WorldWideScience

Sample records for fluorite structure first-principles

  1. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  2. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  3. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  4. First-principle calculations of the structural, electronic ...

    Indian Academy of Sciences (India)

    First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.

  5. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  6. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  7. Exploring the nucleon structure from first principles of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-04-15

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  8. Exploring the nucleon structure from first principles of QCD

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2010-04-01

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  9. Configurational Model for Conductivity of Stabilized Fluorite Structure Oxides

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1981-01-01

    The formalism developed here furnishes means by which ionic configurations, solid solution limits, and conductivity mechanisms in doped fluorite structures can be described. The present model differs markedly from previous models but reproduces qualitatively reality. The analysis reported...

  10. First principles investigation of the structure of a bacteriochlorophyll crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)]|[Centre d`Etudes Saclay, Gif-sur-Yvette (France); Hutter, J.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  11. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Administrator

    2013-07-28

    Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.

  12. First principle calculations of alkali hydride electronic structures

    International Nuclear Information System (INIS)

    Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N

    2007-01-01

    Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties

  13. Electronic Structure and Transport in Solids from First Principles

    Science.gov (United States)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  14. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance. An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV). The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in

  15. Structure of hydrated calcium carbonates: A first-principles study

    Science.gov (United States)

    Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.

    2014-09-01

    The structures of both ikaite (CaCO3 · 6H2 O) and monohydrocalcite (CaCO3 ·H2 O) were computed at the PBE0 level of theory, using all electron Gaussian type basis sets. Correction for the long-range dispersion contribution was included for the oxygen-oxygen interactions by using an additive pairwise term with the atomic coefficients fitted against the calcite vs aragonite enthalpy difference. The potential chirality of monohydrocalcite is discussed, as well as the helical motifs created by the three-fold rototranslational axes parallel to the [001] direction. These elements represent a significant link between monohydrocalcite and vaterite, both appearing as intermediate species during CaCO3 crystallization from amorphous calcium carbonate. The hydrogen bond pattern, never fully discussed for monohydrocalcite, is here described and compared to the available experimental data. Both phases are characterized by the presence of hydrogen bonds of moderate to high strength. Water molecules in monohydrocalcite interact quite strongly with 2 CO32- units through such hydrogen bonds, whereas their interaction with each other is minor. On the contrary, water molecules in ikaite create a complex network of hydrogen bonds, where each water molecule is strongly hydrogen bonded to one CO32- anion and to one or two other water molecules.

  16. Size of oxide vacancies in fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Norby, Poul; Hendriksen, Peter Vang

    2015-01-01

    An analysis of the effective radii of vacancies and the stoichiometric expansion coefficient is performed on metal oxides with fluorite and perovskite structures. Using the hard sphere model with Shannon ion radii we find that the effective radius of the oxide vacancy in fluorites increases...... with increasing ion radius of the host cation and that it is significantly smaller than the radius of the oxide ion in all cases, from 37% smaller for HfO2 to 13 % smaller for ThO2. The perovskite structured LaGaO3 doped with Sr or Mg or both is analyzed in some detail. The results show that the effective radius...... of an oxide vacancy in doped LaGaO3 is only about 6 % smaller than the oxide ion. In spite of this the stoichiometric expansion coefficient (a kind of chemical expansion coefficient) of the similar perovskite, LaCrO3, is significantly smaller than the stoichiometric expansion coefficient of the fluorite...

  17. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  18. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  19. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  20. Equilibrium structure of δ-Bi2O3 from first principles

    International Nuclear Information System (INIS)

    Music, Denis; Konstantinidis, Stephanos; Schneider, Jochen M

    2009-01-01

    Using ab initio calculations, we have systematically studied the structure of δ-Bi 2 O 3 (fluorite prototype, 25% oxygen vacancies) probing and combined and oxygen vacancy ordering, random distribution of oxygen vacancies with two different statistical descriptions as well as local relaxations. We observe that the combined and oxygen vacancy ordering is the most stable configuration. Radial distribution functions for these configurations can be classified as discrete (ordered configurations) and continuous (random configurations). This classification can be understood on the basis of local structural relaxations. Up to 28.6% local relaxation of the oxygen sublattice is present in the random configurations, giving rise to continuous distribution functions. The phase stability obtained may be explained with the bonding analysis. Electron lone-pair charges in the predominantly ionic Bi-O matrix may stabilize the combined and oxygen vacancy ordering.

  1. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  2. A first principle study of band structure of III-nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)]. E-mail: rasofi@hotmail.com; Akbarzadeh, H. [Department of Physics, Isfahan University of Technology, 841546 Isfahan (Iran, Islamic Republic of); Fazal-e-Aleem [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)

    2005-12-15

    The band structure of both phases, zinc-blende and wurtzite, of aluminum nitride, indium nitride and gallium nitride has been studied using computational methods. The study has been done using first principle full-potential linearized augmented plane wave (FP-LAPW) method, within the framework of density functional theory (DFT). For the exchange correlation potential, generalized gradient approximation (GGA) and an alternative form of GGA proposed by Engel and Vosko (GGA-EV) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show a significant improvement over other theoretical work and are closer to the experimental data.

  3. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  4. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  5. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  6. First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene

    Science.gov (United States)

    Arif Khalil, R. M.; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, Syed Hamad; Tufiq Jamil, M.; Tehreem, Tuba; Nissar, Umair

    2018-05-01

    In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.

  7. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  8. Electronic structure of B-doped diamond: A first-principles study

    Directory of Open Access Journals (Sweden)

    T. Oguchi

    2006-01-01

    Full Text Available Electronic structure of B-doped diamond is studied based on first-principles calculations with supercell models for substitutional and interstitial doping at 1.5–3.1 at.% B concentrations. Substitutional doping induces holes around the valence-band maximum in a rigid-band fashion. The nearest neighbor C site to B shows a large energy shift of 1s core state, which may explain reasonably experimental features in recent photoemission and X-ray absorption spectra. Doping at interstitial Td site is found to be unstable compared with that at the substitutional site

  9. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  10. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  11. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    International Nuclear Information System (INIS)

    Liu Lei; Lv Chao-Jia; Yi Li; Liu Hong; Du Jian-Guo; Zhuang Chun-Qiang

    2015-01-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dν i /dP) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. (paper)

  12. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  13. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    Science.gov (United States)

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  14. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2005-01-01

    The purpose of this paper is to provide an introduction for non-experts to first-principles electronic structure methods that are widely used in the field of condensed-matter physics, including applications to actinide materials. The methods I describe are based on density functional theory (DFT) within the local density approximation (LDA) and the generalized gradient approximation (GGA). In addition to explaining the meaning of this terminology I also describe the underlying theory itself in some detail in order to enable a better understanding of the relative strengths and weaknesses of the methods. I briefly mention some particular numerical implementations of DFT, including the linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods, as well as general methodologies that go beyond DFT and specifically address some of the weaknesses of the theory. The last third of the paper is devoted to a few selected applications that illustrate the ideas discussed in the first two-thirds. In particular, I conclude by addressing the current controversy regarding magnetic DFT calculations for actinide materials. Throughout this paper particular emphasis is placed on providing the appropriate background to enable the non-expert to gain a better appreciation of the application of first-principles electronic structure methods to the study of actinide and other materials

  15. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    Science.gov (United States)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  16. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation

    Science.gov (United States)

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem

    2016-08-01

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

  17. First-principles assessment of potential ultrafast laser-induced structural transition in Ni

    Energy Technology Data Exchange (ETDEWEB)

    Bévillon, E.; Colombier, J.P., E-mail: jean.philippe.colombier@univ-st-etienne.fr; Stoian, R.

    2016-06-30

    Highlights: • First-principles theory calculations in nonequilibrium conditions. • Electronic temperatures fully and consistently taken into account. • Evaluation of an ultrafast laser-induced solid-to-solid transition in Ni. • Relative energies, phonon spectra and energy path are evaluated. • Discussion on the generation of non-thermal forces in metals. - Abstract: The possibility to trigger ultrafast solid-to-solid transitions in transition metals under femtosecond laser irradiation is investigated by means of first-principles calculations. Electronic heating can drastically modify screening, charge distribution and atomic binding features, potentially determining new structural relaxation paths in the solid phase, before thermodynamic solid-to-liquid transformations set in. Consequently, we evaluate here the effect of electronic excitation on structural stability and conditions for structural transitions. Ni is chosen as a case study for the probability of a solid transition, and the stability of its FCC phase is compared to the non-standard HCP structure while accounting for the heating of the electronic subsystem. From a phonon spectra analysis, we show that the thermodynamic stability order reverses at an electronic temperature of around 10{sup 4} K. Both structures exhibit a dynamic stability, indicating they present a metastability depending on the heating. However, the general hardening of phonon modes with the increase of the electronic temperature points out that no transformation will occur, as confirmed by the study of a typical FCC to HCP diffusionless transformation path, showing an increasing energy barrier. Finally, based on electronic density of states interpretation, the tendency of different metal categories to undergo or not an ultrafast laser-induced structural transition is discussed.

  18. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  19. Crystal structure of Earth's inner core: A first-principles study

    Science.gov (United States)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  20. First-principles study on band structures and electrical transports of doped-SnTe

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2016-06-01

    Full Text Available Tin telluride is a thermoelectric material that enables the conversion of thermal energy to electricity. SnTe demonstrates a great potential for large-scale applications due to its lead-free nature and the similar crystal structure to PbTe. In this paper, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin–orbit coupling. The results show that Zn and Cd have a dominant effect of band convergence, leading to power factor enhancement. Indium induces obvious resonant states, while Hg-doped SnTe exhibits a different behavior with defect states locating slightly above the Fermi level.

  1. First-principle calculations on the structural and electronic properties of hard C11N4

    International Nuclear Information System (INIS)

    Li, Dongxu; Shi, Jiancheng; Lai, Mengling; Li, Rongkai; Yu, Dongli

    2014-01-01

    A graphite-like C 11 N 4 model was built by stacking graphene and a C 3 N 4 triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C 11 N 4 is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C 11 N 4 was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C 11 N 4 is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy

  2. A first-principles study of the electronic structure of the sulvanite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Osorio-Guillen, J.M., E-mail: jorge.osorio@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia); Espinosa-Garcia, W.F. [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia)

    2012-03-15

    We have investigated by means of first-principles total energy calculations the electronic structure of the sulvanite compounds: Cu{sub 3}VS{sub 4}, Cu{sub 3}NbS{sub 4} and Cu{sub 3}TaS{sub 4}; the later is a possible candidate as a p-type transparent conductor with potential applications in solar cells and electrochromic devices. The calculated electronic structure shows that these compounds are indirect band gap semiconductors, with the valence band maximum located at the R-point and the conduction band minimum located at the X-point. The character of the valence band maximum is dominated by Cu d-states and the character of the conduction band minimum is due to the d-states of the group five elements. From the calculated charge density and electron localisation function we can conclude that the sulvanite compounds are polar covalent semiconductors.

  3. Novel phases of lithium-aluminum binaries from first-principles structural search

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L., E-mail: marques@tddft.org [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Valencia-Jaime, Irais [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Centro de Investigación y Estudios Avanzados del IPN, MX-76230 Querétaro (Mexico); Amsler, Maximilian; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Romero, Aldo H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-01-14

    Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.

  4. A first-principles study on hydrogen in ZnS: Structure, stability and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Sheng-Yi, E-mail: ayikongjian@gmail.com [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Meng, Xing, E-mail: mengxingjlu@163.com [College of Physics, Jilin University, Changchun 130012 (China)

    2015-02-20

    Based on first-principles calculations, the local structures and their energetic stability for impurity hydrogen (H) in semiconductor ZnS are investigated. H is most favorable to dwell in the bond center (BC) site in ZnS. The antibonding site of Zn (AB{sub Zn}) has close energy with BC. The antibonding site of S (AB{sub S}) and interstitial (I{sub H}) site have 0.19 eV and 0.44 eV energy cost, separately. The bond strength with S and Zn determines the stability of impurity H in ZnS. Meanwhile, H is highly moveable in ZnS. At the room temperature, H can overcome the barrier to diffuse through the neighboring BC site. - Highlights: • Local structures for hydrogen in ZnS are investigated. • Impurity level of hydrogen is modulated by bonding with S or Zn. • Hydrogen is highly moveable in ZnS.

  5. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  6. Structure and stacking faults in layered Mg-Zn-Y alloys: A first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Waghmare, U.V.; Ramamurty, U.

    2008-01-01

    We use first-principles density functional theory total energy calculations based on pseudo-potentials and plane-wave basis to assess stability of the periodic structures with different stacking sequences in Mg-Zn-Y alloys. For pure Mg, we find that the 6-layer (6l) structure with the ABACAB stacking is most stable after the lowest energy hcp (2l) structure with ABAB stacking. Addition of 2 at.% Y leads to stabilization of the structure to 6l sequence whereas the addition of 2 at.% Zn makes the 6l energetically comparable to that of the hcp. Stacking fault (SF) on the basal plane of 6l structure is higher in energy than that of the hcp 2l Mg, which further increases upon Y doping and decreases significantly with Zn doping. SF energy surface for the prismatic slip indicates activation of non-basal slip in alloys with a 6l structure. Charge density analysis shows that the 2l and 6l structures are electronically similar which might be a cause for better stability of 6l structure over a 4l sequence or other periodic structures. Thus, in an Mg-Zn-Y alloy, Y stabilizes the long periodicity, while its mechanical properties are further improved due to Zn doping

  7. Recent Progress in First-Principles Methods for Computing the Electronic Structure of Correlated Materials

    Directory of Open Access Journals (Sweden)

    Fredrik Nilsson

    2018-03-01

    Full Text Available Substantial progress has been achieved in the last couple of decades in computing the electronic structure of correlated materials from first principles. This progress has been driven by parallel development in theory and numerical algorithms. Theoretical development in combining ab initio approaches and many-body methods is particularly promising. A crucial role is also played by a systematic method for deriving a low-energy model, which bridges the gap between real and model systems. In this article, an overview is given tracing the development from the LDA+U to the latest progress in combining the G W method and (extended dynamical mean-field theory ( G W +EDMFT. The emphasis is on conceptual and theoretical aspects rather than technical ones.

  8. First-principles study of ternary fcc solution phases from special quasirandom structures

    International Nuclear Information System (INIS)

    Shin Dongwon; Wang Yi; Liu Zikui; Walle, Axel van de

    2007-01-01

    In the present work, ternary special quasirandom structures (SQSs) for a fcc solid solution phase are generated at different compositions, x A =x B =x C =(1/3) and x A =(1/2), x B =x C =(1/4), whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions

  9. The structural, electronic and phonon behavior of CsPbI_3: A first principles study

    International Nuclear Information System (INIS)

    Bano, Amreen; Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K.

    2016-01-01

    Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI_3 is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.

  10. First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene

    Science.gov (United States)

    Luan, Zhaohui; Zhao, Lei; Chang, Hao; Sun, Dan; Tan, Changlong; Huang, Yuewu

    2017-11-01

    The structural, electronic and magnetic properties of Eu-doped phosphorene with different doping concentrations were investigated by first-principles calculations for the first time. The calculations show that Eu-doped phosphorene systems are stable and have the large magnetic moments of more than 6 μB by 2.7, 6.25 and 12.5 at.% doping concentrations. The major contribution to the magnetic moment stems from the 4f states of Eu-doped atom. Meanwhile, Eu-doped atom introduces the impurity bands which can be changed by different doping concentrations. In order to determine the magnetic interaction, the different configurations for two Eu atoms doping in 3 × 3 × 1 phosphorene supercell were studied, which reveals that all of the configurations tend to form ferromagnetic. These results can provide references for inducing large magnetism of two-dimensional phosphorene, which are valuable for their applications in spintronic devices and novel semiconductor materials.

  11. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2006-01-01

    This paper provides an introduction for non-experts to first-principles electronic structure methods that are widely used in condensed-matter physics. Particular emphasis is placed on giving the appropriate background information needed to better appreciate the use of these methods to study actinide and other materials. Specifically, I describe the underlying theory sufficiently to enable an understanding of the relative strengths and weaknesses of the methods. I also explain the meaning of commonly used terminology, including density functional theory (DFT), local density approximation (LDA), and generalized gradient approximation (GGA), as well as linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods. I also briefly discuss methodologies that extend the basic theory to address specific limitations. Finally, I describe a few illustrative applications, including quantum molecular dynamics (QMD) simulations and studies of surfaces, impurities, and defects. I conclude by addressing the current controversy regarding magnetic calculations for actinide materials

  12. Core structure of screw dislocations in Fe from first-principles

    International Nuclear Information System (INIS)

    Ventelon, L.

    2008-11-01

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  13. First-principles screening of structural properties of intermetallic compounds on martensitic transformation

    Science.gov (United States)

    Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao

    2017-11-01

    Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.

  14. First -principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2

    NARCIS (Netherlands)

    van Setten, Michiel J.; de Wijs, Gilles A.; Brocks, G.

    2008-01-01

    Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the

  15. Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations

    International Nuclear Information System (INIS)

    Hua Manyu; Li Yimin; Long Chunguang; Li Xia

    2012-01-01

    The structural, electronic and elastic properties of potassium hexatitanate (K 2 Ti 6 O 13 ) whisker were investigated using first-principles calculations. The calculated cell parameters of K 2 Ti 6 O 13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (-61.1535 eV/atom) and cohesive energy (-137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K 2 Ti 6 O 13 crystal, the Ti---O bonding interactions are stronger than that of K---O, while no apparent K---Ti bonding interactions can be observed. The structural stability of K 2 Ti 6 O 13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K 2 Ti 6 O 13 is a high stiffness and brittle material with small anisotropy in shear and compression.

  16. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  17. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    International Nuclear Information System (INIS)

    Ullah, Hamid; Inayat, Kalsoom; Khan, S.A; Mohammad, S.; Ali, A.; Alahmed, Z.A.; Reshak, A.H.

    2015-01-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga 1−x Mn x X (X=P, As) compounds reveal that Ga 0.75 Mn 0.25 P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga 0.75 Mn 0.25 As and Ga 0.5 Mn 0.5 As and tune Ga 0.25 Mn 0.75 As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga 0.75 Mn 0.25 P, Ga 0.75 Mn 0.25 As and Ga 0.5 Mn 0.5 As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices

  18. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Hamid, E-mail: hamidullah@yahoo.com [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Inayat, Kalsoom [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Khan, S.A; Mohammad, S. [Department of Physics, Materials Modeling Laboratory, Hazara University, Mansehra 21300 (Pakistan); Ali, A. [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2015-07-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga{sub 1−x}Mn{sub x}X (X=P, As) compounds reveal that Ga{sub 0.75}Mn{sub 0.25}P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As and tune Ga{sub 0.25}Mn{sub 0.75}As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga{sub 0.75}Mn{sub 0.25}P, Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices.

  19. First principles study of structural, electronic and optical properties of polymorphic forms of Rb 2Te

    Science.gov (United States)

    Alay-e-Abbas, S. M.; Shaukat, A.

    2011-05-01

    First-principles density functional theory calculations have been performed for structural, electronic and optical properties of three polymorphic forms of rubidium telluride. Our calculations show that the sequence of pressure induced phase transitions for Rb 2Te is Fm3¯m → Pnma → P6 3/mmc which is governed by the coordination numbers of the anions. From our calculated low transition pressure value for the Fm3¯m phase to the Pnma phase transition of Rb 2Te, the experimentally observed meta-stability of Fm3¯m phase at ambient conditions seems reasonable. The electronic band structure has been calculated for all the three phases and the change in the energy band gap is discussed for the transitioning phases. The energy band gaps obtained for the three phases of Rb 2Te decrease on going from the meta-stable phase to the high-pressure phases. Total and partial density of states for the polymorphs of Rb 2Te has been computed to elucidate the contribution of various atomic states on the electronic band structure. Furthermore, optical properties for all the polymorphic forms have been presented in form of the complex dielectric function.

  20. First-principles calculations of BC{sub 4}N nanostructures: stability and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A.; Azevedo, S. [Universidade Federal da Paraiba, CCEN, Departamento de Fisica, Joao Pessoa, PB (Brazil); Machado, M. [Universidade Federal de Pelotas, Departamento de Fisica, Pelotas, RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Vitoria da Conquista, BA (Brazil)

    2012-07-15

    In this work, we apply first-principles methods to investigate the stability and electronic structure of BC{sub 4}N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 A, or cut and bent to form nanocones, with 60 and 120 disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B-N and C-C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D {sup 2} law. The results show that the 60 disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene. (orig.)

  1. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  2. Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Kiyoyuki Terakura

    2012-08-01

    Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.

  3. First-principles calculations of the electronic and structural properties of GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Castaño-González, E.-E. [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Seña, N. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mendoza-Estrada, V.; González-Hernández, R., E-mail: rhernandezj@uninorte.edu.co [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Dussan, A. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Universidad del Rosario, Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas (Colombia)

    2016-10-15

    In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.

  4. Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Zhang, Dong [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-05-31

    First-principles calculation was performed to investigate the effect of metal doping on the structural characteristics of amorphous carbon system, and the 3d transition metals (TM) were particularly selected as representative case. Results showed that the total energy in TM–C systems caused by distorting the bond angles was reduced distinctly for comparison with that in C–C system. Further electronic structure revealed that as the 3d electrons of doped TM increased, the bond characteristic of highest occupied molecular orbital changed from bonding (Sc, Ti) to nonbonding (V, Cr, Mn, Fe) and finally to antibonding (Co, Ni, Cu) between the TM and C atoms. Meanwhile, the TM–C bond presented a mixture of the covalent and ionic characters. The decrease of strength and directionality of TM–C bonds resulted in the total energy change upon bond angle distortion, which demonstrated that the bond characteristics played an important role in reducing residual stress of TM-doped amorphous carbon systems. - Highlights: • The bond characteristics as 3d electrons changed from bonding, nonbonding to antibonding. • The TM–C bond was a mixture of covalent and ionic characters. • Reduced strength and directionality of TM–C bond led to small distortion energy change. • The weak TM–C bond accounted for the reduced compressive stress caused by TM.

  5. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    Directory of Open Access Journals (Sweden)

    Yingchun Zhang

    2017-03-01

    Full Text Available In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs. Our results confirm that the basal spacings of NO3−-LDHs increase with layer charge densities. It is found that Arsenic (As species can enter the gallery spaces of LDHs with a Mg/Al ratio of 2:1 but they cannot enter those with lower charge densities. Interlayer species show layering distributions. All anions form a single layer distribution while water molecules form a single layer distribution at low layer charge density and a double layer distribution at high layer charge densities. H2AsO4− has two orientations in the interlayer regions (i.e., one with its three folds axis normal to the layer sheets and another with its two folds axis normal to the layer sheets, and only the latter is observed for HAsO42−. H2AsO3− orientates in a tilt-lying way. The mobility of water and NO3− increases with the layer charge densities while As species have very low mobility. Our simulations provide microscopic information of As intercalated LDHs, which can be used for further understanding of the structures of oxy-anion intercalated LDHs.

  6. First-principles structures for the close-packed and the 7/2 motif of collagen

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Olsen, Kasper; Knapp-Mohammady, Michaela

    2012-01-01

    The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures. The stru......The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures...

  7. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun [Department of Physics, Govt. College Banjar, Kullu, Himanchal Pradesh, 175123 India (India); Bahadur, Amar, E-mail: abr.phys@gmail.com [Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, 228118 India (India); Mishra, Madhukar [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031 India (India); Vasudeva, Neena [Department of Physics, S. V. G. College, Ghumarwin, Bilaspur, Himanchal Pradesh, 1714021 India (India)

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  8. Structural and Mechanical Properties of TiN-TiC-TiO System: First Principle Study

    Science.gov (United States)

    Farhadizadeh, Ali Reza; Amadeh, Ahmad Ali; Ghomi, Hamidreza

    2017-11-01

    Mechanical and structural properties of ternary system of TiN-TiO-TiC are investigated using first principle methods. 70 different compositions of Ti 100 (NOC) 100 with cubic structure are examined in order to illustrate the trend of properties variations. The geometry of compounds is optimized, and then, their chemical stability is assessed. Afterward, shear, bulk and young moduli, Cauchy pressure, Zener ratio, hardness and {H}3/{E}2 ratio are computed based on elastic constants. Graphical ternary diagram is used to represent the trend of such properties when the content of nitrogen, oxygen and carbon varies. The results show that incorporation of oxygen into the system decreases the hardness and {H}3/{E}2 ratio while subsequently ductility increases due to positive Cauchy pressure. It is revealed that the maximum {H}3/{E}2 ratio occurs when both nitrogen and carbon with a little amount of oxygen are incorporated. Ti 100 N 30 C 70 owns the highest hardness and {H}3/{E}2 ratio equal to 39.5 and 0.2 GPa, respectively. In addition, the G/B of this compound, which is about 0.9, shows it is brittle. It is also observed that the solid solutions have better mechanical properties with respect to titanium nitride and titanium carbide. The obtained results could be used to enhance monolayer coatings as well as to design multilayers with specific mechanical properties. The authors would like to acknowledge the financial support of University of Tehran Science and Technology Park for this research under Grant No. 94061

  9. First-principles study of lattice dynamics, structural phase transition, and thermodynamic properties of barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education

    2016-11-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.

  10. First-principles Study of the Electronic Structure and Optical Properties of MgH2

    Science.gov (United States)

    Alford, Ashley; Chou, Mei-Yin

    2003-03-01

    It has been noticed that magnesium might play an interesting role in recently discovered switchable-mirror systems. For example, the films of rare earth and magnesium alloys are found to be superior to the pure rare-earth samples in maximum transparency and mirror-state reflectivity [1]. Moreover, the magnesium-rich Ni-Mg alloy films turned out to be a switchable-mirror system without rare earths [2]. In both cases, pure transparent MgH2 is reversibly formed when these alloys take up hydrogen. In order to model the optical properties of these films, we need to know the electronic and optical properties of MgH2. In this work, we investigate its bonding characteristics, band structure, and dielectric properties with first-principles theoretical methods. The stability of the crystal and the bonding are studied using density functional theory and pseudopotential methods. The excited state properties (the quasiparticle spectra) are studied by many-body perturbation theory within the so-called GW approximation in which the electronic self-energy is approximated by the full Green's function (G) times the screened Coulomb interaction (W). We will report the results for both the rutile-structured alpha-MgH2 and the low-symmetry gamma-MgH2. [1] P. van der Sluis, M. Ouwerkerk, and P. A. Duine, Appl. Phys. Lett. 70, 3356 (1997). [2] T. J. Richardson, J. L. Slack, R. D. armitage, R. Kostecki, B. Farangis, and M. D. Rubin, Appl. Phys. Lett. 78, 3047 (2001).

  11. High-pressure U3O8 with the fluorite-type structure

    International Nuclear Information System (INIS)

    Zhang, F.X.; Lang, M.; Wang, J.W.; Li, W.X.; Sun, K.; Prakapenka, V.; Ewing, R.C.

    2014-01-01

    A new high-pressure phase of U 3 O 8 , which has a fluorite-type structure, forms at pressures greater than ∼8.1 GPa that was confirmed by in situ x-ray diffraction (XRD) measurements. The fluorite-type U 3 O 8 is stable at pressures at least up to ∼40 GPa and temperatures to 1700 K, and quenchable to ambient conditions. Based on the XRD analysis, there is a huge volume collapse (>20%) for U 3 O 8 during the phase transition and the quenched high-pressure phase is 28% denser than the initial orthorhombic phase at ambient conditions. The high-pressure phase has a very low compressibility comparing with the starting orthorhombic phase. - Graphical abstract: α-U 3 O 8 is in a layered structure with orthorhombic symmetry, at high pressures, it transformed to a fluorite-type cubic structure. There are a lot of defects in the cubic structure, and it is a new kind of hyperstoichiometric uranium oxide, which is stable at ambient conditions. - Highlights: • A new fluorite-type high-pressure phase was found in hyperstoichometric UO 2 +x (x∼0.8). • The new high-pressure structure is quenchable to ambient conditions. • Pressure driven phase transition in orthorhombic U 3 O 8 was first found

  12. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    Science.gov (United States)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  13. First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures

    International Nuclear Information System (INIS)

    Mazumder, Sandip; Li, Ju

    2010-01-01

    of optical phonons, and (2) by developing a suite of numerical algorithms for solution of the BTE for phonons. The suite of numerical algorithms includes Monte Carlo techniques and deterministic techniques based on the Discrete Ordinates Method and the Ballistic-Diffusive approximation of the BTE. These methods were applied to calculation of thermal conductivity of silicon thin films, and to simulate heat conduction in multi-dimensional structures. In addition, thermal transport in silicon nanowires was investigated using two different first principles methods. One was to apply the Green-Kubo formulation to an equilibrium system. The other was to use Non-Equilibrium Molecular Dynamics (NEMD). Results of MD simulations showed that the nanowire cross-sectional shape and size significantly affects the thermal conductivity, as has been found experimentally. In summary, the project clarified the role of various phonon modes - in particular, optical phonon - in non-equilibrium transport in silicon. It laid the foundation for the solution of the BTE in complex three-dimensional structures using deterministic techniques, paving the way for the development of robust numerical tools that could be coupled to existing device simulation tools to enable coupled electro-thermal modeling of practical electronic/optoelectronic devices. Finally, it shed light on why the thermal conductivity of silicon nanowires is so sensitive to its cross-sectional shape.

  14. First-principle investigations on the structural dynamics of Ti2GaN

    International Nuclear Information System (INIS)

    Yang, Z.J.; Li, J.; Linghu, R.F.; Cheng, X.L.; Yang, X.D.

    2013-01-01

    Highlights: •Our calculated lattice parameter of Ti 2 GaN shows that c axis is always stiffer than a axis. •The elastic constants investigations demonstrated that the Ti 2 GaN is meta-stable between 350 and 600 GPa. •We observed an abnormal c-axis expansion behavior within 350–600 GPa resulting from the expansion of the Ti–Ti bond length and the increase of the Ti–Ti bond populations. •Study on the density of states we found that the Ti s and p electrons shift towards higher energies with pressure. -- Abstract: We report a first-principle study on the elastic and electronic properties of the nanolaminate Ti 2 GaN. Our calculated lattice parameter shows that c axis is always stiffer than a axis. The elastic constants investigations demonstrated that Ti 2 GaN is stable over a wide pressure range of 0–1000 GPa with the only exception of 350–600 GPa owing to the elastic softening. The softening behaviors of the Young’s and shear moduli are also found in the same pressure range of 350–600 GPa, indicating a structural metastability. Investigation on the axial compressibility we observed an abnormal c-axis expansion behavior within a pressure range of 350–600 GPa, resulting from the expansion of the Ti–Ti bond length and the increase of the Ti–Ti bond population. Study on the density of states (DOSs) we found that the Ti s and Ti p electrons shift towards higher energies with pressure

  15. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed; Ikram, Nazma; Ali, Sana Zulfiqar; Nazir, Safdar; Alay-E-Abbas, Syed Muhammad; Shaukat, Ali

    2010-01-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS

  16. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  17. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Science.gov (United States)

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  18. A first-principles study of the electronic structure and stability of Be(BH4)2

    NARCIS (Netherlands)

    Setten, M.J. van; Wijs, G.A. de; Brocks, G.

    2007-01-01

    Alanates and boranates are studied intensively because of their potential use as hydrogen storage materials. In this paper we present a first-principles study of the electronic structure and the energetics of beryllium boranate, Be(BH4)2. From total energy calculations we show that - in contrast to

  19. First Principles Study of Electronic and Magnetic Structures in Double Perovskites

    Science.gov (United States)

    Ball, Molly

    films of Sr2CrReO 6, where our experimental collaborators found extraordinarily large anisotropy fields and record-breaking strain-tunable magnetocrystalline anisotropy (MCA). We employed first principles calculations that examine the dependence of MCA on strain and could identify orbital magnetism on the Re atoms as the origin of this unique phenomenon. In the last section, we introduce double perovskites as novel lead-free halide solar cell materials, with current focus on Cs2AgBiBr 6 and Cs2AgBiCl6. While organic Pb based halides that can be synthesized without expensive clean rooms have achieved within record time efficiencies that rival that of traditional semiconductor based materials, creating quite a buzz within the field of photovoltaics, their Pb content and lacking air stability represented severe roadblocks towards market introduction. Here, we show with band structure calculations that spin-orbit coupling is a much more dominant interaction than in traditional semiconductors and thus needs to be considered when designing novel materials for maximum efficiency. The results of this study have given momentum to investigate additional halides double perovskites. Finally, we will summarize and discuss the importance of computational modeling in order to explore the wide and to date little explored composition space of double perovskites, one of the currently most promising materials classes for novel devices with unique and extremely tunable properties.

  20. Insight into the Dzyaloshinskii-Moriya interaction through first-principles study of chiral magnetic structures

    Science.gov (United States)

    Sandratskii, L. M.

    2017-07-01

    The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya interaction (DMI). The paper aims at the development of the physical picture able to address apparently contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities. We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC). It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason for the peculiar form of the partial DMI contributions is a q -dependent difference in the charge distribution between q and -q spirals. The strongly q -dependent relation between atomic contributions shows that the real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general

  1. Investigation of structural stability and elastic properties of CrH and MnH: A first principles study

    Science.gov (United States)

    Kanagaprabha, S.; Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Murugan, A.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    The structural and mechanical properties of CrH and MnH are investigated using first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. A structural phase transition from NaCl to NiAs phase at a pressure of 76 GPa is predicted for both CrH and MnH.

  2. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lybye, D.; Bonanos, N.

    2004-01-01

    Many metal oxides of fluorite and perovskite related structures are oxide ion conductors, which have practical applications in devices such as oxygen sensors, solid oxide fuel cells (SOFC) and electrolysers. Several structural and thermodynamic parameters such as (1) critical radius of the pathway...... such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic...... conductivity to a very large extent, and that lattice distortion is of much greater importance than many other proposed parameters. In case of the perovskites, the charge of the B-site ion is also of major importance. (C) 2004 Published by Elsevier B.V....

  3. Electronic structures of N- and C-doped NiO from first-principles calculations

    International Nuclear Information System (INIS)

    Long, Run; English, Niall J.; Mooney, Damian A.

    2010-01-01

    The large intrinsic band gap of NiO has hindered severely its potential application under visible-light irradiation. In this Letter, we have performed first-principles calculations on the electronic properties of N- and C-doped NiO to ascertain if its band gap may be narrowed theoretically. It was found that impurity bands driven by N 2p or C 2p states appear in the band gap of NiO and that some of these locate at the conduction band minimum, which leads to a significant band gap narrowing. Our results show that N-doped NiO may serve as a potential photocatalyst relative to C-doped NiO, due to the presence of some recombination centres in C-doped NiO.

  4. The structural basis of the fluorite-related rare earth higher oxides

    International Nuclear Information System (INIS)

    Kang, Z.C.; Eyring, LeRoy

    1996-01-01

    In this paper phenomenological structural principles, and rules for their application are advanced for predicting the ideal structures of the higher oxides of the rare earths. These principles allow to establish a generic formula incorporating all known phases, guide the correct modelling of the established structures and demonstrate that structures previously proposed but proven incorrect do not follow the structural principles. They also can be used to predict the structures not yet established for known phases, including polymorphs, and provide rationalization for phases fitting the generic formula that have not yet been found. The structural principles flow naturally from the fluorite substructure characteristic of all established phases. 39 refs., 5 tabs., 16 figs

  5. Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity.

    Science.gov (United States)

    Sun, Geng; Sautet, Philippe

    2018-02-28

    Reactivity studies on catalytic transition metal clusters are usually performed on a single global minimum structure. With the example of a Pt 13 cluster under a pressure of hydrogen, we show from first-principle calculations that low energy metastable structures of the cluster can play a major role for catalytic reactivity and that hence consideration of the global minimum structure alone can severely underestimate the activity. The catalyst is fluxional with an ensemble of metastable structures energetically accessible at reaction conditions. A modified genetic algorithm is proposed to comprehensively search for the low energy metastable ensemble (LEME) structures instead of merely the global minimum structure. In order to reduce the computational cost of density functional calculations, a high dimensional neural network potential is employed to accelerate the exploration. The presence and influence of LEME structures during catalysis is discussed by the example of H covered Pt 13 clusters for two reactions of major importance: hydrogen evolution reaction and methane activation. The results demonstrate that although the number of accessible metastable structures is reduced under reaction condition for Pt 13 clusters, these metastable structures can exhibit high activity and dominate the observed activity due to their unique electronic or structural properties. This underlines the necessity of thoroughly exploring the LEME structures in catalysis simulations. The approach enables one to systematically address the impact of isomers in catalysis studies, taking into account the high adsorbate coverage induced by reaction conditions.

  6. Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum.

    Science.gov (United States)

    Umari, P; Gonze, Xavier; Pasquarello, Alfredo

    2003-01-17

    Using a first-principles approach, we calculate Raman spectra for a model structure of vitreous silica. We develop a perturbational method for calculating the dielectric tensor in an ultrasoft pseudopotential scheme and obtain Raman coupling tensors by finite differences with respect to atomic displacements. For frequencies below 1000 cm(-1), the parallel-polarized Raman spectrum of vitreous silica is dominated by oxygen bending motions, showing a strong sensitivity to the intermediate range structure. By modeling the Raman coupling, we derive estimates for the concentrations of three- and four-membered rings from the experimental intensities of the Raman defect lines.

  7. Physics of Schottky-barrier change by segregation and structural disorder at metal/Si interfaces: First-principles study

    International Nuclear Information System (INIS)

    Nakayama, T.; Kobinata, K.

    2012-01-01

    Schottky-barrier changes by the segregation and structural disorder are studied using the first-principles calculations and adopting Au/Si interface. The Schottky barrier for electrons simply decreases as increasing the valency of segregated atoms from II to VI families, which variation is shown closely related to how the Si atoms are terminated at the interface. On the other hand, the structural disorders (defects) prefer to locate near the interface and the Schottky barrier for hole carriers does not change in cases of Si vacancy and Au substitution, while it increases in cases of Si and Au interstitials reflecting the appearance of Si dangling bonds.

  8. Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei; Blokhin, Eugeny

    2009-01-01

    The study of the bulk and surface properties of cubic (fluorite structure) HfO 2 and UO 2 was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO 2 differ from those found for other metal oxides with the closed-shell configuration of d-electrons

  9. Effect of single vacancy on the structural, electronic structure and magnetic properties of monolayer graphyne by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jiangni, E-mail: niniyun@nwu.edu.cn; Zhang, Yanni; Xu, Manzhang; Wang, Keyun; Zhang, Zhiyong

    2016-10-01

    The effect of single vacancy on the structural, electronic and magnetic properties of monolayer graphyne is investigated by the first-principles calculations. The calculated results reveal that single vacancy can result in the spin polarization in monolayer graphyne and the spin polarization is sensitive to local geometric structure of the vacancy. In the case of monolayer graphyne with one single vacancy at the sp{sup 2} hybridized C site, the vacancy introduces rather weakly spin-polarized, flat bands in the band gap. Due to the localization nature of the defect-induced bands, the magnetic moment is mainly localized at the vacancy site. As for the monolayer graphyne with one single vacancy at the sp hybridized C site, one defect-induced state which is highly split appears in the band gap. The spin-up band of the defect-induced state is highly dispersive and shows considerable delocalization, suggesting that the magnetic moment is dispersed around the vacancy site. The above magnetization in monolayer graphyne with one single vacancy is possibly explained in terms of the valence-bond theory. - Graphical abstract: Calculated band structure of the monolayer graphyne without (a) and with one single vacancy at Vb site (b) and at Vr site(c), respectively. Blue and red lines represent the spin-up and spin-down bands, respectively. For the sake of clarity, the band structure near the Fermi energy is also presented on the right panel. The Fermi level is set to zero on the energy scale. - Highlights: • A Jahn-Teller distortion occurs in monolayer graphyne with single vacancy. • The spin polarization is sensitive to local geometric structure of the vacancy. • Vacancy lying at sp{sup 2} hybridized C site introduces weakly spin-polarized defect bands. • A strong spin splitting occurs when the vacancy lies at sp hybridized C site. • The magnetization is explained in terms of the valence-bond theory.

  10. First-principles study of structural & electronic properties of pyramidal silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Jariwala, Pinank; Thakor, P. B. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Singh, Deobrat; Sonvane, Y. A., E-mail: yasonvane@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Gupta, Sanjeev K. [Department of Physics, St. Xavier’s College, Ahmedabad 38 0009 (India)

    2016-05-23

    We have investigated the stable structural and electronic properties of Silicon (Si) nanowires having different cross-sections with 5-7 Si atoms per unit cell. These properties of the studied Si nanowires were significantly changed from those of diamond bulk Si structure. The binding energy increases as increasing atoms number per unit cell in different SiNWs structures. All the nanowires structures are behave like metallic rather than semiconductor in bulk systems. In general, the number of conduction channels increases when the nanowire becomes thicker. The density of charge revealed delocalized metallic bonding for all studied Si nanowires.

  11. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    Science.gov (United States)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  12. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  13. Structural, Electronic, Magnetic, and Vibrational Properties of Graphene and Silicene: A First-Principles Perspective

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-01-01

    This thesis covers the structural, electronic, magnetic, and vibrational properties of graphene and silicene. In Chapter I, we will start with an introduction to graphene and silicene. In Chapter II, we will briefly discuss about the methodology (i

  14. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  15. Merging first principle structure studies and few-body reaction formalism

    Science.gov (United States)

    Crespo, R.; Cravo, E.; Arriaga, A.; Wiringa, R.; Deltuva, A.; Diego, R.

    2018-02-01

    Calculations for nucleon knockout from a 7Li beam due to the collision with a proton target at 400 MeV/u are shown based on ab initio Quantum Monte Carlo (QMC) and conventional shell-model nuclear structure approaches to describe the relative motion between the knockout particle and the heavy fragment of the projectile. Structure effects on the total cross section are shown.

  16. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3

    International Nuclear Information System (INIS)

    Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong

    2012-01-01

    The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO 3 (PP-PTO) and is constructed with TiO 6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are −0.5 GPa and −1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite. (condensed matter: structural, mechanical, and thermal properties)

  17. First principles study of structural stability and site preference in Co3 (W,X

    Directory of Open Access Journals (Sweden)

    Joshi Sri Raghunath

    2014-01-01

    Full Text Available Since the discovery [1] of γ′ precipitate (L12 – Co3(Al, W in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (γ + γ′ similar to Ni-based superalloys [2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the γ′ phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L12 structure. Compositions of type Co3(W,X, (where X/Y = Mn, Fe, Ni, Pt, Cr , Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L12 structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.

  18. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa

    2014-01-15

    The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.

  19. The structural, mechanical, and electronic properties of LiAlB{sub 4} under pressure from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Tayran, Ceren; Aydin, Sezgin [Department of Physics, Sciences Faculty, Gazi University, 06500, Ankara (Turkey)

    2017-05-15

    The structural, elastic, mechanical, and electronic properties of lithium aluminum tetraboride (LiAlB{sub 4}) under hydrostatic pressure have been investigated by using first-principles density functional theory calculations. The effects of pressure on the lattice parameters, volume, and bond lengths are studied. It is indicated from the calculated elastic constants that LiAlB{sub 4} compound is mechanically stable on 0-40 GPa pressure range. And, by means of these elastic constants set, some mechanical properties such as bulk, shear and Young's moduli, and then Poisson's ratio are determined as a function of pressure. Also, the ductile or brittle nature of LiAlB{sub 4} is examined. Additionally, using the first-principles data obtained from the geometry optimizations, the hardness of LiAlB{sub 4} is calculated, and its nature is investigated under pressure. Furthermore, in order to reveal the effects of pressure on the electronic and binding behavior of the compound, band structures, total and partial density of states, charge densities, Mulliken atomic charges, and bond overlap populations are searched as a function of pressure. To check the stability of the compound, phonon dispersion curves are calculated. And, the results are compared with the other convenient borides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    International Nuclear Information System (INIS)

    Matar, S.F.; Nakhl, M.; Al Alam, A.F.; Ouaini, N.; Chevalier, B.

    2010-01-01

    Graphical abstract: Base centered orthorhombic YNiH X structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH 4 is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH 3 and YNiH 4 hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  1. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  2. Structural, electronic and magnetic properties of Pr-based filled skutterudites: A first principle study

    Science.gov (United States)

    Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2018-04-01

    Ternary skutterudites materials exhibit good electronic properties due to the unpaired d- and f- electrons of the transition and rare-earth metals, respectively. In this communication, we have performed the structural optimization of Pr-based filled skutterudite (PrCo4P12) for the first time and obtained the electronic band structure, density of states and magnetic moments by using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). Our obtained magnetic moment of PrCo4P12 is ˜ 1.8 µB in which main contribution is due to Pr atom. Behavior of this material is metallic and it is most stable in body centered cubic (BCC) structure.

  3. Structure of a 13-fold superhelix (almost determined from first principles

    Directory of Open Access Journals (Sweden)

    Guillaume A. Schoch

    2015-03-01

    Full Text Available Nuclear hormone receptors are cytoplasm-based transcription factors that bind a ligand, translate to the nucleus and initiate gene transcription in complex with a co-activator such as TIF2 (transcriptional intermediary factor 2. For structural studies the co-activator is usually mimicked by a peptide of circa 13 residues, which for the largest part forms an α-helix when bound to the receptor. The aim was to co-crystallize the glucocorticoid receptor in complex with a ligand and the TIF2 co-activator peptide. The 1.82 Å resolution diffraction data obtained from the crystal could not be phased by molecular replacement using the known receptor structures. HPLC analysis of the crystals revealed the absence of the receptor and indicated that only the co-activator peptide was present. The self-rotation function displayed 13-fold rotational symmetry, which initiated an exhaustive but unsuccessful molecular-replacement approach using motifs of 13-fold symmetry such as α- and β-barrels in various geometries. The structure was ultimately determined by using a single α-helix and the software ARCIMBOLDO, which assembles fragments placed by PHASER before using them as seeds for density modification model building in SHELXE. Systematic variation of the helix length revealed upper and lower size limits for successful structure determination. A beautiful but unanticipated structure was obtained that forms superhelices with left-handed twist throughout the crystal, stabilized by ligand interactions. Together with the increasing diversity of structural elements in the Protein Data Bank the results from TIF2 confirm the potential of fragment-based molecular replacement to significantly accelerate the phasing step for native diffraction data at around 2 Å resolution.

  4. First-principles study of the structural and electronic properties of III-phosphides

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan)], E-mail: rasofi@hotmail.com; Fazal-e-Aleem [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Hashemifar, S. Javad; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of)

    2008-05-01

    We use density functional theory and different forms of the exchange-correlation approximation to calculate the structural and electronic properties of tetrahedrally coordinated III-phosphide semiconductors. The computed results for structural properties using generalized gradient approximation (GGA) agree well with the experimental data. For reliable description of energy band gap values, another form of GGA developed by Engel and Vosko has been applied. As anticipated, boron phosphide was found to be the hardest compound due to the strong B-P covalent bonding.

  5. Self-interstitials structure in the hcp metals: A further perspective from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pasianot, Roberto C., E-mail: pasianot@cnea.gov.ar [Gerencia Materiales, CAC-CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); CONICET, Godoy Cruz 2290, 1425 Buenos Aires (Argentina); Instituto Sabato, UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina)

    2016-12-01

    We study the structure of several standard and non-standard self-interstitial configurations in a series of hcp metals, by using Density Functional Theory as embodied in the computer codes SIESTA and WIEN2k. The considered metals include Be, Mg, Ti, Zr, Co, Zn, and Cd, thus spanning the whole range of experimental c/a ratios, different kinds of bonding, and even magnetism (Co). The results show the importance of low symmetry configurations, closely related to the non-basal crowdion, in order to rationalize the experimental data on self-interstitial structure and migration.

  6. First principles results of structural and electronic properties of ZnS

    Indian Academy of Sciences (India)

    We present results of the study of ZnS (1 ≤ ≤ 9) clusters, using the density functional formalism and projector augmented wave method within the generalized gradient approximation. Along with the structural and electronic properties, nature of bonding and overall stability of clusters has been studied.

  7. First-principle study of structure and stability of nickel carbides

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Josh S; Uddin, Jamal; Cundari, Thomas R; Bodiford, Nelli K; Wilson, Angela K [Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, TX 76203 (United States); Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX 76203 (United States)

    2010-10-10

    Computational studies of nickel carbides, particularly Ni{sub 2}C, are scarce. A systematic density functional theory study is reported for Ni{sub 2}C, along with NiC and Ni{sub 3}C, to understand the stability and electronic structure of nickel carbides of varying stoichiometry. A comprehensive study was executed that involved 28 trial structures of varying space group symmetry for Ni{sub 2}C. An analysis of the electronic structure, geometry and thermodynamics of Ni{sub 2}C is performed, and compared with that for Ni{sub 3}C and NiC as well as several defect structures of varying composition. It is found that the most stable ground state arrangement of Ni{sub 2}C exists within a simple orthorhombic lattice and that it has metallic character. The calculated formation energies (kcal mol{sup -1}) of NiC, Ni{sub 2}C, and Ni{sub 3}C are 48.6, 7.9 and 6.4, respectively.

  8. First principles study of structural and electronic properties of different phases of boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan)], E-mail: rasofi@hotmail.com; Fazal-e-Aleem [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Hashemifar, S. Javad; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, 84156 Isfahan (Iran, Islamic Republic of)

    2007-11-15

    A theoretical study of structural and electronic properties of the four phases of BN (zincblende, wurtzite, hexagonal and rhombohedral) is presented. The calculations are done by full potential (linear) augmented plane wave plus local orbitals (APW+lo) method based on the density functional theory (DFT) as employed in WIEN2k code. Using the local density approximation (LDA) and generalized gradient approximation (GGA-PBE) for the exchange correlation energy functional, we have calculated lattice parameters, bulk modulus, its pressure derivative and cohesive energy. In order to calculate electronic band structure, another form of the generalized gradient approximation proposed by Engel and Vosko (GGA-EV) has been employed along with LDA and GGA-PBE. It is found that all the three approximations exhibit similar band structure qualitatively. However, GGA-EV gives energy band gap values closer to the measured data. Our results for structural and electronic properties are compared with the experimental and other theoretical results wherever these are available.

  9. Structural and electronic properties of ScxAl1−xN: First principles study

    International Nuclear Information System (INIS)

    Berkok, Houria; Tebboune, Abdelghani; Saim, Asmaa; Belbachir, Ahmed H

    2013-01-01

    The structural and electronic properties of Sc x Al 1−x N ternary semiconductor alloys are investigated in the rocksalt, zinc blend and wurtzite structures using the full potential linear muffin tin orbitals (FP-LMTO) method. The local density approximation (LDA) was used for the exchange and correlation energy density functional. In particular, the lattice constant, bulk modulus and band gap energies of ScN and AlN compounds and their ternary alloys Sc x Al 1−x N are calculated in rocksalt, zinc blend and wurtzite structures and discussed. A linear relationship has obtained for equilibrium lattice constants versus Sc concentration for rocksalt and zinc blend structures. The band gap is decreased with the increasing of Sc concentration in the rocksalt phase. For ZB-Sc x Al 1−x N, the band gap is the largest one at x=0.25 and changes from indirect to direct when x is more than 0.25

  10. Electronic structure and lattice dynamics of rhombohedral BiAlO_3 from first-principles

    International Nuclear Information System (INIS)

    Kaczkowski, J.

    2016-01-01

    The structural, elastic, electronic, dynamical (zone-center phonon modes and Born effective charge tensors), and ferroelectric properties of the rhombohedral BiAlO_3 were calculated within various exchange-correlation functionals. The standard local-density (LDA) and generalized gradient (GGA) approximations, and nonlocal hybrid Heyd-Scuseria-Ernzerhof (HSE) were used. We have also performed the electronic structure calculations with meta-GGA Tran-Blaha functional. BiAlO_3 is indirect band gap semiconductor with the value of band gap: 2.87 eV (GGA), 4.14 eV (HSE), and 3.78 eV (TB-mBJ). The calculated spontaneous polarization is 81 μC/cm"2 (87 μC/cm"2) for GGA (HSE). The vibrational spectrum including LO-TO splitting was calculated within GGA. The zone-center phonon modes with LO-TO splitting for BiAlO_3 were compared with those in isostructural BiFeO_3. - Highlights: • Electronic structure of the rhombohedral phase of BiAlO_3 were calculated. • Structural, elastic, dynamical, and ferroelectric properties were investigated. • Calculations were done within GGA, hybrid HSE, and TB-mBJ functionals. • The lattice dynamics with LO-TO splitting were investigated within GGA functional.

  11. Interface structure and mechanics between graphene and metal substrates: a first-principles study

    Science.gov (United States)

    Xu, Zhiping; Buehler, Markus J.

    2010-12-01

    Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of critical importance in applications of graphene in integrated electronics, as thermal materials, and in electromechanical devices. Here we investigate the structure and mechanical interactions at a graphene-metal interface through density functional theory (DFT)-based calculations. We focus on copper (111) and nickel (111) surfaces adhered to a monolayer of graphene, and find that their cohesive energy, strength and electronic structure correlate directly with their atomic geometry. Due to the strong coupling between open d-orbitals, the nickel-graphene interface has a much stronger cohesive energy with graphene than copper. We also find that the interface cohesive energy profile features a well-and-shoulder shape that cannot be captured by simple pair-wise models such as the Lennard-Jones potential. Our results provide a detailed understanding of the interfacial properties of graphene-metal systems, and help to predict the performance of graphene-based nanoelectronics and nanocomposites. The availability of structural and energetic data of graphene-metal interfaces could also be useful for the development of empirical force fields for molecular dynamics simulations.

  12. First principles study on structural, lattice dynamical and thermal properties of BaCeO3

    Science.gov (United States)

    Zhang, Qingping; Ding, Jinwen; He, Min

    2017-09-01

    BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.

  13. First principles insight into the α-glucan structures of starch

    DEFF Research Database (Denmark)

    Damager, Iben; Engelsen, Søren Balling; Blennow, Andreas

    2010-01-01

    A study was conducted to demonstrate the synthesis, conformation, and hydration of the α-glucan structures of starch. Starch and glycogen were synthesized by sets of specific enzyme activities that directly determined their molecular structures and physical properties. It was demonstrated...... that the extent of crystallinity, aggregation and hydration was of fundamental importance for starch and its human analogue glycogen. Starch was deposited in the plant as a stable form in highly organized and semicrystalline granules having specific crystalline polymorphs as determined by powder X......-ray crystallography. The investigations mainly focused on the bottom-up approach of synthesis, conformation, and hydration of starch. Starch and glycogen were found to be polymers that were built up from a single monomer, D-glucopyranose, or for short D-glucose....

  14. Structure and Properties of the Fe/Y2O3 Interface from First Principles Calculations

    International Nuclear Information System (INIS)

    Choudhury, Samrat; Stanek, Christopher R.; Uberuaga, Blas P.

    2012-01-01

    Fundamentals of radiation damage are: (1) Formation of Frenkel pair (interstitial-vacancy pair) defects in the lattice; (2) Concentration of Frenkel pair defects >>> thermal equilibrium thermodynamic concentration; and (3) The radiation damage response of a material is determined by the fate of these excess Frenkel pair defects in the lattice. The objective is to understand the electronic and atomic structure of Fe/Y 2 O 3 interface and segregation behavior of the alloying elements at the interface. The significance of the results of this report are: (1) Provides a science based approach to design new radiation resistant materials. Obtained two controlling parameters - Dislocation density (composition, orientation relationship) and Oxygen partial pressure; (2) Applicable to any other metal/oxide interfaces (both functional and structural properties at the interface) - (a) Nano Catalysts: Oxide-supported metal catalysts Ni/ZrO 2 , (b) Thermal barrier coatings (Ni/Al 2 O 3 ), (c) Corrosion of metals and alloys.

  15. A first principles study of adhesion and electronic structure at Fe (110)/graphite (0001) interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangzhen; Xing, Jiandong; Li, Yefei, E-mail: yefeili@126.com; Sun, Liang; Wang, Yong

    2017-05-31

    Highlights: • The surface energy of graphite (0001) and Fe (110) has been calculated and the number of layers of graphite slab and Fe slab has been estimated. • The work of adhesion of Fe (110)/graphite (0001) interface with different interfacial separation d{sub 0} (1.7–3 Å) has been systematically discussed. • The total electron density and electron density difference of Fe (110)/graphite (0001) are used to study the bonding characteristics. • The Interfacial energy and fracture toughness of Fe (110)/graphite (0001) are estimated. - Abstract: Using first–principles calculations, we discuss the bulk properties of bcc Fe and graphite and that of the surface, the work of adhesion, and the electronic structure of Fe (110)/graphite (0001) interface. In this study, the experimental results of the bulk properties of bcc Fe and graphite reveal that our adopted parameters are reliable. Moreover, the results of surface energy demonstrate that nine atomic layers of graphite (0001) and five atomic layers of Fe (110) exhibit bulk–like interiors. The lattice mismatch of Fe (110)/graphite (0001) interface is about 6%. The results also exhibit that the Fe atom residing on top of the second layer of graphite slab (HCP structure) is the preferred stacking sequence. The work of adhesion (W{sub ad}) of the optimized Fe/graphite interface of HCP structure is 1.36 J/m{sup 2}. Electronic structures indicate that the bonding characteristics are a mixture of covalent and ionic bonds in the HCP interface. Moreover, the magnetic moment of atoms at the interface was studied using the spin polarized density of states.

  16. First principle calculation of structure and lattice dynamics of Lu2Si2O7

    Directory of Open Access Journals (Sweden)

    Nazipov D.V.

    2017-01-01

    Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.

  17. Structural, Electronic, Magnetic, and Vibrational Properties of Graphene and Silicene: A First-Principles Perspective

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-11-01

    This thesis covers the structural, electronic, magnetic, and vibrational properties of graphene and silicene. In Chapter I, we will start with an introduction to graphene and silicene. In Chapter II, we will briefly discuss about the methodology (i. e. density functional theory)In Chapter III, we will introduce band gap opening in graphene either by introducing defects/doping or by creating superlattices with h-BN substrate. In Chapter IV, we will focus on the structural and electronic properties of K and Ge-intercalated graphene on SiC(0001). In addition, the enhancement of the superconducting transition temperature in Li-decorated graphene supported by h-BN substrate will be discussed. In Chapter V, we will discuss the vibrational properties of free-standing silicene. In addition, superlattices of silicene with h-BN as well as the phase transition in silicene by applying an external electric field will be discussed. The electronic and magnetic properties transition metal decorated silicene will be discussed, in particular the realization of the quantum anomalous Hall effect will be addressed. Furthermore, the structural, electronic, and magnetic properties of Mn decorated silicene supported by h-BN substrate will be discussed. The conclusion is included in Chapters VI. Finally, we will end with references and a list of publications for this thesis.

  18. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn (N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ̄N increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed. © 2013 Elsevier B.V.

  19. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    International Nuclear Information System (INIS)

    Hao Xianfeng; Wu Zhijian; Xu Yuanhui; Zhou Defeng; Liu Xiaojuan; Meng Jian

    2007-01-01

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB 2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB 2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation

  20. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xianfeng [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu Zhijian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Yuanhui [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Zhou Defeng [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Liu Xiaojuan [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2007-05-16

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB{sub 2} (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB{sub 2} might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.

  1. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C

    2011-01-01

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  2. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C, E-mail: albertto@pitt.edu [Department of Mechanical Engineering and Materials Science and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size ({approx}5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  3. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  4. A first principles study of the electronic structure, elastic and thermal properties of UB2

    Science.gov (United States)

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  5. First-principles study of crystal and electronic structure of rare-earth cobaltites

    Energy Technology Data Exchange (ETDEWEB)

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-06-28

    Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc} and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.

  6. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  7. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  8. Structural and electronic properties of wurtzite Bx Al1-x N from first-principles calculations

    KAUST Repository

    Zhang, Muwei; Li, Xiaohang

    2017-01-01

    The structural and electronic properties of wurtzite BAlN (0≤x≤1) are studied using density functional theory. The change of lattice parameters with increased B composition shows small bowing parameters and thus slightly nonlinearity. The bandgap exhibits strong dependence on the B composition, where transition from direct to indirect bandgap occurs at a relatively low B composition (x∼0.12) is observed, above which the bandgap of BAlN maintained indirect, thus desirable for low-absorption optical structures. The Γ-A and Γ-K indirect bandgaps are dominant at lower and higher B compositions, respectively. Density of states (DOS) of the valence band is susceptible to the B incorporation. Strong hybridization of Al, B, and N in p-states leads to high DOS near the valence band maximum. The hybridization of Al and B in s-states at lower B compositions and p-states of B at higher B compositions give rise to high DOS near lower end of the upper valence band. Charge density analysis reveals the B-N chemical bond is more covalent than the Al-N bond. This will lead to more covalent crystal with increasing B composition. Dramatic change of the heavy hole effective mass is found due to significant curvature increase of the band by minor B incorporation.

  9. Structural and electronic properties of wurtzite Bx Al1-x N from first-principles calculations

    KAUST Repository

    Zhang, Muwei

    2017-06-14

    The structural and electronic properties of wurtzite BAlN (0≤x≤1) are studied using density functional theory. The change of lattice parameters with increased B composition shows small bowing parameters and thus slightly nonlinearity. The bandgap exhibits strong dependence on the B composition, where transition from direct to indirect bandgap occurs at a relatively low B composition (x∼0.12) is observed, above which the bandgap of BAlN maintained indirect, thus desirable for low-absorption optical structures. The Γ-A and Γ-K indirect bandgaps are dominant at lower and higher B compositions, respectively. Density of states (DOS) of the valence band is susceptible to the B incorporation. Strong hybridization of Al, B, and N in p-states leads to high DOS near the valence band maximum. The hybridization of Al and B in s-states at lower B compositions and p-states of B at higher B compositions give rise to high DOS near lower end of the upper valence band. Charge density analysis reveals the B-N chemical bond is more covalent than the Al-N bond. This will lead to more covalent crystal with increasing B composition. Dramatic change of the heavy hole effective mass is found due to significant curvature increase of the band by minor B incorporation.

  10. Structure and Properties of the Fe/Y2O3 Interface from First Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Samrat [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory

    2012-07-31

    Fundamentals of radiation damage are: (1) Formation of Frenkel pair (interstitial-vacancy pair) defects in the lattice; (2) Concentration of Frenkel pair defects >>> thermal equilibrium thermodynamic concentration; and (3) The radiation damage response of a material is determined by the fate of these excess Frenkel pair defects in the lattice. The objective is to understand the electronic and atomic structure of Fe/Y{sub 2}O{sub 3} interface and segregation behavior of the alloying elements at the interface. The significance of the results of this report are: (1) Provides a science based approach to design new radiation resistant materials. Obtained two controlling parameters - Dislocation density (composition, orientation relationship) and Oxygen partial pressure; (2) Applicable to any other metal/oxide interfaces (both functional and structural properties at the interface) - (a) Nano Catalysts: Oxide-supported metal catalysts Ni/ZrO{sub 2}, (b) Thermal barrier coatings (Ni/Al{sub 2}O{sub 3}), (c) Corrosion of metals and alloys.

  11. Reply to ``Comment on `Band structure engineering of graphene by strain: First-principles calculations' ''

    Science.gov (United States)

    Gui, Gui; Li, Jin; Zhong, Jianxin

    2009-10-01

    We reply to the Comment by Farjam and Rafii-Tabar [Phys. Rev. B 80, 167401 (2009)] on our paper [Phys. Rev. B 78, 075435 (2008)]. We show that the gap opening found in our paper is due to the use of a small number of k points in the calculation which prevents revealing the sharp contact of the two bands near K or R . Once a large number of k points is used, the density-functional theory (DFT) VASP codes give the same conclusion as obtained by Farjam and Rafii-Tabar by using the QUANTUM-ESPRESSO codes, namely, there is no gap opening in the band structure of graphene under small planar strain. We also point out that all other results in our paper remain correct, except for the conclusion of the gap opening. The results demonstrate the importance of using a large number of k points for determining the gap width of the band structure of graphene under strain as well as the validity of the DFT VASP codes for the system.

  12. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    Science.gov (United States)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  13. First-principles study of electronic structure of deformed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Kazuchika Iwami, Hidekazu Goto, Kikuji Hirose and Tomoya Ono

    2007-01-01

    Full Text Available On the basis of density functional theory, we study the electronic structures of five types of carbon nanotubes: the non-deformed (6,6 tube, the uniformly stretched tube along the tube axis, the uniformly compressed tube, the partially stretched tube and the partially compressed tube. The electron charge density increases at the compressed C–C bond of the partially stretched tube, while the density decreases at the stretched C–C bond of the partially stretched tube. In addition, the a1 and e1 states of the (6,6 tube contribute to the bonding along the tube axis and the a2 and e2 states are the bonds connecting the atoms in the same layers. Thus, the energy bands of the a1 and e1 states are sensitively affected by the deformation of the tubes along the tube axis.

  14. First-principles investigation on structural and electronic properties of antimonene nanoribbons and nanotubes

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-03-01

    The electronic properties of antimonene nanotubes and nanoribbons hydrogenated along the zigzag and armchair borders are investigated with the help of density functional theory (DFT) method. The structural stability of antimonene nanostructures is confirmed with the formation energy. The electronic properties of hydrogenated zigzag and armchair antimonene nanostructures are studied in terms of highest occupied molecular orbital (HOMO) & lowest unoccupied molecular orbital (LUMO) gap and density of states (DOS) spectrum. Moreover, due to the influence of buckled orientation, hydrogen passivation and width of antimonene nanostructures, the HOMO-LUMO gap widens in the range of 0.15-0.41 eV. The findings of the present study confirm that the electronic properties of antimonene nanostructures can be tailored with the influence of width, orientation of the edges, passivation with hydrogen and morphology of antimonene nanostructures (nanoribbons, nanotubes), which can be used as chemical sensor and for spintronic devices.

  15. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    International Nuclear Information System (INIS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-01-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  16. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  17. First principle electronic, structural, elastic, and optical properties of strontium titanate

    Directory of Open Access Journals (Sweden)

    Chinedu E. Ekuma

    2012-03-01

    Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

  18. An approach to first principles electronic structure calculation by symbolic-numeric computation

    Directory of Open Access Journals (Sweden)

    Akihito Kikuchi

    2013-04-01

    Full Text Available There is a wide variety of electronic structure calculation cooperating with symbolic computation. The main purpose of the latter is to play an auxiliary role (but not without importance to the former. In the field of quantum physics [1-9], researchers sometimes have to handle complicated mathematical expressions, whose derivation seems almost beyond human power. Thus one resorts to the intensive use of computers, namely, symbolic computation [10-16]. Examples of this can be seen in various topics: atomic energy levels, molecular dynamics, molecular energy and spectra, collision and scattering, lattice spin models and so on [16]. How to obtain molecular integrals analytically or how to manipulate complex formulas in many body interactions, is one such problem. In the former, when one uses special atomic basis for a specific purpose, to express the integrals by the combination of already known analytic functions, may sometimes be very difficult. In the latter, one must rearrange a number of creation and annihilation operators in a suitable order and calculate the analytical expectation value. It is usual that a quantitative and massive computation follows a symbolic one; for the convenience of the numerical computation, it is necessary to reduce a complicated analytic expression into a tractable and computable form. This is the main motive for the introduction of the symbolic computation as a forerunner of the numerical one and their collaboration has won considerable successes. The present work should be classified as one such trial. Meanwhile, the use of symbolic computation in the present work is not limited to indirect and auxiliary part to the numerical computation. The present work can be applicable to a direct and quantitative estimation of the electronic structure, skipping conventional computational methods.

  19. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  20. Pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles

    Directory of Open Access Journals (Sweden)

    Ting Jia

    2017-05-01

    Full Text Available The serial system Srn+1FenO2n+1(n=1,2,3… with the FeO4 square planar motif exhibits abundant phase transitions under pressure. In this work, we investigate the pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles. Our results show that the system undergoes a structural transition from Immm to Ammm when the volume decreases by 30%, together with a spin-state transition (SST from high-spin (S = 2 to intermediate-spin (S = 1, an antiferromagnetic-to-ferromagnetic transition and an insulator-to-metal transition (IMT. Besides, the IMT here is a bandwidth controlled transition, but little influenced by the SST.

  1. First-principle calculations on the structural and electronic properties of hard C{sub 11}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongxu, E-mail: lidongxu@hqu.edu.cn [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Shi, Jiancheng; Lai, Mengling; Li, Rongkai [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Yu, Dongli [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2014-09-15

    A graphite-like C{sub 11}N{sub 4} model was built by stacking graphene and a C{sub 3}N{sub 4} triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C{sub 11}N{sub 4} is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C{sub 11}N{sub 4} was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C{sub 11}N{sub 4} is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy.

  2. Silicene on metal substrates: A first-principles study on the emergence of a hierarchy of honeycomb structures

    International Nuclear Information System (INIS)

    Kaltsas, D.; Tsetseris, L.; Dimoulas, A.

    2014-01-01

    Experimental studies have reported several types of Si monolayer structures that are formed on metal surfaces. These structures typically show the topology of a honeycomb bonding network, but differ in terms of corrugation and surface coverage. Using first-principles calculations, we identify atomic-scale mechanisms that underlie the appearance of different configurations as coverage increases during Si deposition on silver. The key point is that any extra Si adatoms that land on preformed silicene films can be incorporated in the honeycomb network and form bonds with underlying Ag atoms. As a result, the corrugation profile changes, giving rise to varying overlayer geometries. We also show that the same set of mechanisms control the appearance of silicene films on an iridium substrate. The results address available experimental data, but also probe the stability and properties of silicene wetting films that have not been observed yet.

  3. Structural, electronic and optical properties of silver delafossite oxides: A first-principles study with hybrid functional

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Persson, Clas

    2013-01-01

    Ternary delafossite compounds are potential materials for optoelectronic devices. Employing a first-principles method, we calculate the structural, electronic, and optical properties of the silver based compounds AgMO 2 (M=Al, Ga or In), which crystallize in delafossite structure. Our calculations show that these AgMO 2 oxides have indirect band gaps and the gap energies are in the region of 1.6–3.0 eV whereas, the lowest direct band gap energies are estimated in the range of 2.6–4.3 eV. Furthermore, we find that AgMO 2 compounds exhibit a strong anisotropy for the dielectric function and absorption spectra. The absorption onset for these compounds occurs well above the band gap energies. Overall, we show that the hybrid functional improves the lattice parameters and band gap energies and the calculated values are in good agreement with the experimental values

  4. Electronic structure and equation of state of Sm2Co17 from first-principles DFT+ U

    Science.gov (United States)

    Huang, Patrick; Butch, Nicholas P.; Jeffries, Jason R.; McCall, Scott K.

    2013-03-01

    Rare-earth intermetallics have important applications as permanent magnet materials, and the rational optimization of their properties would benefit greatly from guidance from ab initio modeling. However, these systems are particularly challenging for current electronic structure methods. Here, we present an ab initio study of the prototype material Sm2Co17 and related compounds, using density functional theory with a Hubbard correction for the Sm 4 f-electrons (DFT+ U method) and ultrasoft pseudopotentials. The Hubbard U parameter is derived from first principles [Cococcioni and de Gironcoli, PRB 71, 035105 (2005)], not fit to experiment. Our calculations are in good agreement with recent photoemission measurements at ambient pressure and the equation of state up to 40 GPa, thus supporting the validity of our DFT+ U model. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Adsorption and Electronic Structure of Sr and Ag Atoms on Graphite Surfaces: a First-Principles Study

    Science.gov (United States)

    Luo, Xiao-Feng; Fang, Chao; Li, Xin; Lai, Wen-Sheng; Sun, Li-Feng; Liang, Tong-Xiang

    2013-06-01

    The adsorption behaviors of radioactive strontium and silver nuclides on the graphite surface in a high-temperature gas-cooled reactor are studied by first-principles theory using generalized gradient approximation (GGA) and local density approximation (LDA) pseudo-potentials. It turns out that Sr prefers to be absorbed at the hollow of the carbon hexagonal cell by 0.54 eV (GGA), while Ag likes to sit right above the carbon atom with an adsorption energy of almost zero (GGA) and 0.45 eV (LDA). Electronic structure analysis reveals that Sr donates its partial electrons of the 4p and 5s states to the graphite substrate, while Ag on graphite is a physical adsorption without any electron transfer.

  6. The Effect of Indium Concentration on the Structure and Properties of Zirconium Based Intermetallics: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Fuda Guo

    2016-01-01

    Full Text Available The phase stability, mechanical, electronic, and thermodynamic properties of In-Zr compounds have been explored using the first-principles calculation based on density functional theory (DFT. The calculated formation enthalpies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristics and there is a common hybridization between In-p and Zr-d states near the Fermi level. Elastic properties have been taken into consideration. The calculated results on the ratio of the bulk to shear modulus (B/G validate that InZr3 has the strongest deformation resistance. The increase of indium content results in the breakout of a linear decrease of the bulk modulus and Young’s modulus. The calculated theoretical hardness of α-In3Zr is higher than the other In-Zr compounds.

  7. Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods

    International Nuclear Information System (INIS)

    Music, Denis; Ahuja, Rajeev; Schneider, Jochen M.

    2006-01-01

    Using first-principles methods, we have studied the electronic structure and lattice dynamics of CaPd 3 B and compared them to isostructural MgNi 3 C. CaPd 3 B possesses less electronic states at the Fermi level, but more phonon modes at low frequencies, than MgNi 3 C. According to the phonon density of states, low frequency acoustic modes are dominated by Pd states, corresponding to Ni in MgNi 3 C. Furthermore, these Pd modes show soft phonons, which may be significant for second-order phase transitions. Based on the comparison to MgNi 3 C, we suggest that the properties of these two compounds may be similar

  8. Role of anion doping on electronic structure and magnetism of GdN by first principles calculations

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Guo, Zaibing; Cheng, Yingchun; Chen, Guifeng; Bai, Haili

    2014-01-01

    We have investigated the electronic structure and magnetism of anion doped GdN1-yXy (X = B, C, O, F, P, S and As) systems by first-principles calculations based on density functional theory. GdN 1-yXy systems doped by O, C, F, P, and S atoms are more stable than those doped by B and As atoms because of relatively high binding energies. The anion doping and the N defect states modify the density of states at the Fermi level, resulting in a decrease in spin polarization and a slight increase in the magnetic moment at the Gd and N sites. © 2014 The Royal Society of Chemistry.

  9. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    Science.gov (United States)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  10. The influence of hydrostatic pressure on the electronic structure and optical properties of tin dioxide: A first-principle study

    International Nuclear Information System (INIS)

    Cai Lugang; Liu Famin; Zhang Dian; Zhong Wenwu

    2013-01-01

    The evolutions of electronic structure and optical properties of SnO 2 under hydrostatic pressure are studied theoretically using first-principle calculations. The calculation results show that the energy band gap of SnO 2 expands with increasing pressure, and the relationship between them can be fitted well by a second order polynomial expression. The complex dielectric functions are calculated and it is found that its imaginary part moves to higher photon energy levels with increasing pressure; meanwhile the static dielectric function constant decreases correspondingly. The dependences of other optical properties, such as the reflectivity spectra and loss function, on the hydrostatic pressure are also calculated and obtained, and the relationships between the optical properties and hydrostatic pressure are discussed and analyzed.

  11. First-principles real-space tight-binding LMTO calculation of electronic structures for atomic clusters

    International Nuclear Information System (INIS)

    Xie, Z.L.; Dy, K.S.; Wu, S.Y.

    1997-01-01

    A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society

  12. The determination of the structure of γ-alumina using empirical and first principle calculations and supporting experiment

    International Nuclear Information System (INIS)

    Paglia, G.; Buckely, C.E.; O'Connor, B.H.; Van Riessen, A.; Rohl, A.L.; Gale, J.D.

    2002-01-01

    Full text: Because of its hardness, abrasion resistance, mechanical strength, corrosion resistance, and good electrical insulation, alumina (AI 2 O 3 ) is a material of high technological and industrial significance. Alumina exists in a variety of metastable structures including the γ, η, θ, K, and χ aluminas, as well as its stable α alumina phase. The crystal structure of the γ-phase in alumina has attracted considerable attention over the past 40 years, with various reports attributing either a cubic or tetragonal structure to this phase. Consensus on the definitive structure of γ-alumina (γ-AI 2 O 3 ) has yet to be reached. Rapid advancement has occurred in the field of computational materials science in recent times. Huge advances in computing power during this period have made ft possible to apply the laws of quantum mechanics to the study of macroscopic properties of real materials at the atomic level. Predicting the properties of materials by theoretical means complements the traditional experimental approaches. This research is directed at determining the structure of γ-Al 2 O 3 using theoretical first principles and empirical computational techniques combined with experimental methods. The purpose of this presentation is to discuss the problems associated with determining the structure of γ-AI 2 O 3 and to outline the methodology being applied to solve it. Copyright (2002) Australian X-ray Analytical Association Inc

  13. Structural, electronic and magnetic properties of Fe{sub 2}-based full Heusler alloys: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dahmane, F., E-mail: fethallah05@gmail.com [Département de SM, Institue des sciences et des technologies, Centre universitaire de Tissemsilt, 38000, Tissemsilt (Algeria); Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Mogulkoc, Y. [Department of Engineering Physics, Ankara University, Ankara (Turkey); Doumi, B.; Tadjer, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 Mascara (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl-796001 (India); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Varshney, Dinesh [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2016-06-01

    Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe{sub 2}XAl (X=Cr, Mn, Ni) compounds in both the Hg{sub 2}CuTi and Cu{sub 2}MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu{sub 2}MnAl-type structure is energetically more stable than the Hg{sub 2}CuTi-type structure for the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds at the equilibrium volume. The full Heusler compounds Fe{sub 2}XAl (X=Cr, Mn) are half-metallic in the Cu{sub 2}MnAl-type structure. Fe{sub 2}NiAl has a metallic character in both CuHg{sub 2}Ti and AlCu{sub 2}Mn-type structures. The total magnetic moments of the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds are 1.0 and 2.0 μ{sub B}, respectively, which are in agreement with the Slater–Pauling rule M{sub tot}=Z{sub tot}− 24.

  14. A first principles calculations of structural, electronic, magnetic and dynamical properties of mononitrides FeN and CoN

    International Nuclear Information System (INIS)

    Soni, Himadri R.; Mankad, Venu; Gupta, Sanjeev K.; Jha, Prafulla K.

    2012-01-01

    Highlights: ► We present spin dependent bandstructure, structural and magnetic moment of FeN/CoN. ► The PDC, PHDOS, spin effect on phonons suggests ZB is preferred at ambient pressure. ► Spin calculation offers an opportunity to understand the role of spin on phonons. - Abstract: Using first principles density functional theoretical calculations, the present paper reports a systematic nonspin and spin polarized total energy calculations of the lattice dynamical and a number of other properties such as band structure, structural and magnetic moment of two mononitrides FeN and CoN. The phonon dispersion curves and phonon density of states in the case of FeN and CoN have been determined for the first time and discussed. The structural and dynamical calculations suggest that the zinc blende structure is preferred at ambient pressure for both compounds. The rocksalt FeN has a nonzero magnetic moment while for FeN in zinc blende phase, it is either zero or very small. The zinc blende phase for both compounds is nonmagnetic. The spin calculation offers an intensive opportunity to understand the role of spin on the phonon properties of two mononitrides. Majority of the modes are sensitive to the effect of spin due to the modification of lattice constant. In this work we reveal that spin modifies the interionic interactions and local structure and leads to a flexible lattice which can be used for the functional materials design.

  15. First principles total energy calculations of the structural and electronic properties of ScxGa1-xN

    International Nuclear Information System (INIS)

    Moreno-Armenta, Maria Guadalupe; Mancera, Luis; Takeuchi, Noboru

    2003-01-01

    Using first principles total energy calculations within the the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural and electronic properties of Sc x Ga 1-x N, with Sc concentrations varying from 0% up to 100%. In particular we have studied the relative stability of several configurations of Sc x Ga 1-x N in wurtzite-like structures (the ground state configuration of GaN), or in rocksalt-like structures (the ground state configuration of ScN). It is found that for Sc concentrations less than ∼65%, the favored structure is a wurtzite-like one, while for Sc concentrations greater than ∼65%, the favored structure is a NaCl-like structure. It is also found that for the wurtzite-like crystals, the fundamental gap is large and direct. For the rocksalt crystals the fundamental gap is small and indirect, but with an additional larger direct gap. In agreement with the experiments of Little and Kordesch [Appl. Phys. Lett. 78, 2891 (2001)] we found a decrease of the band gap with the increase of the Sc concentration. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. Effect of Interface Structure on Thermal Boundary Conductance by using First-principles Density Functional Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    GAO Xue; ZHANG Yue; SHANG Jia-Xiang

    2011-01-01

    We choose a Si/Ge interface as a research object to investigate the infiuence of interface disorder on thermal boundary conductance. In the calculations, the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials, while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory. The results show that interface disorder limits thermal transport. The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance. This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.%We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.It is well known that interfaces can play a dominant role in the overall thermal transport characteristics of structures whose length scale is less than the phonon mean free path.When heat flows across an interface between two different materials,there exists a temperature jump at the interface.Thermal boundary conductance (TBC),which describes the efficiency of heat flow at material interfaces,plays an importance role in the transport of thermal energy in nanometerscale devices,semiconductor superlattices,thin film multilayers and nanocrystalline materials.[1

  17. Properties of complex tungstates, niobates, translated with fluorite-like structure

    International Nuclear Information System (INIS)

    Vetkina, S.N.; Zolin, V.F.; Sirotinkin, V.P.; Smirnov, S.A.

    1989-01-01

    Spectra of ternary tungstates, niobates and tantalates (MeLa 2 WO 7 , La 3 TO 7 ; Me=Ba, Sr; T=Ta, Nb) related to the layered fluorite group are analyzed. The laser pumping and time resolved luminescence are used for selecting spectra of unequivalent centers. The symmetry of the first center is near to the distorted cubic one. The vibrational spectra of europium in Eu 3 NbO 7 and SrLa 2 WO 7 are due to the chain-like structure of niobates and to the net-like structure of tantalates. The stimulated emission of Nd 3+ in powders of BaLa 2 WO 7 and La 3 NbO 7 is observed at wavelengths of 1.07 and 1.063 μm, respectively

  18. Structural stabilities and electronic properties of Mg28-nAln clusters: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bao-Juan Lu

    2017-09-01

    Full Text Available In this paper, we have constructed the alloy configurations of Mg28-nAln by replacing atoms at various possible positions, starting from the stable structures of Mg28 and Al28 clusters. According to the symmetry of the cluster structure, the isomers of these initial structures have been screened with the congruence check, which would reduce computational hours and improve efficiency. Using the first-principles method, the structural evolution, mixing behavior and electronic properties of Mg28-nAln clusters are investigated for all compositions. We conclude that Al atoms prefer to reside in the central positions of Mg−Al clusters and Mg atoms tend to occupy the peripheral location. The negative mixing enthalpies imply the stabilities of these Mg-Al clusters and thus possible applications in catalysis and hydrogen storage materials. Among Mg28-nAln clusters, Mg24Al4, Mg21Al7, Mg14Al14, Mg26Al2 and Mg27Al1 present relatively high thermodynamic stabilities, and the electronic properties of these stable structures are discussed with the charge distributions around the Fermi level.

  19. First-principles study on structure stabilities of α-S and Na-S battery systems

    Science.gov (United States)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  20. Structural, electronic, and vibrational properties of high-density amorphous silicon: a first-principles molecular-dynamics study.

    Science.gov (United States)

    Morishita, Tetsuya

    2009-05-21

    We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).

  1. First principles simulation on the K0.8Fe2Se2 high-temperature structural superconductor

    International Nuclear Information System (INIS)

    Guo, Rui; Yang, Shizhong; Khosravi, Ebrahim; Zhao, Guang-Lin; Bagayoko, Diola

    2013-01-01

    Highlights: • The superconductor K 0.8 Fe 2 Se 2 super cell size, shape, and atomic positions are fully optimized using first principles density functional theory method. • Each K atom donates 0.8 |e| with K vacancies in the supercell, each Fe atom donates 0.4 |e|, while each Se atom gains 0.7 |e| ∼ 0.8 |e|. • Fe atoms show magnetic moment fluctuation and possible strong spin-orbital coupling. -- Abstract: Since the synthesis of the first ones in 2008, iron-based high temperature superconductors have been the subject of many studies. This great interest is partly due to their higher, upper magnetic field, smaller Fermi surface around the Γ point, and a larger coherence length. This work is focused on A x Fe 2 Se 2 structural superconductor (FeSe, 11 hierarchy; A = K, Cs) as recently observed. ARPES data show novel, electronic structure and a hole-free Fermi surface which is different from previously observed Fermi surface images. We use ab initio density functional theory method to simulate the electronic structure of the novel superconductor A x Fe 2 Se 2 . We compare this electronic structure with those of other Fe-based superconductors

  2. Influences of Stone–Wales defects on the structure, stability and electronic properties of antimonene: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yonghong, E-mail: hchyh2001@tom.com [School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100 (China); Wu, Yunyi [Department of Energy Materials and Technology, General Research Institute for Nonferrous Metals, Beijing (China); Zhang, Shengli [Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-12-15

    Defects are inevitably present in materials, and their existence strongly affects the fundamental physical properties of 2D materials. Here, we performed first-principles calculations to study the structural and electronic properties of antimonene with Stone–Wales defects, highlighting the differences in the structure and electronic properties. Our calculations show that the presence of a SW defect in antimonene changes the geometrical symmetry. And the band gap decreases in electronic band structure with the decrease of the SW defect concentration. The formation energy and cohesive energy of a SW defect in antimonene are studied, showing the possibility of its existence and its good stability, respectively. The difference charge density near the SW defect is explored, by which the structural deformations of antimonene are explained. At last, we calculated the STM images for the SW defective antimonene to provide more information and characters for possible experimental observation. These results may provide meaningful references to the development and design of novel nanodevices based on new 2D materials.

  3. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles

    International Nuclear Information System (INIS)

    Qi, Lei; Jin, Yuchun; Zhao, Yuhong; Yang, Xiaomin; Zhao, Hui; Han, Peide

    2015-01-01

    Highlights: • Structural, elastic, electronic properties and Debye temperature under pressure. • Higher hardness of Ni 3 Mo compound may be obtained when pressure increases. • Proper pressure can improve the ductility but excess pressure was just the opposite. • Ni 3 Mo compound has no structural phase transformation under pressure up to 30 GPa. • Debye temperatures increase with increasing pressure. - Abstract: With the help of first principles method based on density functional theory, the structural, elastic, electronic properties and Debye temperature of Ni 3 Mo binary compound under pressure are investigated. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that Ni 3 Mo compound is mechanically stable. Elastic properties such as bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio υ are calculated by the Voigt–Reuss–Hill method. The results of B/G under various pressures show that proper pressure can improve the ductility of Ni 3 Mo but excess pressure will make the ductility decrease. In addition, the density of states as a function of pressure is analyzed. The Debye temperature Θ D calculated from elastic constants increases along with the pressure

  4. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  5. First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx

    International Nuclear Information System (INIS)

    Dridi, Z.; Bouhafs, B.; Ruterana, P.; Aourag, H.

    2002-01-01

    First-principles calculations have been used to study the effect of vacancies on the structural and electronic properties in substoichiometric TiC x and TiN x . The effect of vacancies on equilibrium volumes, bulk moduli, electronic band structures and density of states of the substoichiometric phases was studied using a full-potential linear augmented plane-wave method. A model structure of eight-atom supercells with ordered vacancies within the carbon and nitrogen sublattices is used. We find that the lattice parameters of the studied stoichiometries in both TiC x and TiN x are smaller than that of ideal stoichiometric TiC and TiN. Our results for the variation of the lattice parameters and the bulk moduli for TiC x are found to be in good agreement with experiment. The variation of the energy gaps with the atomic concentration ratio shows that these compounds present the same trends. Results for TiC x are compared to a recent full-potential calculation with relaxed 16-atom supercells

  6. First-principles study of the Pd–Si system and Pd(001)/SiC(001) hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P.E.A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ivashchenko, V.I. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine)

    2014-11-01

    First-principles molecular dynamics simulations of the Pd(001)/3C–SiC(001) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3m, P6m2, Pm3m), Pd2Si (P6⁻2m, P63/mmc, P3m1, P3⁻1m) and Pd3Si (Pnma, P6322, Pm3m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd2Si and D011-Pd3Si fragments, in agreement with experiment.

  7. First-Principles Study of the Li-Mg-N-H System: Compound Structures and Hydrogen Storage Properties

    Science.gov (United States)

    Michel, Kyle; Ozolins, Vidvuds

    2009-03-01

    The Li-Mg-N-H system is studied with the addition of the Li4Mg(NH)3, MgNH, and Li4NH compounds using first-principles density-functional theory (DFT) calculations. A structure for the mixed imide Li4Mg(NH)3 is proposed, belonging to the Imm2 space group. A new structure for Li2Mg(NH)2 is given that has Pca21 symmetry; this compound has been previously reported as having Iba2 symmetry. The stability of the Li4Mg-imide is studied with respect to its decomposition reactions. The static, zero-point (ZPE), and vibrational energies of all relevant compounds belonging to this system are reported along with their predicted lowest-energy structures. Dehydrogenation reactions are presented that involve these phases and which are found to be spontaneously occurring within 400 K of room temperature. It is predicted that mixing LiH, LiNH2, and Li2Mg(NH)2 at 505 K will form Li4Mg(NH)3 with the release of 2.04 wt. % H2.

  8. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    Science.gov (United States)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  9. Mechanical Properties and Electronic Structure of N and Ta Doped TiC: A First-Principles Study

    International Nuclear Information System (INIS)

    Ma Shi-Qing; Liu Ying; Ye Jin-Wen; Wang Bin

    2014-01-01

    The first principles calculations based on density functional theory (DFT) are employed to investigate the mechanical properties and electronic structure of N and Ta doped TiC. The result shows that the co-doping of nitrogen and tantalum dilates the lattice constant and improves the stability of TiC. Nitrogen and tantalum can signiβcantly enhance the elastic constants and elastic moduli of TiC. The results of B/G and C 12 –C 44 indicate tantalum can markedly increase the ductility of TiC. The electronic structure is calculated to describe the bonding characteristic, which revealed the strong hybridization between C-p and Ta-d and between N-p and Ti-d. The hardnessis is estimated by a semi-empirical model that is based on the Mulliken overlap population and bond length. While the weakest bond takes determinative role of the hardness of materials, the addition of Ta sharply reduces the hardness of TiC. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. First-principles study of structural and work function properties for nitrogen-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Shao, Xiji; Li, Detian; Cai, Jianqiu; Luo, Haijun; Dong, Changkun

    2016-01-01

    Graphical abstract: - Highlights: • Substitutional nitrogen atom doping in capped (5, 5) SWNT is investigated. • Serious defects appear from breaks of C−N bonds with N contents of above 23.3 at.%. • Work function drops after N doping and may reach 4.1 eV. - Abstract: The structural and electronic properties of the capped (5, 5) single-walled carbon nanotube (SWNT), including the structural stability, the work function, and the charge transfer performance, are investigated for the substitutional nitrogen atom doping under different concentrations by first-principles density functional theory. The geometrical structure keeps almost intact with single or two N atom doping, while C−N bonds may break up with serious defects for N concentrations of 23.3 at.% and above. The SWNT remains metallic and the work function drops after doping due to the upward shift of Fermi level, leading to the increase of the electrical conductivity. N doping enhances the oxygen reduction activity stronger than N adsorption because of higher charge transfers.

  11. First-principles study of native defects in bulk Sm2CuO4 and its (001) surface structure

    Science.gov (United States)

    Zheng, Fubao; Zhang, Qinfang; Meng, Qiangqiang; Wang, Baolin; Song, Fengqi; Yunoki, Seiji; Wang, Guanghou

    2018-04-01

    Using the first-principles calculations based on the density functional theory, we have studied the bulk defect formation and surface structures of Sm2CuO4. To ensure the accuracy of calculations, the spin order of Cu atoms is rechecked and it is the well-known nearest-neighbor antiferromagnetic ground state, which can be attributed to the hole-mediated superexchange through the strong pdσ hybridization interaction between Cu dx2-y2 electron and the neighboring oxygen px (or py) electron. Under each present experimental condition, the Sm vacancy has a very high formation energy and is unlikely to be stable. The Cu vacancy is a shallow acceptor, which is preferred under O-rich conditions, whereas the O vacancy is a donor and energetically favorable under O-poor conditions. To construct its (001) surface structure, CuOO, CuO, and Cu terminated surfaces are found to be most favorable under different experimental conditions. The stable surface structures are always accompanied by significant surface atomic reconstructions and electron charge redistribution, which are intimately correlated to each other.

  12. Structural, electronic, elastic and thermal properties of Li{sub 2}AgSb. First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ji-Hong [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Longdong Univ., Qingyang (China). College of Physics and Electronic Engineering; Zhu, Xu-Hui [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education; Ji, Guang-Fu [Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-07-01

    Based on the first-principles density functional theory calculations combined with the quasi-harmonic Debye model, the pressure dependencies of the structural, elastic, electronic and thermal properties of Li{sub 2}AgSb were systematically investigated. The calculated lattice parameters and unit cell volume of Li{sub 2}AgSb at the ground state were in good agreement with the available experimental data. The obtained elastic constants, the bulk modulus and the shear modulus revealed that Li{sub 2}AgSb is mechanically stable and behaves in a ductile manner under the applied pressure. The elasticity-relevant properties, the Young's modulus and the Poisson's ratio showed that pressure can enhance the stiffness of Li{sub 2}AgSb and that Li{sub 2}AgSb is mechanically stable up to 20 GPa. The characteristics of the band structure and the partial density of states of Li{sub 2}AgSb were analysed, showing that Li{sub 2}AgSb is a semiconductor with a direct band gap of 217 meV at 0 GPa and that the increasing pressure can make the band structure of Li{sub 2}AgSb become an indirect one. Studies have shown that, unlike temperature, pressure has little effect on the heat capacity and the thermal expansion coefficient of Li{sub 2}AgSb.

  13. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  14. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  15. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    Science.gov (United States)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  16. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed

    2010-10-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS are estimated in the range 0 ≤ x ≤ 1 using both the standard local density approximation (LDA) as well as the generalized gradient approximations (GGA) of Wu-Cohen (WC) for the exchange-correlation potential. It is observed that the direct band gap EgΓ-Γ of CdxZn1-xS decreases nonlinearly with the compositional parameter x, as observed experimentally. It is also found that Cd s and d, S p and Zn d states play a major role in determining the electronic properties of this alloy system. Furthermore, results for complex dielectric constant ε(ω), refractive index n(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are also described in a wide range of the incident photon energy and compared with the existing experimental data. © 2010 Elsevier B.V. All rights reserved.

  17. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    Science.gov (United States)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  18. Interfacial bonding and electronic structure of GaN/GaAs interface: A first-principles study

    International Nuclear Information System (INIS)

    Cao, Ruyue; Zhang, Zhaofu; Wang, Changhong; Li, Haobo; Dong, Hong; Liu, Hui; Wang, Weichao; Xie, Xinjian

    2015-01-01

    Understanding of GaN interfacing with GaAs is crucial for GaN to be an effective interfacial layer between high-k oxides and III-V materials with the application in high-mobility metal-oxide-semiconductor field effect transistor (MOSFET) devices. Utilizing first principles calculations, here, we investigate the structural and electronic properties of the GaN/GaAs interface with respect to the interfacial nitrogen contents. The decrease of interfacial N contents leads to more Ga dangling bonds and As-As dimers. At the N-rich limit, the interface with N concentration of 87.5% shows the most stability. Furthermore, a strong band offsets dependence on the interfacial N concentration is also observed. The valance band offset of N7 with hybrid functional calculation is 0.51 eV. The electronic structure analysis shows that significant interface states exist in all the GaN/GaAs models with various N contents, which originate from the interfacial dangling bonds and some unsaturated Ga and N atoms. These large amounts of gap states result in Fermi level pinning and essentially degrade the device performance

  19. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    International Nuclear Information System (INIS)

    Wang, Y.; Chen, W.; Chen, X.; Liu, H.Y.; Ding, Z.H.; Ma, Y.M.; Wang, X.D.; Cao, Q.P.; Jiang, J.Z.

    2012-01-01

    Highlights: ► Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. ► Vickers hardnesses of monoborides are relatively low. ► B-vacancies cause the difference in lattice parameters for IrB and PtB. ► Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  20. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Chen, W. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, X.; Liu, H.Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Ding, Z.H.; Ma, Y.M. [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. Black-Right-Pointing-Pointer Vickers hardnesses of monoborides are relatively low. Black-Right-Pointing-Pointer B-vacancies cause the difference in lattice parameters for IrB and PtB. Black-Right-Pointing-Pointer Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  1. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    International Nuclear Information System (INIS)

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  2. The ionic structure of liquid sodium obtained by numerical simulation from 'first principles' and ab initio 'norm-conserving' pseudopotentials

    International Nuclear Information System (INIS)

    Harchaoui, N; Hellal, S; Grosdidier, B; Gasser, J G

    2008-01-01

    The physical properties of disordered matter depend on the 'atomic structure' i.e. the arrangement of the atoms. This arrangement is described by the structure factor S (q) in reciprocal space and by the pair correlation function g(r) in real space. The structure factor is obtained experimentally while the numerical simulation enables us to obtain the pair correlation function. Liquid sodium is one of the elements the most studied and one can wonder about new scientific contribution appropriateness. The majority of theoretical calculations are compared with the experiment of Waseda. However two other posterior measurements have been published and give different results, in particular with regard to the height of the first peak of the structure factor. Three models of pseudopotential are considered to describe the electron-ion interaction. The first is a local pseudopotential with the alternative known as 'individual' of the model suggested by Fiolhais et al. The second model considered is that of Bachelet et al. This one, ab-initio and 'norm conserving', is non local. The last model is that proposed by Shaw known as 'first principles' and 'energy dependent'. Various static dielectric functions characteristic of the effects of exchange and correlation have been used and developed by Hellal et al. We calculated the form factors (pseudopotential in reciprocal space) and deduce the normalized energy-wave-number characteristic F N (q), the interatomic pair potential V eff (r), then the pair correlation function g(r) by molecular dynamics. The structure factor S(q) is obtained by Fourier transform and is compared with the experiment. Our calculations with the Bachelet and Shaw pseudopotentials are close to the last experiments of Greenfield et al. and of Huijben et al. Our results are discussed

  3. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, T C [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States); Temmerman, W M [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Szotek, Z [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Svane, A [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Petit, L [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States)

    2007-04-23

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments.

  4. Structural and electronic properties of free standing one-sided and two-sided hydrogenated silicene: A first principle study

    International Nuclear Information System (INIS)

    Mohan, Brij; Kumar, Ashok; Ahluwalia, P. K.

    2014-01-01

    We performed first-principle study of the structural and electronic properties of two-dimensional hydrogenated silicene for two configurations; one is hydrogenation along one side of silicene sheet and second is hydrogenation in both sides of silicene sheet. The one-side hydrogenated silicene is found stable at planar geometry while increased buckling of 0.725 Å is found for both-side hydrogenated silicene. The result shows that the hydrogenation occupy the extended π-bonding network of silicene, and thus it exhibits semi-conducting behaviour with a band gap of 1.77 eV and 2.19 eV for one-side hydrogenated silicene and both-side hydrogenated silicene respectively. However, both-side hydrogenated silicene of binding energy 4.56 eV is more stable than one-side hydrogenated silicene of binding energy 4.30 eV, but experimentally silicene is synthesized on substrates which interacts one side of silicene layer and only other side is available for H-atoms. Therefore, practically one-side hydrogenation is also important

  5. Structural stability of diffusion barriers in thermoelectric SbTe: From first-principles calculations to experimental results

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hsuan; Cheng, Chun-Hu; Chiou, Shan-Haw; Huang, Chiung-Hui; Liu, Chia-Mei; Lin, Yu-Li; Chao, Wen-Hsuan; Yang, Ping-Hsing; Chang, Chun-Yen; Cheng, Chin-Pao

    2014-01-01

    Highlights: • The diffusion behavior was originated from high-vapor-pressure Te atom. • Te out-diffusion is main driving force to cause inter-diffusion effect. • Mid-band Ta and TaN with favored ohmic-like contact showed small diffusion tail. • Strong Ta-N bonding and high total energy suppressed interfacial layer formation. -- Abstract: This study involved developing robust diffusion barrier for n-type antimony telluride (SbTe) thermoelectric devices. Compared to conventional Ni barrier, the mid-band metals of Ta and TaN with favored ohmic-like contact exhibited smaller diffusion tail because of structurally stable interface on SbTe, which have been supported by first-principles calculations and demonstrated by experimental results. Furthermore, the TaN barrier has strong ionic Ta–N bonding and a high total energy of −4.7 eV/atom that could effectively suppress the formation of SbTe-compounds interfacial layer

  6. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces

    Science.gov (United States)

    Wu, Qingjie; Xie, Jingpei; Wang, Changqing; Li, Liben; Wang, Aiqin; Mao, Aixia

    2018-04-01

    This paper presents a systematic study on the energetic and electronic structure of the Al(111)/6H-SiC(0001) interfaces by using first-principles calculation with density functional theory (DFT). There are all three situations for no-vacuum layer of Al/SiC superlattics, and two cases of C-terminated and Si-terminated interfaces are compared and analyzed. Through the density of states analysis, the initial information of interface combination is obtained. Then the supercells are stretched vertically along the z-axis, and the fracture of the interface is obtained, and it is pointed out that C-terminated SiC and Al interfaces have a better binding property. And, the fracture positions of C-terminated and Si-terminated interfaces are different in the process of stretching. Then, the distance variation in the process of stretching, the charge density differences, and the distribution of the electrons near the interface are analyzed. Al these work makes the specific reasons for the interface fracture are obtained at last.

  7. First-principles calculations of structural, elastic, and electronic properties of trigonal ZnSnO{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Qin, Han; Jiao, Zhen; Liu, Fu-Sheng [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-09-01

    First-principles calculations of the structural, elastic, mechanical and electronic properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated in the present paper. Our calculated lattice constants at zero pressure are in agreement with the published theoretical and experimental data. The elastic constants at zero and high pressure have been obtained, which are used to discuss the mechanical stability of ilmenite-type ZnSnO{sub 3}. The mechanical properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio under pressure have been studied. Electronic properties show that ilmenite-type ZnSnO{sub 3} is shown to be a direct bandgap of 1.063 (GGA-PW91)/3.977 (PBE0) eV. The bandgap increases with the increasing pressure. Moreover, the partial density of states has been analyzed to explain the increased bandgap. - Highlights: • Physical properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated. • Ilmenite-type ZnSnO{sub 3} behaves in a ductile manner. • Ilmenite-type ZnSnO{sub 3} is a direct bandgap compound with 3.977 eV. • Bandgap of Ilmenite-type ZnSnO{sub 3} increases with the increasing pressure.

  8. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    International Nuclear Information System (INIS)

    Schulthess, T C; Temmerman, W M; Szotek, Z; Svane, A; Petit, L

    2007-01-01

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments

  9. The electronic structures and ferromagnetism of Fe-doped GaSb: The first-principle calculation study

    Science.gov (United States)

    Lin, Xue-ling; Niu, Cao-ping; Pan, Feng-chun; Chen, Huan-ming; Wang, Xu-ming

    2017-09-01

    The electronic structures and the magnetic properties of Fe doped GaSb have been investigated by the first-principles calculation based on the framework of the generalized gradient approximation (GGA) and GGA+U schemes. The calculated results indicated that Fe atoms tend to form the anti-ferromagnetic (AFM) coupling with the nearest-neighbor positions preferentially. Compared with the anti-ferromagnetic coupling, the ferromagnetic interactions occurred at the second nearest-neighbor and third nearest-neighbor sites have a bigger superiority energetically. The effect of strong electron correlation at Fe-d orbit taking on the magnetic properties predicted by GGA+U approach demonstrated that the ferromagnetic (FM) coupling between the Fe ions is even stronger in consideration of the strong electron correlation effect. The ferromagnetism in Fe doped GaSb system predicted by our investigation implied that the doping of Fe into GaSb can be as a vital routine for manufacturing the FM semiconductors with higher Curie temperature.

  10. First-principles study of structural, electronic, linear and nonlinear optical properties of Ga{2}PSb ternary chalcopyrite

    Science.gov (United States)

    Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.

    2009-12-01

    We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.

  11. Stability, electronic structures, and mechanical properties of Fe–Mn–Al system from first-principles calculations

    International Nuclear Information System (INIS)

    Liu Ya-Hui; Chong Xiao-Yu; Jiang Ye-Hua; Feng Jing

    2017-01-01

    The stability, electronic structures, and mechanical properties of the Fe–Mn–Al system were determined by first-principles calculations. The formation enthalpy and cohesive energy of these Fe–Mn–Al alloys are negative and show that the alloys are thermodynamically stable. Fe 3 Al, with the lowest formation enthalpy, is the most stable compound in the Fe–Mn–Al system. The partial density of states, total density of states, and electron density distribution maps of the Fe– Mn–Al alloys were analyzed. The bonding characteristics of these Fe–Mn–Al alloys are mainly combinations of covalent bonding and metallic bonds. The stress-strain method and Voigt–Reuss–Hill approximation were used to calculate the elastic constants and moduli, respectively. Fe 2.5 Mn 0.5 Al has the highest bulk modulus, 234.5 GPa. Fe 1.5 Mn 1.5 Al has the highest shear modulus and Young’s modulus, with values of 98.8 GPa and 259.2 GPa, respectively. These Fe–Mn–Al alloys display disparate anisotropies due to the calculated different shape of the three-dimensional curved surface of the Young’s modulus and anisotropic index. Moreover, the anisotropic sound velocities and Debye temperatures of these Fe–Mn–Al alloys were explored. (paper)

  12. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer

    Science.gov (United States)

    Hu, Yiwei; Long, Linbo; Mao, Yuliang; Zhong, Jianxin

    2018-06-01

    Using first-principles methods, we have studied the adsorption of gas molecules (CO2, CH4, H2S, H2 and NH3) on two dimensional Ge2Li2 monolayer. The adsorption geometries, adsorption energies, charge transfer, and band structures of above mentioned gas molecules adsorption on Ge2Li2 monolayer are analyzed. It is found that the adsorption of CO2 on Ge2Li2 monolayer is a kind of strong chemisorption, while other gas molecules such as CH4, H2S, H2 and NH3 are physisorption. The strong covalent binding is formed between the CO2 molecule and the nearest Ge atom in Ge2Li2 monolayer. This adsorption of CO2 molecule on Ge2Li2 monolayer leads to a direct energy gap of 0.304 eV. Other gas molecules exhibit mainly ionic binding to the nearest Li atoms in Ge2Li2 monolayer, which leads to indirect energy gap after adsorptions. Furthermore, it is found that the work function of Ge2Li2 monolayer is sensitive with the variation of adsorbents. Our results reveal that the Ge2Li2 monolayer can be used as a kind of nano device for gas molecules sensor.

  13. First-principles investigation of Cr-doped Fe2B: Structural, mechanical, electronic and magnetic properties

    Science.gov (United States)

    Wei, Xiang; Chen, Zhiguo; Zhong, Jue; Wang, Li; Wang, Yipeng; Shu, Zhongliang

    2018-06-01

    The structural, mechanical, electronic and magnetic properties of Fe8-xCrxB4 (x = 0, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8) have been investigated by first-principles calculation. It was found that the calculated structural parameters are well consistent with available experimental data. Moreover, all studied compounds are thermodynamically stable phases. On the whole, the moduli of the compounds firstly increase and then decrease with the increase of Cr concentration, whereas the variation of hardness exhibits more fluctuations. All Cr-doped Fe2B have better ductility than Fe2B except Fe2Cr6B4 and Fe5Cr3B4. Interestingly, Fe4Cr4B4 is of not only the slightly larger hardness, but also much better ductility than Fe2B. As the Cr concentration is lower than 20 wt%, the hardness of Cr-doped Fe2B slightly decreases with increasing Cr, whereas the sharply increased hardness of (Fe, Cr)2B in Fe-B alloys or boriding layer should be attributed to the multiple alloying effects resulting from Cr and the other alloying elements. The electronic structures revealed that the Fe-B and/or Cr-B bonds are mainly responsible for their mechanical properties, and the M-N (M = Fe or Cr, N = Fe or Cr) bonds in 〈2 2 0〉 and 〈1 1 3〉 orientations show covalent character. Additionally, the magnetic moments (Ms) of the compounds do not monotonically decrease with increasing Cr.

  14. Local electronic structure at organic–metal interface studied by UPS, MAES, and first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M., E-mail: cmaoki@mail.ecc.u-tokyo.ac.jp; Masuda, S.

    2015-10-01

    Understanding and controlling local electronic structures at organic–metal interfaces are crucial for fabricating novel organic-based electronics, as in the case of heterojunctions in semiconductor devices. Here, we report recent studies of valence electronic states at organic–metal interfaces (especially those near the Fermi level of a metal substrate) by the combined analysis of ultraviolet photoemission spectroscopy (UPS), metastable atom electron spectroscopy (MAES), and first-principles calculations. New electronic states in the HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gap formed at an organic–metal interface are classified as a chemisorption-induced gap state (CIGS) and a complex-based gap state (CBGS). The CIGS is further characterized by an asymptotic feature of the metal wave function in the chemisorbed species. The CIGSs in alkanethiolates on Pt(1 1 1) and C{sub 60} on Pt(1 1 1) can be regarded as damping and propagating types, respectively. The CBGSs in K-doped dibenzopentacene (DBP) are composed of DBP-derived MOs and K sp states and distributed over the complex film. No metallic structures were found in the K{sub 1}DBP and K{sub 3}DBP phases, suggesting that they are Mott–Hubbard insulators due to strong electron correlation. The local electronic structures of a pentacene film bridged by Au electrodes under bias voltages were examined by an FET-like specimen. The pentacene-derived bands were steeply shifted at the positively biased electrode, reflecting the p-type character of the film.

  15. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    Science.gov (United States)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

  16. Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Guechi, A., E-mail: ab_guechi@yahoo.fr [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Merabet, A. [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Physics and Mechanics of Metallic Materials, Setif-1 University, 19000 Setif (Algeria); Chegaar, M. [Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria)

    2015-02-25

    Highlights: • KAsSn is interesting in the materials community due to its complex structure and narrow gap. • Physical properties of KAsSn have not taken much attention in previous studies. • The KAsSn structure is shown to be mechanically stable. • KAsSn is predicted to be brittleness and characterized by a weak elastic anisotropy. • Its high absorption in the U.V. energy range shows its use in the optoelectronic devices. - Abstract: In this work, a first-principles study of ternary Zintl phase KAsSn compound using density-functional theory (DFT) method within the generalized gradient approximation developed by Wu–Cohen (GGA-Wc) has been performed. Based on the optimized structural parameter, the electronic structure, elastic and optical properties have been investigated. The calculated lattice constants agree reasonably with the previous results. The effect of high pressure on the structural parameters has been shown. The elastic constants were calculated and satisfy the stability conditions for hexagonal crystal. These indicate that this compound is stable in the studied pressure regime. The single crystal elastic constants (C{sub ij}) and related properties are calculated using the static finite strain technique, moreover the polycrystalline elastic moduli such as bulk modulus, shear modulus, micro-hardness parameter H{sub ν}, Young’s modulus and Poisson’s ratio were estimated using Voigt, Reuss and Hill’s (VRH) approximations. The elastic anisotropy of the KAsSn was also analyzed. On another hand the Debye temperature was obtained from the average sound velocity. Electronic properties have been studied throughout the calculation of band structure, density of states and charge densities. It is shown that this crystal belongs to the semiconductors with a pseudo gap of about 0.34 eV. Furthermore, in order to clarify the optical transitions of this compound, linear optical functions including the complex dielectric function, refractive index

  17. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); M.U.E.T, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: shuaiyong1978@gmail.com [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Hassan, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2017-03-31

    Highlights: • First-principles calculations are performed for TMO{sub 3} cluster-doped and TM atoms adsorbed at three O atoms-doped graphene. • Significant magnetic coupling behavior is observed between TM atoms and neighboring C and O atoms for both cases. • The direction of charge transfer is always from monolayer graphene to TMO{sub 3} clusters incorporated into graphene. • TiO{sub 3} and VO{sub 3} doped structures display dilute magnetic semiconductor behavior. • Five different orbitals (d{sub xy}, d{sub yz}, d{sub z}{sup 2}, d{sub xz} and d{sub x}{sup 2}{sub -y}{sup 2}) of 3d TM atoms give rise to magnetic moments for both cases. - Abstract: We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO{sub 3} halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO{sub 3} halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO{sub 3} doped graphene layer, the bond length between C−O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO{sub 3} and VO{sub 3} substitution, system exhibits semiconductor properties. Interestingly, TiO{sub 3}-substituted system shows dilute magnetic semiconductor behavior with 2.00 μ{sub B} magnetic moment. On the other hand, the substitution of CoO{sub 3}, CrO{sub 3}, FeO{sub 3} and MnO{sub 3} induced 1.015 μ{sub B}, 2

  18. Stability and electronic structure of iron nanoparticle anchored on defective hexagonal boron nitrogen nanosheet: A first-principle study

    International Nuclear Information System (INIS)

    Lin, Sen; Huang, Jing; Ye, Xinxin

    2014-01-01

    Highlights: • Fe 13 nanoparticle strongly interacts with the monovacancy of h-BN nanosheet. • Significant charges are transferred from Fe 13 to the defective h-BN nanosheet. • The upshift of d-band center makes the surface Fe atoms of supported Fe 13 with higher reactivity. - Abstract: By first-principle methods, we investigate the stability and electronic structures of Fe 13 nanoparticles anchored on hexagonal boron nitrogen nanosheets (h-BNNSs) with monovacancy defect sites. It is found that the defect sites such as boron and nitrogen vacancy significantly increase the adsorption energies of Fe 13 , suggesting that the supported Fe 13 nanoparticles should be very stable against sintering at high temperatures. From the calculated density of states, we testify that the strong interaction is attributed to the coupling between the 3d orbitals of Fe atoms with the sp 2 dangling bonds at the defect sites. The Bader charge and differential charge density analyses reveal that there is significant charge redistribution at the interface between Fe 13 and the substrates, leading to positive charges located on most of the Fe atoms. Additionally, our results show that the strong binding of the nanoparticle results in the upshift of d-band center of Fe 13 toward the Fermi level, thus making the surface Fe atoms with higher reactivity. This work gives a detailed understanding the interaction between Fe 13 nanoparticle and defective h-BNNS and will provide helpful instructions in the design and synthesis of supported Fe-based catalysts in heterogeneous catalysis

  19. Investigation on structure, electronic and magnetic properties of Cr doped (ZnO)12 clusters: First-principles calculations

    Science.gov (United States)

    Liu, Huan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic, and magnetic properties of (ZnO)12 clusters doped with Cr atoms have been investigated by using spin-polarized first-principles calculations. The exohedral a3 isomer is favorable than endohedral a2 isomer. The isomer a1 and a5 respectively have the narrowest and biggest gap between highest unoccupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) of 0.473 and 1.291 eV among these five monodoped isomers. The magnetic moment may be related to the local environment around the Cr atom that the a2 isomer whose total magnetic moment is 6 μB while the other monodoped isomers which all isomers have nearly total magnetic moments 4 μB . For Cr-doped (ZnO)12 on a1 or a3 isomer, the DOS of spin-up channel cross the Fermi level EF showing a finite magnitude near the Fermi level which might be useful for half metallic character. For the bidoped cases, the exohedral isomers are found to be most favorable. Including all bipoed isomers of substitutional, exohedral and endohedral bidoped clusters, the total magnetic moment of the ferromagnetic (antiferromagnetic) state is 8 (0) μB and the HOMO-LUMO gap of antiferromagnetic state is slightly larger than that of ferromagnetic state. The magnetic coupling between the Cr atoms in bidoped configurations is mainly governed by the competition between direct Cr and Cr atoms antiferromagnetic interaction and the ferromagnetic interaction between two Cr atoms via O atom due to strong p-d hybridization. Most importantly, we show that the exohedral bidoped (ZnO)12 clusters favor the ferromagnetic state, which may have the future applications in spin-dependent magneto-optical and magneto-electrical devices.

  20. Formation, structure and magnetism of the metastable defect fluorite phases AVO3.5+x (A=In, Sc)

    International Nuclear Information System (INIS)

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-01-01

    We report the preparation and stability of ScVO 3.5+x and the novel phase InVO 3.5+x . AVO 3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO 3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO 3.5+x structures following this pathway are 0.00≤x≤0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO 3.54 and ScVO 3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A 3+ /V 4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V 4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO 3 bixbyite to AVO 3.5 defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O 6 fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O 7 cubic environment in the defect fluorite structure

  1. First-principles study of stability, electronic structure and magnetic properties of Be{sub 2}C nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianmin; Xu, Chunyan; Zheng, Huiling; Du, Xiaobo; Yan, Yu, E-mail: yanyu@jlu.edu.cn

    2017-02-01

    Highlights: • H passivation at the edge greatly enhances the stability of Be{sub 2}C nanoribbons. • Stable bare Be{sub 2}C nanoribbons are all nonmagnetic semiconductors. • H passivated b-Be{sub 2}C-NR with C site terminated edge is half-metallic. • Ground state of H passivated b-Be{sub 2}C-NR with C site terminated edge is ferromagnetic. - Abstract: First-principles calculations are carried out to investigate the stability, electronic structure and magnetic properties of Be{sub 2}C nanoribbons (Be{sub 2}C-NRs) with their ribbon axis along the a and b axes. It is found that except for b-Be{sub 2}C-NR with the C site terminated edge, a-Be{sub 2}C-NRs and other b-Be{sub 2}C-NRs possess good structural stabilities at room temperature. In addition, H passivation enables b-Be{sub 2}C-NR with C site terminated edge to stabilize at room temperature by saturating the dangling bonds at edges. Furthermore, stable a-Be{sub 2}C-NRs and b-Be{sub 2}C-NRs are all nonmagnetic semiconductors and their band gaps are significantly dependent on the edge configuration and the ribbon width. In contrast, H passivated b-Be{sub 2}C-NR with C site terminated edge is half-metallic with a magnetic ground state, irrespective of the ribbon width. In particular, H passivated b-Be{sub 2}C-NR with C site terminated edge has a strong intra-edge ferromagnetic coupling interaction in the ground state, and an inter-edge ferromagnetic interaction is found in small-width H passivated nanoribbon. The calculated density of states and the spin density distribution show that the p–p hybridization interaction involving polarized electrons is responsible for intra-edge and inter-edge ferromagnetic coupling.

  2. Alloying effects on structural and thermal behavior of Ti1-xZrxC: A first principles study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti 1-x Zr x C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti 1-x Zr x C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  3. GPU based acceleration of first principles calculation

    International Nuclear Information System (INIS)

    Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T

    2010-01-01

    We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.

  4. Surface modelling on heavy atom crystalline compounds: HfO{sub 2} and UO{sub 2} fluorite structures

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, Robert [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)], E-mail: re1973@re1973.spb.edu; Bandura, Andrei; Blokhin, Eugeny [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)

    2009-01-15

    The study of the bulk and surface properties of cubic (fluorite structure) HfO{sub 2} and UO{sub 2} was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO{sub 2} differ from those found for other metal oxides with the closed-shell configuration of d-electrons.

  5. Structural electronic and mechanical properties of YM2 (M=Mn, Fe, Co) laves phase compounds: First principle calculations analyzed with datamining approach

    Science.gov (United States)

    Saidi, F.; Sebaa, N.; Mahmoudi, A.; Aourag, H.; Merad, G.; Dergal, M.

    2018-06-01

    We performed first-principle calculations to investigate structural, phase stability, electronic and mechanical properties for the Laves phases YM2 (M = Mn, Fe, Co) with C15, C14 and C36 structures. We used the density functional theory within the framework of both pseudo-potentials and plane wave basis using VASP (Vienna Ab Initio Software Package). The calculated equilibrium structural parameters are in accordance with available theoretical values. Mechanical properties were calculated, discussed, and analyzed with data mining approach in terms of structure stability. The results reveal that YCo2 is harder than YFe2 and YMn2.

  6. Strontium ruthenate–anatase titanium dioxide heterojunctions from first-principles: Electronic structure, spin, and interface dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Naheed; Ertekin, Elif, E-mail: ertekin@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois 61801 (United States)

    2016-07-21

    The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO{sub 3} and the wide band gap semiconductor TiO{sub 2}, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO{sub 3}, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO{sub 3}, the interface is found to be rectifying with a Schottky barrier of ≈1.3–1.6 eV, in good agreement with experiment. In the minority spin, SrRuO{sub 3} exhibits a Schottky barrier alignment with TiO{sub 2} and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO{sub 3} recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.

  7. Elastic properties and electronic structure of WS{sub 2} under pressure from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-07-01

    The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.

  8. Electronic structures of spinterface for thiophene molecule adsorbed at Co, Fe, and Ni electrode: First principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Linlin; Tian, Yanli; Yuan, Xiaobo; Hu, Guichao; Ren, Junfeng, E-mail: renjf@sdnu.edu.cn

    2016-12-15

    Highlights: • Thiophene molecule could be spin polarized when adsorbed at Co(001), Fe(100), and Ni(111) surfaces. • The biggest spin polarization will be obtained when the thiophene molecule adsorbed at the Fe(100) surface. • The spin polarization is originated from the interfacial orbital hybridizations between the 3d orbital of ferromagnetic electrodes and the 2p orbital of the thiophene molecule. - Abstract: First principles calculations are adopted to study the spin polarization properties of thiophene molecule which adsorbed at the Co, Fe, and Ni electrode surfaces. The density of states, spin-polarized density distributions as well as the differential charge density distributions are obtained. It is found that the p orbital of the thiophene molecule will interact with the d orbital of the ferromagnetic electrodes, which will generate new spin coupling states and lead to obvious spin polarization in the thiophene molecule. Different electrodes induce different spin polarization properties, and in which the Fe electrode will bring the biggest spin polarization of the thiophene molecule. People can selectively and efficiently inject spin polarized electrons into molecules by choosing suitable ferromagnetic electrodes in organic spintronic devices.

  9. First-principles study on the structure, elastic properties, hardness and electronic structure of TMB4 (TM=Cr, Re, Ru and Os) compounds

    International Nuclear Information System (INIS)

    Pan, Y.; Zheng, W.T.; Guan, W.M.; Zhang, K.H.; Fan, X.F.

    2013-01-01

    The structural formation, elastic properties, hardness and electronic structure of TMB 4 (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C 22 for these compounds is almost two times bigger than the C 11 and C 33 . The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB 4 >ReB 4 >RuB 4 >OsB 4 , and the Poisson's ratio and B/G ratio of TMB 4 follow the order of CrB 4 4 4 4 . The intrinsic hardness of CrB 4 and ReB 4 by LDA is bigger than 40 GPa. The high hardness of TMB 4 compounds is derived from the feature of B–B bonds cage and higher C 22 value. The B–B covalent bonds as bonds cage enhances the resistance to shear deformation and improve the hardness. We predict that the TMB 4 compounds with CrB 4 -type are the potential superhard materials. - Graphical abstract: The first-principles calculations show that the intrinsic hardness of CrB 4 and ReB 4 are bigger than 40 GPa, which are the potential superhard materials due to the B–B bonds cage structure. Display Omitted - Highlights: • The intrinsic hardness of CrB 4 and ReB 4 is bigger than 40 GPa. • The hardness of TMB 4 is calculated to be in a sequence of CrB 4 >ReB 4 >RuB 4 >OsB 4 . • The trend of hardness for TMB 4 is consistent with the variation of elastic modulus. • The C 22 value of TMB 4 is bigger than that of C 11 and C 33 . • The high hardness of TMB 4 is originated from the B–B bonds cage

  10. The electronic structure and ferromagnetism of TM (TM=V, Cr, and Mn)-doped BN(5, 5) nanotube: A first-principles study

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Wan, M.; Ji, G.F.

    2008-01-01

    We study the electronic structure and ferromagnetism of V-, Cr-, and Mn-doped single-wall BN(5, 5) nanotube by using polarized spin calculations within first principles. The optimized structures show that the transition-metal atoms move outwards and the calculated electronic properties demonstrate that the isolated V-, Cr-, and Mn-doped BN(5, 5) nanotubes show half-metallicity. The total ferromagnetic moments are 2μ B , 3.02μ B , and 3.98μ B for V-, Cr-, and Mn-doped BN(5, 5), respectively. The study suggests that such transition-metal (TM)-doped nanotubes may be useful in spintronics and nanomagnets

  11. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations

    OpenAIRE

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-01-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5 - 3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases, i.e. the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator tran...

  12. First-principles determination of the ground-state structure of Mg(BH4)(2)

    DEFF Research Database (Denmark)

    Caputo, R.; Tekin, Adem; Sikora, W.

    2009-01-01

    The ground-state structure of magnesium tetrahydroborate, Mg(BH4)(2), is still under debate. The experimentally and theoretically proposed structures mismatch, and even among the computationally determined structures a disagreement still exists. The main debated question is related to the lattice...

  13. Structural stability and elastic properties of L12 Co3(Ga,W) precipitate from first-principle calculations

    International Nuclear Information System (INIS)

    Yao Qiang; Zhu Yuhong; Wang Yan

    2011-01-01

    Ultrasoft pseudopotential within a generalized gradient approximation was employed to study the structural stability, electronic structure, and elastic properties of ternary Co 3 (Ga,W) precipitate. The Young's and shear moduli of the polycrystals containing the Co 3 (Ga,W) precipitate were calculated using the Voigt-Reuss-Hill averaging scheme. Results show that the stable ternary Co 3 (Ga,W) compound has the L1 2 structure, and is ductile in nature. The structural stability of the Co 3 (Ga,W) compound is discussed together with the calculated electronic structure.

  14. Origin of structural analogies and differences between the atomic structures of GeSe{sub 4} and GeS{sub 4} glasses: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg and CNRS UMR 7504, 23 rue du Loess, BP43, F-67034 Strasbourg Cedex 2 (France)

    2015-07-21

    First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe{sub 4} and GeS{sub 4}. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge–Se–Se connections are more frequent than the corresponding Ge–S–S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS{sub 4} is rationalized in terms of a higher number of large size rings, accounting for extended Ge–Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge–S bonds when compared to Ge–Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.

  15. Origin of structural analogies and differences between the atomic structures of GeSe4 and GeS4 glasses: A first principles study.

    Science.gov (United States)

    Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo

    2015-07-21

    First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe4 and GeS4. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge-Se-Se connections are more frequent than the corresponding Ge-S-S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS4 is rationalized in terms of a higher number of large size rings, accounting for extended Ge-Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge-S bonds when compared to Ge-Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.

  16. Solid State Structure-Reactivity Studies on Bixbyites, Fluorites and Perovskites Belonging to the Vanadate, Titanate and Cerate Families

    Science.gov (United States)

    Shafi, Shahid P.

    This thesis primarily focuses on the systematic understanding of structure-reactivity relationships in two representative systems: bixbyite and related structures as well as indium doped CeO2. Topotactic reaction routes have gained significant attention over the past two decades due to their potential to access kinetically controlled metastable materials. This has contributed substantially to the understanding of solid state reaction pathways and provided first insights into mechanisms. Contrary to the widely used ex-situ methods, in-situ techniques including powder x-ray diffraction and thermogravimetric-differential thermal analysis have been employed extensively throughout this work in order to follow the reaction pathways in real time. Detailed analysis of the AVO3 (A = In, Sc) bixbyite reactivity under oxidative conditions has been carried out and a variety of novel metastable oxygen defect phases have been identified and characterized. The novel metastable materials have oxygen deficient fluorite structures and consequently are potential ion conductors. Structural aspects of the topotactic vs. reconstructive transformations are illustrated with this model system. The structure-reactivity study of AVO3 phases was extended to AVO3 perovskite family. Based on the research methodologies and results from AVO3 bixbyite reactivity studies a generalized mechanistic oxidation pathway has been established with a non-vanadium phase, ScTiO3 bixbyite. However, there is stark contrast in terms of structural stability and features beyond this stability limit during AVO3 and ScTiO3 bixbyite reaction pathways. A series of complex reaction sequences including phase separation and phase transitions were identified during the investigation of ScTiO3 reactivity. The two-step formation pathway for the fluorite-type oxide ion conductor Ce1-xInxO2-delta (0 ≤ x ≤ 0.3) is being reported. The formation of the BaCe1-xInxO 3-delta perovskites and the subsequent CO2-capture reaction

  17. First-principles study on the structure, elastic properties, hardness and electronic structure of TMB{sub 4} (TM=Cr, Re, Ru and Os) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zheng, W.T., E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Guan, W.M.; Zhang, K.H. [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Fan, X.F. [Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2013-11-15

    The structural formation, elastic properties, hardness and electronic structure of TMB{sub 4} (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C{sub 22} for these compounds is almost two times bigger than the C{sub 11} and C{sub 33}. The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB{sub 4}>ReB{sub 4}>RuB{sub 4}>OsB{sub 4}, and the Poisson's ratio and B/G ratio of TMB{sub 4} follow the order of CrB{sub 4}first-principles calculations show that the intrinsic hardness of CrB{sub 4} and ReB{sub 4} are bigger than 40 GPa, which are the potential superhard materials due to the B–B bonds cage structure. Display Omitted - Highlights: • The intrinsic hardness of CrB{sub 4} and ReB{sub 4} is bigger than 40 GPa. • The hardness of TMB{sub 4} is calculated to be in a sequence of CrB{sub 4}>ReB{sub 4}>RuB{sub 4}>OsB{sub 4}. • The trend of hardness for TMB{sub 4} is consistent with the variation of elastic modulus. • The C{sub 22} value of TMB{sub 4} is bigger than that of C{sub 11} and C{sub 33}. • The high hardness of TMB{sub 4} is originated from the B–B bonds cage.

  18. Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra.

    Science.gov (United States)

    Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo

    2005-08-12

    We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.

  19. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure

    International Nuclear Information System (INIS)

    Gao, G.Y.; Yao, K.L.; Liu, Z.L.; Zhang, J.; Min, Y.; Fan, S.W.

    2008-01-01

    In this Letter, using the first-principles full-potential linearized augmented plane-wave (FP-LAPW) method, we extend the electronic structure and magnetism studies on zinc-blende structure of II-V compounds MX (M=Ca,Sr,Ba; X=N,P,As) [M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73 (2006) 024404] to the rock-salt structure. It is found that, in the nine compounds, only alkaline-earth nitrides CaN, SrN and BaN exhibit ferromagnetic half-metallic character with a magnetic moment of 1.00μ B per formula unit. Furthermore, compared with the zinc-blende structure of CaN, SrN and BaN, the rock-salt structure has lower energy, which makes them more promising candidates of possible growth of half-metallic films on suitable substrates

  20. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    Science.gov (United States)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  1. Electronic band structure, optical, dynamical and thermodynamic properties of cesium chloride (CsCl from first-principles

    Directory of Open Access Journals (Sweden)

    Bingol Suat

    2015-01-01

    Full Text Available The geometric structural optimization, electronic band structure, total density of states for valence electrons, density of states for phonons, optical, dynamical, and thermodynamical features of cesium chloride have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient approximation. Ground state properties of cesium chloride are studied. The calculated ground state properties are consistent with experimental results. Calculated band structure indicates that the cesium chloride structure has an indirect band gap value of 5.46 eV and is an insulator. From the obtained phonon spectra, the cesium chloride structure is dynamically stable along the various directions in the Brillouin zone. Temperature dependent thermodynamic properties are studied using the harmonic approximation model.

  2. Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe{sub 2}O{sub 4}: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L.; Fan, W.B. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Hou, Y.H., E-mail: hyhhyl@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Guo, K.X. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Ouyang, Y.F. [Department of Physics, Guangxi University, Nanning 530004 (China); Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-05-01

    The cobalt ferrite (CoFe{sub 2}O{sub 4}) with spinel structure has achieved a great interest as a very important magnetic material which has covered a wide range of applications. The formation condition and energy of possible intrinsic point defects have been investigated by the first-principles calculations, and the effects of the intrinsic point defects on the electronic and magnetic properties of CoFe{sub 2}O{sub 4} have been analyzed. It is found that the growth conditions have a great effect on the formation energy of intrinsic point defects, and each point defect with its fully ionized state is the most stable for the intrinsic point defects with various charge states. In an oxygen rich environment, the cation vacancies are easy to form shallow acceptors, which is conducive to the strength of the p-type conductivity. While in the metal rich environment, the oxygen vacancies tend to form donors which lead to the n-type conductivity. There exists extra levels in the band gap when point defects are present, resulting in a reduction of the band gap. The net magnetic moment depends highly on the defects. - Highlights: • The intrinsic defects in CoFe{sub 2}O{sub 4} were investigated by first-principles calculation. • The effects of intrinsic defects on the electronic structures and magnetic properties of CoFe{sub 2}O{sub 4} were analyzed.

  3. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    Science.gov (United States)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  4. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    Energy Technology Data Exchange (ETDEWEB)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.

  5. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    International Nuclear Information System (INIS)

    Rovira, Carme; Alfonso-Prieto, Mercedes; Biarnes, Xevi; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C.

    2006-01-01

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure (A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure (B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested

  6. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, Carme [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain)], E-mail: crovira@pcb.ub.es; Alfonso-Prieto, Mercedes [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain); Biarnes, Xevi [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain); Carpena, Xavi [Consejo Superior de Investigaciones Cientificas y Parc Cientific de Barcelona (CSIC-PCB), Josep Samitier 1-5, 08028 Barcelona (Spain); Fita, Ignacio [Consejo Superior de Investigaciones Cientificas y Parc Cientific de Barcelona (CSIC-PCB), Josep Samitier 1-5, 08028 Barcelona (Spain); Loewen, Peter C. [Department of Microbiology, University of Manitoba, Winnipeg, Canada MB R3T 2N2 (Canada)

    2006-03-31

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure (A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure (B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested.

  7. First-principles investigations of the electronic and magnetic structures and the bonding properties of uranium nitride fluoride (UNF)

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, Bordeaux Univ., Pessac (France). ICMCB; Lebanese German Univ. (LGU), Jounieh (Lebanon)

    2017-07-01

    Based on geometry optimization and magnetic structure investigations within density functional theory, a unique uranium nitride fluoride, isoelectronic with UO{sub 2}, is shown to present peculiar differentiated physical properties. These specificities versus the oxide are related to the mixed anionic substructure and the layered-like tetragonal structure characterized by covalent-like [U{sub 2}N{sub 2}]{sup 2+} motifs interlayered by ionic-like [F{sub 2}]{sup 2-} ones and illustrated herein with electron localization function projections. Particularly, the ionocovalent chemical picture shows, based on overlap population analyses, stronger U-N bonding versus U-F and d(U-N)structure as insulating antiferromagnet with ±2 μ{sub B} magnetization per magnetic sub-cell and ∝2 eV band gap.

  8. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  9. Furan interaction with the Si(001)-(2 x 2) surface: structural, energetics, and vibrational spectra from first-principles

    International Nuclear Information System (INIS)

    Miotto, R; Ferraz, A C

    2009-01-01

    In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4+2 ] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.

  10. Application of first-principles methods for the calculation of the crystal and electronic structure of oxynitrides

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C.M.; Metselaar, R.; Hintzen, H.T.; With, G. de [Eindhoven Univ. of Technology (Netherlands). Lab. of Solid State and Materials Chemistry

    2002-07-01

    Theoretical simulations using density functional theory (DFT) within ab initio total-energy and molecular-dynamics method have been performed for several oxynitride materials. Examples dealt with are compounds in the Ta-O-N, Si-O-N and Al-O-N systems. Random or partially ordered distributions of the oxygen and nitrogen ions as well as other structural defects can be predicted very well by these methods. Local structure relaxation and its influence on the electronic properties are addressed. (orig.)

  11. OsB 2 and RuB 2, ultra-incompressible, hard materials: First-principles electronic structure calculations

    Science.gov (United States)

    Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.

    2006-07-01

    Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.

  12. A first principles study

    Indian Academy of Sciences (India)

    We have used density functional theory to obtain the binding curves for a variety of hypothetical periodic structures of Al, Si, Pb, Sn and Au. Upon examining the resulting database of results for equilibrium bond lengths and radial force constants (within a nearest-neighbour model), we find that both decrease smoothly as ...

  13. Structural and thermal properties of LaMnO3 from neutron diffraction and first principles studies

    International Nuclear Information System (INIS)

    Wdowik, Urszula D; Ouladdiaf, Bachir; Chatterji, Tapan

    2011-01-01

    Neutron diffraction experiments have been performed on powder samples of LaMnO 3 below and above the Jahn-Teller transition temperature of 750 K. Experimental investigations are assisted by density functional theory calculations. Theoretical studies are carried out for the orbitally ordered state of LaMnO 3 which allows one to compare the behavior of the orbitally ordered and disordered structures as a function of temperature. The temperature dependences of the structural parameters characterizing the Jahn-Teller distortions are reported and discussed. A gradual departure of the experimental data from theoretical predictions is observed above 650 K. In this range of temperatures, anions surrounding the Jahn-Teller active cations perform more isotropic thermal motion. The onset of structural phase transition induces a reduction of the crystal volume by about 0.4% which follows from the structural transformations yielding more regular oxygen octahedra formed above the phase transformation. It is found that above the Jahn-Teller transition the distortions of the MnO 6 octahedra are not completely removed. The non-vanishing distortions are accompanied by the lifted degeneracy of the Mn e g states. Weak residual distortions can be assigned to the short-range orbital order that persists within a local scale but it seems quenched on average giving rise to a disappearance of the long-range order coherency of the Jahn-Teller effect.

  14. Lattice vibrations and thermal properties of carbon nitride with defect ZnS structure from first-principles calculations

    NARCIS (Netherlands)

    Fang, C.M.; Wijs, G.A. de

    2004-01-01

    The phonon spectrum Of C3N4 with defect zincblende-type structure (deltaC(3)N(4)) was calculated by density functional theory (DFT) techniques. The results permit an assessment of important mechanical and thermodynamical properties such as the bulk modulus, lattice specific heat, vibration energy,

  15. Structural, electronic and spectral properties of carborane-containing boron dipyrromethenes (BODIPYs): A first-principles study

    Science.gov (United States)

    Li, Xiaojun

    2017-10-01

    In this work, we reported the geometrical structures, electronic and spectral properties of the carborane-containing BODIPYs complexes using the density functional theory calculations. In two structures, the calculated main bond lengths and bond angels of structural framework are consistent with X-ray experiment, and the two BODIPYs complexes are thermodynamically and kinetically stable. The strongest DOS band is mainly dominated by the Bsbnd B and Bsbnd H σ-bonds of carborane fragment, whereas the π-type MOs on the pyrromethene fragment contribute to the high-energy DOS bands. Analysis of the AdNDP chemical bonding indicates that the carborane cage can be stabilized by eleven delocalized 3csbnd 2e and two delocalized 4csbnd 2e σ-bonds, while the pyrromethene fragment corresponds to five delocalized 3csbnd 2e π-bonds. In addition, the main characteristic peaks of the two simulated IR spectra for the BODIPYs complexes are properly assigned. Hopefully, all these results will be helpful for understanding the electronic structures, and further stimulate the study on the biological and medical applications.

  16. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  17. First-principles study of the electronic structure of CdS/ZnSe coupled quantum dots

    NARCIS (Netherlands)

    Ganguli, N.; Acharya, S.; Dasgupta, I.

    2014-01-01

    We have studied the electronic structure of CdS/ZnSe coupled quantum dots, a novel heterostructure at the nanoscale. Our calculations reveal CdS/ZnSe coupled quantum dots are type II in nature where the anion p states play an important role in deciding the band offset for the highest occupied

  18. The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations

    Science.gov (United States)

    Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu

    2018-04-01

    The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.

  19. First principle study of structural, electronic and thermodynamic behavior of ternary intermetallic compound: CeMgTl

    Directory of Open Access Journals (Sweden)

    R.P. Singh

    2014-12-01

    Full Text Available To study the structural, electronic and thermodynamic behavior of CeMgTl, full-potential linear augmented plane wave plus local orbital (FP-LAPW + lo method has been used. The lattice parameters (a0, c0, bulk modulus (B0 and its first order pressure derivative (B0′ have been calculated for CeMgTl. Band structure and density of states histograms depicts that “5d” orbital electrons of Tl have dominant character in the electronic contribution to CeMgTl. Impact of the temperature and pressure on unit cell volume, bulk modulus, Debye temperature, Grüneisen parameter, specific heat and thermal expansion coefficient (α have been studied in wide temperature range (0–300 K and pressure range (0–15 GPa.

  20. The structural and electronic properties of cubic AgMO{sub 3} (M=Nb, Ta) by first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket [Department of Physics, Indian Institute of Technology Hyderabad, India, 502205 (India)

    2016-05-06

    We report the electronic structure of the AgMO{sub 3}(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O{sub 3} reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  1. First principles electronic structure and optical properties of the Zintl compound Eu3In2P4

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2011-01-01

    We have performed full-potential calculations of the electronic structure and optical properties of the newly found Zintl compound Eu3In 2P4. Eu3In2P4 turns out to be a small gap semiconductor with an energy gap of 0.42 eV, which is in agreement with the experimental value of 0.452 eV. The peaks of the optical spectra originate mainly from transitions between occupied Eu 4f states in the valence band and unoccupied Eu 5d states in the conduction band. A considerable anisotropy is observed for the parallel and perpendicular components in the frequency dependent optical spectra. The spectral features are explained in terms of the band structure. © 2011 Elsevier B.V. All rights reserved.

  2. First principles electronic structure and optical properties of the Zintl compound Eu3In2P4

    KAUST Repository

    Singh, Nirpendra

    2011-05-01

    We have performed full-potential calculations of the electronic structure and optical properties of the newly found Zintl compound Eu3In 2P4. Eu3In2P4 turns out to be a small gap semiconductor with an energy gap of 0.42 eV, which is in agreement with the experimental value of 0.452 eV. The peaks of the optical spectra originate mainly from transitions between occupied Eu 4f states in the valence band and unoccupied Eu 5d states in the conduction band. A considerable anisotropy is observed for the parallel and perpendicular components in the frequency dependent optical spectra. The spectral features are explained in terms of the band structure. © 2011 Elsevier B.V. All rights reserved.

  3. Structural, electronic, and optical properties of the C-C complex in bulk silicon from first principles

    Science.gov (United States)

    Timerkaeva, Dilyara; Attaccalite, Claudio; Brenet, Gilles; Caliste, Damien; Pochet, Pascal

    2018-04-01

    The structure of the CiCs complex in silicon has long been the subject of debate. Numerous theoretical and experimental studies have attempted to shed light on the properties of these defects that are at the origin of the light emitting G-center. These defects are relevant for applications in lasing, and it would be advantageous to control their formation and concentration in bulk silicon. It is therefore essential to understand their structural and electronic properties. In this paper, we present the structural, electronic, and optical properties of four possible configurations of the CiCs complex in bulk silicon, namely, the A-, B-, C-, and D-forms. The configurations were studied by density functional theory and many-body perturbation theory. Our results suggest that the C-form was misinterpreted as a B-form in some experiments. Our optical investigation also tends to exclude any contribution of A- and B-forms to light emission. Taken together, our results suggest that the C-form could play an important role in heavily carbon-doped silicon.

  4. First-Principles Investigation of Phase Stability, Electronic Structure and Optical Properties of MgZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2016-10-01

    Full Text Available MgZnO bulk has attracted much attention as candidates for application in optoelectronic devices in the blue and ultraviolet region. However, there has been no reported study regarding two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement effect. Here, using density functional theory calculations, we investigated the phase stability, electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure with various Mg concentrations. The phase segregation occurring in bulk systems has not been observed in the monolayer due to size effect, which is advantageous for application. Moreover, MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks. Our results may provide guidance for designing the growth process and potential application of MgZnO monolayer.

  5. First-principles study of structural stabilities, elastic and electronic properties of transition metal monocarbides (TMCs) and mononitrides (TMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H.; Rached, D.; Benalia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Reshak, A.H., E-mail: maalidph@yahoo.co.uk [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rabah, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), université de Mascara, Mascara 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2013-12-16

    The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B8{sub 1}) and the tungsten carbides (B{sub h}) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θ{sub D}) and sound velocities (v{sub m}) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B8{sub 1}), ReN – (B8{sub 1}), WN – (B8{sub 1}) and OsC – (B8{sub 1}) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements. - Highlights: • Structural stabilities, elastic, electronic properties of 5d TMNs XN are investigated. • 5d TMCs XC with (X = Ir, Os, Re and Ta) were investigated. • The ground state properties for the six considered crystal structure are calculated. • The elastic constants of TMNs and TMCs in its different stable phases are determined. • The elastic modulus for polycrystalline materials, G, E, and ν are calculated.

  6. First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5

    Directory of Open Access Journals (Sweden)

    Hui Niu

    2012-09-01

    Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

  7. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: canli1983@gmail.com; Zhao, Y. F.; Fu, C. X.; Gong, Y. Y. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); Chi, B. Q. [College of Modem Science and Technology, Jiliang University, Hangzhou, 310018 (China); Sun, C. Q. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  8. Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations

    Science.gov (United States)

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-08-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.

  9. Reversal of the lattice structure in SrCoO(x) epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations.

    Science.gov (United States)

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S S Ambrose; Cooper, Valentino R; Rabe, Karin M; Lee, Ho Nyung

    2013-08-30

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoO(x) (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.

  10. Nuclear magnetic resonance in superionic conductors with fluorite-type structure; Ressonancia magnetica nuclear em condutores superionicos de estrutura fluorita

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Sergio Paulo Amaral

    1991-12-31

    The {sup 19} F NMR relaxation times T{sub 1} and T{sub 2} were measured in ternary and nonstoichiometric compounds with the fluorite-type structure. We have studied the Na{sub 0-4} Y{sub 0-6} F{sub 2-2} crystal in the temperature range 600 K to 900 K, where the crystal has not the fluorite structure. The T{sub 1} values were measured in 2 Larmor frequencies: 20.42 MHz and 34.24 MHz. The results for T{sub 1} were seem to be qualitatively similar to those measured in the system with two inequivalent sublattices. The T{sub 2} measurements, in the Pb{sub O84} Bi{sub 0-16} F{sub 2-16} crystal, were made during temperature cycles in the range of 300 K to 830 K. The difference in activation energy between cooling and heating half cycles, found to be approximately 0.08 eV, appear to be associated with the change in the clusters structure and not to the energy of defect formation. Finally, similar T{sub 2} measurements during temperature cycling was made in K{sub 0-4} Bi{sub 0-6} F{sub 2-2} : 2% Pb F{sub 2} crystal, in the temperature range 300 K to 800 K, but in this case no difference in the cooling and heating results was observed. We also measured, in the same temperature range, the T{sub 1} relaxation time in 3 Larmor frequencies: 11.71 MHz, 20.42 MHz and 34.24 Mhz. This results appear to indicate the existence of two hopping mechanism. (author). 132 refs., 68 figs.

  11. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    Directory of Open Access Journals (Sweden)

    Do Duc Cuong

    2015-11-01

    Full Text Available Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  12. A first principles study of the electronic structure, elastic and thermal properties of UB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jossou, Ericmoore, E-mail: ericmoore.jossou@usask.ca [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Malakkal, Linu [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Szpunar, Barbara; Oladimeji, Dotun [Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, 116 Science Place, Saskatoon, S7N 5E2, Saskatchewan (Canada); Szpunar, Jerzy A. [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada)

    2017-07-15

    Uranium diboride (UB{sub 2}) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB{sub 2} towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB{sub 2}, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB{sub 2} structure respectively. The electronic structure of UB{sub 2} was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (k{sub L}) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (k{sub el}) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along ‘a’ and ‘c’ axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB{sub 2}. - Highlights: •Prediction of electronic structure and thermophysical properties of UB

  13. A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

    International Nuclear Information System (INIS)

    Saha, Saumitra; Becker, Udo

    2018-01-01

    Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np 5+ incorporation into three uranium-based CPs. The calculated Np 5+ + H + incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np 2 O 5 and U sink UO 3 . Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85-3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain optical or catalytic

  14. A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Saumitra [Melbourne Univ., VIC (Australia). Australian Research Council Centre of Excellence for Advanced Molecular Imaging; Becker, Udo [Michigan Univ., Ann Arbor, MI (United States). Dept. of Earth and Environmental Sciences

    2018-04-01

    Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np{sup 5+} incorporation into three uranium-based CPs. The calculated Np{sup 5+} + H{sup +} incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np{sub 2}O{sub 5} and U sink UO{sub 3}. Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85-3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain

  15. Angle-resolved photoemission study and first-principles calculation of the electronic structure of LaSb2

    International Nuclear Information System (INIS)

    Acatrinei, Alice I; Browne, D; Losovyj, Y B; Young, D P; Moldovan, M; Chan, Julia Y; Sprunger, P T; Kurtz, Richard L

    2003-01-01

    In this work we present valence band studies of LaSb 2 using angle-resolved photoelectron spectroscopy with synchrotron radiation and compare these data with band structure calculations. Valence band spectra reveal that Sb 5p states are dominant near the Fermi level and are hybridized with the La 5d states just below. The calculations show a fair agreement with the experimentally determined valence band spectra, allowing an identification of the observed features. We measured some dispersion for kbar, especially for Sb 5p states; no significant dispersion was found for k || . (letter to the editor)

  16. First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO{sub 3}-Perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, B. [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Bouafia, H., E-mail: hamza.tssm@gmail.com [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Abidri, B.; Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Hiadsi, S.; Akriche, A. [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université des Sciences et de la Technologie Mohamed Boudiaf, département de Génie Physique, BP1505 El m’naouar, Oran (Algeria); Benkhettou, N.; Rached, D. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria)

    2015-06-25

    Highlights: • The ground state properties of SrUO{sub 3}-Perovskite were investigated. • Elastic constants and their related parameters were calculated. • Electronic properties are treated using GGA-PBEsol + U approach. - Abstract: In this paper, we investigate bulk properties of the cubic SrUO{sub 3}-Perovskite in their nonmagnetic (NM), antiferromagnetic (AFM) and ferromagnetic (FM) states using all-electron self consistent Full Potential Augmented Plane Waves plus local orbital (FP-(L)APW + lo) method within PBEsol Generalized Gradiant density approximations. Our calculation allowed us to predict that the more stable magnetic state of the cubic SrUO{sub 3}-Perovskite is that of the ferromagnetic (FM). This work is the first prediction of elastic constants and their related parameters (Young modulus, shear modulus, Poisson ratio, Zener anisotropy and the Debye temperature) for this cubic compound using Mehl method. We have employed the GGA(PBEsol) and GGA(PBEsol) + U to investigate the electronic band structure, density of states and electronic charge density of SrUO{sub 3}-Perovskite. The electronic band structure calculations revealed that SrUO{sub 3} exhibits metallic behavior. On the other hand the charge density plots for [1 1 0] direction indicates a strong ionic character along the Sr–O bond while the U–O bond has strong covalent character. Finally, we have analyzed the thermodynamic properties using the quasi-harmonic Debye model to complete the fundamental characterization of cubic SrUO{sub 3}-Perovskite.

  17. The structure and energetic of AlAsn (n = 1-15) clusters: A first-principles study

    International Nuclear Information System (INIS)

    Guo Ling

    2010-01-01

    Geometric structures of AlAs n (n = 1-15) clusters are reported. The binding energy, dissociation energy, stability of these clusters are studied with the three-parameter hybrid generalized gradient approximation (GGA) due to Becke-Lee-Yang-Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static polarizabilities are calculated for the ground-state structures within the same method. The growth pattern for AlAs n (n = 6-15) clusters is Al-substituted pure As n+1 clusters and it keeps the similar frameworks of the most stable As n+1 clusters (for example AlAs 6 , AlAs 7 , AlAs 9 , AlAs 14 and AlAs 15 clusters) or capping the different sides of the low-lying geometry of As n clusters (for example AlAs 8 , AlAs 10 , AlAs 11 , and AlAs 12 clusters). The Al atom prefer to occupy a peripheral position for n n (n = 1-5, 13) clusters. The odd-even oscillations from AlAs n (n = 5-15) in the dissociation energy, the second-order energy differences, the HOMO-LUMO gaps, the electron affinity, and the hardness are more pronounced. The stability analysis based on the energies clearly shows the AlAs n clusters from n = 5 with an even number of valence electrons are more stable than clusters with odd number of valence electrons.

  18. First-principles investigation of electronic and structural properties and bowing parameters in SrFClxBr1-x alloy

    International Nuclear Information System (INIS)

    Mokhtari, A

    2007-01-01

    The first ab initio calculations have been performed to study the structural and electronic properties of technologically important SrFCl x Br 1-x quaternary alloys (for x equal to 0.0, 0.25, 0.5, 0.75 and 1.0) using the full-potential linearized augmented-plane-wave method within density-functional theory. The Perdew et al generalized-gradient approximation (GGA96), which is based on exchange-correlation energy optimization, is utilized to optimize the internal parameters by relaxing the atomic positions in the force directions and to calculate the total energy. Both the Engel-Vosko's generalized-gradient approximation (EV-GGA), which optimizes the exchange-correlation potential, and GGA96 are used for band structure calculations. The effect of composition on the equilibrium volume, cohesive energy, band gap and mean values of the bond length, shows nonlinear dependence, but on the bulk modulus it exhibits nearly linear concentration dependence (LCD). The results obtained show that the quaternary alloy of interest could be an appropriate material for using in an optical apparatus

  19. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    Science.gov (United States)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  20. First principles simulations

    International Nuclear Information System (INIS)

    Palummo, M.; Reining, L.; Ballone, P.

    1993-01-01

    In this paper we outline the major features of the ''ab-initio'' simulation scheme of Car and Parrinello, focusing on the physical ideas and computational details at the basis of its efficiency and success. We briefly review the main applications of the method. We discuss the limitations of the standard scheme, as well as recent developments proposed in order to extend the reach of the method. Moreover, we consider more in detail two specific subjects. First, we describe a simple improvement (Gradient Corrections) on the basic approximation of the ''ab-initio'' simulation, i.e. the Local Density Approximation. These corrections can be easily and efficiently included in the Car-Parrinello code, bringing computed structural and cohesive properties significantly closer to their experimental values. Finally, we discuss the choice of the pseudopotential, with special attention to the possibilities and limitations of the last generation of soft pseudopotentials. (orig.)

  1. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Han-Hsin; Kuo, Chin-Lung, E-mail: chinlung@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lu, Jian-Ming [National Center for High-Performance Computing, Tainan 74147, Taiwan (China)

    2016-01-21

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous Li{sub x}Si alloys over a range of composition from x = 1.0 − 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li{sub 1.0}Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li{sub 4.81}Si alloy at 1500 K. Our results also show that amorphous Li{sub x}Si alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous Li{sub x}Si was predicted to lie in the range between 10{sup −7} and 10{sup −9} cm{sup 2}/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous Li

  2. Study of the structure and chemical bonding of crystalline Ge_4Sb_2Te_7 using first principle calculations

    International Nuclear Information System (INIS)

    Singh, Janpreet; Singh, Satvinder; Tripathi, S. K.; Singh, Gurinder; Kaura, Aman

    2016-01-01

    The atomic arrangements and chemical bonding of stable Ge_4Sb_2Te_7 (GeTe rich), a phase-change material, have been investigated by means of ab initio total energy calculations. To study the atomic arrangement, GeTe block is considered into -TeSbTeSbTe- block and -Te-Te- layer in the stacking I and II respectively. The stacking I is energetically more stable than the stacking II. The reason for more stability of the stacking I has been explained. The chemical bonding has been studied with the electronic charge density distribution around the atomic bonds. The quantity of electronic charge loosed or gained by atoms has been calculated using the Bader charge analysis. The metallic character has been studied using band structures calculations. The band gap for the stacking I and II is 0.463 and 0.219 eV respectively.

  3. Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a first-principles study

    International Nuclear Information System (INIS)

    Hou, Y H; Liu, Z W; Yu, H Y; Zhong, X C; Qiu, W Q; Zeng, D C; Wen, L S; Zhao, Y J

    2010-01-01

    Partially inverse spinel CoFe 2 O 4 , which may be prepared through various heat treatments, differs remarkably from the ideal inverse spinel in many properties. The structure of partially inverse spinel CoFe 2 O 4 as well as its electronic and magnetic properties through a systemic theoretical calculation of (Co 1-x Fe x ) Tet (Co x Fe 2-x ) Oct O 4 (x = 0, 0.25, 0.5, 0.75 and 1.0) have been investigated by the generalized gradient approximation (GGA) + U approach. It is found that the Co and Fe ions prefer their high spin configurations with higher spin moments at octahedral sites in all the studied cases, in line with experimental observations. The Co ions at the octahedral sites favour being far away from each other in the partial inverse spinels, which also show half metallicity at certain inversion degrees.

  4. Electronic structure of BaFe2As2 as obtained from DFT/ASW first-principles calculations

    KAUST Repository

    Schwingenschlögl, Udo

    2010-07-02

    We use ab-initio calculations based on the augmented spherical wave method within density functional theory to study the magnetic ordering and Fermi surface of BaFe2As2, the parent compound of the hole-doped iron pnictide superconductors (K,Ba)Fe2As2, for the tetragonal I4/mmm as well as the orthorhombic Fmmm structure. In comparison to full potential linear augmented plane wave calculations, we obtain significantly smaller magnetic energies. This finding is remarkable, since the augmented spherical wave method, in general, is known for a most reliable description of magnetism. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al_3Ta compound under high pressure

    Directory of Open Access Journals (Sweden)

    W. Leini

    2018-03-01

    Full Text Available We have investigated the phonon, elastic and thermodynamic properties of L1_2 phase Al_3Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1_2 phase Al_3Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C_ij, bulk modulus B, shear modulus G, Young's modulus Y, B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al_3Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C_p, and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.

  6. First-principles study of structural, elastic and electronic properties of thorium dicarbide (ThC2) polymorphs

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2009-01-01

    The comparative study of the structural, elastic, cohesive and electronic properties of three polymorphs (α-monoclinic, β-tetragonal and γ-cubic) of thorium dicarbide ThC 2 is performed within the density-functional theory. The optimized atomic coordinates, lattice parameters, theoretical density (ρ), bulk moduli (B), compressibility (β), as well as electronic densities of states, electronic heat capacity (γ) and molar Pauli paramagnetic susceptibility (χ) for all ThC 2 polymorphs are obtained and analyzed in comparison with available experimental data. The peculiarities of inter-atomic bonding for thorium dicarbide are discussed. Besides, we have evaluated the formation energies (E f ) of ThC 2 polymorphs for different possible preparation routes (namely for the reactions with the participation of simple substances (metallic Th and graphite) or thorium monocarbide ThC and graphite). The results show that the synthesis of the ThC 2 polymorphs from simple substances is more favorable - in comparison with the reactions with participation of Th monocarbide.

  7. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: xuying3270@cust.edu.cn; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-06-05

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca{sub 2}Li and Ca{sub 3}Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T{sub c}) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T{sub c} is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca{sub 2}Li, and Ca{sub 3}Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  8. First-principles investigations on the electronic structures of U{sub 3}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [College of Information & Communication, Harbin Engineering University, Harbin, 150001 (China); Qiu, Nianxiang [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); Wen, Xiaodong [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001 (China); Synfuels China, 100195 (China); Tian, Yonghui [College of Life Science, Sichuan University, Chengdu, Sichuan, 610064 (China); He, Jian [Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023 (China); Luo, Kan; Zha, Xianhu; Zhou, Yuhong; Huang, Qing; Lang, Jiajian [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); Du, Shiyu, E-mail: dushiyu@nimte.ac.cn [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China)

    2016-02-15

    U{sub 3}Si{sub 2} has been widely utilized as a high-power uranium fuel for research reactors due to its high density of uranium. However, theoretical investigations on this material are still scarce up to now. For this reason, the computational study via density functional theory (DFT) is performed on the U{sub 3}Si{sub 2} compound in this work. The properties of U{sub 3}Si{sub 2}, such as stable crystalline structures, density of states, charge distributions, formation energy of defects, as well as the mechanical properties are explored. The calculation results show that the U{sub 3}Si{sub 2} material is metallic and brittle, which is in good agreement with the previous experimental observations. The formation energy of uranium vacancy defect is predicted to be the lowest, similar with that of UN. The theoretical investigation of this work is expected to provide new insight of uranium silicide fuels.

  9. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    International Nuclear Information System (INIS)

    Xu, Ying; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-01-01

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca_2Li and Ca_3Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T_c) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T_c is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca_2Li, and Ca_3Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  10. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    International Nuclear Information System (INIS)

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-01-01

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As x Se 1-x (0.10 First Principles Molecular Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 structural and dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions

  11. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bauchy, M. [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593 (United States); Kachmar, A. [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France); Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Micoulaut, M., E-mail: mmi@lptl.jussieu.fr [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France)

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 First Principles Molecular Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 structural and dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions.

  12. Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations

    International Nuclear Information System (INIS)

    Jiang, Bo; Hou, Na; Huang, Shanyan; Zhou, Gege; Hou, Jungang; Cao, Zhanmin; Zhu, Hongmin

    2013-01-01

    The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC 1−x O x , 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC 1−x O x were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC 1−x O x over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti 1−Va (C 1−x O x ) 1−Va solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC 1−x O x , 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC 1−x O x . • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability

  13. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    Science.gov (United States)

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; Carter, Emily A.

    2016-01-01

    Because of lithium’s possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. We predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDβ , β =0.25 , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid-solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. We also observe formation of some D2 molecules at high D concentrations.

  14. Core structure of screw dislocations in Fe from first-principles; Simulation ab initio des coeurs de dislocation vis dans le fer

    Energy Technology Data Exchange (ETDEWEB)

    Ventelon, L

    2008-11-15

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  15. First-principles simulations of the leakage current in metal-oxide-semiconductor structures caused by oxygen vacancies in HfO2 high-K gate dielectric

    International Nuclear Information System (INIS)

    Mao, L.F.; Wang, Z.O.

    2008-01-01

    HfO 2 high-K gate dielectric has been used as a new gate dielectric in metal-oxide-semiconductor structures. First-principles simulations are used to study the effects of oxygen vacancies on the tunneling current through the oxide. A level which is nearly 1.25 eV from the bottom of the conduction band is introduced into the bandgap due to the oxygen vacancies. The tunneling current calculations show that the tunneling currents through the gate oxide with different defect density possess the typical characteristic of stress-induced leakage current. Further analysis shows that the location of oxygen vacancies will have a marked effect on the tunneling current. The largest increase in the tunneling current caused by oxygen vacancies comes about at the middle oxide field when defects are located at the middle of the oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO

    International Nuclear Information System (INIS)

    Arul Mary, J.; Judith Vijaya, J.; Bououdina, M.; John Kennedy, L.; Daie, J.H.; Song, Y.

    2015-01-01

    We report on the synthesis of ((Zn 1−2x Ce x Fe x ) O (x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05)) nanoparticles via microwave combustion by using urea as a fuel. To understand how the dopant influenced the structural, magnetic and optical properties of nanoparticles, it was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Fe co-doped ZnO were probed by first principle calculations. From the analysis of X-ray diffraction, the samples are identified with the wurtzite crystal structure. The change in lattice parameters, micro-strain, and a small shift in XRD peaks confirms the substitution of co dopants into the ZnO lattice. Morphological investigation of the products revealed the existence of irregular shapes, such as spherical, spherodial and hexagonal. DRS measurements showed a decrease in the energy gap with increasing dopants contents, probably due to an increase in the lattice parameters. PL spectra consist of visible emission, due to the electronic defects, which are related to deep level emissions, such as oxide antisite (O Zn ), interstitial zinc (Zn i ), interstitial oxygen (O i ) and zinc vacancy (V Zn ). Magnetic measurements showed a ferromagnetic behavior for all the doped samples at room temperature. The first principle calculation results showed that the Ce governs the stability, while the Fe adjusts the magnetic characteristics in the Ce and Fe co-doped ZnO

  17. Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Arul Mary, J. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry Loyola College, Chennai 600 034 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry Loyola College, Chennai 600 034 (India); Bououdina, M. [Departments of Physics, College of Science, University of Bahrain, PO Box 32038 Kingdom of Bahrain (Bahrain); John Kennedy, L. [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600 127 (India); Daie, J.H.; Song, Y. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weiahi 264209 (China)

    2015-01-01

    We report on the synthesis of ((Zn{sub 1−2x}Ce{sub x}Fe{sub x}) O (x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05)) nanoparticles via microwave combustion by using urea as a fuel. To understand how the dopant influenced the structural, magnetic and optical properties of nanoparticles, it was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Fe co-doped ZnO were probed by first principle calculations. From the analysis of X-ray diffraction, the samples are identified with the wurtzite crystal structure. The change in lattice parameters, micro-strain, and a small shift in XRD peaks confirms the substitution of co dopants into the ZnO lattice. Morphological investigation of the products revealed the existence of irregular shapes, such as spherical, spherodial and hexagonal. DRS measurements showed a decrease in the energy gap with increasing dopants contents, probably due to an increase in the lattice parameters. PL spectra consist of visible emission, due to the electronic defects, which are related to deep level emissions, such as oxide antisite (O{sub Zn}), interstitial zinc (Zn{sub i}), interstitial oxygen (O{sub i}) and zinc vacancy (V{sub Zn}). Magnetic measurements showed a ferromagnetic behavior for all the doped samples at room temperature. The first principle calculation results showed that the Ce governs the stability, while the Fe adjusts the magnetic characteristics in the Ce and Fe co-doped ZnO.

  18. Site-different structures from dilithium hexaboride (Li2b6) to dimagnesium hexaboride (Mg2B6) by first-principles

    International Nuclear Information System (INIS)

    Aydın, Sezgin

    2013-01-01

    Highlights: •All structures are thermodynamically stable. All structures are metallic. •Boron sub-lattice have negative-charged atoms and more covalent bonds. •The inter-octahedral binding is more covalent than inner-octahedral binding. •All structures are also mechanically stable. -- Abstract: The structural, mechanical, electronic and bonding properties of dilithium hexaboride (Li 2 B 6 ) and isostructural hypothetic compounds obtained by replacing Li atoms in different sites to magnesium atoms have been investigated by first-principles density functional pseudopotential plane–wave calculations. It is shown that calculated lattice parameters of Li 2 B 6 agree with the experimental results. All of designed hypothetical structures have negative formation enthalpies, thus all of them are thermodynamically stable and the most stable structure is Mg 2 B 6 . At the same time, from calculated single crystal elastic constants, it is shown that all structures are mechanically stable and related mechanical properties such as bulk, shear and Young moduli are calculated. It is shown that adding magnesium to the structure of Li 2 B 6 is decreasing values of the moduli. Further, hardnesses of the structures are determined theoretically and it is obtained that hardness exhibits same trend with the moduli. From electronic structure calculations including band structure and site-dependent density of states, all structures are metallic, and fully magnesium substituted structure (Mg 2 B 6 ) has the highest metallicity among the structures. Additionally, bonding nature of the structures are analyzed by using electron density maps, Mulliken atomic charges and bond overlap populations

  19. Structures, energetics, vibrational spectra of NH4+ (H2O)(n=4,6) clusters: Ab initio calculations and first principles molecular dynamics simulations.

    Science.gov (United States)

    Karthikeyan, S; Singh, Jiten N; Park, Mina; Kumar, Rajesh; Kim, Kwang S

    2008-06-28

    Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.

  20. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  1. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  2. Structure of amorphous GeSe{sub 9} by neutron diffraction and first-principles molecular dynamics: Impact of trajectory sampling and size effects

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, Sébastien; Massobrio, Carlo [Institut de Physique et de Chimie des Matériaux de Strasbourg, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Bouzid, Assil [Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Kim, Kye Yeop; Han, Seungwu [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Zeidler, Anita; Salmon, Philip S. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2016-08-28

    The structure of glassy GeSe{sub 9} was investigated by combining neutron diffraction with density-functional-theory-based first-principles molecular dynamics. In the simulations, three different models of N = 260 atoms were prepared by sampling three independent temporal trajectories, and the glass structures were found to be substantially different from those obtained for models in which smaller numbers of atoms or more rapid quench rates were employed. In particular, the overall network structure is based on Se{sub n} chains that are cross-linked by Ge(Se{sub 4}){sub 1/2} tetrahedra, where the latter are predominantly corner as opposed to edge sharing. The occurrence of a substantial proportion of Ge–Se–Se connections does not support a model in which the material is phase separated into Se-rich and GeSe{sub 2}-rich domains. The appearance of a first-sharp diffraction peak in the Bhatia-Thornton concentration-concentration partial structure factor does, however, indicate a non-uniform distribution of the Ge-centered structural motifs on an intermediate length scale.

  3. First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001) - β2(2x4)

    Science.gov (United States)

    Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko

    2018-06-01

    We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.

  4. First-principles study of structure, electronic properties and stability of tungsten adsorption on TiC(111) surface with disordered vacancies

    Science.gov (United States)

    Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.

    2017-12-01

    In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.

  5. Failure of the Hume-Rothery stabilization mechanism in the Ag5Li8 gamma-brass studied by first-principles FLAPW electronic structure calculations

    International Nuclear Information System (INIS)

    Mizutani, U; Asahi, R; Noritake, T; Sato, H; Takeuchi, T

    2008-01-01

    The first-principles FLAPW (full potential linearized augmented plane wave) electronic structure calculations were performed for the Ag 5 Li 8 gamma-brass, which contains 52 atoms in a unit cell and has been known for many years as one of the most structurally complex alloy phases. The calculations were also made for its neighboring phase AgLi B2 compound. The main objective in the present work is to examine if the Ag 5 Li 8 gamma-brass is stabilized at the particular electrons per atom ratio e/a = 21/13 in the same way as some other gamma-brasses like Cu 5 Zn 8 and Cu 9 Al 4 , obeying the Hume-Rothery electron concentration rule. For this purpose, the e/a value for the Ag 5 Li 8 gamma-brass as well as the AgLi B2 compound was first determined by means of the FLAPW-Fourier method we have developed. It proved that both the gamma-brass and the B2 compound possess an e/a value equal to unity instead of 21/13. Moreover, we could demonstrate why the Hume-Rothery stabilization mechanism fails for the Ag 5 Li 8 gamma-brass and proposed a new stability mechanism, in which the unique gamma-brass structure can effectively lower the band-structure energy by forming heavily populated bonding states near the bottom of the Ag-4d band

  6. Study of the structural, electronic and magnetic properties of ScFeCrT (T=Si, Ge) Heusler alloys by first principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Muhammad Nasir [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Javed, Athar, E-mail: athar.physics@pu.edu.pk [Department of Physics, University of the Punjab, Lahore 54590 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan)

    2017-03-15

    Spin polarized structural, electronic, magnetic and bonding properties of ScFeCrT (T=Si, Ge) Heusler alloys are studied by employing density functional theory. The total energy calculation (for a static lattice) shows that both alloys are structurally stable in ferromagnetic phase with compressibility C{sub ScFeCrSi}>C{sub ScFeCrGe}. The electronic and band structure analysis show that the ScFeCrT alloys exhibit half-metallic ferromagnetic (HMF) behaviour for spin ↑ channel while semiconducting behaviour in spin ↓ channel. Both alloys exhibit total magnetic moment, M{sub Total}=3.0 µ{sub B}/cell obeying the Slater Pauling rule, M{sub SPR}=(N{sub v} –18)μ{sub B}. For ScFeCrSi and ScFeCrGe alloys, the charge density and interatomic bonding character show highly covalent and polar covalent character, respectively. For both alloys, 100% spin polarization (for spin ↑ state) is expected which is an indication of their suitability for applications in spintronic devices. - Highlights: • Heusler alloys ScFeCrT (T= Si, Ge) are studied by first principles approach. • Structural, electronic, magnetic and bonding properties are reported. • Both alloys show half-metallicity and ferromagnetic behaviour. • Combination of properties shows the suitability of alloys in spintronic devices.

  7. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    Science.gov (United States)

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  8. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi University Teknikokullar, Department of Physics, Faculty of Sciences, Ankara (Turkey); Evecen, Meryem; Aldirmaz, Emine [Amasya University, Department of Physics, Faculty of Arts and Sciences, Amasya (Turkey)

    2017-01-15

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs{sub 2} with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs{sub 2} are positive, indicating the dynamical stability of the studied compound. (orig.)

  9. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    Science.gov (United States)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  10. Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: A first-principles calculation

    Science.gov (United States)

    Fartab, Dorsa S.; Kordbacheh, Amirhossein Ahmadkhan

    2018-06-01

    The first-principles calculations based on spin-polarized density functional theory is carried out to investigate the structural, electronic and magnetic properties of a hexagonal boron nitride sheet (h-BNS) doped by one or two lithium atom(s). Moreover, a vacancy in the neighborhood of one Li-substituted atom is introduced into the system. All optimized structures indicate significant local deformations with Li atom(s) protruded to the exterior of the sheet. The defects considered at N site are energetically more favorable than their counterpart structures at B site. The spin-polarized impurity states appear within the bandgap region of the pristine h-BNS, which lead to a spontaneous magnetization with the largest magnetic moments of about 2 μB in where a single or two B atom(s) are replaced by Li atom(s). Furthermore, the Li substitution for a single B atom increases the density of holes compared to that of electrons forming a p-type semiconductor. More interestingly, the structure in which two Li are substituted two neighboring B atoms appears to show desired half-metallic behavior that may be applicable in spintronic. The results provide a way to enhance the conductivity and magnetism of the pristine h-BNS for potential applications in BN-based nanoscale devices.

  11. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  12. Structural, elastic, and electronic properties of new 211 MAX phase Nb{sub 2}GeC from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2013-02-01

    Very recently (2012, Phys. Rev Lett., 109, 035502) a new hexagonal (s.g. P63/mmc, Music-Sharp-Sign 194) ternary phase Nb{sub 2}GeC, which belongs to so-called 211-like MAX phases, was discovered. In order to get a systematic insight into the structural, elastic, and electronic properties of Nb{sub 2}GeC, we used two complementary DFT-based first-principles approaches (as implemented in the VASP and Wien2k packages) to calculate the optimized structural parameters, band structure, densities of state, Fermi surface, and a set of elastic parameters: elastic constants (C{sub ij}), bulk modulus (B), compressibility ({beta}), shear modulus (G), Young's modulus (Y), and elastic anisotropy indexes, which were discussed in comparison with available data. Besides, the inter-atomic bonding picture for Nb{sub 2}GeC was discussed using electron density maps and Bader's charge analysis.

  13. First principles study of structural, electronic and magnetic properties of SnGe n (0, ±1) ( n = 1–17) clusters

    Science.gov (United States)

    Djaadi, Soumaia; Eddine Aiadi, Kamal; Mahtout, Sofiane

    2018-04-01

    The structures, relative stability and magnetic properties of pure Ge n +1, neutral cationic and anionic SnGe n (n = 1–17) clusters have been investigated by using the first principles density functional theory implemented in SIESTA packages. We find that with the increasing of cluster size, the Ge n +1 and SnGe n (0, ±1) clusters tend to adopt compact structures. It has been also found that the Sn atom occupied a peripheral position for SnGe n clusters when n 12. The structural and electronic properties such as optimized geometries, fragmentation energy, binding energy per atom, HOMO–LUMO gaps and second-order differences in energy of the pure Ge n +1 and SnGe n clusters in their ground state are calculated and analyzed. All isomers of neutral SnGe n clusters are generally nonmagnetic except for n = 1 and 4, where the total spin magnetic moments is 2μ b. The total (DOS) and partial density of states of these clusters have been calculated to understand the origin of peculiar magnetic properties. The cluster size dependence of vertical ionization potentials, vertical electronic affinities, chemical hardness, adiabatic electron affinities and adiabatic ionization potentials have been calculated and discussed.

  14. Structural, mechanical and electronic properties of OsTM and TMOs{sub 2} (TM = Ti, Zr and Hf): First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Ning-Chao; Liu, Fu-Sheng [Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2014-03-15

    Highlights: • OsTM and TMOs{sub 2} compounds have no superhard character. • These compounds are mechanically stable and behave in ductile manner. • OsTM has a mixture of covalent-ionic and metallic character. -- Abstract: The first-principles calculations have been performed to study the structural, elastic, mechanical and electronic properties of cubic OsTM (TM = Ti, Zr, and Hf) and hexagonal TMOs{sub 2} compounds. The calculated structural parameters are in good agreement with the available experimental data. To the best of our knowledge, the elastic constants of OsTM and TMOs{sub 2} compounds have been obtained for the first time. The calculated elastic and mechanical properties show that these compounds have no superhard character. These compounds are mechanically stable and behave in ductile manner. The electronic band structures and densities of states of OsTM and TMOs{sub 2} compounds have been analysed. OsTM has a mixture of covalent-ionic and metallic character, and TMOs{sub 2} has strong metallic nature.

  15. Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Benkabou, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Département de Physique, Faculté des Sciences, Université Hassiba Benbouali, Chlef 02000 (Algeria); Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); and others

    2015-10-25

    First-principle calculations are performed to predict the electronic structure and elastic and magnetic properties of CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys. The calculations employ the full-potential linearized augmented plane wave. The exchange-correlations are treated within the generalized gradient approximation of Perdew–Burke and Ernzerhof (GGA-PBE). The electronic structure calculations show that these compounds exhibit a gap in the minority states band and are clearly half-metallic ferromagnets, with the exception of the CoRhMnAl and CoRhMnGa, which are simple ferromagnets that are nearly half metallic in nature. The CoRhMnGe and CoRhMnSi compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, which indicates the half metallicity and high spin polarization for these compounds. At the pressure transitions, these compounds undergo a structural phase transition from the Y-type I → Y-type II phase. We have determined the elastic constants C{sub 11}, C{sub 12} and C{sub 44} and their pressure dependence, which have not previously been established experimentally or theoretically. - Highlights: • Based on DFT calculations, CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • The mechanical properties were investigated.

  16. A first-principles study on the structural, mechanical, electronic and optical properties of the Cr2(AlxGe1−x)C alloys

    International Nuclear Information System (INIS)

    Zhao-Yong, Jiao; Shu-Hong, Ma; Xiao-Fen, Huang

    2014-01-01

    Highlights: • The structural, mechanical and optical properties of Cr 2 (Al x Ge 1−x )C are studied. • The sound velocity and the Debye temperatures for the Cr 2 (Al x Ge 1−x )C are predicted. • Results classify the Cr 2 (Al x Ge 1−x )C (x ⩽ 0.5) as ductile while (x = 0.75, 1) as brittle. • Cr 2 (Al x Ge 1−x )C are predicted to be promising good coating materials. -- Abstract: According to the new experimentally discovered Cr 2 (Al x Ge 1−x )C (x = 0, 0.25, 0.5, 0.75, 1) alloys, we have studied the structural, mechanical, electronic and optical properties based on the first-principles calculation. Obtained structural parameters and distortion parameters are in good agreement with experimental results. It is shown that all the considered compounds are elastically stable and present results classify the Cr 2 (Al x Ge 1−x )C (x ⩽ 0.5) alloys as ductile while the Cr 2 (Al 0.75 Ge 0.25 )C and Cr 2 AlC as brittle. Electronic and optical properties demonstrate that all the considered M 2 AX compounds have a metallic character, and they are predictive of promising good coating materials

  17. Band Structure Engineering of Cs2AgBiBr6 Perovskite through Order-Disordered Transition: A First-Principle Study.

    Science.gov (United States)

    Yang, Jingxiu; Zhang, Peng; Wei, Su-Huai

    2018-01-04

    Cs 2 AgBiBr 6 was proposed as one of the inorganic, stable, and nontoxic replacements of the methylammonium lead halides (CH 3 NH 3 PbI 3 , which is currently considered as one of the most promising light-harvesting material for solar cells). However, the wide indirect band gap of Cs 2 AgBiBr 6 suggests that its application in photovoltaics is limited. Using the first-principle calculation, we show that by controlling the ordering parameter at the mixed sublattice, the band gap of Cs 2 AgBiBr 6 can vary continuously from a wide indirect band gap of 1.93 eV for the fully ordered double-perovskite structure to a small pseudodirect band gap of 0.44 eV for the fully random alloy. Therefore, one can achieve better light absorption simply by controlling the growth temperature and thus the ordering parameters and band gaps. We also show that controlled doping in Cs 2 AgBiBr 6 can change the energy difference between ordered and disordered Cs 2 AgBiBr 6 , thus providing further control of the ordering parameters and the band gaps. Our study, therefore, provides a novel approach to carry out band structure engineering in the mixed perovskites for optoelectronic applications.

  18. Structural, bonding, anisotropic mechanical and thermal properties of Al4SiC4 and Al4Si2C5 by first-principles investigations

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-09-01

    Full Text Available The structural, bonding, electronic, mechanical and thermal properties of ternary aluminum silicon carbides Al4SiC4 and Al4Si2C5 are investigated by first-principles calculations combined with the Debye quasi-harmonic approximation. All the calculated mechanical constants like bulk, shear and Young's modulus are in good agreement with experimental values. Both compounds show distinct anisotropic elastic properties along different crystalline directions, and the intrinsic brittleness of both compounds is also confirmed. The elastic anisotropy of both aluminum silicon carbides originates from their bonding structures. The calculated band gap is obtained as 1.12 and 1.04 eV for Al4SiC4 and Al4Si2C5 respectively. From the total electron density distribution map, the obvious covalent bonds exist between Al and C atoms. A distinct electron density deficiency sits between AlC bond along c axis among Al4SiC4, which leads to its limited tensile strength. Meanwhile, the anisotropy of acoustic velocities for both compounds is also calculated and discussed.

  19. Structural transitions in hybrid improper ferroelectric C a3T i2O7 tuned by site-selective isovalent substitutions: A first-principles study

    Science.gov (United States)

    Li, C. F.; Zheng, S. H.; Wang, H. W.; Gong, J. J.; Li, X.; Zhang, Y.; Yang, K. L.; Lin, L.; Yan, Z. B.; Dong, Shuai; Liu, J.-M.

    2018-05-01

    C a3T i2O7 is an experimentally confirmed hybrid improper ferroelectric material, in which the electric polarization is induced by a combination of the coherent Ti O6 octahedral rotation and tilting. In this work, we investigate the tuning of ferroelectricity of C a3T i2O7 using isovalent substitutions on Ca sites. Due to the size mismatch, larger/smaller alkaline earths prefer A'/A sites, respectively, allowing the possibility for site-selective substitutions. Without extra carriers, such site-selected isovalent substitutions can significantly tune the Ti O6 octahedral rotation and tilting, and thus change the structure and polarization. Using the first-principles calculations, our study reveals that three substituted cases (Sr, Mg, and Sr+Mg) show divergent physical behaviors. In particular, (CaTiO3) 2SrO becomes nonpolar, which can reasonably explain the suppression of polarization upon Sr substitution observed in experiment. In contrast, the polarization in (MgTiO3) 2CaO is almost doubled upon substitutions, while the estimated coercivity for ferroelectric switching does not change. The (MgTiO3) 2SrO remains polar but its structural space group changes, with moderate increased polarization and possible different ferroelectric switching paths. Our study reveals the subtle ferroelectricity in the A3T i2O7 family and suggests one more practical route to tune hybrid improper ferroelectricity, in addition to the strain effect.

  20. Structural phases arising from reconstructive and isostructural transitions in high-melting-point oxides under hydrostatic pressure: A first-principles study

    Science.gov (United States)

    Tian, Hao; Kuang, Xiao-Yu; Mao, Ai-Jie; Yang, Yurong; Xu, Changsong; Sayedaghaee, S. Omid; Bellaiche, L.

    2018-01-01

    High-melting-point oxides of chemical formula A B O3 with A =Ca , Sr, Ba and B =Zr , Hf are investigated as a function of hydrostatic pressure up to 200 GPa by combining first-principles calculations with a particle swarm optimization method. Ca- and Sr-based systems: (1) first undergo a reconstructive phase transition from a perovskite state to a novel structure that belongs to the post-post-perovskite family and (2) then experience an isostructural transition to a second, also new post-post-perovskite state at higher pressures, via the sudden formation of a specific out-of-plane B -O bond. In contrast, the studied Ba compounds evolve from a perovskite phase to a third novel post-post-perovskite structure via another reconstructive phase transition. The original characteristics of these three different post-post-perovskite states are emphasized. Unusual electronic properties, including significant piezochromic effects and an insulator-metal transition, are also reported and explained.

  1. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  2. First-principles calculation of the structural, electronic, elastic, and optical properties of sulfur-doping ε -GaSe crystal

    International Nuclear Information System (INIS)

    Huang Chang-Bao; Wu Hai-Xin; Ni You-Bao; Wang Zhen-You; Qi Ming; Zhang Chun-Li

    2016-01-01

    The structural, electronic, mechanical properties, and frequency-dependent refractive indexes of GaSe 1–x S x (x = 0, 0.25, and 1) are studied by using the first-principles pseudopotential method within density functional theory. The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe 1–x S x (x = 0, 0.25, and 1). Doping of ε -GaSe with S strengthens the Ga– X bonds and increases its elastic moduli of C 11 and C 66 . Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of ε -GaSe with S. The calculated results of band gaps suggest that the distance between intralayer atom and substitution of S Se , rather than interlayer force, is a key factor influencing the electronic exciton energy of the layer semiconductor. The calculated refractive indexes indicate that the doping of ε -GaSe with S reduces its refractive index and increases its birefringence. (paper)

  3. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  4. Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First-principle calculations

    International Nuclear Information System (INIS)

    Zhao Wenjie; Wang Yuanxu

    2009-01-01

    First-principle calculations were performed to investigate the structural, elastic, and electronic properties of TaB 2 , TaB, IrB 2 , and IrB. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB 2 are well consistent with the available experimental data, and TaB 2 with P6/mmm space group has stronger directional bonding between ions than WB 2 , OsB 2 , IrN 2 , and PtN 2 . For TaB 2 , the hexagonal P6/mmm structure is more stable than the orthorhombic Pmmn one, while for IrB 2 the orthorhombic Pmmn structure is the most stable one. The high shear modulus of P6/mmm phase TaB 2 is mainly due to the strong covalent π-bonding of B-hexagon in the (0001) plane. Such a B-hexagon network can strongly resist against an applied [112-bar0] (0001) shear deformation. Correlation between the hardness and the elastic constants of TaB 2 was discussed. The band structure shows that P6/mmm phase TaB 2 and Pmmn phase IrB 2 are both metallic. The calculations show that both TaB and IrB are elastically stable with the hexagonal P6 3 /mmc structure. - Elastic constant c 44 of TaB 2 is calculated to be 235 GPa. This value is exceptionally high, exceeding those of WB 2 , OsB 2 , WB 4 , OsN 2 , IrN 2 , and PtN 2 .

  5. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  6. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  7. First-principles estimation of electronic structure of uranium oxychalcogenides UOY, Y = S, Se, Te. Application to the INS spectra of UOS

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Instytut Niskich Temperatur i Badan Strukturalnych, Polska Akademia Nauk, Skr. Poczt. 1410, 50-950 Wroclaw 2 (Poland). E-mail: gajek at int.pan.wroc.pl

    2000-01-31

    A consistent description of the electronic structure of the U{sup 4+} (5f{sup 2}) ion in the UOY (Y = S, Se, Te) compounds derived on the basis of a model first-principles calculation is presented. The crystal field potential is discussed in detail. Special attention is paid to contributions of non-equivalent ligand groups. Their competition and variation along the series explain apparently random total values of the crystal field parameters (CFPs). Discussion of an interplay of factors dependent on the coordination geometry and so called 'intrinsic parameters' describing the separated metal-ligand (ML) linear ligators points to presumably rational ranges of actual values of CFP. Contrary to some earlier findings, the calculations evidence an approximate axial character of the crystal field potential. A dependence of the intrinsic parameters on the ML distance is examined thoroughly. The new numerical data show a dependence weaker than that reported before. At small ML distances, the intrinsic parameters behave in a manner characteristic of the metallic state. Some simplifications of the common phenomenological models suggested on the basis of the ab initio calculations open new possibilities of interpretation of complex magnetic and other properties of UOY. The obtained eigenstates of the uranium ion and simulated temperature characteristics of such quantities as the magnetic susceptibility or heat capacity may serve as good reference data. The crystal field (CF) parameters estimated from first principles have been used as starting data in the conventional phenomenological description of the recent inelastic neutron scattering (INS) data reported for UOS by Amoretti et al. In contrast to the earlier phenomenological approaches the effect of the term mixing has been taken into account. In initial steps of the fitting of the INS transition energies, a variation of the CF parameters has been restricted by using the angular overlap model. Then, the CF

  8. First-principles estimation of electronic structure of uranium oxychalcogenides UOY, Y = S, Se, Te. Application to the INS spectra of UOS

    International Nuclear Information System (INIS)

    Gajek, Z.

    2000-01-01

    A consistent description of the electronic structure of the U 4+ (5f 2 ) ion in the UOY (Y = S, Se, Te) compounds derived on the basis of a model first-principles calculation is presented. The crystal field potential is discussed in detail. Special attention is paid to contributions of non-equivalent ligand groups. Their competition and variation along the series explain apparently random total values of the crystal field parameters (CFPs). Discussion of an interplay of factors dependent on the coordination geometry and so called 'intrinsic parameters' describing the separated metal-ligand (ML) linear ligators points to presumably rational ranges of actual values of CFP. Contrary to some earlier findings, the calculations evidence an approximate axial character of the crystal field potential. A dependence of the intrinsic parameters on the ML distance is examined thoroughly. The new numerical data show a dependence weaker than that reported before. At small ML distances, the intrinsic parameters behave in a manner characteristic of the metallic state. Some simplifications of the common phenomenological models suggested on the basis of the ab initio calculations open new possibilities of interpretation of complex magnetic and other properties of UOY. The obtained eigenstates of the uranium ion and simulated temperature characteristics of such quantities as the magnetic susceptibility or heat capacity may serve as good reference data. The crystal field (CF) parameters estimated from first principles have been used as starting data in the conventional phenomenological description of the recent inelastic neutron scattering (INS) data reported for UOS by Amoretti et al. In contrast to the earlier phenomenological approaches the effect of the term mixing has been taken into account. In initial steps of the fitting of the INS transition energies, a variation of the CF parameters has been restricted by using the angular overlap model. Then, the CF parameters have been

  9. An integrated first principles and experimental investigation of the relationship between structural rigidity and quantum efficiency in phosphors for solid state lighting

    International Nuclear Information System (INIS)

    Ha, Jungmin; Wang, Zhenbin; Novitskaya, Ekaterina; Hirata, Gustavo A.; Graeve, Olivia A.; Ong, Shyue Ping; McKittrick, Joanna

    2016-01-01

    We outline an integrated approach for exploring novel near-UV excited phosphors. To test the hypothesis of whether high host structural rigidity results in phosphors with high quantum efficiency (Φ), we calculated the Debye temperatures (Θ) for 27 host materials using density functional theory calculations. We identified Eu 2+ -activated Ca 7 Mg(SiO 4 ) 4 and CaMg(SiO 3 ) 2 as having a relatively high Θ=601 K and 665 K, respectively, and predicted excitation energies of 3.18 eV (337 nm) and 3.29 eV (377 nm), respectively, both of which are in good agreement with the results of photoluminescence spectroscopy. However, the measured Φ for these two phosphors was < 30%, which indicates that Θ alone is not a sufficient condition for a high Φ. This work demonstrates the potential of combined first-principles calculations and experiments in the discovery and design of novel near-UV excited phosphors.

  10. Atomic partial charges on CH{sub 3}NH{sub 3}PbI{sub 3} from first-principles electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Madjet, Mohamed E., E-mail: mmadjet@qf.org.qa; El-Mellouhi, Fedwa; Carignano, Marcelo A.; Berdiyorov, Golibjon R. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P. O. Box 5825, Doha (Qatar)

    2016-04-28

    We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3} in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin–orbit coupling or dispersive interactions. We calculated explicitly the atomic charges with a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.

  11. First-principle study of the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP

    Science.gov (United States)

    Yang, H. Q.; Song, T. L.; Liang, X. X.; Zhao, G. J.

    2015-01-01

    In this work, the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP are studied by the first principle calculations. The software QUANTUM ESPRESSO and the generalized gradient approximation (GGA) for the exchange correlations have been used in the calculations. We calculate the lattice parameter, band gap and effective mass of the ternary alloy GaxIn1-xP for the Ga composition x varying from 0.0 to 1.0 by the step of 0.125. The effect of the Ga composition on the lattice parameter and the electronic density of states are discussed. The results show that the lattice parameter varies with the composition almost linearly following the Vegard's law. A direct-to-indirect band-gap crossover is found to occur close to x = 0.7. The effective masses are also calculated at Γ(000) high symmetry point along the [100] direction. The results show that the band gap and the electron effective mass vary nonlinearly with composition x.

  12. An integrated first principles and experimental investigation of the relationship between structural rigidity and quantum efficiency in phosphors for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jungmin [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Wang, Zhenbin [Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Novitskaya, Ekaterina [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hirata, Gustavo A. [Center for Nanoscience and Nanotechnology, Ensenada (Mexico); Graeve, Olivia A. [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Ong, Shyue Ping, E-mail: ongsp@eng.ucsd.edu [Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); McKittrick, Joanna, E-mail: jmckittrick@ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2016-11-15

    We outline an integrated approach for exploring novel near-UV excited phosphors. To test the hypothesis of whether high host structural rigidity results in phosphors with high quantum efficiency (Φ), we calculated the Debye temperatures (Θ) for 27 host materials using density functional theory calculations. We identified Eu{sup 2+}-activated Ca{sub 7}Mg(SiO{sub 4}){sub 4} and CaMg(SiO{sub 3}){sub 2} as having a relatively high Θ=601 K and 665 K, respectively, and predicted excitation energies of 3.18 eV (337 nm) and 3.29 eV (377 nm), respectively, both of which are in good agreement with the results of photoluminescence spectroscopy. However, the measured Φ for these two phosphors was < 30%, which indicates that Θ alone is not a sufficient condition for a high Φ. This work demonstrates the potential of combined first-principles calculations and experiments in the discovery and design of novel near-UV excited phosphors.

  13. Structural, electronic transport and optical properties of functionalized quasi-2D TiC{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G.R., E-mail: gberdiyorov@qf.org.qa; Madjet, M.E., E-mail: mmadjet@qf.org.qa

    2016-12-30

    Highlights: • Effect of surface termination on the optoelectronic properties of TiC{sub 2} is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Partial charges are calculated. • Absorption of the system increases by surface passivation. • Electronic transport reduces considerably due to the termination. - Abstract: Using the first-principles density functional theory, we study the effect of surface functionalization on the structural and optoelectronic properties of recently proposed quasi-two-dimensional material TiC{sub 2} [T. Zhao, S. Zhang, Y. Guo, Q. Wang, Nanoscale 8 (2016) 233]. Hydrogenated, fluorinated, oxidized and hydroxylated surfaces are considered. Significant changes in the lattice parameters and partial charge distributions are found due to the surface termination. Direct contribution of the adatoms to the system density of states near the Fermi level is obtained, which has a major impact on the optoelectronic properties of the material. For example, surface termination results in larger absorption in the visible range of the spectrum. The electronic transport is also affected by the surface functionalization: the current in the system can be reduced by an order of magnitude. These findings indicate the importance of the effects of surface passivation on optoelectronic properties of this quasi-2D material.

  14. First-principles study on the strain effect of the Cu(0-bar 0-bar 1)-c(2x2)N self-organized structure

    International Nuclear Information System (INIS)

    Yoshimoto, Yoshihide; Tsuneyuki, Shinji

    2004-01-01

    Nitrogen atoms adsorbed on Cu(0-bar 0-bar 1) surface are known to form a self-organized structure, in which islands of nitrogen-adsorbed region are arranged into a square lattice. To clarify the mechanism of the self-organization, the strain effect in this surface is investigated by first-principles theoretical calculations. The difference between the calculated surface stress of Cu(0-bar 0-bar 1)-c(2x2)N surface and that of clean Cu(0-bar 0-bar 1) surface is in good agreement with the value estimated from experiments. In the stripe model of the self-organized surface, the top-most Cu atoms are largely displaced in lateral directions, while the nitrogen atoms at the edge of its nitrogen-adsorbed region slightly protrude in the surface normal. These results are consistent with observations. Spontaneous formation of the clean Cu region is also confirmed by calculating the formation energy within the stripe model. The formation energy is fitted well by a function deduced from the theory of elasticity. Nevertheless, the parameter of the fitting cannot be explained only by the difference of the surface stresses

  15. Relation between reactivity and electronic structure for α'L-, β- and γ-dicalcium silicate: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qianqian, E-mail: qqwangnj@gmail.com [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Li, Feng [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Shen, Xiaodong, E-mail: xdshen@njut.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Shi, Wujun [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093 (China); Li, Xuerun; Guo, Yanhua [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Xiong, Shijie [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093 (China); Zhu, Qing [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-03-01

    The effect of the electronic structures of α'L-, β-, and γ-dicalcium silicate (α'L-, β- and γ-C₂S, C = CaO, S = SiO₂) on hydration reactivity have been investigated by first-principles calculations. Active O atoms with larger charge densities are found in α'L- and β-C₂S, while they are absent in γ-C₂S. The local density of states of valence band maximum in α'L- and β-C₂S is highly localized around active O atoms, whereas that in γ-C₂S is homogeneously dispersed. For the active O-2p orbital in α'L- and β-C₂S, the highest orbital energy in the partial density of states is about 0.31 eV higher than that of the inactive O in γ-C₂S. These differences make the active O atoms of α'L- and β-C₂S more susceptible to electrophilic attack and result in higher hydration reactivity for α'L- and β-C₂S.

  16. First-principles calculation of structural and energetic properties for A2Ti2O7 (A = Lu, Er, Y, Gd, Sm, Nd, La)

    International Nuclear Information System (INIS)

    Zhang, Z.L.; Xiao, H.Y.; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2009-01-01

    A first-principles method has been employed to investigate the structural and energetic properties for A2Ti2O7 (A = Lu, Er, Y, Gd, Sm, Nd, La), including the formation energies of the cation antisite-pair, the anion Frenkel pair that defines anion-disorder, and the coupled cation antisite-pair/anion-Frenkel. It is proposed that the interaction may have more significant influence on the radiation resistance behavior of titanate pyrochlores, although the interactions are relatively much stronger than the interactions. It is found that the defect formation energies are not simple functions of the A-site cation radii. The formation energy of the cation antisite-pair increases continuously as the A-site cation varies from Lu to Gd, and then decreases continuously with the variation of the A-site cation from Gd to La, in excellent agreement with the radiation-resistance trend of the titanate pyrochlores. The band gaps in these pyrochlores were also measured, and the band gap widths changed continuously with cation radius.

  17. Redox functionality mediated by adsorbed oxygen on a Pd oxide film over a Pd(100) thin structure: a first-principles study

    International Nuclear Information System (INIS)

    Kusakabe, K; Ikuno, Y k; Nagara, H; Harada, K

    2009-01-01

    Stable oxygen sites on a PdO film over a Pd(100) thin structure with a (√5x√5)R27 o surface unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two twofold-coordinated Pd atoms or to a site bridging a twofold-coordinated Pd atom and a fourfold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N 2 O reduction mediated by oxidation of the PdO film are both exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become ∼0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by the existence of twofold-coordinated Pd atoms on the PdO film, whose local structure has a similarity to that of Pd catalysts for the Suzuki-Miyaura cross-coupling. Although NO x (including NO 2 and NO) reduction is not always catalyzed by the PdO film only, we conclude that continual redox reactions may happen mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.

  18. First-principles study of the Pd–Si system and Pd(0 0 1)/SiC(0 0 1) hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P.E.A. [Lawrence Livermore National Laboratory (L-352), 7000 East Avenue, Livermore, CA 94551 (United States); Ivashchenko, V.I. [Institute of Problems of Materials Science, NAS of Ukraine, Krzhyzhanovsky str. 3, 03142 Kyiv (Ukraine)

    2014-11-15

    Highlights: • A large atomic mixing at the Pd/Si interface occurs at 1500–1800 K. • The Pd/C interface remains sharp even at the highest temperature of 2100 K. • At the Pd/C interface, voids and a graphite-like clustering are detected. • At the Pd/Si interface C22-Pd{sub 2}Si and D0{sub 11}-Pd{sub 3}Si fragments form, in agreement with experiment. - Abstract: First-principles molecular dynamics simulations of the Pd(0 0 1)/3C–SiC(0 0 1) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3{sup ¯}m, P6{sup ¯}m2, Pm3{sup ¯}m), Pd{sub 2}Si (P6{sup ¯}2m, P6{sub 3}/mmc, P3{sup ¯}m1, P3{sup ¯}1m) and Pd{sub 3}Si (Pnma, P6{sub 3}22, Pm3{sup ¯}m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd{sub 2}Si and D0{sub 11}-Pd{sub 3}Si fragments, in agreement with experiment.

  19. First-principles study on the electronic structure, phonons and optical properties of LaB_6 under high-pressure

    International Nuclear Information System (INIS)

    Chao, Luomeng; Bao, Lihong; Wei, Wei; O, Tegus; Zhang, Zhidong

    2016-01-01

    The electronic structure, phonons and optical properties of LaB_6 compound under different pressure have been studied by first-principles calculation. The electronic structure calculation shows that the d band along the M-Γ direction of the Brillouin zone moves up with increasing pressure and the band minimum is above the Fermi level at 45 GPa. The pressure-induced charge transfer from La to B atoms is reflected in the upshift of d band along the M-Γ direction with pressure. The calculated phonon dispersion curve at zero pressure is in good agreement with the experimental results. However, the phonon dispersion under high pressure does not show any information about the phase transition at 10 GPa, which was reported previously. The acoustic and optical phonon modes harden all the way with increasing pressure. In addition, the dielectric function is in accordance with the Drude model in the pressure range of 0 GPa–35 GPa and follows the Lorentz model at 45 GPa. The LaB_6 compound exhibits better visible light transmittance performance with the increasing pressure in the range of 0 GPa–35 GPa and visible light transmittance peak would be shifted towards ultraviolet region. - Highlights: • Physical properties of LaB_6 under high pressure have been theoretically studied. • Predict an electronic topological transition occurs at 45 GPa for LaB_6. • Predict a pressure-induced charge transfer from La to B atoms. • The phonon modes at Γ point show an increasing trend with increasing pressure. • The LaB_6 exhibits better heat-shielding performance with the increasing pressure.

  20. A first-principles study of the structural, mechanical and electronic properties of precipitates of Al2Cu in Al-Cu alloys.

    Science.gov (United States)

    Ouyang, Y F; Chen, H M; Tao, X M; Gao, F; Peng, Q; Du, Y

    2018-01-03

    The properties of precipitates are important in understanding the strengthening mechanism via precipitation during heat treatment and the aging process in Al-Cu based alloys, where the formation of precipitates is sensitive to temperature and pressure. Here we report a first-principles investigation of the effect of temperature and pressure on the structural stability, elastic constants and formation free energy for precipitates of Al 2 Cu, as well as their mechanical properties. Based on the formation enthalpy of Guinier-Preston (GP(I)) zones, the size of the GP(I) zone is predicted to be about 1.4 nm in diameter, which is in good agreement with experimental observations. The formation enthalpies of the precipitates are all negative, suggesting that they are all thermodynamically stable. The present calculations reveal that entropy plays an important role in stabilizing θ-Al 2 Cu compared with θ C '-Al 2 Cu. The formation free energies of θ''-Al 3 Cu, θ C '-Al 2 Cu, θ D '-Al 5 Cu 3 and θ t '-Al 11 Cu 7 increase with temperature, while those of θ'-Al 2 Cu, θ O '-Al 2 Cu and θ-Al 2 Cu decrease. The same trend is observed with the effect of pressure. The calculated elastic constants for the considered precipitation phases indicate that they are all mechanically stable and anisotropic, except θ C '-Al 2 Cu. θ D '-Al 5 Cu 3 has the highest Vicker's hardness. The electronic structures are also calculated to gain insight into the bonding characteristics. The present results can help in understanding the formation of precipitates by different treatment processes.

  1. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb2MB2 (M=Fe, Ru, Os) from first principles calculations

    International Nuclear Information System (INIS)

    Touzani, Rachid St.; Fokwa, Boniface P.T.

    2014-01-01

    The Nb 2 FeB 2 phase (U 3 Si 2 -type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb 2 OsB 2 (space group P4/mnc, no. 128, a twofold superstructure of U 3 Si 2 -type) with distorted Nb-layers and Os 2 -dumbbells was recently achieved, “Nb 2 RuB 2 ” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb 2 FeB 2 and Nb 2 OsB 2 , but also predict “Nb 2 RuB 2 ” to crystalize with the Nb 2 OsB 2 structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb 2 FeB 2 , originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb 2 FeB 2 (U 3 Si 2 structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb 2 RuB 2 ” is predicted to crystallize with the recently discovered Nb 2 OsB 2 twofold superstructure (space group P4/mnc, no. 128) of U 3 Si 2 structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be responsible for the stabilization of this superstructure. Highlights: • Nb 2 FeB 2 is predicted to order antiferromagnetically.

  2. First-principles study of electronic structure of CuSbS{sub 2} and CuSbSe{sub 2} photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T., E-mail: tmaeda@ad.ryukoku.ac.jp; Wada, T.

    2015-05-01

    We studied the features of CuSbS{sub 2} (CAS) and CuSbSe{sub 2} (CASe), two proposed photovoltaic compounds, and clarified their electronic structures by first-principles calculations and compared them to the chalcopyrite-type CuInSe{sub 2} results. For both CAS and CASe, the calculated enthalpies of formation of the chalcostibite phases were considerably lower than those of the chalcopyrite phases. Therefore, we considered that the chalcostibite phase is more stable for CAS and CASe. In their band structure calculated with the HSE06 hybrid functional, the valence band maxima of CAS and CASe were located at the Γ-point, and the conduction band minima were located at the R-point. Their second lowest conduction band was located at the Γ-point, whose energy level nearly equaled the R-point. For CAS (CASe), the partial density of the states shows the character of the Cu 3d and S 3p (Se 4p) orbitals at the top of the valence bands and the Sb 5p and S 3p (Se 4p) orbitals at the bottom of the conduction bands. The conduction bands of CAS and CASe have a p-orbital character (Sb 5p) that differs from the s-orbital character (In 5s) of CuInSe{sub 2}. It is for the reason that CAS and CASe do not have a chalcopyrite structure but a chalcostibite-type structure. The calculated absorption coefficient of CuSbS{sub 2} (10{sup 4}-10{sup 5} cm{sup −1}) is comparable to that of CuInSe{sub 2}. - Highlights: • We studied the features of CuSbS{sub 2} and CuSbSe{sub 2}, newly proposed photovoltaic compounds. • Chalcostibite phase is more stable in CuSbS{sub 2} and CuSbSe{sub 2}. • Band structures of CuSbS{sub 2} and CuSbS{sub 2} were calculated with HSE06 hybrid functional. • Absorption coefficient of chalcostibite-type CuSbS{sub 2} is comparable to that of CuInSe{sub 2}.

  3. Electronic structure of Ti4Fe2Ox as determined from first-principles APW + LO calculations and X-ray spectroscopy data

    International Nuclear Information System (INIS)

    Lavrentyev, A.A.; Gabrelian, B.V.; Shkumat, P.N.; Nikiforov, I.Ya.; Zavaliy, I.Yu.; Sinelnichenko, A.K.; Izvekov, A.V.; Khyzhun, O.Yu.

    2010-01-01

    Electronic properties of Ti 4 Fe 2 O oxide, a very promising hydrogen-storage material, were studied both from theoretical and experimental points of view employing the first-principles band-structure augmented plane wave + local orbitals (APW + LO) method with the WIEN2k code as well as X-ray photoelectron spectroscopy (XPS) and soft X-ray emission spectroscopy (SXES). Total and partial densities of states of the constituent atoms of Ti 4 Fe 2 O have been derived from the APW + LO calculations. The XPS valence-band spectra as well as the SXES Ti Lα, Fe Lα and O Kα bands have been measured for a series of Ti 4 Fe 2 O x oxides (x = 1.0, 0.5, and 0.25). The present APW + LO calculations reveal that, the O 2p-like states are the dominant contributors into the bottom of the valence band, whilst the top of the valence band and the bottom of the conduction band of Ti 4 Fe 2 O are dominated by contributions of the Fe 3d- and Ti 3d-like states. The APW + LO results are confirmed experimentally by a comparison on a common energy scale of the XPS valence-band spectra and the SXES Ti Lα, Fe Lα and O Kα bands of the Ti 4 Fe 2 O x oxides. The XPS Ti 2p, Fe 2p and O 1s core-level binding energies have been measured for the compounds under consideration.

  4. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  5. Atomic structure and potential energy of β-Si3N4/diamond interface in the process of detachment: A first-principles study

    Science.gov (United States)

    Chen, Naichao; Chen, Yingchao; Ai, Jun; Li, Cheng; He, Ping; Ren, Jianxing; Zhu, Quanjun

    2018-03-01

    Peeling is regarded as a main technique barrier for the application of coating. Many factors affects the peeling of coating. Among them, the interfacial properties between coating and substrate plays a vital role. In this work, the β-Si3N4/diamond interface is conducted as the sample to study the changes in atomic structure and potential energy in the process of detachment by the first-principles calculations. The β-Si3N4/diamond (2 × 2) crystal unit is used as the calculated model. The detachment is simulated by moving up β-Si3N4 far from diamond by the 0.1 Å of each step. The results show that in the beginning of detachment, the bonds in the interface keep a constant length, rather than extension like spring. When the distance between β-Si3N4 and diamond reaches a certain distance, the interfacial bonds would suddenly break, and the elongated β-Si3N4 resumes its original statues indicating that the interface between two surfaces may exist a threshold value to control the peeling. When the external force is less than this threshold value, the peeling of coating would not occur. However, once the external force is greater than this one, the peeling would immediately present. The interface presents the brittle failure in the process of detachment, which is in good agreement with the experimental observation. Meanwhile, the different physical properties between van der Waals and quantum effects lead to the transient status in the process of detachment, where although the interfacial bonds are broken, the adhesive strength is still strong due to its low negative adsorption energy.

  6. Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure

    Energy Technology Data Exchange (ETDEWEB)

    Inabayashi, Masaki; Doi, Yoshihiro; Wakeshima, Makoto; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp

    2017-06-15

    Solid solutions Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} (0≤x≤1.0) and (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} (0≤x≤0.7) were obtained as a single phase compound. They crystallize in an orthorhombic superstructure derived from that of the cubic fluorite with space group Cmcm. The results of the Rietveld analysis for X-ray diffraction profiles of Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} showed that Ru and Ta atoms are randomly situated at the six-coordinate 4b site. For (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}, with increasing the concentration of Y ions (x value), the smaller Y ions occupy selectively the seven-coordinate 8g site rather than the eight-coordinate 4a site. Through magnetic susceptibility measurements for Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7}, the antiferromagnetic transition temperatures decrease linearly with increasing x value, and at x=0.75 no magnetic ordering was found down to 1.8 K, indicating the magnetic interaction is not one-dimensional, but three-dimensional. On the other hand, the antiferromagnetic transition temperature for (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} decreases with increasing x value, but above x≥0.50 it becomes constant (~12 K). This result indicates that Pr{sup 3+} ions at the seven-coordinate site greatly contribute to the antiferromagnetic interactions observed in (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}. Density functional calculations of Pr{sub 3}RuO{sub 7} demonstrate that the electronic structure gives insulating character and that oxygen 2p orbitals hybridize strongly with Ru 4d orbitals in the valence band (VB). Near the top of VB, the Pr 4 f orbitals at the seven-coordinated site also show a weak hybridization with the O(1) 2p orbitals. The Ru-O(1)-Pr superexchange pathway take part in three-dimensional magnetic interaction and play an important role in an enhancement of long-range magnetic ordering. - Graphical abstract: The spin densities and the spin polarization of Pr{sub 3}RuO{sub 7} are shown

  7. High-pressure phase diagram of hydrogen and deuterium sulfides from first principles: Structural and vibrational properties including quantum and anharmonic effects

    Science.gov (United States)

    Bianco, Raffaello; Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2018-06-01

    We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride and trideuteride in the high-pressure I m 3 ¯m and R 3 m phases by first-principles density-functional-theory calculations. On lowering pressure, the rhombohedral transition I m 3 ¯m →R 3 m is expected, with hydrogen-bond desymmetrization and occurrence of trigonal lattice distortion. With both Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional, in hydrostatic conditions we find that, contrary to what is suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy of approximately 10 % could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation. Within this approach, we determine the transition pressure by calculating the free-energy Hessian, a method that allows to estimate the critical pressure with much higher precision (and much lower computational cost) compared with the free-energy "finite-difference" approach previously used. Using PBE and BLYP, we find that quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the one obtained with the classical harmonic approach. Interestingly, for the two functionals, even if the transition pressures at classical harmonic level differ by 83 GPa, the transition pressures including quantum anharmonic effects differ only by 23 GPa. Moreover, we observe a prominent isotope effect, as we estimate higher transition pressure for D3S than for H3S . Finally, within the stochastic self-consistent harmonic approximation, with PBE

  8. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    International Nuclear Information System (INIS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-01-01

    Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln 3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. Highlights: ► Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. ► Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). ► These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  9. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doi, Yoshihiro [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2013-02-15

    Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln{sup 3+} sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. Highlights: Black-Right-Pointing-Pointer Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. Black-Right-Pointing-Pointer Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). Black-Right-Pointing-Pointer These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  10. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  11. Coloring of synthetic fluorite

    International Nuclear Information System (INIS)

    Birsoy, R.

    1980-01-01

    A synthetic fluorite of the Harshaw Chemical Company is analyzed for rare earth elements, yttrium, and sodium. Samples of this fluorite are irradiated with X-rays, γ-rays, neutrons, electrons, protons, and α-particles at different energies, and their absorption spectra are analyzed. Analyzing the thermal bleaching of these radiation-coloured fluorites shows that both, impurities and radiation play a part in the coloration of synthetic fluorite. However, the main contribution comes from the radiation induced lattice defects. In the visible region spectra, the colour centre of the 5800 to 5900 A absorption band is probably mainly related with large aggregates of F-centres. The 5450 and the 5300 A absorption bands are mainly related to monovalent and divalent ion impurities and their association with lattice defects. The 3800 A absorption band seems to be related with F-centre aggregates. However, the contribution from the rare earth elements related complex color centres also plays some part for the production of this absorption band. These results indicate that the color centres of different origin can absorb light at the same wavelength. (author)

  12. A first principles study of structural stability, electronic structure and mechanical properties of beryllium alanate BeAlH{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Priyanga, G. Sudha; Cinthia, A. Jemmy [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu 628003 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203 (India)

    2015-06-24

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of BeAlH{sub 5} for monoclinic crystal structures with two different types of space group namely P2{sub 1} and C{sub 2}/c. Among the considered structures monoclinic (P2{sub 1}) phase is found to be the most stable at ambient condition. The structural phase transition from monoclinic (P2{sub 1}) to monoclinic (C{sub 2}/c) phase is observed in BeAlH{sub 5}. The electronic structure reveals that this compound is insulator. The calculated elastic constants indicate that this material is mechanically stable at ambient condition.

  13. Credibility is the first principle

    International Nuclear Information System (INIS)

    Beecher, William

    2002-01-01

    The first principle of an effective public affairs program on nuclear energy is credibility. If credibility is lacking, no matter how artful the message, it will not be persuasive. There has long been a problem in the United States. For years much of the industry followed the practice, when there was an event at a nuclear power plant that resulted in an unplanned release of radioactivity, to tell the public there was 'no release' if in fact the release was below the technical specifications of what the NRC mandates as being safe. The NRC is a safety regulator. It can tell nuclear power plant operators what to do, or not do, when it comes to safety, but doesn't have the right to tell them what to say to the public. The example of an emergency exercise and the NRC press release on that occasion showed the direction how companies could be influenced to behave in order to prevent such avoidably negative news coverage, i.e. attaining credibility when public anxiety is concerned

  14. First-principles study of dielectric properties of cerium oxide

    International Nuclear Information System (INIS)

    Yamamoto, Takenori; Momida, Hiroyoshi; Hamada, Tomoyuki; Uda, Tsuyoshi; Ohno, Takahisa

    2005-01-01

    We have theoretically investigated the dielectric properties of fluorite CeO 2 as well as hexagonal and cubic Ce 2 O 3 by using first-principles pseudopotentials techniques within the local density approximation. Calculated electronic and lattice dielectric constants of CeO 2 are in good agreement with previous theoretical and experimental results. For Ce 2 O 3 , the hexagonal phase has a lattice dielectric constant comparable to that of CeO 2 , whereas the cubic phase has a much smaller one. We have concluded that the enhancement of the dielectric constant in CeO 2 epitaxially grown on Si is not due to its lattice expansion experimentally observed nor regular formation of oxygen vacancies in CeO 2

  15. First principles study of AlBi

    International Nuclear Information System (INIS)

    Amrani, B.; Achour, H.; Louhibi, S.; Tebboune, A.; Sekkal, N.

    2008-05-01

    Using the first principles method of the full potential linear augmented plane waves (FPLAPW), the structural and the electronic properties of AlBi are investigated. It is found that this compound has a small and direct semiconducting gap at Γ. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature θ D and the heat capacity C v are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. (author)

  16. First-principles molecular dynamics for metals

    International Nuclear Information System (INIS)

    Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.

    1989-01-01

    A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases

  17. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011(India)

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  18. Rationalization of the Hubbard U parameter in CeO{sub x} from first principles: Unveiling the role of local structure in screening

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Deyu, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov; Liu, Ping, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-28

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions.

  19. Rationalization of the Hubbard U parameter in CeOx from first principles: Unveiling the role of local structure in screening

    International Nuclear Information System (INIS)

    Lu, Deyu; Liu, Ping

    2014-01-01

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions

  20. First-principles study of electronic and structural properties and examining the effect of pressure on structure and energy gap in In N phases

    International Nuclear Information System (INIS)

    Bouchani, A.; Arabi, H.; Abolhasani, M. R.

    2007-01-01

    The electronic and structural properties of both zinc-blende and wurtzite phases of In N were investigated by using full potential augmented plane wave method within density functional theory. For exchange correlation potential, local density approximation, generalized gradient approximation and an alternative form of generalized gradient approximation proposed by Engel and Vosko (EV-generalized gradient approximation ) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other theoretical work and closer to experimental data. The lattice constants, bulk modulus are calculated for each of both phases. We have also investigated the structural transitions of In N and have calculated the transition pressure between zinc-blende and rock salt phases.

  1. The ionic conductivity and defect structure of fluorite-type solid solutions Basub(1-x)Usub(x)Fsub(2+2x)

    International Nuclear Information System (INIS)

    Ouwerkerk, M.

    1986-01-01

    The crystal growth and the characterization of the solid solutions Msub(1-x)Usub(x)Fsub(2+2x) (M = Ca, Sr, Ba and Pb) are described. X-ray diffraction and X-ray fluorescence methods have been utilized to determine the U 4+ content of the solid solutions. The incorporation of UF 4 in PbF 2 is found to have a stabilizing effect on the β-PbF 2 (fluorite) structure. A study of the conductivity properties of Basub(1-x)Usub(x)Fsub(2+2x) and of Pbsub(1-x)Usub(x)Fsub(2+2x) is presented. The effect of an anion excess on the diffuse phase transition and the specific heat anomaly of single crystals Msub(1-x)Usub(x)Fsub(2+2x) was studied with impedance spectroscopy and calorimetric measurements. Finally, a study of the fluorite-type solid solutions Basub(1-x)Lasub(x)Fsub(2+x) and Basub(1-x)Usub(x)Fsub(2+2x) using the Thermally Stimulated Depolarization Current (TSDC) technique is presented. (Auth.)

  2. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation

    International Nuclear Information System (INIS)

    Liu, Z T Y; Khare, S V; Zhou, X; Gall, D

    2014-01-01

    We report systematic results from ab initio calculations with density functional theory on three cubic structures, zincblende (zb), rocksalt (rs) and cesium chloride (cc), of the ten 3d transition metal nitrides. We computed lattice constants, elastic constants, their derived moduli and ratios that characterize mechanical properties. Experimental measurements exist in the literature of lattice constants for rs-ScN, rs-TiN and rs-VN and of elastic constants for rs-TiN and rs-VN, all of which are in good agreement with our computational results. Similarly, computed Vickers hardness (H V ) values for rs-TiN and rs-VN are consistent with earlier experimental results. Several trends were observed in our rich data set of 30 compounds. All nitrides, except for zb-CrN, rs-MnN, rs-FeN, cc-ScN, cc-CrN, cc-NiN and cc-ZnN, were found to be mechanically stable. A clear correlation in the atomic density with the bulk modulus (B) was observed with maximum values of B around FeN, MnN and CrN. The shear modulus, Young’s modulus, H V and indicators of brittleness showed similar trends and all showed maxima for cc-VN. The calculated value of H V for cc-VN was about 30 GPa, while the next highest values were for rs-ScN and rs-TiN, about 24 GPa. A relation (H V ∝θ D 2 ) between H V and Debye temperature (θ D ) was investigated and verified for each structure type. A tendency for anti-correlation of the elastic constant C 44 , which strongly influences stability and hardness, with the number of electronic states around the Fermi energy was observed. (paper)

  3. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  4. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  5. First-Principles Investigations of the Structural, Anisotropic Mechanical, Thermodynamic and Electronic Properties of the AlNi2Ti Compound

    Directory of Open Access Journals (Sweden)

    Shuli Tang

    2018-02-01

    Full Text Available In this paper, the electronic, mechanical and thermodynamic properties of AlNi2Ti are studied by first-principles calculations in order to reveal the influence of AlNi2Ti as an interfacial phase on ZTA (zirconia toughened alumina/Fe. The results show that AlNi2Ti has relatively high mechanical properties, which will benefit the impact or wear resistance of the ZTA/Fe composite. The values of bulk, shear and Young’s modulus are 164.2, 63.2 and 168.1 GPa respectively, and the hardness of AlNi2Ti (4.4 GPa is comparable to common ferrous materials. The intrinsic ductile nature and strong metallic bonding character of AlNi2Ti are confirmed by B/G and Poisson’s ratio. AlNi2Ti shows isotropy bulk modulus and anisotropic elasticity in different crystallographic directions. At room temperature, the linear thermal expansion coefficient (LTEC of AlNi2Ti estimated by quasi-harmonic approximation (QHA based on Debye model is 10.6 × 10−6 K−1, close to LTECs of zirconia toughened alumina and iron. Therefore, the thermal matching of ZTA/Fe composite with AlNi2Ti interfacial phase can be improved. Other thermodynamic properties including Debye temperature, sound velocity, thermal conductivity and heat capacity, as well as electronic properties, are also calculated.

  6. Monolayer CS as a metal-free photocatalyst with high carrier mobility and tunable band structure: a first-principles study

    Science.gov (United States)

    Yang, Xiao-Le; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong

    2018-02-01

    Producing hydrogen fuel using suitable photocatalysts from water splitting is a feasible method to harvest solar energy. A desired photocatalyst is expected to have suitable band gap, moderate band edge position, and high carrier mobility. By employing first-principles calculations, we explore a α-CS monolayer as a metal-free efficient photocatalyst. The α-CS monolayer shows good energetic, dynamic, and thermal stabilities and is insoluble in water, suggesting its experimental practicability. Monolayer and bilayer α-CS present not only appropriate band gaps for visible and ultraviolet light absorption but also moderate band alignments with water redox potentials in pH neutral water. Remarkably, the α-CS monolayer exhibits high (up to 8453.19 cm2 V-1s-1 for hole) and anisotropic carrier mobility, which is favorable to the migration and separation of photogenerated carriers. In addition, monolayer α-CS experiences an interesting semiconductor-metal transition by applying uniaxial strain and external electric field. Moreover, α-CS under certain strain and electric field is still dynamically stable with the absence of imaginary frequencies. Furthermore, we demonstrate that the graphite (0 0 1) surface is a potential substrate for the α-CS growth with the intrinsic properties of α-CS maintaining. Therefore, our results could pave the way for the application of α-CS as a promising photocatalyst.

  7. Properties of complex tungstates, niobates, translated with fluorite-like structure. Svojstva slozhnykh vol'framatov, niobatov, tantalatov s flyuoritopodobnoj strukturoj

    Energy Technology Data Exchange (ETDEWEB)

    Vetkina, S N; Zolin, V F; Sirotinkin, V P; Smirnov, S A

    1989-04-01

    Spectra of ternary tungstates, niobates and tantalates (MeLa{sub 2}WO{sub 7}, La{sub 3}TO{sub 7}; Me=Ba, Sr; T=Ta, Nb) related to the layered fluorite group are analyzed. The laser pumping and time resolved luminescence are used for selecting spectra of unequivalent centers. The symmetry of the first center is near to the distorted cubic one. The vibrational spectra of europium in Eu{sub 3}NbO{sub 7} and SrLa{sub 2}WO{sub 7} are due to the chain-like structure of niobates and to the net-like structure of tantalates. The stimulated emission of Nd{sup 3+} in powders of BaLa{sub 2}WO{sub 7} and La{sub 3}NbO{sub 7} is observed at wavelengths of 1.07 and 1.063 {mu}m, respectively.

  8. First principles thermodynamics of alloys

    International Nuclear Information System (INIS)

    Ducastelle, F.

    1993-01-01

    We present a brief report on the methods of solid state physics (electronic structure, statistical thermodynamics) that allow us to discuss the phase stability of alloys and to determine their phase diagrams. (orig.)

  9. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    Science.gov (United States)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-02-01

    Ternary rare-earth osmates Ln3OsO7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr3OsO7 exhibits magnetic transitions at 8 and 73 K, and Tb3OsO7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice.

  10. Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via a soft chemical route from NdNiO3 precursors.

    Science.gov (United States)

    Onozuka, T; Chikamatsu, A; Katayama, T; Fukumura, T; Hasegawa, T

    2016-07-26

    A new phase of oxyhydride NdNiOxHy with a defect-fluorite structure was obtained by a soft chemical reaction of NdNiO3 epitaxial thin films on a substrate of SrTiO3 (100) with CaH2. The epitaxial relationship of this phase relative to SrTiO3 could be controlled by changing the reaction temperature. At 240 °C, NdNiOxHy grew with a [001] orientation, forming a thin layer of infinite-layer NdNiO2 at the interface between the NdNiOxHy and the substrate. Meanwhile, a high-temperature reaction at 400 °C formed [110]-oriented NdNiOxHy without NdNiO2.

  11. First-principles study of crystal structure, elastic stiffness constants, piezoelectric constants, and spontaneous polarization of orthorhombic Pna21-M2O3 (M = Al, Ga, In, Sc, Y)

    Science.gov (United States)

    Shimada, Kazuhiro

    2018-03-01

    We perform first-principles calculations to investigate the crystal structure, elastic and piezoelectric properties, and spontaneous polarization of orthorhombic M2O3 (M = Al, Ga, In, Sc, Y) with Pna21 space group based on density functional theory. The lattice parameters, full elastic stiffness constants, piezoelectric stress and strain constants, and spontaneous polarization are successfully predicted. Comparison with available experimental and computational results indicates the validity of our computational results. Detailed analysis of the results clarifies the difference in the bonding character and the origin of the strong piezoelectric response and large spontaneous polarization.

  12. First-principles calculations of the electronic structure and optical properties of K1−xNaxTaO3 (x=0, 0.25, 0.5, 0.75, 1)

    International Nuclear Information System (INIS)

    Zhao, Na; Wang, Yue-Hua; Wang, Qing-Xi; Hu, Wen-Jing

    2012-01-01

    The first-principles calculations are performed to investigate the cubic phase composite K 1−x Na x TaO 3 (x=0, 0.25, 0.5, 0.75, 1), by using density functional theory (DFT) with the full potential linearized augmented plane wave (FP-LAPW) method. The energy band structures, density of states (DOS), electron density and optical properties are obtained. The results show that Na ion plays an important role in K 1−x Na x TaO 3 . With the content of Na ion increasing, the changes of lattice parameters, energy gaps, bond lengths and optical properties of K 1−x Na x TaO 3 are regular. Moreover, the dependence of ferroelectric photocatalysis on both optical properties and internal electronic structure are analyzed in detail. It is proposed that the doped materials are promising photocatalytic materials. - Graphical abstract: The density of states (DOS) of K 1−x Na x TaO 3 (x=0.5). Highlights: ► The first-principles calculations are performed, by using DFT with FP-LAPW method. ► The changes of internal electronic structure and optical property of doped materials are regular. ► The dependence of ferroelectric photocatalysis on optical properties is analyzed. ► The dependence of ferroelectric photocatalysis on internal electronic structure is analyzed. ► The doped materials are promising photocatalytic materials.

  13. Phases of Ca from first principles

    International Nuclear Information System (INIS)

    Qiu, S L; Marcus, P M

    2009-01-01

    Structures and properties of many of the phases of Ca under pressure are calculated from first principles by a systematic procedure that minimizes total energy E with respect to structure under the constraint of constant volume V. The minima of E are followed on successive sweeps of lattice parameters for 11 of 14 Bravais symmetries for one-atom-per-cell structures. The structures include the four orthorhombic phases. Also included are the hexagonal close-packed and cubic diamond phases with two atoms per primitive cell. No uniquely orthorhombic phases are found; all one-atom orthorhombic phases over a mega-bar pressure range are identical to higher-symmetry phases. The simple cubic phase is shown to be stable where it is the ground state. The number of distinct one-atom phases reduces to five plus the two two-atom phases. For each of these phases the Gibbs free energy at pressure p, G(p), is calculated for a non-vibrating lattice; the functions G(p) give the ground state at each p, the relative stabilities of all phases and the thermodynamic phase transition pressures for all phase transitions over a several-megabar range.

  14. Structure and Ionic Conductivity of Li2S-P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Takeshi eBaba

    2016-06-01

    Full Text Available Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li+ mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD. The structures of xLi2S-(100 - xP2S5 (x = 67, 70, 75, and 80 were created by randomly identifying appropriate compositions of Li+, PS43-, P2S74-, and S2- and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 relative to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li+ diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10-3 - 10-5 Angstrom2/ps. Ionic conductivities evaluated by the Nernst-Einstein relationship at 298.15 K were on the order of 10-5 S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li+. The simulations also suggested that isolated S atoms suppress Li+ migration.

  15. Structure and Ionic Conductivity of Li2S–P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    International Nuclear Information System (INIS)

    Baba, Takeshi; Kawamura, Yoshiumi

    2016-01-01

    Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li + mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD). The structures of xLi 2 S–(100 − x)P 2 S 5 (x = 67, 70, 75, and 80) were created by randomly identifying appropriate compositions of Li + , PS 4 3− ,P 2 S 7 4− , and S 2− and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li + diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10 −3 –10 −5 Å 2 /ps. Ionic conductivities evaluated by the Nernst–Einstein relationship at 298.15 K were on the order of 10 −5 S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li + . The simulations also suggested that isolated S atoms suppress Li + migration.

  16. Structure and Ionic Conductivity of Li{sub 2}S–P{sub 2}S{sub 5} Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takeshi; Kawamura, Yoshiumi, E-mail: yoshiumi_kawamura@mail.toyota.co.jp [Toyota Motor Corporation, Shizuoka (Japan)

    2016-06-02

    Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li{sup +} mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD). The structures of xLi{sub 2}S–(100 − x)P{sub 2}S{sub 5} (x = 67, 70, 75, and 80) were created by randomly identifying appropriate compositions of Li{sup +}, PS{sub 4}{sup 3−},P{sub 2}S{sub 7}{sup 4−}, and S{sup 2−} and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li{sup +} diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10{sup −3}–10{sup −5} Å{sup 2}/ps. Ionic conductivities evaluated by the Nernst–Einstein relationship at 298.15 K were on the order of 10{sup −5} S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li{sup +}. The simulations also suggested that isolated S atoms suppress Li{sup +} migration.

  17. Interplay of phase sequence and electronic structure in the modulated martensites of Mn2NiGa from first-principles calculations

    Science.gov (United States)

    Kundu, Ashis; Gruner, Markus E.; Siewert, Mario; Hucht, Alfred; Entel, Peter; Ghosh, Subhradip

    2017-08-01

    We investigate the relative stability, structural properties, and electronic structure of various modulated martensites of the magnetic shape memory alloy Mn2NiGa by means of density functional theory. We observe that the instability in the high-temperature cubic structure first drives the system to a structure where modulation shuffles with a period of six atomic planes are taken into account. The driving mechanism for this instability is found to be the nesting of the minority band Fermi surface, in a similar way to that established for the prototype system Ni2MnGa . In agreement with experiments, we find 14M modulated structures with orthorhombic and monoclinic symmetries having energies lower than other modulated phases with the same symmetry. In addition, we also find energetically favorable 10M modulated structures which have not been observed experimentally for this system yet. The relative stability of various martensites is explained in terms of changes in the electronic structures near the Fermi level, affected mostly by the hybridization of Ni and Mn states. Our results indicate that the maximum achievable magnetic field-induced strain in Mn2NiGa would be larger than in Ni2MnGa . However, the energy costs for creating nanoscale adaptive twin boundaries are found to be one order of magnitude higher than that in Ni2MnGa .

  18. Water co-adsorption and electric field effects on borohydride structures on Os(1 1 1) by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Escaño, Mary Clare Sison, E-mail: mcescano@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Arevalo, Ryan Lacdao [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gyenge, Elod [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Kasai, Hideaki [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-12-15

    Highlights: ► Difference in Pt, Os electronic structures lead to different borohydride structures. ► Promotion of B–H bond breaking on Os due to water effects. ► Control of borohydride structure on Os catalyst using electric field. -- Abstract: Periodic density functional theory calculations are performed to investigate the nature of the BH{sub 4ad} and its interaction with H{sub 2}O{sub ad} in the presence of homogenous electric field. We observed a significant charge polarity of BH{sub 4ad} on Os(1 1 1) and such property could explain the electrostatic interaction with water monomer (H{sub ad}) with its HOH plane parallel to the surface. This interaction changes the BH{sub ad} molecular structure to BH{sub 3ad} + H{sub ad}. In the presence of homogenous electric field, the water co-adsorption effect is reduced due to the stabilization of H{sub 2}O{sub ad} on the surface and the deviation of the O–H bond from the plane, decreasing the electrostatic interaction between BH{sub 4ad} and H{sub 2}O{sub ad}. These fundamental findings imply accessible control of borohydride structures on an electrode surface, which could be relevant for direct borohydride fuel cell (DBFC) and reversible hydrogen storage/release applications.

  19. Water co-adsorption and electric field effects on borohydride structures on Os(1 1 1) by first-principles calculations

    International Nuclear Information System (INIS)

    Escaño, Mary Clare Sison; Arevalo, Ryan Lacdao; Gyenge, Elod; Kasai, Hideaki

    2013-01-01

    Highlights: ► Difference in Pt, Os electronic structures lead to different borohydride structures. ► Promotion of B–H bond breaking on Os due to water effects. ► Control of borohydride structure on Os catalyst using electric field. -- Abstract: Periodic density functional theory calculations are performed to investigate the nature of the BH 4ad and its interaction with H 2 O ad in the presence of homogenous electric field. We observed a significant charge polarity of BH 4ad on Os(1 1 1) and such property could explain the electrostatic interaction with water monomer (H ad ) with its HOH plane parallel to the surface. This interaction changes the BH ad molecular structure to BH 3ad + H ad . In the presence of homogenous electric field, the water co-adsorption effect is reduced due to the stabilization of H 2 O ad on the surface and the deviation of the O–H bond from the plane, decreasing the electrostatic interaction between BH 4ad and H 2 O ad . These fundamental findings imply accessible control of borohydride structures on an electrode surface, which could be relevant for direct borohydride fuel cell (DBFC) and reversible hydrogen storage/release applications

  20. Influence of nitrogen-doping concentration on the electronic structure of CuAlO{sub 2} by first-principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-wei, E-mail: zmliuwwliu@126.com; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong

    2017-02-05

    Effect of N doping concentration on the electronic structure of N-doped CuAlO{sub 2} was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO{sub 2} were structurally stable. The calculated band gaps for N-doped CuAlO{sub 2} narrowed compared to pure CuAlO{sub 2}, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO{sub 2} shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO{sub 2} materials in optoelectronic and electronic devices. - Highlights: • Electronic structures of CuAlO{sub 2} with different N content were investigated. • The higher the N-doping concentration is, the narrower the band gap. • All the CuAlO{sub 2} with different N content were structurally stable. • The N-doped CuAlO{sub 2} shows a typical p-type semiconductor characteristic.

  1. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations

    International Nuclear Information System (INIS)

    Nabok, Dmitrii; Puschnig, Peter; Ambrosch-Draxl, Claudia; Werzer, Oliver; Resel, Roland; Smilgies, Detlef-M.

    2007-01-01

    Combined experimental and theoretical investigations on thin films of pentacene are performed in order to determine the structure of the pentacene thin film phase. Grazing incidence x-ray diffraction is used for studying a pentacene thin film with a nominal thickness of 180 nm. The crystal structure is found to exhibit the lattice parameters a=0.592 nm, b=0.754 nm, c=1.563 nm, α=81.5 deg. , β=87.2 deg. , and γ=89.9 deg. . These crystallographic unit cell dimensions are used as the only input parameters for ab initio total-energy calculations within the framework of density functional theory revealing the molecular packing within the crystal structure. Moreover, we calculate the electronic band structure of the thin film phase and compare it to that of the bulk phase. We find the intermolecular bandwidths of the thin film phase to be significantly larger compared to the bulk structure, e.g., the valence bandwidth is twice as large. This remarkable effect is traced back to an enhanced intermolecular π-π overlap due to the upright standing molecules in the thin film phase

  2. First-principles calculations of the structural, electronic and optical properties of cubic B{sub x}Ga{sub 1-x}As alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guemou, M., E-mail: guemoumhamed7@gmail.com [Engineering Physics Laboratory, University Ibn Khaldoun of Tiaret, BP 78-Zaaroura, Tiaret 14000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Abdiche, A. [Applied Materials Laboratory, Research Center, University of Sidi Bel Abbes, 22000 Sidi Bel Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Al Douri, Y. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis (Malaysia); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-04-15

    Density functional calculations are performed to study the structural, electronic and optical properties of technologically important B{sub x}Ga{sub 1-x}As ternary alloys. The calculations are based on the total-energy calculations within the full-potential augmented plane-wave (FP-LAPW) method. For exchange-correlation potential, local density approximation (LDA) and the generalized gradient approximation (GGA) have been used. The structural properties, including lattice constants, bulk modulus and their pressure derivatives, are in very good agreement with the available experimental and theoretical data. The electronic band structure, density of states for the binary compounds and their ternary alloys are given. The dielectric function and the refractive index are also calculated using different models. The obtained results compare very well with previous calculations and experimental measurements.

  3. First-Principles Study on the Structural and Electronic Properties of N Atoms Doped-Rutile TiO2 of Oxygen Vacancies

    Directory of Open Access Journals (Sweden)

    Zhong-Liang Zeng

    2015-01-01

    Full Text Available For the propose of considering the actual situation of electronic neutral, a simulation has been down on the basis of choosing the position of dual N and researching the oxygen vacancy. It is found that the reason why crystal material gets smaller is due to the emergence of impurity levels. By introducing the oxygen vacancy to the structure, the results show that while the oxygen vacancy is near the two nitrogen atoms which have a back to back position, its energy gets the lowest level and its structure gets the most stable state. From its energy band structure and density, the author finds that the impurity elements do not affect the migration of Fermi level while the oxygen vacancy has been increased. Instead of that, the conduction band of metal atoms moves to the Fermi level and then forms the N-type semiconductor material, but the photocatalytic activity is not as good as the dual N-doping state.

  4. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al | Ω interface in a Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Sun Lipeng; Irving, Douglas L.; Zikry, Mohammed A.; Brenner, D.W.

    2009-01-01

    Density functional theory was used to characterize the atomic structure and bonding of the Al | Ω interface in a Al-Cu-Mg-Ag alloy. The most stable interfacial structure was found to be connected by Al-Al bonds with a hexagonal Al lattice on the surface of the Ω phase sitting on the vacant hollow sites of the Al {1 1 1} matrix plane. The calculations predict that when substituted separately for Al at this interface, Ag and Mg do not enhance the interface stability through chemical bonding. Combining Ag and Mg, however, was found to chemically stabilize this interface, with the lowest-energy structure examined being a bi-layer with Ag atoms adjacent to the Al matrix and Mg adjacent to the Ω phase. This study provides an atomic arrangement for the interfacial bi-layer observed experimentally in this alloy.

  5. Electronic structures and optical properties of wurtzite type LiBSe2 (B=Al, Ga, In): A first-principles study

    International Nuclear Information System (INIS)

    Li Longhua; Li Junqian; Wu Liming

    2008-01-01

    The electronic structures of three wurtzite type isostructural compounds LiBSe 2 (B=Al, Ga, In) are studied by the density functional theory (DFT). The results reveal that the presence of Li cations has direct influence on neither the band gaps (Eg) nor the bonding levels, but plays an important role in the stabilization of the structures. The band structures and densities of states (DOS) are analyzed in detail, and the band gaps of LiBSe 2 adhere to the following trend Eg (LiAlSe2) >Eg (LiGaSe2) >Eg (LiInSe2) , which is in agreement with the decrease of the bond energy of the corresponding Se 4p-B s antibonding orbitals. The role of the active s electrons of B element on the band gaps is also discussed. Finally, the optical properties are predicted, and the results would be a guide to understand the experiments. - Graphical abstract: The electronic structures and optical properties of wurtzite type LiBSe 2 (B=Al, Ga, In) have been studied by the DFT calculations. And the correlation of the electronegative of B element and the band gap decrease-trend are discussed. The comparison between different calculation methods and the experimental results is presented

  6. First-principles investigation of the effect of oxidation on the electronic structure and magnetic properties at the FeRh/MgO (0 0 1) interface

    Energy Technology Data Exchange (ETDEWEB)

    Sakhraoui, T., E-mail: tsakhrawi@yahoo.com [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg (France); Said, M. [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Alouani, M. [Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg (France)

    2017-06-15

    Highlights: • Density functional theory is used to study the interface between the FeRh alloy and MgO. • We focus on the effect of the oxidation on the electronic structure and magnetic properties of the FeRh/MgO (0 0 1) interface. • We show the change on the structure of the Fe-d states. • We examine the charge transfer and the local spin density modification after interface oxidation. - Abstract: The effect of interfacial oxidation on electronic structure and magnetic properties at the FeRh/MgO (0 0 1) interface is studied by ab initio methods. The results show the formation of an interfacial FeO-like layer between the FeRh and the MgO barrier, which has a direct impact on Fe e{sub g} states at the interface. It is shown that these e{sub g} states are more affected than that the t{sub 2g} states at the Fermi level due to the strong hybridization of these states with the p-states of oxygen. Thus, the oxidation modifies crucially the electronic structure and the magnetic properties as compared to those of an ideal interface. In particular, it was found that spin polarization of the ferromagnetic state is substantially enhanced. A simple two-current Julliere model shows that the TMR increases with oxidation.

  7. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations

    Science.gov (United States)

    Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju

    2018-01-01

    In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.

  8. Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liebscher, C.H.; Freysoldt, C. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany); Dennenwaldt, T. [Institute of Condensed Matter Physics and Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Harzer, T.P.; Dehm, G. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany)

    2017-07-15

    Metastable Cu–Cr alloy thin films with nominal thickness of 300 nm and composition of Cu{sub 67}Cr{sub 33} (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50 nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu{sub 85}Cr{sub 15} (at%) and Cu{sub 42}Cr{sub 58} (at%) and domain size of 1–5 nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu–Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu–Cr solid solutions with bcc crystal structure a single peak after the L{sub 3}-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu–Cr solid solutions with 10 at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu{sub 50}Cr{sub 50} (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu–Cr d-band that lies between the delocalized d-bands of Cu and Cr. - Highlights: • Compositional fluctuations on the order of 1–5 nm in Cu- and Cr-rich domains are observed. • EELS determines a single van Hove singularity for bcc Cu–Cr solid solutions. • The electronic structure is dominated by d

  9. First-principles investigations of disorder effects on electronic structure and magnetic properties in Sr2CrMoO6

    International Nuclear Information System (INIS)

    Li, Q F; Zhu, X F; Chen, L F

    2008-01-01

    The electronic structures and magnetic properties are reported for ordered and disordered Sr 2 CrMoO 6 presenting oxygen vacancies or/and antisite defects (ASs). We investigate the stability of an antiparallel (AP) magnetic moment on Cr antisites and the calculations show that these solutions are more stable relative to the parallel solution for AS defects with or without oxygen vacancies. Electronic band structure calculations indicate that the perfect Sr 2 CrMoO 6 is half-metallic, and the half-metallic character is preserved for Sr 2 CrMoO 6 containing only oxygen vacancies, while the half-metallic nature is destroyed when 25% ASs (50% ASs) with or without oxygen vacancies is present. For 25% ASs with two oxygen vacancies, the system possibly shows nonmetallic behavior. The experimentally observed reduction of the magnetic moment mainly arises from an antiferromagnetic coupling of Cr-O-Cr (Cr-Cr) bonds in a disordered sample

  10. First-principles study on the structural, cohesive and electronic properties of rhombohedral Mo2B5 as compared with hexagonal MoB2

    International Nuclear Information System (INIS)

    Shein, I.R.; Shein, K.I.; Ivanovskii, A.L.

    2007-01-01

    The full-potential linearized augmented plane wave method using the generalized gradient approximation (FLAPW-GGA) has been applied to provide comparison and contrast for Mo borides with various structural types: rhombohedral Mo 2 B 5 versus hexagonal MoB 2 . The equilibrium lattice parameters, energies of formations, total and partial densities of states, electronic density distributions and the theoretical shapes of boron K-edge X-ray emission spectra are obtained and compared to available data

  11. Electronic structure and magnetism of Ge(Sn)TM.sub.x./sub.Te.sub.1-x./sub. (TM = V,Cr,Mn): a first principles study

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Bose, S. K.; Kudrnovský, Josef

    2016-01-01

    Roč. 6, č. 12 (2016), 1-12, č. článku 125005. ISSN 2158-3226 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : SnTe and GeTe * doping with 3d metals * lattice structure * exchange integrals * Curie temperature * first-priciples study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  12. First principles study of the structural and electronic properties of double perovskite Ba{sub 2}YTaO{sub 6} in cubic and tetragonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Deluque Toro, C.E., E-mail: deluquetoro@gmail.com [Grupo de Nuevos Materiales, Universidad Popular del Cesar, Valledupar (Colombia); Rodríguez M, Jairo Arbey [Grupo de Estudios de Materiales—GEMA, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Moreno Salazar, N.O. [Departamento de Física, Universidade Federal de Sergipe (Brazil); Roa-Rojas, J. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia)

    2014-12-15

    The Ba{sub 2}YTaO{sub 6} double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba{sub 2}YTaO{sub 6} in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba{sub 2}YTaO{sub 6} (I4/m) phase is the most stable one. {sup ©} 2013 Elsevier Science. All rights reserved.

  13. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    Science.gov (United States)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  14. First principles study of the structural and electronic properties of double perovskite Ba2YTaO6 in cubic and tetragonal phases

    International Nuclear Information System (INIS)

    Deluque Toro, C.E.; Rodríguez M, Jairo Arbey; Landínez Téllez, D.A.; Moreno Salazar, N.O.; Roa-Rojas, J.

    2014-01-01

    The Ba 2 YTaO 6 double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba 2 YTaO 6 in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba 2 YTaO 6 (I4/m) phase is the most stable one. © 2013 Elsevier Science. All rights reserved

  15. First-principles study on the structural, electronic and magnetic properties of the Ti{sub 2}VZ (Z = Si, Ge, Sn) full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Santao; Shen, Jiang [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-08-15

    In the present work, we have investigated the structural, electronic and magnetic properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) alloys with Hg{sub 2}CuTi-type structure in the framework of density functional theory with generalized gradient approximation (GGA). The calculated results show that Ti{sub 2}VSi and Ti{sub 2}VGe alloys belong to half-metallic compounds with a perfect 100% spin polarization at the Fermi level while Ti{sub 2}VSn alloy is just a conventional ferrimagnetism compound. And the total magnetic moment of Ti{sub 2}VSi and Ti{sub 2}VGe obey the Slater–Pauling (SP) rule. In a moderate variation range of lattice distortion, Ti{sub 2}VSi and Ti{sub 2}VGe remain half-metallicity. We expect that our calculated results may trigger Ti{sub 2}VZ (Z = Si, Ge, Sn) applying in the future spintronics field. - Highlights: • Structural properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) have been achieved by ab initio. • The calculations proved Ti{sub 2}VSi and Ti{sub 2}VGe to be half-metallic compounds. • The total magnetic moments of Ti{sub 2}VSi and Ti{sub 2}VGe followed the SP rule M{sub t} = Z{sub t} − 18. • Their magnetic and half-metallic properties changed with lattice distortion.

  16. Structural, magnetic and electronic properties of FenPt13−n clusters with n=0–13: A first-principle study

    International Nuclear Information System (INIS)

    Du, Xiaoli; Liu, Chuan; Zhang, Shengli; Wang, Peng; Huang, Shiping; Tian, Huiping

    2014-01-01

    The structural, magnetic and electronic properties of Fe n Pt 13−n (n=0–13) nanoclusters are investigated using a density functional theory. It is found that the original icosahedra structure of Fe n Pt 13−n nanoclusters with n=3–8 deforms completely and exhibits the maximum Fe–Pt bonds. Furthermore, all the energetically preferable Fe n Pt 13−n (n=0–13) nanoclusters are found to be ferromagnetic coupling, and the magnetic moments of both Fe and Pt are enhanced. The large exchange splitting between the majority and the minority spin states indicates high magnetic moments based on the analysis of electronic density of states. In addition, electrons transfer from Fe to Pt atoms enhances the local atomic magnetic moments of Fe and Pt in Fe n Pt 13−n nanoclusters. - Highlights: • Magnetic properties of Fe n Pt 13−n are investigated using the density functional theory. • Structure of Fe n Pt 13−n nanoclusters with n=3–8 deforms completely. • Electron transfer from Fe to Pt atoms enhances local atomic magnetic moments. • The large exchange splitting in the spin states indicates high magnetic moments

  17. Structure-dependent vibrational dynamics of Mg(BH 4 ) 2 polymorphs probed with neutron vibrational spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana; White, James L.; Zhou, Wei; Stavila, Vitalie; Klebanoff, Leonard E.; Udovic, Terrence J.

    2016-01-01

    The structure-dependent vibrational properties of different Mg(BH4)2 polymorphs (..alpha.., ..beta.., ..gamma.., and ..delta.. phases) were investigated with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH4- anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20-80 meV) are associated with the BH4- librational modes. The features in the intermediate energy region (80-120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features in the high-energy region (120-200 meV) correspond to the BH4- symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. This is explained by the differences in the spatial distribution of BH4- anions within various structures. An example of the possible identification of products after the hydrogenation of MgB2, using NVS measurements, is presented. These results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.

  18. First principles investigation of the electronic and structural properties of Mg{sub 3x}Be{sub 3-3x}N{sub 2} ternary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Akbarzadeh, H [Department of Physics, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of)

    2004-09-01

    The first ab initio calculations were carried out for the electronic and structural properties of the wide band gap semiconductor alloy Mg{sub 3x}Be{sub 3-3x}N{sub 2} employing the full potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). We used the Perdew et al generalized gradient approximation (GGA96), which is based on exchange-correlation energy optimization, to optimize the internal parameters by relaxing the atomic positions in the force directions and to calculate the total energy. For band structure calculations, we utilized both the Engel-Vosko's generalized gradient approximation (EVGGA), which optimizes the exchange-correlation potential, and also GGA96. We investigated the effect of composition on a variety of different structural and electronic parameters such as lattice constant, bond length, internal parameter, bulk modulus and band gap. We found out that the linear concentration dependence (LCD) is inadequate to explain the results, hence we fitted our data with a quadratic expression and were able to obtain the bowing parameter for each case. Our results for the band gap, lattice parameter, cohesive energy and bulk modulus indicate that each of them can be explained by a constant bowing parameter.

  19. Tl{sub 4}CdI{sub 6} – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa (Poland)

    2015-08-01

    A novel infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved.

  20. Tl4CdI6 – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    International Nuclear Information System (INIS)

    Piasecki, M.; Brik, M.G.; Kityk, I.V.

    2015-01-01

    A novel infrared optoelectronic material Tl 4 CdI 6 was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl 4 CdI 6 was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved

  1. First principles study of structural, elastic, electronic and magnetic properties of Mn-doped AlY (Y=N, P, As) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sajjad, M. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Alay-e-Abbas, S.M. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Department of Physics, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Zhang, H.X. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Key Laboratory of Work Safety Intelligent Monitoring (Beijing University of Posts and Telecommunications), Beijing 100876 (China); Noor, N.A. [Centre for High Energy Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Saeed, Y. [Department of Physics, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, King Saud University, P. O. BOX 800, Riyadh 11421 (Saudi Arabia); Shaukat, A., E-mail: schaukat@gmail.com [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan)

    2015-09-15

    We investigate zinc-blende phase Al{sub 0.75}Mn{sub 0.25}Y (Y=N, P, As) compounds using full-potential linear-augmented-plane wave plus local-orbital method. For computing structural and elastic properties the Generalized Gradient Approximation (GGA) has been used; whereas the electronic and magnetic properties are examined at the optimized GGA lattice parameters by employing modified Becke and Johnson local density approximation. All these compounds are found to be stable in ferromagnetic ordering in the zinc-blende structure which is supported by the computed elastic constants. The nature of electronic band structure are calculated and the nature of band gaps in the doped system is analyzed. The results are examined to identify exchange mechanism which is the main source of introducing ferromagnetism in the compounds under investigation. Spin charge density contour plots in the (1 1 0) plane and the evaluation of s–p and p–d exchange constants (N{sub 0}α and N{sub 0}β) are evaluated for understanding bonding and exchange splitting process, respectively. - Highlights: • Spin-polarized DFT investigation Mn-doped AlN, AlP and AlAs is reported. • Structrual and elastic properites are computed for evaluating stability. • mBJLDA used for appropriate treatment of d states of Mn for electronic properties. • Half metallicity, ferromagnetic stability and exchange constants are evaluated.

  2. Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: A first-principles study.

    Science.gov (United States)

    Wang, Xiaotian; Khachai, Houari; Khenata, Rabah; Yuan, Hongkuan; Wang, Liying; Wang, Wenhong; Bouhemadou, Abdelmadjid; Hao, Liyu; Dai, Xuefang; Guo, Ruikang; Liu, Guodong; Cheng, Zhenxiang

    2017-11-23

    In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 μ B in agreement with the well-known Slater-Pauling rule M t  = Z t  - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity C V , the Grüneisen constant γ, and the Debye temperature Θ D are calculated.

  3. A first-principles study of the electronic and structural properties of Sb and F doped SnO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjung; Scott Bobbitt, N. [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Marom, Noa [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Chelikowsky, James R. [Center for Computational Materials, Institute for Computational Engineering and Sciences, Departments of Physics and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-01-28

    We examine the electronic properties of Sb and F doped SnO{sub 2} nanocrystals up to 2.4 nm in diameter. A real-space pseudopotential implementation of density functional theory is employed within the local density approximation. We calculate electron binding energies and dopant formation energies as function of nanocrystal size, dopant concentration, and dopant species. Structural changes for different dopant species are also investigated. Our study should provide useful information for the design of transparent conducting oxides at the nanoscale.

  4. Atomic structure of the GaAs(001)-c(4x4) surface: first-principles evidence for diversity of heterodimer motifs.

    Science.gov (United States)

    Penev, E; Kratzer, P; Scheffler, M

    2004-10-01

    The GaAs(001)-c(4x4) surface was studied using ab initio atomistic thermodynamics based on density-functional theory calculations. We demonstrate that in a range of stoichiometries, between those of the conventional three As-dimer and the new three Ga-As-dimer models, there exists a diversity of atomic structures featuring Ga-As heterodimers. These results fully explain the experimental scanning tunneling microscopy images and are likely to be relevant also to the c(4x4)-reconstructed (001) surfaces of other III-V semiconductors.

  5. First principles study of electronic and structural properties of single walled zigzag boron nitride nanotubes doped with the elements of group IV

    Science.gov (United States)

    Bahari, Ali; jalalinejad, Amir; Bagheri, Mosahhar; Amiri, Masoud

    2017-11-01

    In this paper, structural and electronic properties and stability of (10, 0) born nitride nanotube (BNNT) are considered within density functional theory by doping group IV elements of the periodic table. The HOMO-LUMO gap has been strongly modified and treated a dual manner by choosing B or N sites for dopant atoms. Formation energy calculation shows that B site doping is more stable than N site doping. Results also show that all dopants turn the pristine BNNT into a p-type semiconductor except for carbon-doped BNNT at B site.

  6. A first-principles study of the electronic and structural properties of Sb and F doped SnO2 nanocrystals

    International Nuclear Information System (INIS)

    Kim, Minjung; Scott Bobbitt, N.; Marom, Noa; Chelikowsky, James R.

    2015-01-01

    We examine the electronic properties of Sb and F doped SnO 2 nanocrystals up to 2.4 nm in diameter. A real-space pseudopotential implementation of density functional theory is employed within the local density approximation. We calculate electron binding energies and dopant formation energies as function of nanocrystal size, dopant concentration, and dopant species. Structural changes for different dopant species are also investigated. Our study should provide useful information for the design of transparent conducting oxides at the nanoscale

  7. First-principles investigation of electronic and structural properties and bowing parameters in SrFCl{sub x}Br{sub 1-x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A [Simulation Laboratory, Department of Physics, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2007-10-31

    The first ab initio calculations have been performed to study the structural and electronic properties of technologically important SrFCl{sub x}Br{sub 1-x} quaternary alloys (for x equal to 0.0, 0.25, 0.5, 0.75 and 1.0) using the full-potential linearized augmented-plane-wave method within density-functional theory. The Perdew et al generalized-gradient approximation (GGA96), which is based on exchange-correlation energy optimization, is utilized to optimize the internal parameters by relaxing the atomic positions in the force directions and to calculate the total energy. Both the Engel-Vosko's generalized-gradient approximation (EV-GGA), which optimizes the exchange-correlation potential, and GGA96 are used for band structure calculations. The effect of composition on the equilibrium volume, cohesive energy, band gap and mean values of the bond length, shows nonlinear dependence, but on the bulk modulus it exhibits nearly linear concentration dependence (LCD). The results obtained show that the quaternary alloy of interest could be an appropriate material for using in an optical apparatus.

  8. A first principle study of phase stability, electronic structure and magnetic properties for Co{sub 2−x}Cr{sub x}MnAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Abidri, B.; Rabah, M.; Benkhettou, N. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-04-01

    The structural stabilities, electronic and magnetic properties of Co{sub 2−x}Cr{sub x}MnAl alloys with (x=0,1 and 2) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange correlation functional. The ground state properties including lattice parameter, bulk modulus for the two considered crystal structures Hg{sub 2}CuTi-Type (X-Type) and Cu{sub 2}MnAl-Type (L2{sub 1}-Type) are calculated. The half-metallicity within ferromagnetic ground state starts to appear in CoCrMnAl and Cr2MnAl. In the objective for the proposition of the new HM-FM in the Full-Heusler alloys, our results classified CoCrMnAl as new HM-FM material with high spin polarization. - Highlights: • Based on DFT calculations, Co2-xCrxMnAl Heusler alloys have been investigated. • The magnetic phase stability was determined from the total energy calculations. • The LMTO calculations have classified CoCrMnAl as new HM-FM material with high spin polarization.

  9. First-principles study of structural phase transition, electronic, elastic and thermodynamic properties of C15-type Laves phase TiCr2 under pressure

    Science.gov (United States)

    He, Li-Zhi; Zhu, Jun; Zhang, Lin

    2018-02-01

    Phase transition of TiCr2 in C15 (MgCu2), C36 (MgNi2), C14 (MgZn2) structures have been studied by using the projector augmented wave method. It is found that C15-type is the most stable structure, which agrees with the results of Chen et al. At 0 K, the phase boundary of C15 to C36 is 207.79 GPa, and the phase transition from C36 to C14 is 265.61 GPa. Both the transition pressures decrease with increasing temperature. Phonon dispersion and elastic constants are calculated and found that C15-type TiCr2 is mechanically stable according to the elastic stability criteria and phonon dispersion analysis. Moreover, the pressure and temperature dependence of the specific heat, Debye temperature and thermal expansion coefficient are discussed, among them our calculated Debye temperature is consistent with the report of A. sari et al., however, it is far from the results of B. Mayer et al. and Chen et al.

  10. First-principle calculations of the structural, elastic and bonding properties of Cs{sub 2}NaLnCl{sub 6} (Ln=La–Lu) cubic elpasolites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.G.; Liu, D.X.; Feng, B.; Tian, Y.; Li, L. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland)

    2016-01-15

    For the first time the structural, elastic and bonding properties of 15 elpasolite crystals Cs{sub 2}NaLnCl{sub 6} (Ln denotes all lanthanides from La to Lu) were calculated systematically using the CRYSTAL09 program. Several trends in the variation of these properties in relation to the atomic number Z of the Ln ions were found; in particular, the lattice parameter of these compounds decreases with Z (which can lead to the increased crystal field splittings of the 5d states for the heavier Ln ions), whereas the elastic constants and Debye temperature increase. The degree of covalency of the Ln–Cl chemical bonds is increased toward the end of the lanthanide series. - Highlights: • Structural, elastic and bonding properties of 15 cubic elpasolites Cs{sub 2}NaLnCl{sub 6} (Ln=La,…,Lu) are calculated. • Relations between these quantities and Ln atomic number were found. • Possible correlation between the elastic properties and Stokes shift is proposed.

  11. The Adsorption Geometry and Electronic Structure of Organic Dye Molecule on TiO2(101 Surface from First Principles Calculations

    Directory of Open Access Journals (Sweden)

    Niu Mang

    2017-01-01

    Full Text Available Using density functional theory (DFT, we have investigated the structural and electronic properties of dye-sensitized solar cells (DSSCs comprised of I-doped anatase TiO2(101 surface sensitized with NKX-2554 dye. The calculation results indicate that the cyanoacrylic acid anchoring group in NKX-2554 has a strong binding to the TiO2(101 surface. The dissociative and bidentate bridging type was found to be the most favorable adsorption configuration. On the other hand, the incorporations of I dopant can reduce the band gap of TiO2 photoanode and improve the of NKX-2554 dye, which can improve the visible-light absorption of anatase TiO2 and can also facilitate the electron injection from the dye molecule to the TiO2 substrate. As a result, the I doping can significantly enhance the incident photon-to-current conversion efficiency (IPCE of DSSCs.

  12. Experimental and first principle study of the structure, electronic, optical and luminescence properties of M-type GdNbO4 phosphor

    Science.gov (United States)

    Ding, Shoujun; Zhang, Haotian; Zhang, Qingli; Chen, Yuanzhi; Dou, Renqin; Peng, Fang; Liu, Wenpeng; Sun, Dunlu

    2018-06-01

    In this work, GdNbO4 polycrystalline with monoclinic phase was prepared by traditional high-temperature solid-state reaction. Its structure was determined by X-ray diffraction and its unit cell parameters were obtained with Rietveld refinement method. Its luminescence properties (including absorbance, emission and luminescence lifetime) were investigated with experiment method and the CIE chromaticity coordinate was presented. Furthermore, a systematic theoretical calculation (including band gap, density of states and optical properties) based on the density function theory methods was performed on GdNbO4. Lastly, a comparison between experiment and calculated results was conducted. The calculated and experiment results obtained in this work can provide an essential understanding of GdNbO4 material.

  13. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    Science.gov (United States)

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  14. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  15. First principles studies of multiferroic materials

    International Nuclear Information System (INIS)

    Picozzi, Silvia; Ederer, Claude

    2009-01-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO 3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO 3 , ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO 3 ), the magnetically induced ferroelectric polarization can be as large as a few μC cm -2 . The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  16. Effect of (Mn,Cr) co-doping on structural, electronic and magnetic properties of zinc oxide by first-principles studies

    Science.gov (United States)

    Aimouch, D. E.; Meskine, S.; Boukortt, A.; Zaoui, A.

    2018-04-01

    In this study, structural, electronic and magnetic properties of Mn doped (ZnO:Mn) and (Mn,Cr) co-doped zinc oxide (ZnO:(Mn,Cr)) have been calculated with the FP-LAPW method by using the LSDA and LSDA+U approximations. Going through three configurations of Mn,Cr co-doped ZnO corresponding to three different distances between manganese and chromium, we have analyzed that ZnO:(Mn,Cr) system is more stable in its preferred configuration2. The lattice constant of undoped ZnO that has been calculated in this study is in a good agreement with the experimental and theoretical values. It was found to be increased by doping with Mn or (Mn,Cr) impurities. The band structure calculations showed the metallic character of Mn doped and Mn,Cr co-doped ZnO. As results, by using LSDA+U (U = 6eV), we show the half-metallic character of ZnO:Mn and ZnO:Mn,Cr. We present the calculated exchange couplings d-d of Mn doped ZnO which is in a good agreement with the former FPLO calculation data and the magnetization step measurement of the experimental work. The magnetic coupling between neighboring Mn impurities in ZnO is found to be antiferromagnetic. In the case of (Mn,Cr) co-doped ZnO, the magnetic coupling between Mn and Cr impurities is found to be antiferromagnetic for configuration1 and 3, and ferromagnetic for configuration2. Thus, the ferromagnetic coupling is weak in ZnO:Mn. Chromium co-doping greatly enhance the ferromagnetism, especially when using configuration2. At last, we present the 2D and 3D spin-density distribution of ZnO:Mn and ZnO:(Mn,Cr) where the ferromagnetic state in ZnO:(Mn,Cr) comes from the strong p-d and d-d interactions between 2p-O, 3d-Mn and 3d-Cr electrons. The results of our calculations suggest that the co-doping ZnO(Mn, Cr) can be among DMS behavior for spintronic applications.

  17. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    Science.gov (United States)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  18. Contribution of on-site Coulomb repulsion energy to structural, electronic and magnetic properties of SrCoO3 for different space groups: first-principles study

    Directory of Open Access Journals (Sweden)

    Muhammady Shibghatullah

    2018-03-01

    Full Text Available We report structural, electronic, and magnetic properties of SrCoO3 in Pm3̅m and P4/mbm space groups, which are calculated by using generalized gradient approximation corrected with on-site Coulomb repulsion U and exchange energies J. The cubic lattice parameter a and local magnetic moments of Co (μCo are optimized by varying U at Co 3d site. Employing ultrasoft pseudopotential, the values of U = 8 eV and J = 0.75 eV are the best choice for Pm3̅m space group. We found the value of μCo = 2.56 μB, which is consistent with the previous results. It was also found that Co 3d, hybridized with O 2p, is the main contributor to ferromagnetic metallic properties. Besides, norm-conserving pseudopotential promotes a, which is in good agreement with experimental result. However, it is not suitable for P4/mbm space group. By using ultrasoft pseudopotential, the value of U = 3 eV (J = 0.75 is the most suitable for P4/mbm group. Ferromagnetic metallic properties, Jahn-Teller distortion, and reasonable lattice parameters have been obtained. This study shows that U has significant contribution to the calculated properties and also points out that P4/mbm space group with US-PP is suitable to describe experimental results.

  19. A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure*

    Science.gov (United States)

    Yuan, Xiao-Li; Xue, Mi-An; Chen, Wen; An, Tian-Qing

    2016-11-01

    We employed density-functional theory (DFT) within the generalized gradient approximation (GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition, mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state, electronic and Mulliken population analysis results. The lattice parameters and P-V EOS for α, β and ω phases revealed by our calculations are consistent with other experimental and computational values. The elastic constants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstable at 0 GPa, but becomes more stable with increasing pressure. Our calculated results indicate a phase transition sequence of α → ω → β for ZrTi2. Both the bulk modulus B and shear modulus G increase linearly with increasing pressure for three phases. The G/B values illustrated good ductility of ZrTi2 alloy for three phases, with ωJournal web page at http://dx.doi.org/10.1140/epjb/e2016-70218-0

  20. Determination of the electronic structure and UV-Vis absorption properties of (Na2-xCux)Ta4O11 from first-principle calculations

    KAUST Repository

    Harb, Moussab

    2013-08-29

    Density functional theory (DFT) and density functional perturbation theory (DFPT) were applied to study the structural, electronic, and optical properties of a (Na2-xCux)Ta4O11 solid solution to accurately calculate the band gap and to predict the optical transitions in these materials using the screened coulomb hybrid (HSE06) exchange-correlation formalism. The calculated density of states showed excellent agreement with UV-vis diffuse reflectance spectra predicting a significant red-shift of the band gap from 4.58 eV (calculated 4.94 eV) to 2.76 eV (calculated 2.60 eV) as copper content increased from 0 to 83.3%. The band gap narrowing in these materials, compared to Na2Ta4O11, results from the incorporation of new occupied electronic states, which are strongly localized on the Cu 3d orbitals, and is located within 2.16-2.34 eV just above the valence band of Na2Ta4O11. These new occupied states, however, possess an electronic character localized on Cu, which makes hole mobility limited in the semiconductor. © 2013 American Chemical Society.

  1. The Structural, Dielectric, Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX (X=S, Se, Te) from First-Principles Analysis

    International Nuclear Information System (INIS)

    Feng Shi-Quan; Li Jun-Yu; Cheng Xin-Lu

    2015-01-01

    The structural, dielectric, lattice dynamical and thermodynamic properties of zinc-blende CdX (X=S, Se, Te) are studied by using a plane-wave pseudopotential method within the density-functional theory. Our calculated lattice constants and bulk modulus are compared with the published experimental and theoretical data. In addition, the Born effective charges, electronic dielectric tensors, phonon frequencies, and longitudinal optical-transverse optical splitting are calculated by the linear-response approach. Some of the characteristics of the phonon-dispersion curves for zinc-blende CdX (X=S, Se, Te) are summarized. What is more, based on the lattice dynamical properties, we investigate the thermodynamic properties of CdX (X=S, Se, Te) and analyze the temperature dependences of the Helmholtz free energy F, the internal energy E, the entropy S and the constant-volume specific heat C_v. The results show that the heat capacities for CdTe, CdSe, and CdS approach approximately to the Petit-Dulong limit 6R. (paper)

  2. First-principles investigations of the five-layer modulated martensitic structure in Ni2Mn(AlxGa1-x) alloys

    International Nuclear Information System (INIS)

    Luo, H.B.; Li, C.M.; Hu, Q.M.; Kulkova, S.E.; Johansson, B.; Vitos, L.; Yang, R.

    2011-01-01

    In this paper, the five-layer modulated (5M) martensitic structures of Ni 2 Mn(Al x Ga 1-x ), with x = 0, 0.1 and 0.2, are investigated by the use of the exact muffin-tin orbital method in combination with the coherent potential approximation. The 5M martensite is modeled by varying c/a (shear) and wave-like displacements of the atoms on (1 1 0) plane (shuffle) scaled by η according to Martynov and Kokorin (J. Phys. III 2, 739 (1992)). For Ni 2 MnGa, we obtain 5M martensite with equilibrium c/a of 0.92 and η of 0.08, in reasonable agreement with the experiment results (0.94 and 0.06, respectively). c/a and η are linearly coupled to each other. Al-doping increases c/a and decreases η, but the linear c/a ∼ η coupling remains. Comparing the total energies of the 5M martensite and L2 1 austenite, we find that the martensite is more stable than the austenite. Al-doping increases the relative stability of the austenite and finally becomes energetically degenerated with the 5M martensite at an Al atomic fraction (x) of about 0.26. The relative phase stability is analyzed based on the calculated density of states. The calculated total magnetic moments μ 0 as a function of c/a exhibit a maximum around the equilibrium c/a. Al-doping reduces μ 0 .

  3. First-principles investigations on structural, elastic, dynamical, and thermal properties of earth-abundant nitride semiconductor CaZn{sub 2}N{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying-Qin; Liu, Lei; Cheng, Yan [Sichuan Univ. (China). College of Physical Science and Technology; Hu, Cui E. [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Cai, Ling-Cang [CAEP, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research

    2017-04-01

    We presented a detailed first-principal calculation to study the structural, elastic, dynamical, and thermal properties of a new synthetic ternary zinc nitride semiconductors CaZn{sub 2}N{sub 2} using the generalised gradient approximation (GGA) method. The obtained lattice parameters of CaZn{sub 2}N{sub 2} at 0 K and 0 GPa are in good agreement with the experimental data and other theoretical findings. The pressure dependences of the elastic constants C{sub ij} together with other derived mechanical properties of CaZn{sub 2}N{sub 2} compound have also been systematically investigated. The results reveal that CaZn{sub 2}N{sub 2} is mechanically stable up to 20 GPa. The calculated the phonon curves and phonon density of states under different pressures indicate that the CaZn{sub 2}N{sub 2} compound maintains its dynamical stability up to 20 GPa. An analysis in terms of the irreducible representations of group theory obtained the optical vibration modes of this system, and we obtained the frequencies of the optical vibrational modes at Γ points together with the atoms that contributed to these vibrations of CaZn{sub 2}N{sub 2}. Meanwhile, the pressure dependencies of the frequencies Raman-active and IR-active modes at 0-20 GPa have been studied. The quasi-harmonic approximation (QHA) was applied to calculate the thermal properties of CaZn{sub 2}N{sub 2} as functions of pressures and temperatures such as the heat capacity, thermal expansions, the entropy, and Grueneisen parameter γ.

  4. First principle study of sodium decorated graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com [Assam University, Silchar (India); Bhattacharya, Barnali [Assam University, Silchar (India); Seriani, Nicola [The Abdus Salam ICTP, Trieste (Italy)

    2015-11-05

    Highlights: • Presence of Na decreases the stability of the system. • Na-decorated graphyne compounds are metallic and might be used in electronics. • The sodium-adsorbed graphyne can be used as electrodes in Na-ion battery. - Abstract: We present first-principles calculations of the electronic properties of Na-decorated graphyne. This structure of the graphyne family is a direct band gap semiconductor with a band gap of 0.44 eV in absence of sodium, but Na-decorated graphyne compounds are metallic, and can then be employed as carbon-based conductors. Metallization is due to charge donation from sodium to carbon. Pristine graphyne is more stable than Na-decorated graphyne, therefore is seems probable that, if this material should be employed as electrode in Na-ion batteries, it would lead to the formation of metallic sodium rather than well dispersed sodium ions. On the other side, this property might be useful if graphyne is employed in water desalination. Finally, the abrupt change from a semiconducting to a metallic state in presence of a small amount of sodium might be exploited in electronics, e.g. for the production of smooth metal–semiconductor interfaces through spatially selective deposition of sodium.

  5. Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study

    Science.gov (United States)

    Ali, Md. Lokman; Rahaman, Md. Zahidur

    2018-04-01

    By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.

  6. First-principles calculation of the structural and elastic properties of ternary metal nitrides TaxMo1-xN and TaxW1-xN

    Science.gov (United States)

    Bouamama, Kh.; Djemia, P.; Benhamida, M.

    2015-09-01

    First-principles pseudo-potentials calculations of the mixing enthalpy, of the lattice constants a0 and of the single-crystal elastic constants cij for ternary metal nitrides TaxMe1-xN (Me=Mo or W) alloys considering the cubic B1-rocksalt structure is carried out. For disordered ternary alloys, we employ the virtual crystal approximation VCA in which the alloy pseudopotentials are constructed within a first-principles VCA scheme. The supercell method SC is also used for ordered structures in order to evaluate clustering effects. We find that the mixing enthalpy still remains negative for TaxMe1-xN alloys in the whole composition range which implies these cubic TaxMo1-xN and TaxW1-xN ordered solid solutions are stable. We investigate the effect of Mo and W alloying on the trend of the mechanical properties of TaN. The effective shear elastic constant c44, the Cauchy pressure (c12-c44), and the shear to bulk modulus G/B ratio are used to discuss, respectively, the mechanical stability of the ternary structure and the brittle/ductile behavior in reference to TaN, MeN alloys. We determine the onset transition from the unstable structure to the stable one B1-rocksalt from the elastic stability criteria when alloying MeN with Ta. In a second stage, in the frame of anisotropic elasticity, we estimate by one homogenization method the averaged constants of the polycrystalline TaxMe1-xN alloys considering the special case of an isotropic medium with no crystallographic texture.

  7. First-principles calculations of novel materials

    Science.gov (United States)

    Sun, Jifeng

    Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find

  8. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  9. First-principle study of nanostructures of functionalized graphene

    Indian Academy of Sciences (India)

    We present first-principle calculations of 2D nanostructures of graphene functionalized with hydrogen and fluorine, respectively, in chair conformation. The partial density of states, band structure, binding energy and transverse displacement of C atoms due to functionalization (buckling) have been calculated within the ...

  10. Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    International Nuclear Information System (INIS)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-01-01

    Ln 3 SbO 7 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222 1 space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La 3 SbO 7 ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln 3 SbO 7 ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222 1 is the correct one based on SHG and Raman data

  11. Electronic structures of (Pb sub 2 Cu)Sr sub 2 Eu sub x Ce sub n sub - sub x Cu sub 2 O sub 2 sub n sub + sub 6 (n=2, 3): Effect of fluorite blocks between adjacent CuO sub 2 layers

    CERN Document Server

    Arai, M

    2003-01-01

    The electronic structures of (Pb sub 2 Cu)Sr sub 2 Eu sub x Ce sub n sub - sub x Cu sub 2 O sub 2 sub n sub + sub 6 (n = 2, 3) compounds which have fluorite blocks between two adjacent CuO sub 2 layers have been studied by using ab-initio method. It is found that the anisotropy is enhanced by inserting the fluorite blocks. The Fermi velocity perpendicular to the CuO sub 2 layers decreases as the thickness of fluorite blocks increases. The Eu substitution is found to affect both the atomic positions and electronic structures. The distance between apical oxygen and copper becomes shorter by the Eu substitution. The energy bands derived from oxygens in the fluorite blocks approach Fermi energy as the content of Eu substitution increases. (author)

  12. Synthesis and first-principle calculations of the structural and electronic properties of Ge-substituted type-VIII Ba{sub 8}Ga{sub 16}Sn{sub 30} clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanxian [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Li, Decong [College of Optoelectronic Engineering, Yunnan Open University, Kunming 650500 (China); Liu, Hongxia; Liu, Zuming [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Deng, Shukang, E-mail: skdeng@126.com [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China)

    2016-12-01

    In this study, the structural and electronic structural properties of Ba{sub 8}Ga{sub 16}Sn{sub 30−x}Ge{sub x} (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.

  13. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods

    International Nuclear Information System (INIS)

    Ghosh, G.; Walle, A. van de; Asta, M.

    2008-01-01

    The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Δ m E) calculated by CE and dilute supercells agree very well. In the concentrated region, the Δ m E values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Δ m E for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys

  14. Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: Structure, electronic, optical and magnetic properties

    International Nuclear Information System (INIS)

    Gao, Ning; Quan, Chuye; Ma, Yuhui; Han, Yumin; Wu, Zhenli; Mao, Weiwei

    2016-01-01

    We propose first-principles methods to study the structure, electronic, optical and magnetic properties of BiFeO 3 (BFO) and Bi 0.9 Ca 0.1 FeO 3 (BCFO). The morphology, optical band gap as well as magnetic hysteresis also have been investigated using experimental methods. X-ray diffraction data shows that Bi-site doping with Ca could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). Changing of Fermi level and decreasing of band gap indicating that the Ca-doped BFO exhibit a typical half-metallic nature. The optical absorption properties are related to the electronic structure and play the key role in determining their band gaps, also we have analyzed the inter-band contribution to the theory of optical properties such as absorption spectra, dielectric constant, energy-loss spectrum, absorption coefficient, optical reflectivity, and refractive index of BCFO. Enhancement of magnetic properties after doping is proved by both experimental and calculated result, which can be explained by size effect and structural distortion.

  15. Experimental and first principles investigation of the multiferroics BiFeO{sub 3} and Bi{sub 0.9}Ca{sub 0.1}FeO{sub 3}: Structure, electronic, optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Quan, Chuye [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Ma, Yuhui [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - Nanjing Tech, 30 South Puzhu Road, Nanjing 211816 (China); Han, Yumin; Wu, Zhenli [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Mao, Weiwei [Key Laboratory for Organic Electronics & Information Displays - KLOEID, Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); and others

    2016-01-15

    We propose first-principles methods to study the structure, electronic, optical and magnetic properties of BiFeO{sub 3} (BFO) and Bi{sub 0.9}Ca{sub 0.1}FeO{sub 3} (BCFO). The morphology, optical band gap as well as magnetic hysteresis also have been investigated using experimental methods. X-ray diffraction data shows that Bi-site doping with Ca could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). Changing of Fermi level and decreasing of band gap indicating that the Ca-doped BFO exhibit a typical half-metallic nature. The optical absorption properties are related to the electronic structure and play the key role in determining their band gaps, also we have analyzed the inter-band contribution to the theory of optical properties such as absorption spectra, dielectric constant, energy-loss spectrum, absorption coefficient, optical reflectivity, and refractive index of BCFO. Enhancement of magnetic properties after doping is proved by both experimental and calculated result, which can be explained by size effect and structural distortion.

  16. First-principles calculation of the effects of Li-doping on the structure and piezoelectricity of (K0.5Na0.5)NbO3 lead-free ceramics.

    Science.gov (United States)

    Yang, D; Wei, L L; Chao, X L; Yang, Z P; Zhou, X Y

    2016-03-21

    The crystal structures of the lead-free piezoelectric ceramics (K0.5Na0.5)NbO3 and (K0.5Na0.5)0.94Li0.06NbO3 prepared by a solid-state method were investigated using first-principles calculations. The calculated values of piezoelectricity were in good agreement with the experimental data. We found that the primary contribution to piezoelectricity in this material comes from the hybridization of the O 2p and Nb 4d orbitals, which causes a change in the Nb-O bond length and the distortion of the Nb-O octahedral structure. Analysis of the band structure and the total density of states revealed that Li-doped (K0.5Na0.5)NbO3 enhances hybridization of the O 2p and Nb 4d orbitals. This hybridization enhancement further reduces the Nb-O1 bond length and enhances the distortion of the Nb-O octahedron along the [001] direction, which may be the main reason for the improvement of the piezoelectric properties. In addition, the piezoelectric coefficients are calculated here, which show the same trend as the experimental results.

  17. Structural, electronic properties and enhancement of electrical polarization in Er{sub 2}NiMnO{sub 6}/La{sub 2}NiMnO{sub 6} superlattice by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Haipeng; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Sun, Xun, E-mail: sunxunphy@hotmail.com; Hou, Zhihua; Yang, Wen; Wang, Siyuan; Xie, Jianliang [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China)

    2016-03-15

    Employing first-principles calculations, structural, electronic properties of new multiferroic material Er{sub 2}NiMnO{sub 6}/La{sub 2}NiMnO{sub 6} perovskite superlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroic properties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaEr{sub 2}NiMnO{sub 7} structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

  18. Structural, electronic properties and enhancement of electrical polarization in Er2NiMnO6/La2NiMnO6 superlattice by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Haipeng Lu

    2016-03-01

    Full Text Available Employing first-principles calculations, structural, electronic properties of new multiferroic material Er2NiMnO6/La2NiMnO6 perovskite superlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroic properties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaEr2NiMnO7 structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

  19. Analytic representation for first-principles pseudopotentials

    International Nuclear Information System (INIS)

    Lam, P.K.; Cohen, M.L.; Zunger, A.

    1980-01-01

    The first-principles pseudopotentials developed by Zunger and Cohen are fit with a simple analytic form chosen to model the main physical properties of the potentials. The fitting parameters for the first three rows of the Periodic Table are presented, and the quality of the fit is discussed. The parameters reflect chemical trends of the elements. We find that a minimum of three parameters is required to reproduce the regularities of the Periodic Table. Application of these analytic potentials is also discussed

  20. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel; Kermagoret, Anthony; Callens, Emmanuel; Florian, Pierre A.; Massiot, Dominique; Lesage, Anne; Copé ret, Christophe; Delbecq, Franç oise; Rozanska, Xavier; Sautet, Philippe

    2012-01-01

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  1. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  2. First-principles calculations of 5d atoms doped hexagonal-AlN sheets: Geometry, magnetic property and the influence of symmetry and symmetry-breaking on the electronic structure

    International Nuclear Information System (INIS)

    Zhang Zhao-Fu; Zhou Tie-Ge; Zhao Hai-Yang; Wei Xiang-Lei

    2014-01-01

    The geometry, electronic structure and magnetic property of the hexagonal AlN (h-AlN) sheet doped by 5d atoms (Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg) are investigated by first-principles calculations based on the density functional theory. The influence of symmetry and symmetry-breaking is also studied. There are two types of local symmetries of the doped systems: C 3v and D 3h . The symmetry will deviate from exact C 3v and D 3h for some particular dopants after optimization. The total magnetic moments of the doped systems are 0μ B for Lu, Ta and Ir; 1μ B for Hf, W, Pt and Hg; 2μ B for Re and Au; and 3μ B for Os and Al-vacancy. The total densities of state are presented, where impurity energy levels exist. The impurity energy levels and total magnetic moments can be explained by the splitting of 5d orbitals or molecular orbitals under different symmetries. (condensed matter: structural, mechanical, and thermal properties)

  3. Thermoluminescence in fluorite: sensitization mechanism

    International Nuclear Information System (INIS)

    Cruz, M.T. da; Watanabe, S.; Mayhugh, M.R.

    1974-01-01

    The sensitization of the major glow peaks (approximately to 100 and 200 0 C) in fluorite correlates with population of traps causing higher temperature glow peaks. When considered with supralinearity results, it is concluded that either the sensitization results from an increase in trap-filling efficiencies, or the deeper traps are not filled during irradiation

  4. Thermoluminescence in fluorite: sensitization mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, M.T. da; Watanabe, S; Mayhugh, M R

    1974-11-01

    The sensitization of the major glow peaks (approximately to 100 and 200/sup 0/ C) in fluorite correlates with population of traps causing higher temperature glow peaks. When considered with supralinearity results, it is concluded that either the sensitization results from an increase in trap-filling efficiencies, or the deeper traps are not filled during irradiation.

  5. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  6. Effects of rare-earth substitution on the stability and electronic structure of REZnOSb (RE = La-Nd, Sm-Gd) investigated via first-principles calculations

    International Nuclear Information System (INIS)

    Guo Kai; Man Zhenyong; Cao Qigao; Chen Haohong; Guo Xiangxin; Zhao Jingtai

    2011-01-01

    Graphical abstract: The structure stability of REZnOSb decreases with varying rare-earth from La to Gd because of the increased binding energy. Research highlights: → As increasing the atomic number of the RE, the structural stability of REZnOSb decreases. → Varying the rare-earth elements from La to Gd, the covalent interactions between [ZnSb] and [LaO] layer are enhanced by 4f-electrons. → The electrical transport properties of REZnOSb could be improved using the large atomic number of the RE. - Abstract: The structural stability, chemical bonding, Mulliken populations, and charge-density distribution of REZnOSb (RE = La-Nd, Sm-Gd) were investigated by first-principles calculations. Unit cell parameters calculated by the generalized gradient approximation (GGA) are in better agreement with experimental results than those derived from the local density approximation (LDA). Binding energy comparisons indicate that the structural stability of REZnOSb decreases with the increment of the atomic number of the RE, as confirmed by X-ray diffraction (XRD) results. Semimetal or narrow band-gap semiconductor behaviors are found for selected REZnOSb. Moreover, chemical bonding analysis shows that there exist considerable polar covalent interactions between the participating atoms. It also reveals that the [ZnSb] layers receive some electrons from the [LaO] layers (donor) as an electrons acceptor and holes transport tunnel. The covalent interactions between the [ZnSb] and [LaO] layers, which are enhanced by 4f-electrons of the RE, are supposed to improve the electrical transport properties.

  7. A first-principle for the nervous system

    OpenAIRE

    Vadakkan, Kunjumon

    2016-01-01

    Higher brain functions such as perception and memory are first-person internal sensations whose mechanisms can have options to concurrently activate motor neurons for behavioral action. By setting up all the required constraints using available information from different levels, a theoretical examination from a first-person frame of reference led to the derivation of a first-principle of the structure-function units. These units operate in synchrony with the synaptically-connected neural circ...

  8. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    Science.gov (United States)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  9. Electrical properties of improper ferroelectrics from first principles

    Science.gov (United States)

    Stengel, Massimiliano; Fennie, Craig J.; Ghosez, Philippe

    2012-09-01

    We study the interplay of structural and polar distortions in hexagonal YMnO3 and short-period PbTiO3/SrTiO3 (PTO/STO) superlattices by means of first-principles calculations at constrained electric displacement field D. We find that in YMnO3 the tilts of the oxygen polyhedra produce a robustly polar ground state, which persists at any choice of the electrical boundary conditions. Conversely, in PTO/STO the antiferrodistortive instabilities alone do not break inversion symmetry, and open-circuit boundary conditions restore a nonpolar state. We suggest that this qualitative difference naturally provides a route to rationalizing the concept of “improper ferroelectricity” from the point of view of first-principles theory. We discuss the implications of our arguments for the design of novel multiferroic materials with enhanced functionalities and for the symmetry analysis of the phase transitions.

  10. Study of thermophysical and anharmonic properties of fluorite compounds

    International Nuclear Information System (INIS)

    Singh, R.K.; Pandey, N.K.

    1983-01-01

    An extensive study is made of thermophysical and anharmonic properties of fluorite compounds using an interionic potential, which consists of a long-range Coulomb and three-body interactions and the short-range overlap repulsion and van der Waals attraction. The agreement achieved between experimental and theoretical results on third-order elastic constants and pressure derivatives of second order elastic constants are generally better than those obtained by others. This potential succeeds in predicting various thermophysical properties, like compressibility and its pressure and temperature derivatives, thermal expansion and Grueneisen parameters of seven crystals of fluorite structure. (author)

  11. First principles calculations of the electronic structure and magnetic properties of Y(Fe,M)9.2 and Y(Fe,M)9.2C (M= Si, Ga, Zr)

    Science.gov (United States)

    Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo

    2018-06-01

    The preferential site substitution of the Fe by Si, Ga and Zr in the Y(Fe,M)9.2 and Y(Fe,M)9.2C compounds, and the doping effects on the magnetic properties have been studied by the first-principles calculations. It is found that the doping of the Si or Zr can improve the thermodynamic stability of the 1:9 phase, while the substitution of the Fe by Ga makes it unstable. Si atom tends to enter the 3g crystal site and Zr prefers to occupy the 2e site when Y(Fe,M)9.2 and their carbides are synthesized. Although the substitution of the Fe by Si and Zr will reduce the total magnetic moments of the YFe9.2 and their carbides, the volumetric and the d-band narrowing effects caused by the doping can still modify the electron density distributions of the Fe near the Fermi level, improving the magnetic ordering temperature of the non-carbonated compound YFe9.2. The calculated magnetic ordering temperatures of Y(Fe,M)9.2C decrease with the increasing content of the doping elements M due to the stronger hybridization of the d bands in the carbides. For the rare-earth(RE) iron based intermetallics REFe9.2 with the TbCu7-type structure, it is suggested that Zr is able to stabilize the phase and enhance the magnetic ordering temperature, indicating the possible further application in the field of permanent magnets, which has not been reported before.

  12. First-principles simulations of heat transport

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  13. Obtaining the electrostatic screening from first principles

    International Nuclear Information System (INIS)

    Shaviv, N.J.; Shaviv, G.

    2003-01-01

    We derive the electrostatic screening effect from first principles and show the basic properties of the screening process. We in particular show that under the conditions prevailing in the Sun the number of particles in the Debye sphere is of the order of unity. Consequently; fluctuations play a dominant role in the screening process. The fluctuations lead to an effective time dependent potential. Particles with low kinetic energy lose on the average energy to the plasma and vice versa with high energy particles. We derive general conditions on the screening energy and show under what conditions the Salpeter approximation is obtained. The connection between the screening and relaxation processes in the plasma is exposed

  14. Primordial Black Holes from First Principles (Overview)

    Science.gov (United States)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  15. First-principles prediction of the structural, elastic, thermodynamic, electronic and optical properties of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} quaternary nitride

    Energy Technology Data Exchange (ETDEWEB)

    Boudrifa, O. [Laboratory for Developing New Materials and their Characterization, University of Setif 1, 19000 Setif (Algeria); Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr [Laboratory for Developing New Materials and their Characterization, University of Setif 1, 19000 Setif (Algeria); Guechi, N. [Department of Physics, Faculty of Science, University of Setif 1, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Physics, Faculty of Science and Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942 (Saudi Arabia); Al-Douri, Y. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 Mascara (Algeria)

    2015-01-05

    Highlights: • Some physical properties of the quaternary nitride Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} have been predicted. • Elastic parameters reveal that Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is mechanically stable but anisotropi. • Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is an indirect semiconductor. • The fundamental indirect band gap changes to direct one under pressure effect. • The optical properties exhibit noticeable anisotropy. - Abstract: Structural parameters, elastic constants, thermodynamic properties, electronic structure and optical properties of the monoclinic Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} quaternary nitride are investigated theoretically for the first time using the pseudopotential plane-wave based first-principles calculations. The calculated structural parameters are in excellent agreement with the experimental data. This serves as a proof of reliability of the used theoretical method and gives confidence in the predicted results on aforementioned properties of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6}. The predicted elastic constants C{sub ij} reveal that Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is mechanically stable but anisotropic. The elastic anisotropy is further illustrated by the direction-dependent of the linear compressibility and Young’s modulus. Macroscopic elastic parameters, including the bulk and shear moduli, the Young’s modulus, the Poisson ratio, the velocities of elastic waves and the Debye temperature are numerically estimated. The pressure and temperature dependence of the unit cell volume, isothermal bulk modulus, volume expansion coefficient, specific heat and Debye temperature are investigated through the quasiharmonic Debye model. The band structure and the density of states of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} are analyzed, which reveals the semiconducting character of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6}. The complex dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity

  16. First-principles study of complex material systems

    Science.gov (United States)

    He, Lixin

    This thesis covers several topics concerning the study of complex materials systems by first-principles methods. It contains four chapters. A brief, introductory motivation of this work will be given in Chapter 1. In Chapter 2, I will give a short overview of the first-principles methods, including density-functional theory (DFT), planewave pseudopotential methods, and the Berry-phase theory of polarization in crystallines insulators. I then discuss in detail the locality and exponential decay properties of Wannier functions and of related quantities such as the density matrix, and their application in linear-scaling algorithms. In Chapter 3, I investigate the interaction of oxygen vacancies and 180° domain walls in tetragonal PbTiO3 using first-principles methods. Our calculations indicate that the oxygen vacancies have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti--O--Ti bonds, and attempts to model the results with simple continuum models are discussed. CaCu3Ti4O12 (CCTO) has attracted a lot of attention recently because it was found to have an enormous dielectric response over a very wide temperature range. In Chapter 4, I study the electronic and lattice structure, and the lattice dynamical properties, of this system. Our first-principles calculations together with experimental results point towards an extrinsic mechanism as the origin of the unusual dielectric response.

  17. A first-principles study of oxygen vacancy induced changes in structural, electronic and magnetic properties of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia [Division of Materials Science, Nanyang Technological University, Singapore, 639798 (Singapore); Sun, Lizhong [Division of Materials Science, Nanyang Technological University, Singapore, 639798 (Singapore); Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan, Hunan, 411105 (China); Shenai, Prathamesh M.; Wang, Junling [Division of Materials Science, Nanyang Technological University, Singapore, 639798 (Singapore); Zheng, Hang [Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore, 639798 (Singapore)

    2015-11-15

    We have systematically assessed the influence of oxygen vacancy defects on the structural, electronic and magnetic properties of La{sub 2/3}Sr{sub 1/3}MnO{sub 3} via first-principles calculations using the bare GGA as well as the GGA + U formalism. The on-site Coulombic repulsion parameter U for Mn 3d orbital in the latter has been determined by the linear response theory. It is revealed that the introduction of the vacancy defects causes prominent structural changes in the microenvironment of a defect including the distortions of MnO{sub 6} octahedra. In contrast to the general notion, the GGA + U formalism is found to yield significantly more prominent structural changes than the bare GGA method. The octahedral distortion leads to a strengthening or weakening of the hybridization between Mn 3d and O 2p orbitals depending upon an increase or decrease, respectively, in the Mn–O distances as compared to the pristine system. The magnetic moments of the Mn atoms located in three typical sites of the vacancy-containing supercell are all larger than those in the pristine system. This enhancement for the Mn atoms located in the first- and third-nearest neighboring MnO{sub 6} octahedra of the vacancy defect originates from the electron transfer from 4s/3p to 3d orbitals. On the other hand, for the Mn atom located in the first-nearest neighboring site of the vacancy it is attributed to the increased total number of electrons in 3d orbitals due to the absence of one Mn–O bond. Furthermore, we have characterized the O-vacancy defect as a hole-type defect that forms a negative charge center, attracting electrons. - Highlights: • GGA + U calculations reveal effect of O-vacancy on properties of La{sub 1−1/3}Sr{sub 1/3}MnO{sub 3.} • Value of U = 5.9 eV calculated for Mn 3d orbitals from the linear response theory. • O-vacancy causes prominent distortions of MnO{sub 6} octahedra. • Octahedral distortions modulate electronic and magnetic properties of LSMO.

  18. First Principles Simulation of a Ceramic/ Metal Interface with Misfit

    International Nuclear Information System (INIS)

    Benedek, R.; Alavi, A.; Seidman, D. N.; Yang, L. H.; Muller, D. A.; Woodward, C.

    2000-01-01

    The relaxed atomic structure of a model ceramic/metal interface, {222}MgO/Cu , is simulated, including lattice constant mismatch, using first principles local-density functional theory plane wave pseudopotential methods. The 399-atom computational unit cell contains 36 O and 49 Cu atoms per layer in accordance with the 7/6 ratio of MgO to Cu lattice constants. The atomic layers on both sides of the interface warp to optimize the local bonding. The interface adhesive energy is calculated. The interface electronic structure is found to vary appreciably with the local environment. (c) 2000 The American Physical Society

  19. Optical storage media based on fluorite activated crystals

    International Nuclear Information System (INIS)

    Mokienko, I.Yu.; Poletimov, A.E.; Shcheulin, A.S.

    1991-01-01

    Earlier studied mechanisms of photo- and thermotransformations of defects in pure and activated additively coloured crystals with fluorite structure are considered to suggest several methods of reversible optical recording of images, characterized by high resistance to high-power laser radiation and mechanical deformation

  20. Atomic geometry and electronic structure of Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surfaces covered with different coverages of cesium: A first-principle research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mingzhu [Institute of Electronic Engineering and Optical Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Chang, Benkang, E-mail: bkchang@mail.njust.edu.cn [Institute of Electronic Engineering and Optical Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Wang, Meishan [Institute of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025 (China)

    2015-01-30

    Highlights: • Adsorption energy of Cs adsorption on Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surface increases as the increasing of Cs coverage. • Electrons transfer from Cs adatoms to substrate during Cs adsorption process, meanwhile the transfer efficiency decreases as Cs coverage increases. • The length of Ga-N bond in the first and second bilayers increases after Cs adsorption. • There appear new energy bands at −25 to −23 eV and −14 to −10 eV, which were induced by Cs 5s and Cs 5p state electrons respectively. - Abstract: We investigate cesium adsorption on Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surface at different coverages using first principle method based on density functional theory. Adsorption energies, atomic structure, Mulliken charge distribution, electron transfer, band structures, and density of states of the adsorption systems corresponding to different Cs coverages were obtained. Total-energy calculations show that cesium adsorption on Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surface is more and more difficult as the increase of cesium coverage. A single cesium adatom is preferred to locate at the top of Ga atom (T{sub Ga}). Meanwhile, it is not the most stable configuration when two cesium atoms were located on the top of two Ga neighbors at the same time. This is mainly because the distance of Cs adatoms is so small that repulsive force between adatoms rises. At low coverage, electrons transfer from Cs adatom to Ga atoms on the topmost and second topmost bilayers. Meanwhile, the efficiency of electron transfer decreases as the increasing of Cs coverage. There appear new bands at −25 to −23 eV and −14 to −10 eV, which were caused by Cs 5s and Cs 5p state electrons. Under the joint effect of Cs 5s and 5p state electrons, density of states at Fermi level increases, and the adsorption surfaces show more metal properties. Electrons transferring from Cs adatoms to Al{sub 0.25}Ga{sub 0.75}N substrate induces dipole moment, which is useful to

  1. Atomic geometry and electronic structure of Al0.25Ga0.75N(0 0 0 1) surfaces covered with different coverages of cesium: A first-principle research

    International Nuclear Information System (INIS)

    Yang, Mingzhu; Chang, Benkang; Wang, Meishan

    2015-01-01

    Highlights: • Adsorption energy of Cs adsorption on Al 0.25 Ga 0.75 N(0 0 0 1) surface increases as the increasing of Cs coverage. • Electrons transfer from Cs adatoms to substrate during Cs adsorption process, meanwhile the transfer efficiency decreases as Cs coverage increases. • The length of Ga-N bond in the first and second bilayers increases after Cs adsorption. • There appear new energy bands at −25 to −23 eV and −14 to −10 eV, which were induced by Cs 5s and Cs 5p state electrons respectively. - Abstract: We investigate cesium adsorption on Al 0.25 Ga 0.75 N(0 0 0 1) surface at different coverages using first principle method based on density functional theory. Adsorption energies, atomic structure, Mulliken charge distribution, electron transfer, band structures, and density of states of the adsorption systems corresponding to different Cs coverages were obtained. Total-energy calculations show that cesium adsorption on Al 0.25 Ga 0.75 N(0 0 0 1) surface is more and more difficult as the increase of cesium coverage. A single cesium adatom is preferred to locate at the top of Ga atom (T Ga ). Meanwhile, it is not the most stable configuration when two cesium atoms were located on the top of two Ga neighbors at the same time. This is mainly because the distance of Cs adatoms is so small that repulsive force between adatoms rises. At low coverage, electrons transfer from Cs adatom to Ga atoms on the topmost and second topmost bilayers. Meanwhile, the efficiency of electron transfer decreases as the increasing of Cs coverage. There appear new bands at −25 to −23 eV and −14 to −10 eV, which were caused by Cs 5s and Cs 5p state electrons. Under the joint effect of Cs 5s and 5p state electrons, density of states at Fermi level increases, and the adsorption surfaces show more metal properties. Electrons transferring from Cs adatoms to Al 0.25 Ga 0.75 N substrate induces dipole moment, which is useful to lower work function. What is more

  2. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb{sub 2}MB{sub 2} (M=Fe, Ru, Os) from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: Boniface.Fokwa@ac.rwth-aachen.de

    2014-03-15

    The Nb{sub 2}FeB{sub 2} phase (U{sub 3}Si{sub 2}-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128, a twofold superstructure of U{sub 3}Si{sub 2}-type) with distorted Nb-layers and Os{sub 2}-dumbbells was recently achieved, “Nb{sub 2}RuB{sub 2}” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb{sub 2}FeB{sub 2} and Nb{sub 2}OsB{sub 2}, but also predict “Nb{sub 2}RuB{sub 2}” to crystalize with the Nb{sub 2}OsB{sub 2} structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb{sub 2}FeB{sub 2}, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb{sub 2}FeB{sub 2} (U{sub 3}Si{sub 2} structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb{sub 2}RuB{sub 2}” is predicted to crystallize with the recently discovered Nb{sub 2}OsB{sub 2} twofold superstructure (space group P4/mnc, no. 128) of U{sub 3}Si{sub 2} structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be

  3. THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W

    2005-12-15

    The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.

  4. Safeguards First Principle Initiative (SFPI) Cost Model

    International Nuclear Information System (INIS)

    Price, Mary Alice

    2010-01-01

    The Nevada Test Site (NTS) began operating Material Control and Accountability (MC and A) under the Safeguards First Principle Initiative (SFPI), a risk-based and cost-effective program, in December 2006. The NTS SFPI Comprehensive Assessment of Safeguards Systems (COMPASS) Model is made up of specific elements (MC and A plan, graded safeguards, accounting systems, measurements, containment, surveillance, physical inventories, shipper/receiver differences, assessments/performance tests) and various sub-elements, which are each assigned effectiveness and contribution factors that when weighted and rated reflect the health of the MC and A program. The MC and A Cost Model, using an Excel workbook, calculates budget and/or actual costs using these same elements/sub-elements resulting in total costs and effectiveness costs per element/sub-element. These calculations allow management to identify how costs are distributed for each element/sub-element. The Cost Model, as part of the SFPI program review process, enables management to determine if spending is appropriate for each element/sub-element.

  5. First-principles calculations of mobility

    Science.gov (United States)

    Krishnaswamy, Karthik

    First-principles calculations can be a powerful predictive tool for studying, modeling and understanding the fundamental scattering mechanisms impacting carrier transport in materials. In the past, calculations have provided important qualitative insights, but numerical accuracy has been limited due to computational challenges. In this talk, we will discuss some of the challenges involved in calculating electron-phonon scattering and carrier mobility, and outline approaches to overcome them. Topics will include the limitations of models for electron-phonon interaction, the importance of grid sampling, and the use of Gaussian smearing to replace energy-conserving delta functions. Using prototypical examples of oxides that are of technological importance-SrTiO3, BaSnO3, Ga2O3, and WO3-we will demonstrate computational approaches to overcome these challenges and improve the accuracy. One approach that leads to a distinct improvement in the accuracy is the use of analytic functions for the band dispersion, which allows for an exact solution of the energy-conserving delta function. For select cases, we also discuss direct quantitative comparisons with experimental results. The computational approaches and methodologies discussed in the talk are general and applicable to other materials, and greatly improve the numerical accuracy of the calculated transport properties, such as carrier mobility, conductivity and Seebeck coefficient. This work was performed in collaboration with B. Himmetoglu, Y. Kang, W. Wang, A. Janotti and C. G. Van de Walle, and supported by the LEAST Center, the ONR EXEDE MURI, and NSF.

  6. First principle study of cubic ScGaN ternaries

    International Nuclear Information System (INIS)

    Adli, W.; Mecheref, R.; Sekkal, N.; Tair, F.; Amrani, B.

    2008-08-01

    The electronic properties of the Sc x Ga1- x N ternary alloy are investigated. The transition from rocksalt (B1) to zinc blende (B3) structure is found to occur rapidly after incorporating just a small fraction (less than 1%) of Ga. In the present paper, the first principles method the full potential linear muffin-tin orbitals method (FPLMTO) in its atomic sphere approximation (ASA) coupled to the technique of the empty spheres is employed. Our results concerning the electronic properties are different from those reported in literature. (author)

  7. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  8. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  9. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  10. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin; Yao, Kexin; Meng, Changgong; Han, Yu

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single

  11. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  12. Determination of the structure of γ-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model

    International Nuclear Information System (INIS)

    Paglia, Gianluca; Rohl, Andrew L.; Gale, Julian D.; Buckley, Craig E.

    2005-01-01

    We have performed an extensive computational study of γ-Al 2 O 3 , beginning with the geometric analysis of approximately 1.47 billion spinel-based structural candidates, followed by derivative method energy minimization calculations of approximately 122 000 structures. Optimization of the spinel-based structural models demonstrated that structures exhibiting nonspinel site occupancy after simulation were more energetically favorable, as suggested in other computational studies. More importantly, none of the spinel structures exhibited simulated diffraction patterns that were characteristic of γ-Al 2 O 3 . This suggests that cations of γ-Al 2 O 3 are not exclusively held in spinel positions, that the spinel model of γ-Al 2 O 3 does not accurately reflect its structure, and that a representative structure cannot be achieved from molecular modeling when the spinel representation is used as the starting structure. The latter two of these three findings are extremely important when trying to accurately model the structure. A second set of starting models were generated with a large number of cations occupying c symmetry positions, based on the findings from recent experiments. Optimization of the new c symmetry-based structural models resulted in simulated diffraction patterns that were characteristic of γ-Al 2 O 3 . The modeling, conducted using supercells, yields a more accurate and complete determination of the defect structure of γ-Al 2 O 3 than can be achieved with current experimental techniques. The results show that on average over 40% of the cations in the structure occupy nonspinel positions, and approximately two-thirds of these occupy c symmetry positions. The structures exhibit variable occupancy in the site positions that follow local symmetry exclusion rules. This variation was predominantly represented by a migration of cations away from a symmetry positions to other tetrahedral site positions during optimization which were found not to affect the

  13. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite

    Science.gov (United States)

    Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua

    2018-03-01

    Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.

  14. First principles investigation of nitrogenated holey graphene

    Science.gov (United States)

    Xu, Cui-Yan; Dong, Hai-Kuan; Shi, Li-Bin

    2018-04-01

    The zero band gap problem limits the application of graphene in the field of electronic devices. Opening the band gap of graphene has become a research issue. Nitrogenated holey graphene (NHG) has attracted much attention because of its semiconducting properties. However, the stacking orders and defect properties have not been investigated. In this letter, the structural and stacking properties of NHG are first investigated. We obtain the most stable stacking structure. Then, the band structures for bulk and multilayer NHG are studied. Impact of the strain on the band gaps and bond characteristics is discussed. In addition, we investigate formation mechanism of native defects of carbon vacancy (VC), carbon interstitial (Ci), nitrogen vacancy (VN), and nitrogen interstitial (Ni) in bulk NHG. Formation energies and transition levels of these native defects are assessed.

  15. First-principles study of point defects in thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2014-01-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure

  16. First-principles study of point defects in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2014-11-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  17. First principles study of α and δ-Pu

    International Nuclear Information System (INIS)

    Chattaraj, Debabrata; Dash, Smruti

    2017-01-01

    The structural and electronic properties of α-and δ-Pu has been investigated using state of the art first principles method. All the calculations have been performed using a plane wave based pseudopotential method under the framework of spin polarized density functional theory. The effect of relativistic spin-orbit interactions on these properties has been investigated. The calculated lattice parameters are found to be within ±1% of the experimental data. The cohesive energy of α-and δ-Pu are calculated to be -3.125 and -3.126 eV/atom. The nature of chemical bonding present in those phases of Pu is depicted by calculated density of states spectra. (author)

  18. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  19. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  20. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2013-08-16

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  1. beta-sheet preferences from first principles

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Bækgaard, Iben Sig Buur; Gregersen, Misha Marie

    2003-01-01

    The natural amino acids have different preferences of occurring in specific types of secondary protein structure. Simulations are performed on periodic model â-sheets of 14 different amino acids, at the level of density functional theory, employing the generalized gradient approximation. We find ...

  2. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  3. Toward control of the metal-organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of pi-conjugated molecules on noble metals.

    Science.gov (United States)

    Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc

    2007-04-01

    Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.

  4. Spectroscopy of organic semiconductors from first principles

    Science.gov (United States)

    Sharifzadeh, Sahar; Biller, Ariel; Kronik, Leeor; Neaton, Jeffery

    2011-03-01

    Advances in organic optoelectronic materials rely on an accurate understanding their spectroscopy, motivating the development of predictive theoretical methods that accurately describe the excited states of organic semiconductors. In this work, we use density functional theory and many-body perturbation theory (GW/BSE) to compute the electronic and optical properties of two well-studied organic semiconductors, pentacene and PTCDA. We carefully compare our calculations of the bulk density of states with available photoemission spectra, accounting for the role of finite temperature and surface effects in experiment, and examining the influence of our main approximations -- e.g. the GW starting point and the application of the generalized plasmon-pole model -- on the predicted electronic structure. Moreover, our predictions for the nature of the exciton and its binding energy are discussed and compared against optical absorption data. We acknowledge DOE, NSF, and BASF for financial support and NERSC for computational resources.

  5. First-Principles Investigations on Europium Monoxide

    KAUST Repository

    Wang, Hao

    2011-05-01

    Europium monoxide is both an insulator and a Heisenberg ferromagnet (Tc=69 K). In the present thesis, the author has investigated the electronic structure of different types of EuO by density functional theory. The on-site Coulomb interaction of the localized Eu 4f and 5d electrons, which is wrongly treated in the standard generalized gradient approximation method, is found to be crucial to obtain the correct insulating ground state as observed in experiments. Our results show that the ferromagnetism is stable under pressure, both hydrostatic and uniaxial. For both types of pressure an insulator-metal transition is demonstrated. Moreover, the experimentally observed insulator-metal transition in oxygen deficient and gadolinium-doped EuO is reproduced in our calculations for impurity concentrations of 6.25% and 25%. Furthermore, a 10- layer EuO thin film is theoretically predicted to be an insulator with a narrow band gap of around 0.08 eV, while the Si/EuO interface shows metallic properties with the Si and O 2p as well as Eu 5d bands crossing the Fermi level.

  6. First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites

    International Nuclear Information System (INIS)

    Ivashchenko, V.I.; Veprek, S.; Argon, A.S.; Turchi, P.E.A.; Gorb, L.; Hill, F.; Leszczynski, J.

    2015-01-01

    TiN/SiN x heterostructures with one monolayer of the interfacial SiN x have been investigated in the framework of first-principles molecular dynamics calculations in the temperature range of 0 to 1400 K with subsequent static relaxation. The atomic configurations, thermal stability and stress–strain relations have been calculated. Among the heterostructures studied, only the TiN(111)/SiN/TiN(111) and TiN(111)/Si 2 N 3 /TiN(111) ones are thermally stable. Upon tensile load, decohesion occurs between the Ti−N bonds adjacent to the SiN x interfacial layer for TiN(001)/SiN/TiN(001) and TiN(111)/Si 2 N 3 /TiN(111) heterostructures, and inside the TiN slab for TiN(001)/Si 3 N 4 /TiN(001) and TiN(110)/SiN/TiN(110) ones. Upon shear, failure occurs in TiN near the interfaces in all the heterostructures, except for the TiN(001)/Si 3 N 4 /TiN(001) one, for which the plastic flow occurs inside the TiN slab. Based on these results we estimate the maximum achievable hardness of nc-TiN/Si 3 N 4 nanocomposites free of impurities to be about 170 GPa. - Highlights: • Interface stability in TiN/SiN x heterostructures at T ≤ 1400 K is studied by quantum molecular dynamics. • Ideal decohesion and shear strengths of the heterostructures have been calculated. • Achievable hardness of nc-TiN/Si 3 N 4 -like nanocomposites of about 170 GPa is calculated. • Experimentally achieved lower hardness is limited by flaws, such as oxygen impurities

  7. First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiN{sub x} heterostructures, and the achievable hardness of the nc-TiN/SiN{sub x} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.I., E-mail: ivash@ipms.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Veprek, S., E-mail: stan.veprek@lrz.tum.de [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Argon, A.S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Turchi, P.E.A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, CA 94551 (United States); Gorb, L. [Badger Technical Services, LLC, Vicksburg, MS 39180 (United States); U.S. Army ERDC, Vicksburg, MS 39180 (United States); Hill, F. [U.S. Army ERDC, Vicksburg, MS 39180 (United States); Leszczynski, J. [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS 39217 (United States)

    2015-03-02

    TiN/SiN{sub x} heterostructures with one monolayer of the interfacial SiN{sub x} have been investigated in the framework of first-principles molecular dynamics calculations in the temperature range of 0 to 1400 K with subsequent static relaxation. The atomic configurations, thermal stability and stress–strain relations have been calculated. Among the heterostructures studied, only the TiN(111)/SiN/TiN(111) and TiN(111)/Si{sub 2}N{sub 3}/TiN(111) ones are thermally stable. Upon tensile load, decohesion occurs between the Ti−N bonds adjacent to the SiN{sub x} interfacial layer for TiN(001)/SiN/TiN(001) and TiN(111)/Si{sub 2}N{sub 3}/TiN(111) heterostructures, and inside the TiN slab for TiN(001)/Si{sub 3}N{sub 4}/TiN(001) and TiN(110)/SiN/TiN(110) ones. Upon shear, failure occurs in TiN near the interfaces in all the heterostructures, except for the TiN(001)/Si{sub 3}N{sub 4}/TiN(001) one, for which the plastic flow occurs inside the TiN slab. Based on these results we estimate the maximum achievable hardness of nc-TiN/Si{sub 3}N{sub 4} nanocomposites free of impurities to be about 170 GPa. - Highlights: • Interface stability in TiN/SiN{sub x} heterostructures at T ≤ 1400 K is studied by quantum molecular dynamics. • Ideal decohesion and shear strengths of the heterostructures have been calculated. • Achievable hardness of nc-TiN/Si{sub 3}N{sub 4}-like nanocomposites of about 170 GPa is calculated. • Experimentally achieved lower hardness is limited by flaws, such as oxygen impurities.

  8. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  9. A first-principles approach to finite temperature elastic constants

    International Nuclear Information System (INIS)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K

    2010-01-01

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni 3 Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  10. Automated first-principles mapping for phase-change materials.

    Science.gov (United States)

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. First-Principle Characterization for Singlet Fission Couplings.

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  12. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  13. TOPICAL REVIEW: First principles studies of multiferroic materials

    Science.gov (United States)

    Picozzi, Silvia; Ederer, Claude

    2009-07-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO3), the magnetically induced ferroelectric polarization can be as large as a few µC cm-2. The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  14. Elements-admixtures of fluorite. Research technique

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2002-01-01

    Present article is devoted to elements-admixtures of fluorite and research techniques used. As a material for researches the mono mineral samples of fluorite of various geologic deposits and ores were used. The determination of sodium and potassium was conducted by means of flame photometry. Strontium, uranium, thorium, lead and rubidium were determined by means of quantitative X-ray spectroscopic analysis. The barium analysis was conducted by means of quantitative method. The manganese analysis was conducted by means of electron paramagnetic resonance.

  15. First-principles study of electron transport through monatomic Al and Na wires

    DEFF Research Database (Denmark)

    Kobayashi, Nobuhiko; Brandbyge, Mads; Tsukada, Masaru

    2000-01-01

    We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction...... channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective...

  16. Thermophysical properties of paramagnetic Fe from first principles

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal elastic constants of α -, γ -, and δ -iron as functions of temperature in the range 1000-1800 K. The calculations accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and δ -iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α - and δ -Fe and about 30% for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013), 10.1016/j.epsl.2013.05.040]. Less agreement is found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and δ -iron.

  17. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui

    2010-09-23

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.

  18. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  19. Electronic properties and structural phase transition in A4 [M4O4] (A=Li, Na, K and Rb; M=Ag and Cu): A first principles study

    Science.gov (United States)

    Umamaheswari, R.; Yogeswari, M.; Kalpana, G.

    2013-02-01

    Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.

  20. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  1. Reliability evaluation of thermophysical properties from first-principles calculations.

    Science.gov (United States)

    Palumbo, Mauro; Fries, Suzana G; Dal Corso, Andrea; Kürmann, Fritz; Hickel, Tilmann; Neugebauer, Jürg

    2014-08-20

    Thermophysical properties, such as heat capacity, bulk modulus and thermal expansion, are of great importance for many technological applications and are traditionally determined experimentally. With the rapid development of computational methods, however, first-principles computed temperature-dependent data are nowadays accessible. We evaluate various computational realizations of such data in comparison to the experimental scatter. The work is focussed on the impact of different first-principles codes (QUANTUM ESPRESSO and VASP), pseudopotentials (ultrasoft and projector augmented wave) as well as phonon determination methods (linear response and direct force constant method) on these properties. Based on the analysis of data for two pure elements, Cr and Ni, consequences for the reliability of temperature-dependent first-principles data in computational thermodynamics are discussed.

  2. First-principle study of structural, electronic and magnetic properties of (FeC)n (n = 1-8) and (FeC)8TM (TM = V, Cr, Mn and Co) clusters.

    Science.gov (United States)

    Li, Cheng-Gang; Zhang, Jie; Zhang, Wu-Qin; Tang, Ya-Nan; Ren, Bao-Zeng; Hu, Yan-Fei

    2017-12-13

    The structural, electronic and magnetic properties of the (FeC) n (n = 1-8) clusters are studied using the unbiased CALYPSO structure search method and density functional theory. A combination of the PBE functional and 6-311 + G* basis set is used for determining global minima on potential energy surfaces of (FeC) n clusters. Relatively stabilities are analyzed via computing their binding energies, second order difference and HOMO-LUMO gaps. In addition, the origin of magnetic properties, spin density and density of states are discussed in detail, respectively. At last, based on the same computational method, the structures, magnetic properties and density of states are systemically investigated for the 3d (V, Cr, Mn and Co) atom doped (FeC) 8 cluster.

  3. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  4. Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation

    International Nuclear Information System (INIS)

    Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin

    2006-01-01

    In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed

  5. The orthorhombic fluorite related compounds Ln/sub 3/RuO/sub 7/, Ln=Nd, Sm and Eu

    International Nuclear Information System (INIS)

    Van Berkel, F.P.F.; Ijdo, D.J.W.

    1986-01-01

    Fluorite-related Ru(V) compound with composition Ln/sub 3/RuO/sub 7/ have been found. These compounds with space group Cmcm adopt a superstructure of the cubic fluorite structure with a/sub orth/=2a/sub c/, b/sub orth/=c/sub orth/=a/sub c/√2. These compounds have the same structure as La/sub 3/NbO/sub 7/

  6. Insights into the ammonia synthesis from first-principles

    DEFF Research Database (Denmark)

    Hellmann, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2006-01-01

    -properties, such as apparent activation energies and reaction orders, are calculated from the first-principles model. Our analysis shows that the reaction order of N-2 is unity under all considered conditions, whereas the reaction orders of H-2 and NH3 depend on reaction conditions. (c) 2006 Elsevier B.V. All rights reserved.......A new set of measurements is used to further test a recently published first-principles model for the ammonia (NH3) synthesis on an unpromoted Ru-based catalyst. A direct comparison shows an overall good agreement in NH3 productivity between the model and the experiment. In addition, macro...

  7. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  8. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua; Mi, Wenbo; Bai, Haili; Cheng, Yingchun

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2

  9. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface

  10. Structural and electronic properties of zinc blende B{sub x}Al{sub 1-x}N{sub y}P{sub 1-y} quaternary alloys via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abdiche, A., E-mail: abdiche_a@yahoo.fr [Engineering Physics Laboratory, Tiaret University, 14000 Tiaret (Algeria); Baghdad, R. [Engineering Physics Laboratory, Tiaret University, 14000 Tiaret (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Department of Physics and Astronomy, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Riane, R. [Computational Materials Science Laboratory, University Research of Sidi-Bel-Abbes, 22000 Algeria (Algeria); Al-Douri, Y. [Institute of Nono Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Guemou, M. [Engineering Physics Laboratory, Tiaret University, 14000 Tiaret (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-02-01

    The structural and electronic properties of cubic zinc blende BN, BP, AlN and AlP compounds and their B{sub x}Al{sub 1-x}N{sub y}P{sub 1-y} quaternary alloys, have been calculated using the non relativistic full-potential linearized-augmented plane wave FP-LAPW method. The exchange-correlation potential is treated with the local density approximation of Perdew and Wang (LDA-PW) as well as the generalized gradient approximation (GGA) of Perdew-Burke and Ernzerhof (GGA-PBE). The calculated structural properties of BN, BP, AlN and AlP compounds are in good agreement with the available experimental and theoretical data. A nonlinear variation of compositions x and y with the lattice constants, bulk modulus, direct and indirect band gaps is found. The calculated bowing of the fundamental band gaps is in good agreement with the available experimental and theoretical value. To our knowledge this is the first quantitative theoretical investigation on B{sub x}Al{sub 1-x}N{sub y}P{sub 1-y} quaternary alloy and still awaits experimental confirmations.

  11. First-principles studies of the local structure and relaxor behavior of Pb(Mg 1 /3Nb2 /3) O3-PbTiO3 -derived ferroelectric perovskite solid solutions

    Science.gov (United States)

    Tan, Hengxin; Takenaka, Hiroyuki; Xu, Changsong; Duan, Wenhui; Grinberg, Ilya; Rappe, Andrew M.

    2018-05-01

    We have investigated the effect of transition-metal dopants on the local structure of the prototypical 0.75 Pb (Mg1 /3Nb2 /3) O3-0.25 PbTiO3 relaxor ferroelectric. We find that these dopants give rise to very different local structure and other physical properties. For example, when Mg is partially substituted by Cu or Zn, the displacement of Cu or Zn is much larger than that of Mg and is even comparable to that of Nb. The polarization of these systems is also increased, especially for the Cu-doped solution, due to the large polarizability of Cu and Zn. As a result, the predicted maximum dielectric constant temperatures Tm are increased. On the other hand, the replacement of a Ti atom with a Mo or Tc atom dramatically decreases the displacements of the cations and the polarization, and thus, the Tm values are also substantially decreased. The higher Tm cannot be explained by the conventional argument based on the ionic radii of the cations. Furthermore, we find that Cu, Mo, or Tc doping increases the cation displacement disorder. The effect of the dopants on the temperature dispersion Δ Tm , which is the change in Tm for different frequencies, is also discussed. Our findings lay the foundation for further investigations of unexplored dopants.

  12. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    2017-04-15

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eu concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state

  13. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  14. First principle investigation of structural, electronic and magnetic properties of cubic Cd{sub 0.9375}TM{sub 0.0625}S (TM=Ni, Co and Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Yahi, Hakima, E-mail: yahihaki@yahoo.fr; Meddour, Athmane, E-mail: a_meddour@yahoo.fr

    2017-06-15

    In this study, we investigated the structural, electronic and magnetic properties of Cd{sub 0.9375}TM{sub 0.0625}S (TM=Ni, Co and Fe) compounds in zinc blende (B3) ferromagnetic phase using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the frame work of the density functional theory and the generalized gradient approximation. The analysis of electronic structures shows that Cd{sub 0.9375}Ni{sub 0.0625}S, Cd{sub 0.9375}Co{sub 0.0625}S and Cd{sub 0.9375}Fe{sub 0.0625}S compounds are half-metallic ferromagnets with 100% spin polarization at the Fermi level. This half-metallic behavior is confirmed by the total calculated magnetic moment per Ni, Co and Fe substituted transition metal (TM) atom, which is found to be 2 µ{sub B}, 3 µ{sub B} and 4 µ{sub B} for Cd{sub 0.9375}TM{sub 0.0625}S (TM=Ni, Co and Fe) compounds, respectively. Furthermore, we found that the TM-3d states are responsible for generating spin-polarization and magnetic moment in these compounds and we establish that the p-d hybridization reduces the local magnetic moment of TM atoms from its free space charge value and produces small local magnetic moments on nonmagnetic Cd and S host sites. Also, we predicted exchange splitting energy Δ{sub x}(pd) and exchange constants N{sub 0}α and N{sub 0}β. The calculated values validate the ferromagnetic nature of these compounds.

  15. Thermopower switching by magnetic field: first-principles calculations

    DEFF Research Database (Denmark)

    Maslyuk, Volodymyr V.; Achilles, Steven; Sandratskii, Leonid

    2013-01-01

    We present first-principles studies of the thermopower of the organometallic V4Bz5 molecule attached between Co electrodes with noncollinear magnetization directions. Different regimes in the formation of the noncollinear magnetic state of the molecule lead to a remarkable nonmonotonous dependence...

  16. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  17. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui; Zhang, Qianfan; Cui, Yi; Wang, Enge

    2010-01-01

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found

  18. First-principles prediction of liquid/liquid interfacial tension

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Bennetzen, M.V.; Klamt, A.

    2014-01-01

    of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid...

  19. Molecular Electronics: Insight from First-Principles Transport Simulations

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect...

  20. First principles study of structural, electronic, magnetic and elastic properties of Mg{sub 0.75}TM{sub 0.25}S (TM=Mn, Fe, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Gous, M.H., E-mail: gousph@hotmail.fr; Meddour, A., E-mail: a_meddour@yahoo.fr; Bourouis, Ch., E-mail: bourouisse_ch@yahoo.fr

    2017-01-15

    The objective of this work is to predict the structural, electronic, magnetic and elastic properties of Mg{sub 1−x}TM{sub x}S (TM=Mn, Fe, Co and Ni) compound in the zinc blende Ferromagnetic phase using first principal approach. The structural and elastic properties are performed using the generalized gradient approximation proposed by Wu and Cohen(WC-GGA). However, the electronic and magnetic properties have been performed using modified Becke-Johnson potential combined with the LDA correlation (mBJLDA). The results show that all compounds Mg{sub 1−x}Mn{sub x}S, Mg{sub 1−x}Fe{sub x}S and Mg{sub 1−x}Ni{sub x}S exhibit a half-metallic ferromagnetic character with 100% spin-polarization at the Fermi level, except Mg{sub 1−x}Co{sub x}S is a metal. For each compounds study here, the total magnetic momentum is an integer equal to magnetic moments of TM atom in their free space charge value. Due to the p–d hybridization, there is a small local magnetic moment on the Mg and S sites; whereas, the local magnetic moments of TM atom reduce from their free space charge value. In addition, we investigate the mechanical behavior of MgS and Mg{sub 1−x}TM{sub x}S; all compounds studied here are mechanically stable and exhibit a strong anisotropic behavior. - Highlights: • Our results could be a prediction for coming works. • According to our results of electronic properties: Mg{sub 0.75}Co{sub 0.25}S is metal. Mg{sub 0.75}Mn{sub 0.25}S, Mg{sub 0.75}Fe{sub 0.25}S and Mg{sub 0.75}Ni{sub 0.25}S exhibit half-metallic ferromagnetic behavior with 100% spin polarization at Fermi level. • We found that MgS and Mg{sub 0.75}TM{sub 0.25}S (TM=Mn, Fe, Co and Ni) compounds are mechanically stable, ductile materials and have an anisotropic Young's Modulus. • It is likely that these materials have a high Curie temperature.