phase modulation of scattered light due to modulational instability was found. A Brillouin-backscattering isotope effect due to the hydrogen and deuterium plasma has also been observed in the red-side part of the SHG-light. Preliminary compression experiments have been carried out using a glass-laser system LETKKO-II, with an energy of 250-1000 J in a ns-pulse. A hologram has been used to study shock waves in the plasma due to the SHG-light converted from the main laser beam. Development of high-power lasers has been promoted, such as disc-glass lasers, E-beam CO 2 lasers and excimer lasers. (author)

  10. Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis.

    Science.gov (United States)

    Moriaux, Anne-Laure; Vallon, Raphaël; Parvitte, Bertrand; Zeninari, Virginie; Liger-Belair, Gérard; Cilindre, Clara

    2018-10-30

    During Champagne or sparkling wine tasting, gas-phase CO 2 and volatile organic compounds invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO 2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception. Monitoring as accurately as possible the level of gas-phase CO 2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO 2 and a collection of various tasting parameters. Here, the concentration of CO 2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the 10 min following pouring, through a new combined approach by a CO 2 -Diode Laser Sensor and micro-gas chromatography. Our results show the strong impact of various tasting conditions (volume dispensed, intensity of effervescence, and glass shape) on the release of gas-phase CO 2 above the champagne surface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. State of the art of CO laser angioplasty system

    Science.gov (United States)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  12. Recording of interference fringe structure by femtosecond laser pulses in samples of silver-containing porous glass and thick slabs of dichromated gelatin

    Science.gov (United States)

    Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.

    2002-05-01

    The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.

  13. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  14. Optical Properties of Bismuth Tellurite Based Glass

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  15. Debris of potassium–magnesium silicate glass generated by femtosecond laser-induced ablation in air: An analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy

    International Nuclear Information System (INIS)

    Grehn, M.; Seuthe, T.; Reinhardt, F.; Höfner, M.; Griga, N.; Eberstein, M.; Bonse, J.

    2014-01-01

    The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium K-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (μ-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process.

  16. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Nonlinear optical studies in semiconductor-doped glasses under ...

    Indian Academy of Sciences (India)

    Abstract. Nonlinear optical studies in semiconductor-doped glasses (SDGs) are per- formed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger ...

  18. Optical bleaching of bismuth implanted silica glass: A threshold effect

    International Nuclear Information System (INIS)

    Park, S.Y.; Magruder, R.H. III; Weeks, R.A.

    1992-01-01

    The near surface regions of high purity silica glass discs, Spectrosil A, were modified by implantation with bismuth ions at 160 key and room temperature. The glasses implanted with a nominal dose of 6x10 16 Bi/cm 2 at ∼5 μA/cm 2 were subsequently bleached with a 5.0 eV KrF pulsed excimer laser. The laser had an average pulse duration of ∼20 ns and repetition rate of 10 Hz. It was found that the bleaching was dependent upon the power density of the laser for a constant total integrated energy. Ion backscattering and optical absorption measurements were made before and after laser irradiation. Large changes in optical density and depth distribution of the implanted ions were observed at power densities of ≥45 mJ/cm 2 -pulse. Onset of threshold for bleaching of silica glass implanted with 6x10 16 Bi/cm 2 at 160 key and at room temperature is between 30 and 45 mJ/cm 2 -pulse

  19. Laser engineering of microbial systems

    Science.gov (United States)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  20. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Devulder, Veerle [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium); Gerdes, Axel [Institute of Geoscience, Goethe Universität, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Vanhaecke, Frank, E-mail: Frank.Vanhaecke@UGent.be [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Degryse, Patrick [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium)

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ{sup 11}B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass.

  1. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-01-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ 11 B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass

  2. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  3. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    Science.gov (United States)

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-06-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10-20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a good medium for efficient 1.8 μm laser system.

  4. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    Science.gov (United States)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  5. Development of tellurium oxide and lead-bismuth oxide glasses for mid-wave infra-red transmission optics

    Science.gov (United States)

    Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu

    2013-03-01

    Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.

  6. Laser program development at CEL-V: overview of recent experimental results

    International Nuclear Information System (INIS)

    Buresi, E.; Coutant, J.; Dautray, R.

    1985-11-01

    A significant effort has been made recently at CEL-V to improve laser facilities. OCTAL, the eight beam, 2 kJ laser, has been equipped with phosphate glass and KDP frequency tripling systems. PHEBUS, a two beam 20 kJ neodymium glass laser based on NOVA technology was defined, built and will be tested in early 1986 in close collaboration with Lawrence Livermore National laboratory. In the field of diagnostics, the development of soft X-ray emission analysis has been emphasized. Most of recent experimental results have been obtained at short wave-length (0.35 μm). They deal with: effect of non-uniform illumination, 2D hydrodynamics with either plane or spherical targets, and study of thermal transport inhibition

  7. Laser program annual report, 1980

    International Nuclear Information System (INIS)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2, also in the first volume, covers the work on solid state Nd:glass lasers, including systems operations, Nova and Novette system development, and supporting research and development activities

  8. Laser program annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R. (eds.)

    1981-06-01

    Volume 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2, also in the first volume, covers the work on solid state Nd:glass lasers, including systems operations, Nova and Novette system development, and supporting research and development activities.

  9. Energy storage and power conditioning system for the Shiva laser

    International Nuclear Information System (INIS)

    Allen, G.R.; Gagnon, W.L.; Rupert, P.R.; Trenholme, J.B.

    1975-01-01

    An optimal energy delivery system for the world's largest glass laser system has been designed based on computer modeling and operation of laser hardware. Components of the system have been tested on operating lasers at LLL. The Shiva system is now under construction and will be completed in 1977. The energy supply described here will provide cost-effective, reliable power and facilitate the gathering of data in pursuit of controlled thermonuclear reactions

  10. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  11. Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass moulding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2014-01-01

    -placements, internal diameter and thickness of the rings are measured during the tests. Viscoelastic andstructural relaxation behaviour of the glass are implemented into the ABAQUS FEM software through aFORTRAN material subroutine (UMAT) and the FE model is validated with a sandwich seal test. Then, byFE simulation...... of the ring compression test and comparison of the experimental creep with the simulatedone in an iterative procedure, viscoelastic parameters of the glass material are characterized. Finally,interfacial glass/mould friction coefficients at different temperatures are determined through FEM basedfriction...... curves combined with experimental data points. The obtained viscoelastic parameters and inter-facial friction coefficients can later be employed for prediction of the final shape/size as well as the stressdistribution in the glass wafer during a real wafer based precision glass moulding process. © 2014...

  12. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    International Nuclear Information System (INIS)

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-01-01

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs

  13. Generation, amplification and propagation of partially coherent light in a Nd:glass laser driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nakano, Hitoshi; Tsubakimoto, Kouji; Miyanaga, Noriaki; Nakatsuka, Masahiro; Kanabe, Tadashi.

    1992-01-01

    A partially coherent light source has been introduced into the high power twelve beam Nd:glass laser system, Gekko XII for obtaining the smooth intensity distribution of a focused beam pattern. An amplified spontaneous emission (ASE) from Nd:glass was used as a partially coherent source. We adopted the angularly dispersed spectrum not only for beam smoothing but for efficient harmonic conversion. The temporal evolution of the speckle smoothing was experimentally evaluated and compared with a statistical model of speckle pattern. In the amplification of a partially coherent light in Gekko XII, no reduction of the energy gain was found at high power operation 1kJ level. The ASE light can be propagated using image relaying spatial filters, with maintaining the beam divergence up to 32 times diffraction limited. Irradiation nonuniformities on a spherical target were estimated from the focused beam patterns measured at an equivalent target plane. A partially coherent light is quite effective for reducing the nonuniformity from 19.7% (the coherent laser with random phase plate) to 3.8%. Doubling efficiency was found to be reduced at high intensity region due to the phase mismatching with the beam divergence of the ASE light. We discuss possible approaches to obtain the sufficient harmonic conversion with keeping the incoherency of the ASE light. (author)

  14. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.

    Science.gov (United States)

    Liu, Qiang; Gross, S; Dekker, P; Withford, M J; Steel, M J

    2014-11-17

    We consider the process of Faraday rotation in femtosecond laser direct-write waveguides. The birefringence commonly associated with such waveguides may be expected to impact the observable Faraday rotation. Here, we theoretically calculate and experimentally verify the competition between Faraday rotation and birefringence in two waveguides created by laser writing in a commercial magneto-optic glass. The magnetic field applied to induce Faraday rotation is nonuniform, and as a result, we find that the two effects can be clearly separated and used to accurately determine even weak birefringence. The birefringence in the waveguides was determined to be on the scale of Δn = 10(-6) to 10(-5). The reduction in Faraday rotation caused by birefringence of order Δn = 10(-6) was moderate and we obtained approximately 9° rotation in an 11 mm waveguide. In contrast, for birefringence of order 10(-5), a significant reduction in the polarization azimuth change was found and only 6° rotation was observed.

  15. International Conference: Fundamentals of Laser Assisted Micro- & Nanotechnologies (FLAMN-07). Workshop: Laser Cleaning and Artworks Conservation (LCAC). St. Petersburg, Russia, 25-28 June 2007. Abstracts

    Science.gov (United States)

    2007-06-28

    DIKETONATE OF EUROPIUM (EUFOD3) CONFINED IN MICROPOROUS GLASS: UV LASER INDUCED LUMINESCENCE KINETICS AND QUANTUM YIELD...efficiency of controllable laser thermal cleavage of insulating materials,” J.Opt.Technol. 71, 117-120 (2004). WEDNESDAY, JUNE 27 Laser-induced static...PS2_23 B-diketonate of europium (EuFOD3) confined in microporous glass: UV laser induced luminescence kinetics and quantum yield Chutko E.A.1

  16. Crystallization of 21.25Gd2O3-63.75MoO3-15B2O3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    International Nuclear Information System (INIS)

    Zhong, M.J.; Han, Y.M.; Liu, L.P.; Zhou, P.; Du, Y.Y.; Guo, Q.T.; Ma, H.L.; Dai, Y.

    2010-01-01

    We report the formation of β'-Gd 2 (MoO 4 ) 3 (GMO) crystal on the surface of the 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1 , 240 cm -1 , 466 cm -1 , 664 cm -1 and 994 cm -1 which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  17. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation

  18. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  19. Laser-based optical detection of explosives

    CERN Document Server

    Pellegrino, Paul M; Farrell, Mikella E

    2015-01-01

    Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...

  20. Characterization of high power flashlamps and application to Nd:glass laser pumping

    International Nuclear Information System (INIS)

    Powell, H.T.; Erlandson, A.C.; Jancaitis, K.S.

    1986-01-01

    Detailed spectral and temporal measurements of the output radiation from Xe flashlamps are reported together with their use in predicting the pumping efficiency of Nd-doped laser glass. We have made absolute spectral-intensity measurements for 0.5, 1.5, and 4.2-cm-bore flashlamps for input powers ranging from 5 to 90 kW/cm 2 and pulselengths of 600 μs. Under quasi-stationary conditions these flashlamps emit essentially identical spectra when excited at equal input power per unit-area of the bore. This behavior is characteristic of an optically-thick radiator although it is not completely clear why flashlamps should behave this way. A simple model is also described which accounts for the transient response of flashlamps by characterizing the output spectra and radiation efficiencies in terms of the radiant output power rather than the electrical input power. 23 refs., 16 figs

  1. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  2. The local structure nature for a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Chen, Yiqiang; Huang, Yongjiang; Fan, Hongbo; Wang, Dongjun; Shen, Jun

    2013-01-01

    Highlights: ► The directional bonds in TiZrNiCuBe bulk metallic glass are primarily comprised of Be-Ni and Be-Cu bonds. ► A coefficient η could be extracted from Raman scattering to characterize the glass forming ability. ► The weak directional bonds dependent on Be could increase the localized electrons, facilitating the glass forming ability. - Abstract: In the present work, the local atomic structures of a Be-containing Ti-based bulk metallic glass (BMG) have been characterized using electron spectrum for chemical analysis and Raman scattering, including directional bonds and medium range order. It might suggest that a coefficient could be extracted from Raman scattering to characterize the glass forming ability (GFA), which could be employed to interpret the enhanced GFA by Be addition of Ti-based BMG. Additionally, compared with the crystallized sample, the glassy sample exhibits larger average bond length and larger content of local bond distortion using Raman scattering.

  3. Treatment of active acne with an Er:Glass (1.54 microm) laser: a 2-year follow-up study.

    Science.gov (United States)

    Angel, Sylvie; Boineau, Dominique; Dahan, Serge; Mordon, Serge

    2006-12-01

    To investigate the effects of the 1.54 microm wavelength on active lesions of the face and of the back at the 2-year follow-up. A 1.54 microm erbium:glass laser (Aramis, Quantel Medical, France) was used in combination with contact cooling set at +5 degrees C to treat acne on the face with the following parameters (3 ms, four pulses, 10 J/cm2, 2 Hz, cumulative fluence: 40 J/cm2). The laser spots were adjacent (maximum overlap: 20%) and delivered in rows in order to cover the entire area. Four treatments were performed at 4-week intervals in 25 patients with acne severity greater than 3 on the Burton scale. Acne lesion counts (papules, pustules, nodules, comedones) were performed prior to each treatment, and at 2, 4, 12, 18 and 24 months after the final treatment. Among the 25 patients, three were lost to follow-up, four were retreated. So, 18 patients had acne lesions counts 2 years after the fourth treatment. The mean percent reduction was 71% at the 6-month follow-up, 79% at the 1-year follow-up and 73% at the 2-year follow-up. No side effects were reported. All patients commented that their skin was less prone to oiliness. Biopsies taken after treatment showed progressive rarefaction and miniaturization of sebaceous glands and pilosebaceous follicles without morphologic damage to epidermal and dermal structures. Active acne can be successfully treated by selective dermal heating with a 1.54 microm erbium:glass laser coupled to contact cooling, with no related side effects. Furthermore, this longer follow-up study demonstrates long-term acne clearing. Combined treatments with medications (oral or topical) or light (targeting Propionibacterium acnes) may also improve acne clearance.

  4. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    International Nuclear Information System (INIS)

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  6. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®.

    Directory of Open Access Journals (Sweden)

    Yelena G Golubeva

    Full Text Available Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc. and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection and membrane (laser cutting microdissection slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction

  7. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium(Ⅲ)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu, E-mail: wangfu@swust.edu.cn; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya; Zhu, Hanzhen

    2016-08-15

    Immobilization of gadolinium (Gd), a nonradioactive surrogate for Pu{sup 3+}, in iron borophosphate glasses/glass-ceramics (IBP glasses/glass-ceramics) has been investigated. The IBP glass containing 4 mol% Gd{sub 2}O{sub 3} is homogeneously amorphous. At higher Gd{sub 2}O{sub 3} concentrations, additional Gd is retained in the glasses as crystalline inclusions of monazite GdPO{sub 4} crystalline phase detected with X-ray diffraction. Moreover, Gd{sub 2}O{sub 3} addition increases the T{sub g} of the IBP glasses in glass formation range, which is consistent with the structural modification of the glasses. The structure of the Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics is mainly based on pyrophosphate units. The chemical durability of Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics is comparable to widely used borosilicate glass waste forms and the existence of monazite GdPO{sub 4} crystalline phase does not degrade the aqueous chemical durability of the IBP glasses/glass-ceramics. The Gd-loading results imply that the solubility should not be a limiting factor in processing nuclide Pu{sup 3+} if the formed crystalline phase(s) have high chemical durability. - Highlights: • Monazite GdPO{sub 4} are identified in the IBP glasses containing up to 6 mol% Gd{sub 2}O{sub 3}. • R{sub L} of the Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics are about 10{sup −2} g m{sup −2} d{sup −1}. • Existence of GdPO{sub 4} does not degrade aqueous chemical durability of the IBP glass. • T{sub g} increases with increasing Gd{sub 2}O{sub 3} content in glass formation range. • IBP glasses are potential hosts for the immobilization of Pu{sup 3+} containing HLWs.

  8. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    Science.gov (United States)

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-01-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10−20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a good medium for efficient 1.8 μm laser system. PMID:24918516

  9. Dependence of Parameters of Laser-Produced Au Plasmas on the Incident Laser Energy of Sub-Nanosecond and Picosecond Laser Pulses

    International Nuclear Information System (INIS)

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Vankov, A.B.; Wolowski, J.; Krasa, J.; Laska, L.; Rohlena, K.

    2001-01-01

    The parameters of Au plasma as functions of laser energy for ps pulses are presented and compared with the ones for sub-ns pulses at nearly the same densities of laser energy. The experiments were performed at the IPPLM with the use of CPA (chirped pulse amplification) Nd:glass laser system. Thick Au foil targets were irradiated by normally incident focused laser beams with maximum intensities of 8x10 16 and 2x10 14 W/cm 2 for ps and sub-ns laser pulses, respectively. The characteristics of ion streams were investigated with the use of ion diagnostics methods based on the time-of flight technique. In these experiments the laser energies were changed in the range from 90 to 700 mJ and the measurements were performed at a given focus position FP = 0 and along the target normal for both the laser pulses. The charge carried by the ions, the maximum ion velocities of fast and thermal ion groups, the maximum ion current density as well as the area of photopeak in dependence on the incident laser energy for sub-ns and ps pulses were investigated and discussed. (author)

  10. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  11. Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; D'Acapito, F.; Colonna, S.; Mattei, G.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sada, C.; Quaranta, A.; Longo, A.

    2003-01-01

    Extended X-ray absorption fine structure analysis is used to determine the silver local environment in silicate glasses doped by the Ag-alkali ion-exchange process, followed by different treatments, namely, ion irradiation, thermal annealing in reducing atmosphere, laser irradiation. The obtained results indicate that metal nanocluster composites with different cluster structures may be formed with these multistep methodologies, pointing out the role of the preparation parameters in giving rise to different features. Lattice parameters and cluster diameter were determined by grazing incidence X-ray diffraction

  12. Antimicrobial thin films based on ayurvedic plants extracts embedded in a bioactive glass matrix

    Science.gov (United States)

    Floroian, L.; Ristoscu, C.; Candiani, G.; Pastori, N.; Moscatelli, M.; Mihailescu, N.; Negut, I.; Badea, M.; Gilca, M.; Chiesa, R.; Mihailescu, I. N.

    2017-09-01

    Ayurvedic medicine is one of the oldest medical systems. It is an example of a coherent traditional system which has a time-tested and precise algorithm for medicinal plant selection, based on several ethnopharmacophore descriptors which knowledge endows the user to adequately choose the optimal plant for the treatment of certain pathology. This work aims for linking traditional knowledge with biomedical science by using traditional ayurvedic plants extracts with antimicrobial effect in form of thin films for implant protection. We report on the transfer of novel composites from bioactive glass mixed with antimicrobial plants extracts and polymer by matrix-assisted pulsed laser evaporation into uniform thin layers onto stainless steel implant-like surfaces. The comprehensive characterization of the deposited films was performed by complementary analyses: Fourier transformed infrared spectroscopy, glow discharge optical emission spectroscopy, scanning electron microscopy, atomic force microscopy, electrochemical impedance spectroscopy, UV-VIS absorption spectroscopy and antimicrobial tests. The results emphasize upon the multifunctionality of these coatings which allow to halt the leakage of metal and metal oxides into the biological fluids and eventually to inner organs (by polymer use), to speed up the osseointegration (due to the bioactive glass use), to exert antimicrobial effects (by ayurvedic plants extracts use) and to decrease the implant price (by cheaper stainless steel use).

  13. Spectroscopic and radiative properties study of Nd3+ doped cadmium-phosphate glasses

    International Nuclear Information System (INIS)

    Mahmoud, K.H.

    2010-01-01

    A spectroscopic investigation is performed on Nd 3+ doped cadmium-phosphate glasses. The Judd-Ofelt analysis is applied to the glass system in order to evaluate their potential as both glass laser and amplifier materials. The phenomenological Judd-Ofelt parameters Ω (2) , Ω (4) , and Ω (6) are determined, their values are 4.80x10 -20 , 6.18x10 -20 , and 7.14x10 -20 cm -2 , respectively. The quality factor for glass system is 0.86. Predicted radiative decay rates and branching ratios of transitions from Nd 3+4 F 3/2 state to the 4 I J manifolds are determined and analyzed. The calculated lifetime of the 4 F 3/2 metastable state of Nd 3+ is 31 μs. The results showed that 4 F 3/2 to 4 I 11/2 transition, with fluorescence at 1056 nm, has the most potential for laser application. Photoluminescence up-conversion under excitation at 488 nm laser light exhibits three emission bands of Nd 3+ ions at 541 (green), 601 (orange), and 677 nm (red). These emission bands are assigned to 4 G 7/2 → 4 I 9/2 , 4 G 7/2 → 4 I 11/2 , and 4 G 7/2 → 4 I 13/2 transitions, respectively. Analysis of luminescence spectra enhances the use of glass system in optical displays, lasers, and optical memory devices.

  14. Aging of a Binary Colloidal Glass

    Science.gov (United States)

    Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.

    2008-03-01

    After having undergone a glass transition, a glass is in a non-equilibrium state, and its properties depend on the time elapsed since vitrification. We study this phenomenon, known as aging. In particular, we study a colloidal suspension consisting of micron-sized particles in a liquid --- a good model system for studying the glass transition. In this system, the glass transition is approached by increasing the particle concentration, instead of decreasing the temperature. We observe samples composed of particles of two sizes (d1= 1.0μm and d2= 2.0μm) using fast laser scanning confocal microscopy, which yields real-time, three-dimensional movies deep inside the colloidal glass. We then analyze the trajectories of several thousand particles as the glassy suspension ages. Specifically, we look at how the size, motion and structural organization of the particles relate to the overall aging of the glass. We find that areas richer in small particles are more mobile and therefore contribute more to the structural changes found in aging glasses.

  15. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  16. Integrated cooling-vacuum-assisted 1540-nm erbium:glass laser is effective in treating mild-to-moderate acne vulgaris.

    Science.gov (United States)

    Politi, Y; Levi, A; Enk, C D; Lapidoth, M

    2015-12-01

    Acne treatment by a mid-infrared laser may be unsatisfactory due to deeply situated acne-affected sebaceous glands which serve as its target. Skin manipulation by vacuum and contact cooling may improve laser-skin interaction, reduce pain sensation, and increase overall safety and efficacy. To evaluate the safety and efficacy of acne treatment using an integrated cooling-vacuum-assisted 1540-nm erbium:glass laser, a prospective interventional study was conducted. It included 12 patients (seven men and five women) suffering from mild-to-moderate acne vulgaris. The device utilizes a mid-infrared 1540-nm laser (Alma Lasers Ltd. Caesarea, Israel), which is integrated with combined cooling-vacuum-assisted technology. An acne lesion is initially manipulated upon contact by a vacuum-cooling-assisted tip, followed by three to four stacked laser pulses (500-600 mJ, 4 mm spot size, and frequency of 2 Hz). Patients underwent four to six treatment sessions with a 2-week interval and were followed-up 1 and 3 months after the last treatment. Clinical photographs were taken by high-resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists, and results were graded on a scale of 0 (exacerbation) to 4 (76-100 % improvement). Patients' and physicians' satisfaction was also recorded. Pain perception and adverse effects were evaluated as well. All patients demonstrated a moderate to significant improvement (average score of 3.6 and 2.0 within 1 and 3 months, respectively, following last treatment session). No side effects, besides a transient erythema, were observed. Cooling-vacuum-assisted 1540-nm laser is safe and effective for the treatment of acne vulgaris.

  17. Upconversion channels in Er3+ ZBLALiP fluoride glass microspheres

    NARCIS (Netherlands)

    O'Shea, D. G.; Ward, J. M.; Shortt, B. J.; Mortier, M.; Feron, P.; Chormaic, S. Nic

    We present results on the realization of a multicolour microspherical glass light source fabricated from the erbium doped fluoride glass ZBLALiP. Whispering gallery mode lasing and upconversion processes give rise to laser and fluorescent emissions at multiple wavelengths from the ultraviolet to the

  18. Elaboration of optical glass-ceramic for frequency doubling

    International Nuclear Information System (INIS)

    Vigouroux, H.

    2012-01-01

    The High power laser development required the need of materials with nonlinear properties. Glass materials can be considered as ideal materials as they can be transparent and elaborated in very large dimension. Precipitation of non-centro symmetric crystalline particles in bulk glass leads to a material with bulk nonlinear properties. This glass-ceramic should be then easily integrated in such laser facilities. In this thesis, the results concerning the precipitation of the phase LiNbO 3 in the glassy-matrix 35 Li 2 O - 25 Nb 2 O 5 - 40 SiO 2 are detailed. The crystallization mechanism of this phase is studied through thermal analysis, optical and electronic microscopy as well as in-situ analyses. These studies reveal glass-ceramics are obtained through a precipitation of the lithium niobate crystalline phase in spherulite shape. The nonlinear optical properties are investigated on this materials and an original, isotropic Second Harmonic Generation Signal (SHG) is registered in the bulk glass-ceramic. A complete study using a multi-scale approach allows the correlation between the spherulite structure and the nonlinear optical properties. A mechanism at the origin of the SHG signal is proposed. This leads to a new approach for transparent inorganic materials development for isotropic SHG conversion. (author) [fr

  19. Preparation and leaching property of Nd-doped zirconolite-based glass-ceramic

    International Nuclear Information System (INIS)

    Wu Lang; Xu Dong; Teng Yuancheng; Li Yuxiang; Liu Zongqiang

    2014-01-01

    Nd-doped zirconolite-based glass-ceramics were prepared by melting-heat treatment technique. The effects of heat treatment processing on phase structure of the glass-ceramics were investigated. The leaching properties of the glass-ceramics were also evaluated by static leaching experiments (product consistency test, PCT). The results show that glass transformation temperature (T g ) and crystallization temperature of the glass-ceramics are about 580℃ and 740℃, respectively. CaTiO 3 phase forms easily when the glass-ceramics were prepared by two-step method, i.e. the glass was prepared first, and then it was heat-treated at the crystallization temperatures. 2M-zirconolite phase can be obtained by one-step method, i.e. the heat-treatment immediately followed by the melting process. In addition, the zirconolite crystals exhibit a dendritic shape. The normalized mass loss of B and Na in the glass-ceramics remains almost unchanged (about 1 mg/m 2 ) after 14 days, while the normalized mass loss of Nd reaches stable value (about 0.2 mg/m 2 ) after 28 days. The normalized mass loss of B, Na, and Nd in the glass-ceramics is an order of magnitude lower than that of borosilicate glasses, respectively. (authors)

  20. Compact laser-diode-based femtosecond sources

    International Nuclear Information System (INIS)

    Brown, C T A; Cataluna, M A; Lagatsky, A A; Rafailov, E U; Agate, M B; Leburn, C G; Sibbett, W

    2004-01-01

    This paper describes the development of compact femtosecond laser systems that are capable of being directly pumped by laser diodes or are based directly on laser diodes. The paper demonstrates the latest results in a highly efficient vibronic based gain medium and a diode-pumped Yb:KYW laser is reported that has a wall plug efficiency >14%. A Cr 4+ :YAG oscillator is described that generates transform-limited pulses of 81 fs duration at a pulse repetition frequency of >4 GHz. The development of Cr 3+ :LiSAF lasers that can be operated using power supplies based on batteries is briefly discussed. We also present a summary of work being carried out on the generation of fs-pulses from laser diodes and discuss the important issues in this area. Finally, we outline results obtained on the generation of pulses as short as 550 fs directly from a two-section quantum dot laser without any external pulse compression

  1. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  2. Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm

    Science.gov (United States)

    Simons, D. R.; Faber, A. J.; de Waal, H.

    1995-03-01

    The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.

  3. Laser fusion project second annual report

    International Nuclear Information System (INIS)

    Dumbaugh, W.H.; Morgan, D.W.; Flannery, J.E.

    1978-01-01

    This research program is devoted to the preparation and characterization of fluoride glasses for laser fusion. The overall objective is to explore and characterize fluoride glass systems to find a glass with the lowest possible nonlinear refractive index, satisfactory chemical durability, and physical properties which enable coating large optical quality pieces

  4. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament

    International Nuclear Information System (INIS)

    Zhang Nan; Liu Weiwei; Xu Zhijun; Wang Mingwei; Zhu Xiaonong

    2008-01-01

    The light filament formed by intense femtosecond laser pulses in air can be used to generate the effective impulse to propel a micro glass bead. In this report, through both experimental studies and the corresponding numerical simulations that involve the dynamics of the nonlinear propagation of light and the laser ablation mechanism, we confirm that this propulsion scheme is based on the laser ablation of the target material. The fundamental characteristics of laser propulsion using a single ultrafast laser filament is also revealed

  5. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  6. Avant-garde femtosecond laser writing

    OpenAIRE

    Kazansky, Peter G.; Beresna, Martynas; Shimotsuma, Yasuhiko; Hirao, Kazuyuki; Svirko, Yuri P.; Aktürk, Selcuk

    2010-01-01

    Recently discovered phenomena of quill and non-reciprocal femtosecond laser writing in glasses and crystals are reviewed. Common beliefs that laser writing does not change when reversing beam scan or propagation direction are challenged.

  7. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    Science.gov (United States)

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  8. Abrasive wear of enamel by bioactive glass-based toothpastes.

    Science.gov (United States)

    Mahmood, Asad; Mneimne, Mohammed; Zou, Li Fong; Hill, Robert G; Gillam, David G

    2014-10-01

    To determine the abrasivity of a 45S5 bioactive glass based toothpaste on enamel as a function of the particle size and shape of the glass. 45S5 glass was synthesized ground and sieved to give various particle sized fractions toothpastes and their tooth brush abrasivity measured according to BS EN ISO11609 methodology. Enamel loss increased with increasing particle size. The percussion milled powder exhibited particles that had sharp edges and the pastes were significantly more abrasive than the pastes made with round ball milled powders. One interesting observation made during the present study was that there was preferential wear of the enamel at the dentin-enamel junction (DEJ), particularly with the coarse particle sized pastes.

  9. Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 mm

    NARCIS (Netherlands)

    Simons, D.R.; Faber, A.J.; Waal, de H.

    1995-01-01

    The luminescence of Pr3+-doped GeSx-based glasses were studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-contg. glasses in the telecommunications window at 1.3 mm is discussed. [on SciFinder (R)

  10. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    Science.gov (United States)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  11. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  12. Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    International Nuclear Information System (INIS)

    Carlie, N.; Petit, L.; Musgraves, J. D.; Richardson, K.; Anheier, N. C. Jr.; Qiao, H. A.; Bernacki, B.; Phillips, M. C.

    2011-01-01

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to that of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.

  13. High-Damage-Threshold Pinhole for Glass Fusion Laser Applications

    International Nuclear Information System (INIS)

    Kumit, N.A.; Letzring, S.A.; Johnson, R.P.

    1998-01-01

    We are investigating methods to fabricate high-damage-threshold spatial-filter pinholes that might not be susceptible to plasma closure for relatively high energies and long pulses. These are based on the observation that grazing-incidence reflection from glass can withstand in excess of 5 kJ/cm 2 (normal to the beam) without plasma formation. The high damage threshold results from both the cos q spreading of the energy across the surface and the reflection of a large fraction of the energy from the surface, thereby greatly reducing the field strength within the medium

  14. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  15. Spectroscopic properties of Er{sup 3+}-doped antimony oxide glass

    Energy Technology Data Exchange (ETDEWEB)

    Ouannes, K.; Soltani, M.T. [Laboratoire de Physique Photonique et Nanomatériaux Multifonctionnels, Université de Biskra, BP 145 RP, 07000 Biskra (Algeria); Poulain, M. [UMR 6226 – Verres et Céramiques – Campus de Beaulieu, Université' de Rennes 1, 35042 Rennes (France); Boulon, G.; Alombert-Goget, G.; Guyot, Y.; Pillonnet, A. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne (France); Lebbou, K., E-mail: kheireddine.lebbou@univ-lyon1.fr [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne (France)

    2014-08-01

    Highlight: • As a function of Er concentration, glasses corresponding to the 60Sb{sub 2}O{sub 3}–20WO{sub 3}–(19 − x) Na{sub 2}O–1Bi{sub 2}O{sub 3}, xEr{sub 2}O{sub 3} formula were prepared. The quantum efficiency shows that this glass could be promised for laser devices. - Abstract: Spectroscopic properties of Er{sup 3+} ions have been studied in the 60Sb{sub 2}O{sub 3}–20WO{sub 3}–19Na{sub 2}O–1Bi{sub 2}O{sub 3} (SWNB) glasses doped with 0.25 and 0.50 mol% Er{sub 2}O{sub 3} respectively. The Judd–Ofelt parameters measured from the absorption spectra have been used to calculate the radiative life-time (τ{sub r}) and the stimulated emission cross section. The low phonon energy, a reduced quenching effect and a high quantum efficiency of 90% for the 1.53 μm expected laser emission into pumping at 980 nm are in favor of promising material laser application.

  16. Chalcogenide Glass Lasers on Silicon Substrate Integrated Photonics

    Science.gov (United States)

    2016-07-08

    driven optoacoustic devices that permit stable GHz mode-locking of fiber ring lasers; bright deep and vacuum UV sources based on gas-filled hollow core ...topological insulators with ultracold atoms. Bio: Wolfgang Ketterle has been the John D. MacArthur professor of physics at MIT since 1998. He leads...remarkable enhancements (and in some cases reductions) in many kinds of light-matter interaction. Recent examples include the solid core PCFs widely

  17. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    OpenAIRE

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abu...

  18. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  19. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  20. Laser signals' nonlinear change in fatty acids

    CERN Document Server

    Ghelmez-Dumitru, M; Piscureanu, M; Sterian, A

    2003-01-01

    Previous works showed that thin layers of fatty acids and fatty acid-cholesterol mixtures behaved as optical liquid crystals, even at low incident laser power. The paper presents an experimental and computer study of laser signals, emergent from such samples, in presence of fluctuations. The optical emergent laser beams' features at different incident parameters were experimentally determined for different type (c.w. and pulsed) lasers, as for example helium-neon and Nd sup 3 sup + glass lasers. The results were correlated with the amount of cholesterol in mixtures and with their response in external electric field. These measurements are in all cases affected by fluctuations. We developed some computer-based procedures, by using the TableCurve3D from Jandel Scientific software and equations Runge-Kutta in MATLAB for taking into account these fluctuations.

  1. Reconstruction dynamics of recorded holograms in photochromic glass

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B.

    2011-06-20

    We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO{sub 4} laser radiation ({lambda}=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, {Delta}n) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

  2. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, Bin

    2011-01-01

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO 2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  3. In-plane spectroscopy with optical fibers and liquid-filled APEX™ glass microcuvettes

    International Nuclear Information System (INIS)

    Gaillard, William R; Tantawi, Khalid Hasan; Williams, John D; Waddell, Emanuel; Fedorov, Vladimir

    2013-01-01

    Chemical etching and laser drilling of microstructural glass results in opaque or translucent sidewalls, limiting the optical analysis of glass microfluidic devices to top down or non-planar topologies. These non-planar observation topologies prevent each layer of a multilayered device from being independently optically addressed. However, novel photosensitive glass processing techniques in APEX™ have resulted in microfabricated glass structures with transparent sidewalls. Toward the goal of a transparent multilayered glass microfluidic device, this study demonstrates the ability to perform spectroscopy with optical fibers and microcuvettes fabricated in photosensitive APEX™ glass. (technical note)

  4. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurobori, Toshio, E-mail: kurobori@staff.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Yanagida, Yuka [Oarai Research Center, Chiyoda Technol Corporation, Oarai-machi, Ibaraki 311-1313 (Japan); Kodaira, Satoshi [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirao, Taichi [Nikon Instech Co., Ltd., Tanakanishi, Sakyo-ku, Kyoto 606-8221 (Japan)

    2017-05-21

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  5. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Yanagida, Yuka; Kodaira, Satoshi; Shirao, Taichi

    2017-01-01

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  6. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  7. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  8. Viscosity properties of tellurite-based glasses

    International Nuclear Information System (INIS)

    Tincher, B.; Massera, J.; Petit, L.; Richardson, K.

    2010-01-01

    The viscosity behavior of glasses with the composition (90-x)TeO 2 -10Bi 2 O 3 -xZnO with x = 15, 17.5, and 20 (TBZ glasses) and 80TeO 2 -(20-y)Na 2 O-yZnO system with y = 0, 5, and 10 (TNZ glasses) have been measured as a function of temperature using a beam-bending (BBV) and a parallel-plate (PPV) viscometer. The structure of the glass' network has been characterized using Raman spectroscopy and has been related to the viscosity temperature behavior and the fragility parameter (m) of the glasses. As the concentration of ZnO in the TBZ system (x) increases, the fragility parameter of the glass increases, whereas it decreases with an increase of the ZnO concentration (y) in the TNZ system. In both glasses, these variations in m have been related to the partial depolymerization of the tellurite network associated with the level of modifier content. The depolymerization of the tellurite network is believed to be the result of a reduction in the number of [TeO 4 ] units and the formation of [TeO 3 ] and [TeO 3+1 ] units that occurs with a change in TeO 2 content in the TBZ system and modifier content in the TNZ system.

  9. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    OpenAIRE

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-01-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10−20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a g...

  10. Nd{sup 3+}-doped TeO{sub 2}-Bi{sub 2}O{sub 3}-ZnO transparent glass ceramics for laser application at 1.06 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian [Central South of University, School of Materials Science and Engineering, Changsha (China)

    2017-04-15

    The high crystallinity transparent glass ceramics based on Nd{sup 3+}-doped 70TeO{sub 2}-15Bi{sub 2}O{sub 3}-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd{sub 2}O{sub 3} content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd{sub 2}O{sub 3} enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi{sub 2}Te{sub 4}O{sub 11} in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd{sub 2}O{sub 3} content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd{sub 2}O{sub 3} content due to the obvious energy migration among Nd{sup 3+}. According to the extreme strong emission band around 1062 nm and the optimum Nd{sub 2}O{sub 3} content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications. (orig.)

  11. Spectroscopic properties of Sm{sup 3+}-doped lanthanum borogermanate glass

    Energy Technology Data Exchange (ETDEWEB)

    Rajaramakrishna, R. [Department of Physics, Bangalore University, Bangalore 560056 (India); Knorr, Brian; Dierolf, Volkmar [Department of Physics, Lehigh University Bethlehem, PA 18015 (United States); Anavekar, R.V., E-mail: anavekar_271@yahoo.co.in [Department of Physics, Bangalore University, Bangalore 560056 (India); Jain, H. [Department of Materials Science and Engineering, Lehigh University Bethlehem, PA 18015 (United States)

    2014-12-15

    Ultraviolet–visible–near infrared (UV–vis–NIR) absorption and photoluminescence of (25−x) La{sub 2}O{sub 3}–25B{sub 2}O{sub 3}–50GeO{sub 2} glass series have been studied with different concentrations (x=0.1–1.0 wt%) of Sm{sub 2}O{sub 3} as an optically active dopant. The values of Judd–Ofelt (JO) parameters (Ω{sub t}) follow the trend Ω{sub 2}>Ω{sub 4}>Ω{sub 6}. Visible emission and decay times from the {sup 4}G{sub 5/2} level and its relative quantum efficiencies are measured. Intense reddish-orange emission corresponding to {sup 4}G{sub 5/2}→{sup 6}H{sub 7/2} transition has been observed in these glasses under 488 nm excitation. A decrease in the quantum yield is observed with increasing Sm{sup 3+} ion concentration beyond 1% doping level. - Highlights: • Lanthanum boro-germanate glasses doped with samarium ions are good laser host matrix. • These glasses show large emission cross-sections (σ{sub P}) values. • These glasses show large gain bandwidth and optical gain parameters. • These glasses are suitable candidate for reddish-orange laser applications.

  12. The KAERI laser facility with temporal laser beam shaping for application's user

    International Nuclear Information System (INIS)

    Hong, Sung Ki; Kim, Min Suk; Kim, Young Won; Ko, Kwanghoon; Lim, Changhwan; Seo, Young Seok

    2008-01-01

    The Korea Atomic Energy Research Institute(KAERI)has been developed a high energy Nd:Glass laser facility(KLF)for fast ignition research and high energy physics applications at early 2008. Now, we are researching the temporal laser beam shaping for application's user. The temporal laser beam shaping has been applied to a number of industrial applications. The KLF beam shaping system with fiber based consists of two electro optic modulator with DC bias using a Mach Zehnder interferometer, an arbitrary electronic waveform generator, a continuous wavelength fiber laser source, a fiber based pulse amplification system and DC bias source to generate temporally shaped pulses with a high extinction ratio and high resolution. RF signal waveform user defined by an arbitrary electronic waveform generator is only connected to one electro optic modulator. DC bias source with auto feed back or manual controller is connected both two electro optic modulators. Emitting laser light from a continuous wavelength fiber laser source is modulated to meet a user defined laser pulse with a high extinction ratio by two electro optic modulators. Experimental results are shown in Fig.1. Figure 1(a)shows two programmed waveforms with the signal width 10ns in an arbitrary electronic waveform generator. Figure 1(b)shows output laser pulses with sub mJ energy from amplification results of the KLF beam shaping system which can control the pulse width ranges from 400ps to sub us

  13. Laser Safety and Hazard Analysis for the Trailer (B70) Based AURA Laser System

    International Nuclear Information System (INIS)

    AUGUSTONI, ARNOLD L.

    2003-01-01

    A laser safety and hazard analysis was performed for the AURA laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for ''Safe Use of Lasers'' and the 2000 version of the ANSI Standard Z136.6, for ''Safe Use of Lasers Outdoors''. The trailer based AURA laser system is a mobile platform, which is used to perform laser interaction experiments and tests at various national test sites. The trailer (B70) based AURA laser system is generally operated on the United State Air Force Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances from the exit telescope. In order to protect personnel, who work inside the Nominal Hazard Zone (NHZ), from hazardous laser emission exposures it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (OD min ) of the laser safety eyewear used by authorized personnel and the Nominal Ocular Hazard Distance (NOHD) to protect unauthorized personnel who may have violated the boundaries of the control area and enter into the laser's NHZ

  14. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  15. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Zhong [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Tang, Yuanyuan [School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (China); Liu, Chengshuai, E-mail: csliu@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Li, Fangbai [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2017-01-05

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4} spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4}. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr{sub 2}O{sub 3} and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the

  16. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    International Nuclear Information System (INIS)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-01

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr 1.32 Fe 0.19 Al 0.49 O 4 spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that

  17. Structural elucidation of AgAsS2 glass by the analysis of clusters formed during laser desorption ionisation applying quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Alberti, Milan; Zhang, Bo; Fraenkl, Max; Wagner, Tomas; Havel, Josef

    2016-03-15

    The structure of AgA(s)S2 glass, which has a broad range of applications, is still not well understood and a systematic mass spectrometric analysis of AgA(s)S2 glass is currently not available. Elucidation of the structure should help in the development of this material. The AgA(s)S2 glass was prepared by the melt-quenched technique. Laser desorption ionisation (LDI) using quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to follow the generation of Ag(m)As(n)S(x) clusters. The stoichiometry of the clusters generated was determined via collision-induced dissociation (CID) and modelling of isotopic patterns. The AgA(s)S2 glass was characterised by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The LDI of AgA(s)S2 glass leads to the formation of unary (Ag+/− and As(3+)) species, 38 binary (As(n)S(x), Ag(m)S(x)), and 98 ternary (Ag(m)As(n)S(x)) singly charged clusters. The formation of silver-rich nano-grains during AgA(s)S2 glass synthesis has been identified using TEM analysis and also verified by QIT-TOFMS. TOFMS was shown to be a useful technique to study the generation of Ag(m)As(n)S(x )clusters. SEM, TEM and EDX analysis proved that the structure of AgA(s)S2 glass is ‘grain-like’ where grains are either: (1) Silver-rich ‘islands’ (Ag(m,) m up to 39) connected by arsenic and/or sulfur or arsenic sulfide chains or (2) silver sulfide (Ag2S)m (m = 9-20) clusters also similarly inter-connected. This obtained structural information may be useful for the development of ultra-high-density phase-change storage and memory devices using this kind of glass as a base.

  18. CO2 laser and plasma microjet process for improving laser optics

    Science.gov (United States)

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  19. Technological advances in tellurite glasses properties, processing, and applications

    CERN Document Server

    Manzani, Danilo

    2017-01-01

    This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science,...

  20. Multimegajoule laser project: new compact multipass laser design

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1985-01-01

    A simple laser design that has the fewest laser components of all fusion systems that the authors have studied and that packs closely, thus minimizing space requirements is shown. The Advanced Laser Program objectives are determined by the requirements of the subsystems. The requirements consists of the following elements: high damage thresholds on reflectors; AR layers and dichroic coatings; high-efficiency amplifiers; low-cost production of laser glass, pulse power, and optical elements; and special optical elements, such as an effective phase conjugator and isolator. The combination of a compact architecture and lower-cost, higher-performance components can lead to significant reduction in overall system cost