WorldWideScience

Sample records for fluorine polymer-incorporated resin

  1. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    Science.gov (United States)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  2. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  3. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  4. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  5. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer.

    Science.gov (United States)

    Liu, Xue; Wang, Zengyao; Zhao, Chengji; Bu, Wenhuan; Na, Hui

    2018-04-01

    A series of fluorinated dental resin composites were prepared with two kinds of SiO 2 particles. Bis-GMA (bisphenol A-glycerolate dimethacrylate)/4-TF-PQEA (fluorinated acrylate monomer)/TEGDMA (triethylene glycol dimethacrylate) (40/30/30, wt/wt/wt) was introduced as resin matrix. SiO 2 nanopartices (30nm) and SiO 2 microparticles (0.3µm) were silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) and used as fillers. After mixing the resin matrix with 0%, 10%, 20%, 30% SiO 2 nanopartices and 0%, 10%, 20%, 30%, 40%, 50% SiO 2 microparticles, respectively, the fluorinated resin composites were obtained. Properties including double bond conversion (DC), polymerization shrinkage (PS), water sorption (W p ), water solubility (W y ), mechanical properties and cytotoxicity were investigated in comparison with those of neat resin system. The results showed that, filler particles could improve the overall performance of resin composites, particularly in improving mechanical properties and reducing PS of composites along with the addition of filler loading. Compared to resin composites containing SiO 2 microparticles, SiO 2 nanoparticles resin composites had higher DC, higher mechanical properties, lower PS and lower W p under the same filler content. Especially, 50% SiO 2 microparticles reinforced resins exhibited the best flexural strength (104.04 ± 7.40MPa), flexural modulus (5.62 ± 0.16GPa), vickers microhardness (37.34 ± 1.13 HV), compressive strength (301.54 ± 5.66MPa) and the lowest polymerization (3.42 ± 0.22%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    Science.gov (United States)

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    too many fluorine substituents are incorporated. Finally, while this Account focuses on studies in which the polymer is paired with fullerene derivatives as the electron accepting materials, non-fullerene acceptors (NFAs) are quickly becoming key players in the field of OSCs. The effect of fluorination of the polymers on the device performance may be different when NFAs are used as the electron-accepting materials, which remains to be investigated. However, the design of fluorinated polymers may provide guidelines for the design of more efficient NFAs. Indeed, the current highest-performing OSC (∼13%) features fluorination on both the donor polymer and the non-fullerene acceptor.

  7. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  8. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...

  9. Effect of plasma fluorination variables on the deposition and growth of partially fluorinated polymer over PMMA films

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2013-01-01

    Full Text Available In this work, an investigation was made of the modification of film surface of Poly(methylmethacrylate (PMMA using the plasma polymerization technique. PMMA films 10 µm thick were obtained by Spin-Coating starting from a chloroform solution (15.36% w/w. The films were exposed to the plasma of CHF3 at different gas pressures and exposure times to increase the thickness of fluorinated polymers onto PMMA films. The plasma fluorinated optical films were characterized by gravimetry, FTIR-ATR, contact angle of wetting, SEM and AFM. The surface fluorination of PMMA films can be inferred by the increase in contact angle under all experimental conditions, and confirmed with FTIR-ATR analysis. Gravimetry showed an increase of the fluorinated polymer layer over PMMA films, being 1.55 µm thick at 0.7 torr and 40 minutes of plasma exposure. The SEM analysis showed a well-defined layer of fluorinated polymer, with fluorine being detected in the EDS analysis. The film roughness for the fluorinated polymers was around of 200 Å, quite satisfactory for a 1.55 µm cladding.

  10. Interpenetrating polymer networks based on cyanate ester and fluorinated ethynyl-terminated imide oligomers

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2017-12-01

    Full Text Available Highly soluble fluorinated ethynyl-terminated imide (FETI oligomers were prepared via a conventional one-step method in m-cresol, using 4, 4′-(hexafluoroisopropylidene diphthalic anhydride and 2, 2′-bis(trifluoromethyl benzidine as the monomers, and ethynylphthalic anhydride as the end-capper; then interpenetrating polymer networks (IPN were formulated from FETI oligomers and bisphenol A dicyanate ester (BADCy through a solvent-free procedure, and their thermal, mechanical, and dielectric properties were fully characterized. The curing mechanism was studied by model reactions using nitrogen nuclear magnetic resonance. As evidenced by differential scanning calorimetry analysis and rheological measurements, the FETI/BADCy blends exhibited lower curing temperature and shorter gelation time in comparison with pure BADCy due to the catalytic effects of ethynyl and residue amic acid groups. The properties of IPNs were fully compared with those of polycyanurate, and the results revealed that the incorporation of FETI into cyanate ester resins could significantly improve the toughness, glass transition temperatures, mechanical and dielectric properties of the resultant IPNs.

  11. Direct fluorination? Useful tool to enhance commercial properties of polymer articles

    NARCIS (Netherlands)

    Kharitonov, A.P.; Taege, R.; Ferrier, G.; Teplyakov, V.V.; Syrtsova, D.A.; Syrtsova, D.A.; Koops, G.H.

    2005-01-01

    Fundamental features and industrial applications of the direct fluorination of polymers are reviewed. Fundamental features of the direct fluorination of a set of polymers, such as polystyrene, polyethyleneterephthalate, poly(2,6-dimethyl-1,4-phenylene oxide), PMMA, LDPE (two types), HDPE (six

  12. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vanessa F. Cardoso

    2018-02-01

    Full Text Available Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

  13. PEG-related polymer resins as synthetic supports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combinatorial chemistry has become a significant part of the discovery and optimization process for novel drugs,affinity ligands,and catalysts.The polymeric supports play a key role in combinatory chemistry.Therefore,various kinds of functional polymer resins have been exploited as supports,reagents,and catalysts in organic synthesis.In comparison to the conventional Merrifield resins,the poly(ethylene glycol)(PEG)-related polymer resins have advantages including good compatibilities with polar solvents,good solvent absorbency and swelling properties.This review focuses primarily on the more recent work in the field of developing PEG-related polymer resins as supports for organic synthesis.

  14. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  15. Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review

    Directory of Open Access Journals (Sweden)

    Nicolas Leclerc

    2016-01-01

    Full Text Available Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone.

  16. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study

    Science.gov (United States)

    Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-08-01

    To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.

  17. Preparation of a Bis-GMA-Free Dental Resin System with Synthesized Fluorinated Dimethacrylate Monomers

    Directory of Open Access Journals (Sweden)

    Shuzhen Luo

    2016-12-01

    Full Text Available With the aim of reducing human exposure to Bisphenol A (BPA derivatives in dentistry, a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl-phenyl]propane (Bis-GMA as the base monomer of dental resin. After mixing with reactive diluent triethyleneglycol dimethacrylate (TEGDMA, fluorinated dimethacrylate (FDMA/TEGDMA was prepared and compared with Bis-GMA/TEGDMA in physicochemical properties, such as double bond conversion (DC, volumetric shrinkage (VS, water sorption (WS and solubility (WSL, flexural strength (FS and modulus (FM. The results showed that, when compared with Bis-GMA based resin, FDMA-based resin had several advantages, such as higher DC, lower VS, lower WS, and higher FS after water immersion. All of these revealed that FDMA had potential to be used as a substitute for Bis-GMA. Of course, many more studies, such as biocompatibility testing, should be undertaken to prove whether FDMA could be applied in clinic.

  18. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    Science.gov (United States)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  19. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    International Nuclear Information System (INIS)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N.R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-01-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  20. Fluorine analysis of human dentin surrounding resin composite after fluoride application by {mu}-PIGE/PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Katsushi, E-mail: katsu@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan) and School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Komatsu, Hisanori [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan); Yamamoto, Hiroko [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Osaka, Suita 565-0871 (Japan); Pereira, Patricia N.R. [School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Bedran-Russo, Ana K. [University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S. Paulina St., Chicago, IL 60612 (United States); Nomachi, Masaharu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043 (Japan); Sato, Takahiro [TARRI, JAEA, Advanced Radiation Technology, 1233 Watanuki-machi, Gunma, Takasaki 370-1292 (Japan); Sano, Hidehiko [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan)

    2011-10-15

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission ({mu}-PIXE) and micro proton-induced gamma-ray emission ({mu}-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by {mu}-PIGE and {mu}-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F

  1. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  2. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang; Wei, Bin; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  3. Effect of organoclay incorporation on dental resin morphology

    International Nuclear Information System (INIS)

    Oliveira, Nadja M.S.; Reis, Romulo P.B.; Leite, Itamara F.; Morais, Crislene R.S.; Silva, Suedina M.L.

    2009-01-01

    The objective of the present work was to incorporate nanosilicates in commercial dental resins in order to prepare dental nanocomposites competitive as commercial nanoparticulates dental resins. Thus, a silicate, Cloisite 20A (C20A), was incorporated in a microhybrid dental resin (Z100) and morphological properties of the nanocomposites evaluated as a function of the incorporation method and the amount of filler employed. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results evidence that nanocomposites have been obtained and according to SEM results, the morphology of microhybrid resin was modified when C20A nanoparticulate was incorporated improve the size distribution and reduce the agglomeration of the particles. (author)

  4. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui

    2014-02-01

    The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effect of Low Earth Orbit exposure on some experimental fluorine and silicon-containing polymers

    Science.gov (United States)

    Connell, John W.; Young, Philip R.; Kalil, Carol G.; Chang, Alice C.; Siochi, Emilie J.

    1994-01-01

    Several experimental fluorine and silicon-containing polymers in film form were exposed to low Earth orbit (LEO) on a Space Shuttle flight experiment (STS-46, Evaluation of Oxygen Interaction with Materials, EOIM-3). The environmental parameters of primary concern were atomic oxygen (AO) and ultraviolet (UV) radiation. The materials were exposed to 2.3 plus or minus 0.1 x 10(exp 20) oxygen atoms/sq cm and 30.6 UV sun hours during the flight. In some cases, the samples were exposed at ambient, 120 C and 200 C. The effects of exposure on these materials were assessed utilizing a variety of characterization techniques including optical, scanning electron (SEM) and scanning tunneling (STM) microscopy, UV-visible (UV-VIS) transmission, diffuse reflectance infrared (DR-FTIR), x-ray photoelectron (XPS) spectroscopy, and in a few cases, gel permeation chromatography (GPC). In addition, weight losses of the films, presumably due to AO erosion, were measured. The fluorine-containing polymers exhibited significant AO erosion and exposed films were diffuse or 'frosted' in appearance and consequently displayed dramatic reductions in optical transmission. The silicon-containing films exhibited minimum AO erosion and the optical transmission of exposed films was essentially unchanged. The silicon near the exposed surface in the films was converted to silicate/silicon oxide upon AO exposure which subsequently provided protection for the underlying material. The silicon-containing epoxies are potentially useful as AO resistant coatings and matrix resins as they are readily processed into carbon fiber reinforced composites and cured via electron radiation.

  6. The study on compatibility of polymer matrix resins with liquid oxygen

    International Nuclear Information System (INIS)

    Wang Ge; Li Xiaodong; Yan Rui; Xing Suli

    2006-01-01

    Liquid oxygen (LOX) polymer composite tank is very important in the development of next generation of launch vehicles. To study LOX compatible polymeric matrix resins, three kinds of epoxy resins were studied. LOX impact test was used to evaluate polymers' compatibility with LOX. Thermogravimetric analysis was used to analyze polymers' oxidation. It seemed that polymers with better anti-oxidation properties, characterized by lower oxidation weight gain, lower weight loss and lower flash point, behaved better LOX compatibility. Fourier transform infrared attenuated total reflection spectroscopy confirmed the chemical reactions during the LOX impact process on the surface of polymers were similar to the oxidation reaction in gaseous oxygen (GOX) at high temperatures, which indicated the chemical mechanism of LOX compatibility of polymers was just oxidation reaction. In this way, two new epoxy resins with desirable LOX compatibility were acquired by modification

  7. Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: Investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane's properties

    Energy Technology Data Exchange (ETDEWEB)

    Inan, Tuelay Y.; Dogan, Hacer; Unveren, Elif E. [The Scientific and Technological Research Council of Turkey (TUBITAK), Marmara Research Center, Chemistry Institute, 41470 Gebze, Kocaeli (Turkey); Eker, Ersoy [Tuerk Demirdoekuem Fabrikalari A.S., 11300 Bozueyuek, Bilecik (Turkey)

    2010-11-15

    This work clearly demonstrates the effect of the type and molecular weight of the fluorinated polymer of SPEEK/Fluorinated polymer blends for low temperature (<80 C) Fuel Cell Applications. Comparisons with trademarks (e.g., Nafion {sup registered}) suggests that the membranes we have prepared in this study have good compatibility in all application respects. Membranes were prepared by solution casting method from four different fluorinated polymers; poly (vinylidene fluoride) with three different molecular weights (PVDF, M{sub w}: 180.000, M{sub w}: 275.000, M{sub w}: 530.000); Poli(vinylidene fluoride-co-Hexafluoro propylen) (PVDF-HFP M{sub n}:130.000) and sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree (SD) of 70. The sulfonation degree (SD) of SPEEK was determined by FTIR, {sup 1}H NMR and ion exchange capacity (IEC) measurements. Thermo-oxidative stability and proton conductivity of the membranes were determined by using thermal gravimetric analysis (TGA) and BT-512 BekkTech membrane test systems, respectively. Chemical degradation of SPEEK membranes was investigated via Fenton test. The morphology of the membranes were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Water uptake and proton conductivity values decreased with the addition of fluorinated polymers (PVDF, PVDF-HFP) as expected, but proton conductivity values were still comparable to that of Nafion 117 {sup registered} membrane. Addition of fluorinated polymers improved chemical degradation of the blend membranes in all ratios while addition of PVDF-HFP to the SPEEK70 caused phase separations in all ratios. Methanol permeability value of SPEEK70/PVDF(M{sub w} = 275.000) blend membrane (3.13E-07 (cm{sup 2}/s)) was much lower than Nafion 117 {sup registered} (1.21E-06 (cm{sup 2}/s)). PVDF addition to the SPEEK polymers caused increase in elongation of the membranes. Increase in the molecular weight of the PVDF did not show any effect on

  8. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    Science.gov (United States)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  9. Microwave Assisted Regioselective Bromomethoxylation of Alkenes Using Polymer Supported Bromine Resins

    OpenAIRE

    Gopalakrishnan, Geetha; Kasinath, Viswanathan; Singh, N. D. Pradeep; Krishnan, V. P. Santhana; Solomon, K. Anand; Rajan, S. S.

    2002-01-01

    A facile regio- and chemoselective bromomethoxylation of alkenes under microwave irradiation conditions employing a new polymer supported brominechloride resin is reported. The resin is prepared from the commercially available chloride resin by a simple one step procedure.

  10. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Zawacka, Natalia Klaudia

    2014-01-01

    lifetime in flexible large area roll-coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2-hexyldecyloxy (BDTHDO) (P1-P3) or 2-hexyldecylthiophene (BDT THD) (P4-P6). The photochemical stability clearly shows that the stability enhances along...... with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium-tin-oxide-free plastic substrates. Solar cells based on the P4-P6 series...... in the performance followed by a much slower decay rate, still retaining 40-55% of their initial performance after 250 h of testing under ISOS-L-1 conditions. © 2014 Wiley Periodicals, Inc....

  11. Microwave Assisted Regioselective Bromomethoxylation of Alkenes Using Polymer Supported Bromine Resins

    Directory of Open Access Journals (Sweden)

    S. S. Rajan

    2002-05-01

    Full Text Available A facile regio- and chemoselective bromomethoxylation of alkenes under microwave irradiation conditions employing a new polymer supported brominechloride resin is reported. The resin is prepared from the commercially available chloride resin by a simple one step procedure.

  12. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    Science.gov (United States)

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  13. Experimental Study on the Characteristics of Polymer Concrete With Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Maria Harja Ioniţă

    2008-01-01

    Full Text Available In the paper are presented the results of some experimental researches concerning polymer mortars and concretes realized of epoxy resin, silica fume and crushed aggregates. The mechanical characteristics of hardened concrete were determined. The silica fume content varied between 6.5% and 30% to polymer mortar and 6.4% and 9.6% to polymer concrete. The obtained results show maximum characteristics for a dosage of 24% resin and maximum dosage of silica fume to the polymer mortar, and for the polymer concrete the mechanical characteristics are influenced by all mixture factors: the compressive strength increases with the increase of silica fume dosage, and the flexure strength and split strength increase with the decreasing of silica fume dosage.

  14. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    Science.gov (United States)

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  15. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  16. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    Science.gov (United States)

    Dasgupta, Suman

    2011-12-01

    Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of

  17. Fluorinated Poly(p-phenylenevinylenes: Synthesis and Optical Properties of an Intriguing Class of Luminescent Polymers

    Directory of Open Access Journals (Sweden)

    Gianluca M. Farinola

    2010-05-01

    Full Text Available This review is an overview of our previous work on the synthesis and properties of poly(p-phenylenevinylenes (PPVs selectively fluorinated in different positions of the conjugated backbone. Both the synthetic challenges and the effects of functionalization with fluorine atoms on the optical behavior are discussed, highlighting the peculiarities and the interest of this class of conjugated polymers. A general polymerization protocol for PPVs, that is based on the Pd-catalyzed Stille cross-coupling reaction of bis-stannylated vinylene monomers with aromatic bis-halides, has been successfully extended to the synthesis of selectively fluorinated poly(p-phenylenevinylenes. The properties of a series of these PPVs differing in the number and positions of the fluorine atoms on the conjugated backbone have been studied, even in comparison with the non-fluorinated counterparts. The intriguing optical features of the resulting materials are discussed considering not only the role of the electronic and steric effects induced by the fluorine substituents, but also the impact of the fluorination on the solid state organization and intermolecular interactions.

  18. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Science.gov (United States)

    2012-03-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; Pesticide... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; National Emission Standards for Hazardous... proposed rule titled, National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...

  19. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin.

    Science.gov (United States)

    Zhang, Yu; Chen, Yin-Yan; Huang, Li; Chai, Zhi-Guo; Shen, Li-Juan; Xiao, Yu-Hong

    2017-05-08

    Poly-methyl methacrylate (PMMA)-based dental resins with strong and long-lasting antifungal properties are critical for the prevention of denture stomatitis. This study evaluated the antifungal effects on Candida albicans ATCC90028, the cytotoxicity toward human dental pulp cells (HDPCs), and the mechanical properties of a silver bromide/cationic polymer nano-composite (AgBr/NPVP)-modified PMMA-based dental resin. AgBr/NPVP was added to the PMMA resin at 0.1, 0.2, and 0.3 wt%, and PMMA resin without AgBr/NPVP served as the control. Fungal growth was inhibited on the AgBr/NPVP-modified PMMA resin compared to the control (P  0.05) between the experimental and control groups. These data indicate that the incorporation of AgBr/NPVP conferred strong and long-lasting antifungal effects against Candida albicans to the PMMA resin, and it has low toxicity toward HDPCs, and its mechanical properties were not significantly affected.

  20. Building ultramicropores within organic polymers based on a thermosetting cyanate ester resin.

    Science.gov (United States)

    Zhang, Bufeng; Wang, Zhonggang

    2009-09-07

    Ultramicropores with high surface areas (>530 m(2) g(-1)) and narrow micropore size distribution (4-6 A) were engineered within a new cyanate ester resin, extending the microporous concept (thermosetting resins in the area of polymer chemistry.

  1. Synthesis and characterization of novel halloysite-incorporated adhesive resins.

    Science.gov (United States)

    Feitosa, Sabrina A; Münchow, Eliseu A; Al-Zain, Afnan O; Kamocki, Krzysztof; Platt, Jeffrey A; Bottino, Marco C

    2015-11-01

    To investigate the effects of Halloysite® aluminosilicate clay nanotubes (HNTs) addition on selected physical, mechanical, and biological properties of experimental adhesive resins. Experimental dentin adhesive resins were prepared by mixing Bis-GMA, TEGDMA, HEMA (50/25/25wt.%), and photo-initiators. As-received HNTs were then incorporated into the resin mixture at distinct concentrations: 0 (HNT-free, control), 1, 2.5, 5, 7.5, 10, and 20wt.%. The degree of conversion (DC), radiopacity (RP), Knoop hardness (KHN), flexural strength (FS), and cytotoxicity analyses were carried out for each adhesive formulation. The adhesive resin of Adper Scotchbond Multi-Purpose (SBMP) was used as the commercially available reference for both the RP and cytotoxicity tests. Data were statistically analyzed using One-Way ANOVA and Tukey's test (p≤0.05). All adhesives exhibited similar DC (p=0.1931). The RP of adhesives was improved with the addition of up to 5wt.% of HNTs (p<0.001). Adhesives containing 5-10wt.% of HNTs led to greater KHN when compared to the control (p<0.001). The FS was reduced only when 20wt.% of HNTs was added (p≤0.001). None of the prepared adhesives was cytotoxic. The incorporation of up to 10wt.% of HNTs into the adhesive resins did not jeopardize the tested physical and biological properties. When using HNTs as carriers of drugs/bioactive compounds, the amount of the former added into adhesive resin materials should not exceed 10wt.%; otherwise, a significant reduction in physicomechanical properties may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Probing the mechanistic consequences of 5-fluorine substitution on cytidine nucleotide analogue incorporation by HIV-1 reverse transcriptase.

    Science.gov (United States)

    Ray, Adrian S; Schinazi, Raymond F; Murakami, Eisuke; Basavapathruni, Aravind; Shi, Junxing; Zorca, Suzana M; Chu, Chung K; Anderson, Karen S

    2003-05-01

    Beta-D and beta-L-enantiomers of 2',3'-dideoxycytidine analogues are potent chain-terminators and antimetabolites for viral and cellular replication. Seemingly small modifications markedly alter their antiviral and toxicity patterns. This review discusses previously published and recently obtained data on the effects of 5- and 2'-fluorine substitution on the pre-steady state incorporation of 2'-deoxycytidine-5'-monophosphate analogues by HIV-1 reverse transcriptase (RT) in light of their biological activity. The addition of fluorine at the 5-position of the pyrimidine ring altered the kinetic parameters for all nucleotides tested. Only the 5-fluorine substitution of the clinically relevant nucleosides (-)-beta-L-2',3'-dideoxy-3'-thia-5-fluorocytidine (L-FTC, Emtriva), and (+)-beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC, Reverset), caused a higher overall efficiency of nucleotide incorporation during both DNA- and RNA-directed synthesis. Enhanced incorporation by RT may in part explain the potency of these nucleosides against HIV-1. In other cases, a lack of correlation between RT incorporation in enzymatic assays and antiviral activity in cell culture illustrates the importance of other cellular factors in defining antiviral potency. The substitution of fluorine at the 2' position of the deoxyribose ring negatively affects incorporation by RT indicating the steric gate of RT can detect electrostatic perturbations. Intriguing results pertaining to drug resistance have led to a better understanding of HIV-1 RT resistance mechanisms. These insights serve as a basis for understanding the mechanism of action for nucleoside analogues and, coupled with studies on other key enzymes, may lead to the more effective use of fluorine to enhance the potency and selectivity of antiviral agents.

  3. Formulation study on immobilization of spent ion exchange resins in polymer cement

    International Nuclear Information System (INIS)

    Xia Lili; Lin Meiqiong; Bao Liangjin; Fan Xianhua

    2006-01-01

    The aim of this study is to develop a formulation of cement-solidified spent radioactive ion exchange resin form. The solidified form consists of a sort of composite cement, epoxide resin emulsion, and spent ion exchange resins. The composite cement is made up of quick-setting sulphoaluminate cement, silica powder, zeolite, and fly ash in the proportion 1:0.05:0.10:0.05. Sixteen combinations of composite cement, epoxide resin emulsion and mixed anion-cation exchange resins are selected according to a three-factors-four-levels normal design table with the compression strength as the evaluation criterion. The resulted formulation is as follows: the mass ratio of polymer emulsion to composite cement is 0.55:1, the loading of mixed anion-cation exchange resins is 0.3, and the anionic-to-cationic exchange resins ratio is 2:1. The polymer cement solidified forms were tested after 28 d curing for Cs + and Sr 2+ leaching rates, pH and conductivity of the leaching water, and radiation-resistant property in addition to their compressive strength. The measurement results indicate that the performance of thus prepared solidified forms can meet the requirements of the National Standard GB14569.1-93 for near earth's surface disposal of low radioactive waste. (authors)

  4. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  5. The Reverse Thermal Effect in Epoxy Resins and Moisture Absorption in Semi-Interpenetrating Polymer Networks.

    Science.gov (United States)

    El-Sa'Ad, Leila

    1989-12-01

    Available from UMI in association with The British Library. Requires signed TDF. Epoxy resins exhibit many desirable properties which make them ideal subjects for use as matrices of composite materials in many commercial, military and space applications. However, due to their high cross-link density they are often brittle. Epoxy resin networks have been modified by incorporating tough, ductile thermoplastics. Such systems are referred to as Semi-Interpenetrating Polymer Networks (Semi-IPN). Systematic modification to the thermoplastics backbone allowed the morphology of the blend to be controlled from a homogeneous one-phase structure to fully separated structures. The moisture absorption by composites in humid environments has been found to lead to a deterioration in the physical and mechanical properties of the matrix. Therefore, in order to utilize composites to their full potential, their response to hot/wet environments must be known. The aims of this investigation were two-fold. Firstly, to study the effect of varying the temperature of exposure at different stages in the absorption process on the water absorption behaviour of a TGDDM/DDS epoxy resin system. Secondly, to study water absorption characteristics, under isothermal conditions, of Semi-Interpenetrating Polymer Networks possessing different morphologies, and develop a theoretical model to evaluate the diffusion coefficients of the two-phase structures. The mathematical treatment used in this analysis was based on Fick's second law of diffusion. Tests were performed on specimens immersed in water at 10 ^circ, 40^circ and 70^circC, their absorption behaviour and swelling behaviour, as a consequence of water absorption, were investigated. The absorption results of the variable temperature absorption tests indicated a saturation dependence on the absorption behaviour. Specimens saturated at a high temperature will undergo further absorption when transferred to a lower temperature. This behaviour was

  6. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  7. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization

    Science.gov (United States)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard

    2018-05-01

    A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.

  9. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  10. Adhesion of Candida albicans to Vanillin Incorporated Self-Curing Orthodontic PMMA Resin.

    Science.gov (United States)

    Zam, K.; Sawaengkit, P.; Thaweboon, S.; Thaweboon, B.

    2018-02-01

    It has been observed that there is an increase in Candida carriers during the treatment with orthodontic removable appliance. Vanillin is flavouring agent, which is known to have antioxidant and antimicrobial properties. The aim of this study was to evaluate the effect of vanillin incorporated PMMA on adhesion of Candida albicans. A total of 36 orthodontic self-curing PMMA resin samples were fabricated. The samples were divided into 3 groups depending on percentage of vanillin incorporated (0.1%, 0.5% and PMMA without vanillin as control). PMMA samples were coated with saliva. The adhesion assay was performed with C. albicans (ATCC 10231). The adherent yeast cells were stained with crystal violet and counted under microscope by random selection of 3 fields at 10X magnification. The statistical analyses performed by Kruskal Wallis and Mann Whitney non-parametric test. It was found that the PMMA resin samples with vanillin incorporation significantly reduced the adhesion of C. albicans as compared to the control group. This study indicates that vanillin incorporated resin can impede the adhesion of C. albicans to about 45 - 56 %. With further testing and development, vanillin can be employed as an antifungal agent to prevent adhesion of C. albicans to orthodontic self-curing PMMA resin.

  11. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    ELsourougy, M R; Zaki, A A; Aly, H F [Atomic energy authority, hot laboratory center, Cairo, (Egypt); Khalil, M Y [Nuclear engineering department, Alexandria university. Alexandria, (Egypt)

    1995-10-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs.

  12. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    International Nuclear Information System (INIS)

    ELsourougy, M.R.; Zaki, A.A.; Aly, H.F.; Khalil, M.Y.

    1995-01-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs

  13. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    International Nuclear Information System (INIS)

    Jin, Chung Keun; Lim, Sung Hyung

    2015-01-01

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU

  14. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  15. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    Science.gov (United States)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  16. Polymer functionalized single-walled carbon nanotube composites and semi-fluorinated quaternary ammonium polymer colloids and coatings

    Science.gov (United States)

    Paul, Abhijit

    Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that

  17. Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.

    Science.gov (United States)

    Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao

    2011-01-01

    To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.

  18. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Science.gov (United States)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  19. Studies on the incorporation of spent ion exchange resins from nuclear power plants into bitumen and cement

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Tallberg, K.; Aittola, P.; Tollbaeck, H.

    1976-01-01

    The joint Nordic incorporation experiments should provide technical data needed for the assessment of solidification techniques for wastes from nuclear reactors in the Nordic countries. Spent ion exchange resins are a main fraction of such wastes, and more knowledge about their incorporation is wanted. The effects of simulated and real ion exchange wastes on the quality of bitumen and cement incorporation products were studied. Blown and distilled bitumen and three Portland cement qualities were used. Product characterizations were based on properties relevant for safe waste management, storage, transport and disposal. The applicability and relevance of established and suggested tests is discussed. Up to 40-60% dry resin could be incorporated into bitumen without impairing product qualities. Products with higher resin contents were found to swell in contact with water. The products had a high leach resistance. Their form stability was improved by incorporated resins. Product qualities appeared to be less affected by physico-chemical variables than by mechanical process parameters. Pure resin-cement products tend to decompose in water. Product qualities were strongly affected by a variety of physico-chemical process parameters, and integer products were only obtained within narrow tolerance limits. Caesium was rapidly leached out. To attain integer products and improved leach resistance within technically acceptable tolerance limits it was necessary to utilize stabilizing and caesium-retaining additives such as Silix and vermiculite. Under the present conditions the water content of the resins limited the amounts that could be incorporated in 40-50wt% or about 70vol.% water-saturated (containing 20-40% dry) resin. (author)

  20. Surface properties and color stability of an acrylic resin combined with an antimicrobial polymer

    Directory of Open Access Journals (Sweden)

    Ana Carolina Pero

    Full Text Available INTRODUCTION: The occurrence of stomatitis is common since the surface characteristics of the dentures may act as reservoirs for microorganisms and have the potential to support biofilm formation. PURPOSE: To assess the surface properties (wettability/roughness and color stability of an acrylic resin combined with the antimicrobial polymer poly (2-tert-butylaminoethyl methacrylate (PTBAEMA. MATERIAL AND METHOD: Thirty disc-shaped specimens of an acrylic resin (Lucitone 550 were divided into three groups: 0% (control; 5% and 10% PTBAEMA. Surface roughness values (Ra were measured using a profilometer and wettability was determined through contact angle measurements using a goniometer and deionized water as a test liquid. Color data were measured with a spectrophotometer. Kruskal-Wallis and Dunn's test were used to compare roughness values. Wettability data were analyzed using ANOVA and Tukey's test. Color data were compared using the Student's t-test and ∆E values were classified according to the National Bureau of Standards (NBS. All statistical analyses were performed considering α=.05. RESULT: Significant differences (p<.05 were detected among the groups for roughness, wettability and color stability. According to the NBS, the color changes obtained in the 5% and 10% PTBAEMA groups were "appreciable" and "much appreciable", respectively. CONCLUSION: It could be concluded that PTBAEMA incorporation in an acrylic resin increased the roughness and wettability of surfaces and produced color changes with clinical relevance.

  1. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey); Advanced Technology Research & Application Center, Selçuk University, Konya, 42075 (Turkey); Uçar, Tuba [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Thin films of poly(hexafluorobutyl acrylate-glycidyl methacrylate) can be deposited by PECVD. • The coated surfaces are hydrophobic due to the long fluorinated side chains. • The hydrophobicity of the coating is observed to be stable under harsh conditions. • Film durability is attributed to the mechanical strength of the films due to their epoxide functionality. - Abstract: Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  2. Polymer-inorganic composite resins for recovery of radioactive cesium from acidic media

    International Nuclear Information System (INIS)

    Park, J.I.; Kim, J.S.; Jo, A.; Jang, E.; Park, Y.J.

    2014-01-01

    In this work, our objectives are as follow: i) the development of a method to produce polymer-ammonium molybdophosphate composite resins with the size range ideal for column operations, ii) the preparation of a different type of polymer-AMP granules, other than polyacrylonitrile, with good physical and chemical stability, and iii) the investigation of sorption and recovery properties of the composite potentially useful for radioactive cesium. (author)

  3. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  4. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  5. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymerizations and main-chain supramolecular polymers . Macromolecules. 2009;42:6823–6835. 17. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond...ARL-TR-7687 ● MAY 2016 US Army Research Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by...Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by Alice M Savage Oak Ridge Institute of Science and Education

  6. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Choi, So-Won; Kim, Tae-Ho; Cha, Sang-Ho

    2017-07-10

    Vanadium redox flow batteries (VRFBs) have received considerable attention as large-scale electrochemical energy storage systems. In particular, VRFBs offer a higher power and energy density than other RFBs and mitigate undesirable performance fading, such as inevitable ion crossover, because of the unique advantage that only the vanadium ion is employed as the active species in the two electrolytes. The key constituent of VRFBs is a separator to conduct protons and prevent cross-mixing of the positive and negative electrolytes. For this purpose, ion exchange membranes like sulfonated polymer membranes can be used. Although this type of membrane does not have ion exchange groups, it can achieve an ion exchange capacity by the formation of pores. This review highlights the patents on the preparation of non-fluorinated membranes (sulfonated aromatic polymer membranes and porous membranes) as alternatives to high-cost perfluorinated polymers and their VRFB performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  8. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    Science.gov (United States)

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  9. Controlled Synthesis of Fluorinated Copolymers with Pendant Sulfonates

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2008-01-01

    Novel fluorinated copolymers of different architectures and bearing sulfopropyl groups were synthesized by atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers and two modification reactions performed on the polymer chain - demethylation followed by sulfopropylation. As a ...

  10. The radiation chemistry of polymer composites

    International Nuclear Information System (INIS)

    Dole, M.

    1991-01-01

    With the use of plastics in the construction of space satellites which may be exposed in geosynchronous orbit to 100 MGy (10,000 Mrad) of high-energy radiation in 30 years of use, the effect of these radiations on the polymer becomes of practical importance. To understand the effects we consider first various radiation-resistant groups that are incorporated into the polymer and their relative effectiveness in reducing molecular scissions due to the radiation. The location of such groups in the polymer is also discussed. Next the chemical structures of a number of resins such as epoxies, polyimides, etc. are described followed by a detailed account of methods of improving the radiation resistance of plastics by the incorporation of carbon or glass fibers. Finally, the role of oxygen in causing chain scissions and other effects during irradiation which reduce the mechanical strength of the plastics and the fiber resin composites are also considered. (author)

  11. Interfacial and Electrical Properties of Ge MOS Capacitor by ZrLaON Passivation Layer and Fluorine Incorporation

    Science.gov (United States)

    Huang, Yong; Xu, Jing-Ping; Liu, Lu; Cheng, Zhi-Xiang; Lai, Pui-To; Tang, Wing-Man

    2017-09-01

    Ge Metal-Oxide-Semiconductor (MOS) capacitor with HfTiON/ZrLaON stacked gate dielectric and fluorine-plasma treatment is fabricated, and its interfacial and electrical properties are compared with its counterparts without the ZrLaON passivation layer or the fluorine-plasma treatment. Experimental results show that the sample exhibits excellent performances: low interface-state density (3.7×1011 cm-2eV-1), small flatband voltage (0.21 V), good capacitance-voltage behavior, small frequency dispersion and low gate leakage current (4.41×10-5 A/cm2 at Vg = Vfb + 1V). These should be attributed to the suppressed growth of unstable Ge oxides on the Ge surface during gate-dielectric annealing by the ZrLaON interlayer and fluorine incorporation, thus greatly reducing the defective states at/near the ZrLaON/Ge interface and improving the electrical properties of the device.

  12. Development and Application of Chlorinated, Fluorinated and Technological Polymer Films Modified by Grafting Process Using Electron Beam and Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Manzoli, J E [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Geraldo, A B.C.; Moura, E; Somesari, E S.R.; Silveira, C G; Oikawa, H; Moreira, N S; Forbicini, C [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Tenorio, E [FATEC, Tatui (Brazil); Augusto, C G [IFSP, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Panzarini, L C.G.A. [FEI, Sao Bernardo do Campo (Brazil)

    2012-09-15

    The ionizing irradiation (electron beam and gamma irradiation) induced grafting to fluorinated and chlorinated polymeric films were studied. Styrene grafting onto fluorinated and perfluorinated polymers and their ulterior sulfonation constitute a process to produce ionomers for many applications. The modification of polyvinylchloride with dimethylaminethylmethacrylate-heparin grafting attempt for the fact that grafting can be applied in packaging industry as an alternative for decreasing of plasticizer or another chemical species migration, in many cases nocivus contaminant for human health, and, in the specific study of this project, to obtain a less thrombogenic polymer surface to be used in medical applications. The results indicate mutual styrene grafting performed by industrial EB accelerator can be a fast alternative to produce ionomers that can compete in market. The numerical method to simulate diffusion process evolved is simple and fast and applied to fit experimental results. (author)

  13. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    Science.gov (United States)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  14. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  15. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  16. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  17. Oxygen plasma treatment and deposition of CNx on a fluorinated polymer matrix composite for improved erosion resistance

    International Nuclear Information System (INIS)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-01-01

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN x coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN x was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN x coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN x reduced the erosion rate by an order of magnitude for normally incident particles

  18. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes

    KAUST Repository

    Fei, Zhuping

    2015-06-03

    © 2015 American Chemical Society. We report two strategies toward the synthesis of 3-alkyl-4-fluorothiophenes containing straight (hexyl and octyl) and branched (2-ethylhexyl) alkyl groups. We demonstrate that treatment of the dibrominated monomer with 1 equiv of alkyl Grignard reagent leads to the formation of a single regioisomer as a result of the pronounced directing effect of the fluorine group. Polymerization of the resulting species affords highly regioregular poly(3-alkyl-4-fluoro)thiophenes. Comparison of their properties to those of the analogous non-fluorinated polymers shows that backbone fluorination leads to an increase in the polymer ionization potential without a significant change in optical band gap. Fluorination also results in an enhanced tendency to aggregate in solution, which is ascribed to a more co-planar backbone on the basis of Raman and DFT calculations. Average charge carrier mobilities in field-effect transistors are found to increase by up to a factor of 5 for the fluorinated polymers.

  19. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  20. Amino acid-incorporated polymer network by thiol-ene polymerization

    Directory of Open Access Journals (Sweden)

    R. Yokose

    2015-08-01

    Full Text Available Triallyl L-alanine (A3A and triallyl L-phenylalanine (A3F were synthesized by reactions of L-alanine and L-phenylalanine with allyl bromide in the presence of sodium hydroxide, respectively. Thiol-ene thermal polymerization of A3A or A3F with pentaerythritol-based primary tetrathiol (pS4P or pentaerythritol-based secondary tetrathiol (S4P at allyl/SH 1/1 in the presence of 2,2'-azobis(isobutyronitrile produced an amino acid-incorporated polymer network (A3ApS4P, A3A-S4P or A3F-S4P. Although the thermally cured resins were homogeneous and flat films, the corresponding thiol-ene photopolymerization did not give a successful result. Degree of swelling for each thermally cured film in N,Ndimethylformamide was much higher than that in water. The glass transition and 5% weight loss temperatures (Tg and T5 of A3F-pS4P and A3F-S4P were higher than those of A3A-pS4P and A3A-S4P, respectively. Also, A3F-pS4P and A3F-S4P exhibited much higher tensile strengths and moduli than A3A-pS4P and A3A-S4P did, respectively. Consequently, A3FpS4P displayed the highest Tg (38.7°C, T5 (282.0°C, tensile strength (9.5 MPa and modulus (406 MPa among all the thermally cured resins.

  1. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Arif, Raz [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Physics Department, Faculty of Science, University of Sulaimani, Sulaimani, Kurdistan Region (Iraq); Lobach, Anatoly S.; Spitsina, Nataliya G. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Khudyakov, Dmitry V. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Physics Instrumentation Center of the Institute of General Physics A.M. Prokhorov Russian Academy of Sciences, Troitsk, Moscow Region 142190 (Russian Federation); Kazakov, Valery A. [Keldysh Center, Onezhskaya 8, Moscow 125438 (Russian Federation)

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  2. Innovative CO{sub 2} separation of biogas by polymer resins: operation of a continuous lab-scale plant

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Katharina; Lamprecht, Martina; Brechtel, Kevin; Scheffknecht, Guenter

    2012-06-15

    Upgrading biogas allows for the injection of biomethane into the natural gas grid and thus a decentralized use. Since the currently available techniques have a high energy demand, there is a high potential to improve biogas upgrading. Innovative CO{sub 2} separation of biogas by the use of polymer resins can reduce the energy demand, the capital expenditure, and the operational costs. In this study, we show the ability of polymer resin to selectively adsorb CO{sub 2}. Desorption tests showed the potential for continuous use of the resin. In a continuous lab-scale plant, numerous variations of process parameters were carried out and optimization possibilities were demonstrated. Methane purity up to 98% was achieved. The favorable estimated energy demand indicates the great potential of the demonstrated improved process. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  3. Encapsulation of dye molecules into mesoporous polymer resin and mesoporous polymer-silica films by an evaporation-induced self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Chi Yue; Li Nan; Tu Jinchun; Zhang Yujie [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Li Xiaotian, E-mail: xiaotianli@jlu.edu.c [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Shao Changlu, E-mail: clshao@nenu.edu.c [Center for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun 130024 (China)

    2010-03-15

    Polymer resin and polymer-silica films with highly ordered mesostructure have been used as host materials to encapsulate DCM (4-(dicyanomethylene) -2-methyl-6-(4-dimethylaminostyryl)-4h-pyran), a kind of fluorescent dye, through evaporation-induced self-assembly method (EISA). After encapsulation, the composites show significant blue-shift in photoluminescence (PL) spectra. Particularly, by changing the excitation wavelength, the samples show different emission bands. These phenomena are related to the mesostructure and the positions of DCM molecules in the host.

  4. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Science.gov (United States)

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  5. Synthesis and ATRP of novel fluorinated aromatic monomer with pendant sulfonate group

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Novel, fluorinated monomer with pendant sulfonate group was synthesized utilizing a two-step derivatization of 2,3,4,5,6-pentafluorostyrene (FS). The first step was a nucleophilic substitution of the fluorine atom in para position by hydroxyl group followed by sulfopropylation. The monomer...... was polymerized under aqueous ATRP conditions to yield phenyl-fluorinated aromatic homopolymer bearing pendant sulfonates on each repeating unit. Furthermore, this polymer was used as macroinitiator for the ATRP of poly(ethylene glycol) methacrylate. The polymers were characterized by 1H NMR, SEC and FTIR...

  6. Balancing High Open Circuit Voltage over 1.0 V and High Short Circuit Current in Benzodithiophene-Based Polymer Solar Cells with Low Energy Loss: A Synergistic Effect of Fluorination and Alkylthiolation

    DEFF Research Database (Denmark)

    Du, Zhengkun; Bao, Xichang; Li, Yonghai

    2018-01-01

    Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2-b: 4,5-b'] dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated ...

  7. Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yohei, E-mail: noda.yohei@jaea.go.jp [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Kumada, Takayuki [Quantum Beam Science Centre, Sector of Nuclear Science Research, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Yamaguchi, Daisuke; Shamoto, Shin-ichi [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan)

    2015-03-11

    We investigated the dynamic nuclear polarization (DNP) of typical thermosetting polymers (two-component type epoxy resins; Araldite{sup ®} Standard or Araldite{sup ®} Rapid) doped with a (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO) radical. The doping process was developed by carefully considering the decomposition of TEMPO during the solidification of the epoxy resin. The TEMPO electron spin in each two-component paste decayed slowly, which was favorable for our study. Furthermore, despite the dissolved TEMPO, the mixture of the two-component paste successfully solidified. With the resulting TEMPO-doped epoxy-resin samples, DNP experiments at 1.2 K and 3.35 T indicated a magnitude of a proton-spin polarization up to 39%. This polarization is similar to that (35%) obtained for TEMPO-doped polystyrene (PS), which is often used as a standard sample for DNP. To combine this solidification of TEMPO-including mixture with a resin-casting technique enables a creation of polymeric target materials with a precise and complex structure.

  8. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  9. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  10. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    Science.gov (United States)

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  11. Method for regenerating magnetic polyamine-epichlorohydrin resin

    Science.gov (United States)

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  12. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  13. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  14. Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin

    Science.gov (United States)

    2015-06-30

    also have been shown to have higher enamel wear rates than composite-resin CAD/CAM restorations (Mӧrmann et al, 2013). As material choices, cost, and...although the longevity of these repairs has not been validated by clinical studies. Paradigm MZ100 showed the least amount of opposing enamel wear...ability to absorb shock, resist staining and stop crack propagation. Further manufacturer claims are that ceramic/polymer materials are easily

  15. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Science.gov (United States)

    2011-04-21

    ... Production, Nitrile Butadiene Rubber (NBR) Production, Polybutadiene Rubber Production, Polysulfide Rubber..., Epichlorohydrin Elastomers, Neoprene Rubber, and NBR source categories will not require additional control to meet... Emissions Standards for Group I Polymers and Resins (Butyl Rubber Production, Epichlorohydrin Elastomers...

  16. The fluoride content of an anion exchange resin in the fluoride form

    International Nuclear Information System (INIS)

    Kleijn, J.P. de; Zanten, B. van

    1977-01-01

    The fluoride content of an anion exchange resin in the F - -form depends on the material of the equipment used for the preparation. If a glass equipment is used too much fluorine is introduced. The experimental results are explained by taking into account a competition of F - and SiF 6 2- for the hydroxyl positions of the resin (OH - ). Because SiF 6 2- is bivalent and has a lower hydration energy than F - , the resin has a much larger affinity for this species than for F - . If a higher concentration of SiF 6 2- is generated by an intensive contact of the HF solution with glass, two OH-groups may be replaced by one SiF 6 2- . This results in a resin with 3 times as much fluorine as calculated from the chloride capacity. If the formation of SiF 6 2- is impossible as for example in teflon equipment, the same capacity is obtained for chloride and fluoride. (T.G.)

  17. Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics.

    Science.gov (United States)

    Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T

    2018-02-01

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.

  18. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Dahlan, Khairul Zaman M.

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T m and T c ) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (ΔH m ) and the degree of crystallinity (X c ) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved by irradiation compared to its rapid deterioration in ETFE films, which stemmed from the degradation prompted by the presence of radiation sensitive tetrafluoroethylene (TFE) comonomer units. The elongation at break of both films drops gradually with the dose increase indicating the formation of predominant crosslinked structures at high doses. However, the response of each polymer to crosslinking and main chain scission at various irradiation doses varies from PVDF to ETFE films

  19. Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

    Institute of Scientific and Technical Information of China (English)

    Yuxiang Li; Seyeong Song; Song Yi Park; Jin Young Kim; Han Young Woo

    2017-01-01

    Three types of semi-cry stalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents.A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra-and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization.The resulting polymers formed strongly agglomerated films with high roughness,suggesting strong intermolecular interactions.The optical band gap of ca.1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking.With increasing the fluorine substituents,the frontier energy levels decreased and preferential face-on orientation was observed.The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing,showing well resolved lamellar scatterings up to(300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements.The PPsiDTBT,PPsiDTFBT and PPsiDT2 FBT devices showed a power conversion efficiency of 3.16%,4.40%and 5.65%,respectively,by blending with PC71BM.Langevin-type bimolecular charge recombination was similar for three polymeric solar cells.The main loss in the photocurrent generation for PPsiDTBT:PC71BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density(JSC) and open-circuit voltage(VOc).Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71 BM for further optimizing polymer solar cells.

  20. Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

    Institute of Scientific and Technical Information of China (English)

    Yuxiang Li; Seyeong Song; Song Yi Park; Jin Young Kim; Han Young Woo

    2017-01-01

    Three types of semi-crystalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents.A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra-and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization.The resulting polymers formed strongly agglomerated films with high roughness,suggesting strong intermolecular interactions.The optical band gap of ca.1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking.With increasing the fluorine substituents,the frontier energy levels decreased and preferential face-on orientation was observed.The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing,showing well resolved lamellar scatterings up to (300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements.The PPsiDTBT,PPsiDTFBT and PPsiDT2FBT devices showed a power conversion efficiency of 3.16%,4.40% and 5.65%,respectively,by blending with PC71BM.Langevin-type bimolecular charge recombination was similar for three polymeric solar cells.The main loss in the photocurrent generation for PPsiDTBT:PC71BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density (Jsc) and open-circuit voltage (Voc).Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71BM for further optimizing polymer solar cells.

  1. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  2. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    CERN Document Server

    Nasef, M M

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T sub m and T sub c) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (DELTA H sub m) and the degree of crystallinity (X sub c) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved b...

  4. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    International Nuclear Information System (INIS)

    Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E.

    2010-01-01

    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm -2 was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm -2 . Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  5. Physico-Chemical Studies Involving Incorporation of Radioactive and Industrial Waste In Cement-Epoxy Resin Matrix

    International Nuclear Information System (INIS)

    Sayed, M.S.; Hafez, N.

    1999-01-01

    Cement and epoxy resin as chemical additives are proposed to incorporate different types of wastes. The study was extended to prepare different mixtures of cement and epoxy resin in presence of some toxic ions. The studied ions were Cd II, Ni II, Cu II, Fe III, Ce IV, 154+152 Eu, phenol and toluene. The physical, mechanical and leaching properties of the mixtures were studied. The thermal analysis and infrared spectra were also investigated. It was observed that all the studied properties of the epoxy modified cement as a disposal matrix was improved

  6. Synthesis of resorcinol resin as a polymer adsorbent, and study of its usability in uranium sorption process

    International Nuclear Information System (INIS)

    Aslani, M. A. A.; Yusan, S.; Goek, C.; Akyil, S.; Aytas, S.

    2009-01-01

    Uranium is one of the most important elements in nuclear fuel technology. In order to obtain purified of this element at uranium mining and processing the use of synthetic resins is significant at column and/or batch process. The synthesis of resorcinol resin polymer was carried out with a modified microwave oven instead of the conventional heater due to the some advantage properties such as very rapid reaction, rapid bulk heat, short reaction duration and high yield etc. To characterization of synthesized resin FT-IR, TG-DTA and SEM techniques were used. In order to obtain the optimum uranium adsorption conditions the effective sorption parameters such as solution pH, uranium concentration, reaction time and temperature were investigated.

  7. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  8. Grafted functional groups on expanded tetrafluoroethylene (ePTFE) support for fuel cell and water transport membranes

    Science.gov (United States)

    Fuller, Timothy J.; Jiang, Ruichun

    2017-01-24

    A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.

  9. High-performance polymer waveguide devices via low-cost direct photolithography process

    Science.gov (United States)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in

  10. Effect that radiation exerts to insulation breakdown of heat resistant polymer materials

    International Nuclear Information System (INIS)

    Fujita, Shigetaka; Baba, Makoto; Noto, Fumitoshi; Ruike, Mitsuo.

    1990-01-01

    Artificial satellites are always exposed to cosmic rays which contain the radiations which do not reach the ground, therefore, the radiation resistance of the polymer insulators for cables and others used in such environment becomes a problem. Also the polymer insulator materials used for nuclear facilities require excellent radiation resistance. It is important to examine the effect that radiation exerts to electric insulation characteristics from the viewpoint of material development. In this paper, the insulation breakdown characteristics of heat resistant polymer films and the mini-cables made for trial of heat resistant polymer materials in the case without irradiation and in the case of gamma ray irradiation, and the results of the structural analysis are reported. The specimens tested, the experimental method and the results are described. The insulation breakdown strength of PFA and FEP films lowered from 0.15-0.2 MGy, but that of PEEK film did not change up to 5 MGy. It was found that fluorine group resins were apt to deteriorate by oxidation as dose increased. (K.I.)

  11. Fluorination reaction uranium dioxide by fluorine

    International Nuclear Information System (INIS)

    Ogata, Shinji; Homma, Shunji; Koga, Jiro; Matsumoto, Shiro; Sasahira, Akira; Kawamura, Fumio

    2004-01-01

    Kinetics of the fluorination reaction of uranium dioxide is studied using un-reacted core model with shrinking particles. The model includes the film mass transfer of fluorine gas and its diffusion in the particle. The rate constants of the model are determined by fitting the experimental data for 370-450degC. The model successfully represents the fluorination in this temperature range. The rate control step is identified by examining the rate constants of the model for 300-1,800degC. For temperature range up to 900degC, the fluorination reaction is rate controlling. For over 900degC, both mechanisms of the mass transfer of fluorine and the fluorination reaction control the rate of the fluorination. With further increase of the temperature, however, the fluorination reaction becomes so fast that the mass transfer of fluorine eventually controls the rate of the fluorination. (author)

  12. Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers.

    Science.gov (United States)

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Takimi, Antonio Shigueaki; Collares, Fabrício Mezzomo; Sauro, Salvatore

    2016-09-01

    This study aimed to assess the degree of conversion, microhardness, solvent degradation, contact angle, surface free energy and bioactivity (e.g., mineral precipitation) of experimental resin-based materials containing, pure or triclosan-encapsulated, aluminosilicate-(halloysite) nanotubes. An experimental resin blend was prepared using bis-GMA/TEGDMA, 75/25wt% (control). Halloysite nanotubes (HNT) doped with or without triclosan (TCN) were first analyzed using transmission electron microscopy (TEM). HNT or HNT/TCN fillers were incorporated into the resin blend at different concentrations (5, 10, and 20wt%). Seven experimental resins were created and the degree of conversion, microhardness, solvent degradation and contact angle were assessed. Bioactive mineral precipitation induced by the experimental resins was evaluated through Raman spectroscopy and SEM-EDX. TEM showed a clear presence of TCN particles inside the tubular lumen and along the outer surfaces of the halloysite nanotubes. The degree of conversion, surface free energy, microhardness, and mineral deposition of polymers increased with higher amount of HNTs. Conversely, the higher the amount (20wt%) of TCN-loaded HNTs the lower the microhardness of the experimental resins. The incorporation of pure or TCN-loaded aluminosilicate-(halloysite) nanotubes into resin-based materials increase the bioactivity of such experimental restorative materials and promotes mineral deposition. Therefore, innovative resin-based materials containing functional halloysite-nanotube fillers may represent a valuable alternative for therapeutic minimally invasive treatments. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Defects in silicon carbide grown by fluorinated chemical vapor deposition chemistry

    Science.gov (United States)

    Stenberg, Pontus; Booker, Ian D.; Karhu, Robin; Pedersen, Henrik; Janzén, Erik; Ivanov, Ivan G.

    2018-04-01

    Point defects in n- and p-type 4H-SiC grown by fluorinated chemical vapor deposition (CVD) have been characterized optically by photoluminescence (PL) and electrically by deep-level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). The results are considered in comparison with defects observed in non-fluorinated CVD growth (e.g., using SiH4 instead of SiF4 as silicon precursor), in order to investigate whether specific fluorine-related defects form during the fluorinated CVD growth, which might prohibit the use of fluorinated chemistry for device-manufacturing purposes. Several new peaks identifying new defects appear in the PL of fluorinated-grown samples, which are not commonly observed neither in other halogenated chemistries, nor in the standard CVD chemistry using silane (SiH4). However, further investigation is needed in order to determine their origin and whether they are related to incorporation of F in the SiC lattice, or not. The electric characterization does not find any new electrically-active defects that can be related to F incorporation. Thus, we find no point defects prohibiting the use of fluorinated chemistry for device-making purposes.

  14. Method for producing fluorinated diamond-like carbon films

    Science.gov (United States)

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  15. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  16. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  17. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Wang, H.X. [ZHENGHE electronics Co., Ltd, Jining 272023 (China)

    2014-04-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis.

  18. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    International Nuclear Information System (INIS)

    Wang, X.Y.; Ma, J.X.; Li, C.G.; Wang, H.X.

    2014-01-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis

  19. DFT study of the effect of fluorine atoms on the crystal structure and semiconducting properties of poly(arylene-ethynylene) derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Moral, Mónica, E-mail: monica.moral@uclm.es [Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071 Albacete (Spain); García, Gregorio [Department of Chemistry, University of Burgos, Plaza Misael Bañuelos, s/n, 09001 Burgos (Spain); Garzón, Andrés [Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, Paseo de los Estudiantes, 02071 Albacete (Spain); Granadino-Roldán, José M.; Fernández-Gómez, Manuel [Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén (Spain)

    2016-04-21

    The effect of fluorine substitution on the molecular structure, crystal packing, and n-type semiconducting properties of a set of poly(arylene-ethynylene) polymers based on alternating thiadiazole and phenyl units linked through ethynylene groups has been studied by means of Density Functional Theory. As a result, an enlargement in the interplanar distance between cofacial polymer chains, as well as a decrease of the electronic coupling and electron mobility is predicted. On the other hand, fluorination could facilitate electron injection into the material. A polymer containing both alkoxy pendant chains and fluorine atoms is proposed as a compromise solution between efficiency of electron injection and charge transport within the material.

  20. Effects of Alternating Hydrogenated and Protonated Segments in polymers on their Wettability.

    Science.gov (United States)

    Smith, Dennis; Traiphol, Rakchart; Cheng, Gang; Perahia, Dvora

    2003-03-01

    Polymers consisting of alternating hydrogenated and fluorinated segments exhibit unique interfacial characteristics governed by the components that dominate the interface. Presence of fluorine reduces the interfacial energy and is expected to decrease the adhesion to the polymer surface. Thin liquid crystalline (LC) layers of 4,4?-octyl-cyanobiphenyl, cast on top of a polymeric layer consisting of alternating methylstylbine protonated segments bridged by a fluorinated group was used as a mechanistic tool to study of interfacial effects on three parameters: wetting, interfacial alignment and surface induces structures. The liquid crystal cast on a low interfacial energy fluorinated polymeric film exhibits bulk homeotropic alignment as expected. However it fully wetted the polymer surface despite the incompatibility of the protonated LC and mainly fluorinated polymer interface. Further more, it was found to stabilize the interfacial Semitic layers to a higher temperature and induce different surface ordering that was not observed at the same temperature neither in the bulk nor at the interfaces with silicon or glass surface. These results indicate that the interfacial interactions of polymers with liquid crystals are a complex function of both surface energies and the interfacial structure of the polymer.

  1. Attribute based selection of thermoplastic resin for vacuum infusion process

    DEFF Research Database (Denmark)

    Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom

    2011-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  2. Electrochemical stability and transformations of fluorinated poly(2,6-dimethyl-1,4-phenylene oxide)

    NARCIS (Netherlands)

    Pud, A.A.; Rogalsky, S.P.; Ghapoval, G.S.; Kharitonov, A.P.; Kemperman, Antonius J.B.

    2000-01-01

    Fluorination of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) leads to narrowing of its window of electrochemical stability in a cathodic range of potentials. It is found this is connected with appearance of both perfluorinated and incompletely fluorinated units in the polymer. The former units are

  3. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    Science.gov (United States)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  4. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  5. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  6. Preparation and characterization of polyhedral oligomer silsesquioxane nanocomposites incorporated in epoxy resin

    International Nuclear Information System (INIS)

    Longhi, Marielen; Zini, Lucas Pandolphi; Birriel, Eliena Jonko; Kunst, Sandra Raquel; Zattera, Ademir Jose

    2015-01-01

    The incorporation of nanofiller in thermosetting like epoxy resin as has been studied in order to modify its properties. In this research, nanocomposites were obtained by incorporating 5% by weight of three polyhedral oligomeric silsesquioxane (POSS) with different number of functionalization: Glicidilisobutil-POSS, Triglicidilisobutil- POSS and Glicicil POSS in an epoxy matrix by sonification process. The nanocomposites were characterized by analysis of X-ray diffraction (DRX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The DRX analysis showed the characteristic peak of POSS and TEM images showed that there is a difference in the dispersion of nanocages for the difference in the number of epoxy groups on the POSS. The incorporation of Glicidilisobutil-POSS showed a significant increase in the glass transition temperature (Tg) value, and also that the most effective from the viewpoint of the dispersion, on the other hand, the Glycidyl-POSS had a greater influence on the thermal stability demonstrating that the dispersion medium is an important characteristic to define the most desirable properties. (author)

  7. Strategies for incorporation of polymer photovoltaics into garments and textiles

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.; Winther-Jensen, B.

    2006-01-01

    device as a structural element. The total area of the device on PET was typically much smaller than the active area due to the decorative design of the aluminium electrode. Elaborate integration of the photovoltaic device into the textile material involved the lamination of a polyethylene (PE) film onto......The incorporation of polymer photovoltaics into textiles was demonstrated following two different strategies. Simple incorporation of a polyethyleneterphthalate (PET) substrate carrying the polymer photovoltaic device prepared by a doctor blade technique necessitated the use of the photovoltaic...... a suitably transparent textile material that was used as substrate. Plasma treatment of the PE-surface allowed the application of a PEDOT electrode that exhibited good adherence. Screen printing of a designed pattern of poly 1,4(2-methoxy-5-(2-ethylhexyloxy))phenylenevinylene (MEH-PPV) from chlorobenzene...

  8. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  9. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  10. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  11. Processing of intractable polymers using reactive solvents: 1. Poly(2,6-dimethyl-1,4-phenylene ether)/epoxy resin

    NARCIS (Netherlands)

    Venderbosch, R.W.; Meijer, H.E.H.; Lemstra, P.J.

    1994-01-01

    A new processing route for poly(2,6-dimethyl-1,4-phenylene ether) (PPE), an intractable polymer on account of its thermal and oxidative sensitivity, was explored. PPE can be dissolved at elevated temperatures in epoxy resin and these solutions can then be processed at temperatures as low as 175°C.

  12. Surface properties and self-cleaning ability of the fluorinated acrylate coatings modified with dodecafluoroheptyl methacrylate through two adding ways

    International Nuclear Information System (INIS)

    Yang, Xin; Zhu, Liqun; Zhang, Yang; Chen, Yichi; Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei

    2014-01-01

    Highlights: • A self-cleaning test is used to evaluate the self-cleaning ability of coatings. • Adding way of fluorine monomer has an influence on the self-cleaning ability. • The fluorine content of coating surface increases by changing modification method. • High contact angles and low sliding angles are advantageous for self-cleaning. • The self-cleaning ability of coatings is analyzed after scrubbing. - Abstract: The fluorine-modified acrylate resin was synthesized by solution radical polymerization using dodecafluoroheptyl methacrylate (DFMA) and other acrylate monomers. The same weight of DFMA was added into the reaction through two different ways: (1) adding DFMA as bottom monomer (AFBM); (2) adding DFMA drop by drop (AFDD). The different coatings were prepared by blending the fluorine-modified acrylate resin with the curing agent. Compared with AFDD coating, the AFBM coating exhibited better self-cleaning ability which was confirmed by the self-cleaning test through measuring the specular gloss of coatings before contamination and after water droplets flushing. The fluorine content at the surface of AFBM coating increased from 15.1 at.% to 23.1 at.%, while the water contact angles increased by 8° and the sliding angles decreased obviously. Furthermore, the contact angles and self-cleaning ability of the coatings prepared with DFMA through two adding ways both decreased after scrubbing by wet cotton because of the decrease of the surface fluorine atom content. It could be concluded that high contact angles and low sliding angles were advantageous for coatings to obtain excellent self-cleaning ability

  13. Surface properties and self-cleaning ability of the fluorinated acrylate coatings modified with dodecafluoroheptyl methacrylate through two adding ways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xin [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Zhu, Liqun, E-mail: zhulq@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Zhang, Yang [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Chen, Yichi [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei [Jiangsu Baihe Coatings Co., Ltd, Changzhou 213136 (China)

    2014-03-01

    Highlights: • A self-cleaning test is used to evaluate the self-cleaning ability of coatings. • Adding way of fluorine monomer has an influence on the self-cleaning ability. • The fluorine content of coating surface increases by changing modification method. • High contact angles and low sliding angles are advantageous for self-cleaning. • The self-cleaning ability of coatings is analyzed after scrubbing. - Abstract: The fluorine-modified acrylate resin was synthesized by solution radical polymerization using dodecafluoroheptyl methacrylate (DFMA) and other acrylate monomers. The same weight of DFMA was added into the reaction through two different ways: (1) adding DFMA as bottom monomer (AFBM); (2) adding DFMA drop by drop (AFDD). The different coatings were prepared by blending the fluorine-modified acrylate resin with the curing agent. Compared with AFDD coating, the AFBM coating exhibited better self-cleaning ability which was confirmed by the self-cleaning test through measuring the specular gloss of coatings before contamination and after water droplets flushing. The fluorine content at the surface of AFBM coating increased from 15.1 at.% to 23.1 at.%, while the water contact angles increased by 8° and the sliding angles decreased obviously. Furthermore, the contact angles and self-cleaning ability of the coatings prepared with DFMA through two adding ways both decreased after scrubbing by wet cotton because of the decrease of the surface fluorine atom content. It could be concluded that high contact angles and low sliding angles were advantageous for coatings to obtain excellent self-cleaning ability.

  14. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee; Melianas, Armantas; Zhuang, Wenliu; Bergqvist, Jonas; Diaz De Zerio Mendaza, Amaia; Steckler, Timothy T.; Yu, Liyang; Bradley, Siobhan J.; Musumeci, Chiara; Gedefaw, Desta; Nann, Thomas; Amassian, Aram; Mü ller, Christian; Inganä s, Olle; Andersson, Mats R.

    2015-01-01

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  15. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee

    2015-09-08

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  16. Modified ion exchange resins - synthesis and properties. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, F.; Klein, J.; Pohl, F.; Widdecke, H.

    1982-01-22

    Sulfomethylated resins are prepared by polymer analogous reactions, starting from macroporous poly(styrene-co-divinylbenzene) matrices. Different reaction paths are discussed and used in the synthesis. Sulfomethylation can be achieved by reaction of a chloromethylated resin with dimethyl sulfide and sodium sulfonate or alternatively by oxidation of polymer-bound thiol groups. Both methods give high conversions as shown by IR spectra and titration of the sulfonic acid groups. Poly(1-(4-hydroxysulfomethylphenyl)ethylene) (3) is obtained by reaction of poly(1-(4-hydroxyphenyl)ethylene) (2) resin with formaldehyde/sodium sulfonate. The thermal stability, catalytic activity, and ion exchange equilibria of the sulfomethylated resin are investigated.

  17. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  18. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  19. Development of AlGaN-based deep-ultraviolet (DUV) LEDs focusing on the fluorine resin encapsulation and the prospect of the practical applications

    Science.gov (United States)

    Hirano, Akira; Nagasawa, Yosuke; Ippommatsu, Masamichi; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-09-01

    AlGaN-based LEDs are expected to be useful for sterilization, deodorization, photochemical applications such as UV curing and UV printing, medical applications such as phototherapy, and sensing. Today, it has become clear that efficient AlGaN-based LED dies are producible between 355 and 250 nm with an external quantum efficiency (EQE) of 3% on flat sapphire. These dies were realized on flat sapphire without using a special technique, i.e., reduction in threading dislocation density or light extraction enhancement techniques such as the use of a photonic crystal or a patterned sapphire substrate. Despite the limited light extraction efficiency of about 8% owing to light absorption at a thick p-GaN contact layer, high EQEs of approximately 6% has been reproducible between 300 and 280 nm without using special techniques. Moreover, an EQE of 3.9% has been shown at 271 nm, despite the smaller current injection efficiency (CIE). The high EQEs are thought to correspond to the high internal quantum efficiency (IQE), indicating a small room for improving IQE. Accordingly, resin encapsulation on a simple submount is strongly desired. Recently, we have succeeded in demonstrating fluorine resin encapsulation on a ceramic sheet (chip-on-board, COB) that is massproducible. Furthermore, the molecular structure of a resin with a durability of more than 10,000 h is explained in this paper from the photochemical viewpoint. Thus, the key technologies of AlGaN-based DUV-LEDs having an EQE of 10% within a reasonable production cost have been established. The achieved efficiency makes AlGaN-based DUVLEDs comparable to high-pressure mercury lamps.

  20. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  1. Microbial treatment of ion exchange resins

    International Nuclear Information System (INIS)

    Kouznetsov, A.; Kniazev, O.

    2001-01-01

    A bioavailability of ion exchange resins to a microbial destruction as one of the alternative methods of compacting used ionites from the nuclear fuel manufacturing cycle enterprises has been investigated. The bio-destruction was studied after a preliminary chemical treatment or without it. A sensitivity of the ion exchange resins (including highly acidic cationite KU-2-8) to the microbial destruction by heterotrophic and chemo-litho-trophic microorganisms under aerobic conditions was shown in principle. The biodegradation of the original polymer is possible in the presence of the water soluble fraction of the resin obtained after its treatment by Fenton reagent and accelerated in the presence of Mn-ions in optimal concentration 1-2 g of Mn per liter of medium. Thus, the process of bio-destruction of ionite polymer by heterotrophic microorganisms can be compared with the bio-destruction of lignin or humic substances. The optimum parameters of bio-destruction and microorganisms used must be different for resins with different functional groups. (authors)

  2. Development of N- and P- Types of Semiconducting Polymers

    Science.gov (United States)

    2015-03-05

    type, oligomeric donor monomers with fused thienobenzothiophene structures. These monomers are copolymerized with fluorinated thieno[3,4- b]thiophene...copolymerized with fluorinated thieno[3,4- b]thiophene ester to form a series of polymers which were investigated as donor materials in polymer/fullerene...effective but somewhat toxic drug, significantly lowered the dose of colistin required for killing bacteria and thus increased its safety. These

  3. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  4. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  5. Separation of metal ions using an o-hydroxypropiophenoxime resin

    International Nuclear Information System (INIS)

    King, J.N.

    1977-12-01

    A chelating ion-exchange resin incorporating an o-hydroxypropiophenoxime functional group onto an XAD-4 polymer matrix has been synthesized. This resin has been used for the separation and quantitative determination of both copper and molybdenum by high-speed liquid chromatography. Iron, uranium, citrate, and fluoride were found to interfere in the determination of copper. Of the ions tested, none were found to interfere with the determination of molybdenum. Several NBS Standard samples were successfully analyzed for copper and molybdenum. The new method is both accurate and fast. Most samples can be analyzed in less than ten minutes. Bis(2-hydroxyethyl) dithiocarbamate was shown to be superior to PAR as a color-forming reagent for the continuous spectrophotometric detection of copper. Thiolactic acid was shown to be adaptable to the continuous spectrophotometric detection of molybdenum. Both dyes gave linear responses when peak height was plotted against micrograms of metal

  6. Micro-PIGE determination of fluorine distribution in developing hamster tooth germs

    International Nuclear Information System (INIS)

    Lyaruu, D.M.; Lenglet, W.J.; Woeltgens, J.H.B.; Bronckers, A.L.

    1989-01-01

    A micro-PIGE (Proton-Induced gamma-ray Emission) technique based on the delayed 5/2+----1/2+ nuclear transition of fluorine (E gamma = 197 keV, t1/2 = 87 ns) emitted after 19 F(p,p', gamma) 19 F reaction was used to detect and study the distribution of fluorine in the developing enamel organ during pre-eruptive stages, i.e., the transitional to early maturation stages of enamel formation in neonatal hamsters administered a single IP dose of sodium fluoride (20 mg NaF/kg body weight). The aforementioned nuclear reaction is unique for fluorine, and therefore detection of gamma-rays emanating from this reaction in a biological specimen implies a positive identification of fluorine at that particular site. Calcium and phosphorus X-rays were also recorded and used as parameters for assessment of the relationship between the degree of mineralization and fluoride incorporation into the enamel organ. The highest fluorine concentration in the enamel organ was recorded in the dentin near the dentin-enamel junction (DEJ). In the enamel, the highest concentration of fluorine was found to be associated with the more mature areas of the enamel near the DEJ, but gradually decreased in the direction of the enamel surface. Fluorine was not detected in the control germs. These results suggest that administration of fluoride in high doses during the pre-eruptive stages of enamel formation leads to incorporation of the ion into the forming dentin and enamel mineral, and that the enamel matrix does not seem to bind fluoride avidly

  7. Radiation curable epoxy resin

    International Nuclear Information System (INIS)

    Najvar, D.J.

    1978-01-01

    A carboxyl containing polymer is either prepared in the presence of a polyepoxide or reacted with a polyepoxide. The polymer has sufficient acid groups to react with only about 1 to 10 percent of the epoxide (oxirane) groups. The remaining epoxide groups are reacted with an unsaturated monocarboxylic acid such as acrylic or methacrylic acid to form a radiation curable resin

  8. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  9. Can Whitening Strips interfere with the Bond Strength of Composite Resins?

    Science.gov (United States)

    Firoozmand, Leily Macedo; Reis, Washington Luís Machado dos; Vieira, Mercêdes Aroucha; Nunes, Adriana Gomes; Tavarez, Rudys Rodolfo de Jesus; Tonetto, Mateus Rodrigues; Bramante, Fausto Silva; Bhandi, Shilpa H; Roma, Regina Vieira de Oliveira; Bandeca, Matheus Coelho

    2015-04-01

    The aim of this study was to investigate in vitro the bond strength of composite resins on enamel previously treated with whitening strips. A total of 48 bovine incisors were allocated to four experimental groups (n = 12 each): G1 (WSC)- treated with 9.5% hydrogen peroxide whitening strips (3D White Whitestrips® Advanced Vivid/CREST); G2 (WSO)-treated with 10% hydrogen peroxide whitening strips (3D WhiteTM/Oral B); G3 (WG)-treated with 7.5% hydrogen peroxide gel with fluorine, calcium and potassium nitrate (White Class®/FGM); and G4 (C)-control not subjected to bleaching treatment. The specimens were subjected to bleaching over 2 weeks following the manufacturers' instructions. Following the elaboration of the composite resin test specimens, the samples were stored in artificial saliva and subsequently subjected to the micro-shear test using the universal testing machine (EMIC®). The bond strength values were analyzed by one-way ANOVA and Tukey's statistical test (5%). Significant differences were observed among the investigated groups (p enamel-resin interface. The bond strength decreased following 14 days of treatment with bleaching strips, whereas the whitening gel with 7.5% hydrogen peroxide, calcium and fluorine increased the bond strength.

  10. Incorporation of tritium contaminated oil in cement using an absorbent polymer

    International Nuclear Information System (INIS)

    Goes, Marcos Maciel de; Marumo, Julio Takehiro; Isiki, Vera Lucia Keiko

    2002-01-01

    This paper describes a study carried out to determine whether a absorbent polymer can be used to pretreat tritiated vacuum pump oils, before solidification in cement matrix. The experiments were conducted with samples prepared with simulated waste, absorbent polymer, portland cement and silica fume, in some cases, and evaluating the performance according to compressive strength, workability and bleeding. Despite the low quantity of oil incorporated, this study showed that it can be a feasible method, since it provided a stable product. (author)

  11. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes.

    Science.gov (United States)

    Baroncini, Elyse A; Stanzione, Joseph F

    2018-07-01

    Growing environmental and economic concerns as well as the uncertainty that accompanies finite petrochemical resources contributes to the increase in research and development of bio-based, renewable polymers. Concurrently, industrial and consumer demand for smaller, safer, and more flexible technologies motivates a global research effort to improve electrolytic polymer separators in lithium-ion batteries. To incorporate the aromatic structural advantages of lignin, a highly abundant and renewable resource, into gel-polymer electrolytes, lignin-derived molecules, vanillyl alcohol and gastrodigenin are functionalized and UV-polymerized with multi-functional thiol monomers. The resulting thin, flexible, polymer films possess glass transition temperatures ranging from -42.1°C to 0.3°C and storage moduli at 25°C ranging from 1.90MPa to 10.08MPa. The crosslinked polymer films swollen with electrolyte solution impart conductivities in the range of 7.04×10 -7 to 102.73×10 -7 Scm -1 . Thiol molecular weight has the most impact on the thermo-mechanical properties of the resulting films while polymer crosslink density has the largest effect on conductivity. The conducting abilities of the bio-based gel-polymer electrolytes in this study prove the viability of lignin-derived feedstock for use in lithium-ion battery applications and reveal structurally and thermally desirable traits for future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Study on dehydrochlorination of waste poly (vinyl chloride) resins by microwave irradiation

    Science.gov (United States)

    Moriwaki, Saburo; Qian, Qingrong; Sunohara, Satoshi; Machida, Motoi; Tatsumoto, Hideki

    Waste poly (vinyl chloride: PVC) resins are experimentally dehydrochlorinated by microwave irradiation. The following unique results are obtained: (1) plasticizer in PVC resin absorbs microwave power more effectively than PVC polymer. The higher the plasticizer content in PVC resin, the higher is the dehydrochlorination reaction (2) low PVC polymer content materials such as cushion floor require high microwave irradiation power to secure a high dehydrochlorination yield, (3) calcium carbonate in PVC resin reacts with released hydrochloric acid gas and results calcium chloride during microwave irradiation, (4) additives in PVC resin strongly influence dehydrochlorination yield, (5) it is evidenced that the PVC copolymer is also dehydrochlorinated by microwave irradiation.

  13. Preparation and characterization of very pure zirconium tetrafluoride. Application to fluorinated glass

    International Nuclear Information System (INIS)

    Bridenne, M.

    1986-12-01

    The synthesis of anhydrous and very pure zirconium tetrafluoride from zirconium tetraborohydride is studied. Zr F 4 is used for fabrication of fluorozirconate glass. Zr (BH 4 ) 4 is purified by sublimation. Two fluorinating agents F 2 and anhydrous HF are used for fluorination. The apparatus is made of fluorinated polymers and a Kel-F prototype reactor was realized. 20 g of Zr F 4 are obtained in 44 hrs with a yield of 88 %. Purity is characterized by chemical analysis (atomique absorption spectroscopy and spark mass spectroscopy) and absorption of an optical fiber made of zirconium tetrafluoride. Cr, Ni, Co and Cu content is lower than 0.1 ppm. Possibility of pilot scale production is discussed [fr

  14. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  15. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications.

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman; Ramamurthy, Praveen C

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1 , exhibited a highest occupied molecular orbital (HOMO) energy level at -5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2 , were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3 .

  16. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3. PMID:28546844

  17. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    Science.gov (United States)

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  18. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  19. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Monitoring the Cure State of Thermosetting Resins by Ultrasound.

    Science.gov (United States)

    Lionetto, Francesca; Maffezzoli, Alfonso

    2013-09-05

    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors' research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  2. Monitoring the Cure State of Thermosetting Resins by Ultrasound

    Directory of Open Access Journals (Sweden)

    Alfonso Maffezzoli

    2013-09-01

    Full Text Available The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  3. An alternative fluorine precursor for the synthesis of SnO2:F by spray pyrolysis

    International Nuclear Information System (INIS)

    Arca, E.; Fleischer, K.; Shvets, I.V.

    2012-01-01

    An alternative, non-toxic precursor was employed for the synthesis of SnO 2 :F transparent conducting oxide. The performance of benzenesulfonyl fluoride (BSF) as F source for spray pyrolysis was investigated. Its decomposition and the actual incorporation of fluorine in the tin oxide matrix were confirmed by X-ray photoelectron spectroscopy while its effect on the electrical properties was investigated by resistance and Hall measurements. Results were compared with respect to samples grown using a common fluorine source (NH 4 F), a commercial available sample and a sample grown by spray pyrolysis at an independent laboratory. We show that BSF leads to actively doped conductive SnO 2 with good carrier mobility, though the fluorine incorporation rate and hence overall conductivity of the films is lower than for fluorine precursors commonly used in spray pyrolysis.

  4. Preparation and characterization of molecularly-imprinted polymers for extraction of sanshool acid amide compounds followed by their separation from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum).

    Science.gov (United States)

    Chen, Xiaolong; Jin, Xinkai; Li, Yao; Chen, Guangjing; Chen, Kewei; Kan, Jianquan

    2018-01-01

    Molecularly imprinted polymers were prepared using the molecular structure analogs of sanshool as template molecule, 2-vinylpyridine and β-cyclodextrin as double functional monomers, ethylene dimethacrylate as cross linker, and azobisisobutyronitrile as initiator. The structural characteristics of the polymers were determined by Fourier-transform infrared spectroscopy and scanning electron microscopy. Dynamic adsorption and isothermal adsorption were also investigated. The molecularly imprinted polymers were used to prepare a molecularly imprinted solid-phase extraction column in order to separate acid amide components from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum). After eluting, the percentage of acid amide components was enhanced to 92.40 ± 1.41% compared with 23.34 ± 1.21% in the initial pepper oil resin, indicating good properties of purification of molecularly imprinted polymers and potential industrial application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluorine doped vanadium dioxide thin films for smart windows

    International Nuclear Information System (INIS)

    Kiri, Pragna; Warwick, Michael E.A.; Ridley, Ian; Binions, Russell

    2011-01-01

    Thermochromic fluorine doped thin films of vanadium dioxide were deposited from the aerosol assisted chemical vapour deposition reaction of vanadyl acetylacetonate, ethanol and trifluoroacetic acid on glass substrates. The films were characterised with scanning electron microscopy, variable temperature Raman spectroscopy and variable temperature UV/Vis spectroscopy. The incorporation of fluorine in the films led to an increase in the visible transmittance of the films whilst retaining the thermochromic properties. This approach shows promise for improving the aesthetic properties of vanadium dioxide thin films.

  6. Polyphenolic resin synthesis: optimizing plantain peel biomass as heavy metal adsorbent

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Cordero

    2015-08-01

    Full Text Available AbstractPolyphenolic resol resins were obtained from an ethanolic extraction of green plantain peels (Musa paradisiaca grown in Colombia. A synthesis was then performed by polycondensation in an alkaline pH solution in order to perform research on phenolic resin production with high mechanical performance. The polymers were characterized by DSC and TGA analyses and the resins showed a melting point of 94 °C and the typical properties of resol resins. Moreover, the synthesis was controlled using the infrared technique (FTIR where different organic functional groups present in the polymers obtained are observed. The obtained resins were used as heavy metal adsorbents in which the content of those toxic agents is measured by Atomic Absorption Analysis (AA indicating that these resins have a high retention affinity to Pb+2, Ni+2 and Cr+3 (79.01%, 98.48%, 94.14%, respectively as determined by Freundlich isotherms.

  7. Effect of various amounts of nanosilver incorporation on the mechanical properties of resin modified glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo

    2013-08-01

    Full Text Available   Background and Aims: Metallic nano-particles show exclusive biological, chemical and physical characteristic. The purpose of this research was to evaluate the effect of various amounts of nanosilver incorporation (0 (as control, 20, 40, 80, 120, 200 ppm on the mechanical Properties ( compressive and flexural strength of resin modified Glass ionomer Cement.   Materials and Methods: Based on ISO 4049 and ISO 9971 for polyalkenoid cements, 90 cases in each group were prepared for the flexural and compressive strength. Specimens in 6 groups with different amounts of nanosilver (20, 40, 80, 120 and 200 ppm and control (Fuji II LC improved, stored in distilled water at 37 ° C for 1 day and 30 days. Flexural strength, using a three-point bending method, Modulus of elasticity and the compressive strength were measured by universal testing machine (Zwick with crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey post HOC test.   Results: The flexural strength and modulus of various amounts of nanosilver incorporation of resin modified glass-ionomer cement were not significantly different (P>0.05. The compressive strength of incorporating of20 ppm compared with control (P=0.01, 40 ppm (P=0.02 and 80 ppm compared with control (P<0.001 were increased. The flexural strength and compressive strength of Fuji II LC, containing nanosilver particles were increased after 1 day and 1 month significantly (P<0.001.   Conclusion: Incorporation of 20 to 80 ppm nanosilver into Fuji II LC had increased mechanical properties compared to the original cement.

  8. Development of polymer concrete radioactive waste management containers - Effect of ceramic fillers on the mechanical and physico-chemical properties of polymer concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Chun; Park, Min Jin; Shin, Hyun Ick; Choi, Yong Jin [Myongji University, Seoul (Korea)

    1999-11-01

    Particle size distribution of the ceramic filler is the primary factor to influence the composition of polymer concrete. The estimated optimum compositions of the polymer concretes prepared in the study are 62 {approx} 71wt% for fine aggregates, 6 {approx} 29wt% for ceramic fillers and 9 {approx}13wt% for polymer resin. Calcium Carbonate and silica are the ceramic fillers practically usable for manufacturing polymer concrete. Less polymer resin is required for the preparation of polymer concrete at lower relative packing volume of ceramic fillers. It has been found that depended on the type of fine aggregates, the effect of ceramic filler on the mechanical behavior of polymer concrete can be opposite. Strength and elastic modulus of polymer concrete are affected by gamma radiation. Crosslinking of unsaturated polyester resin and epoxy resin are promoted by gamma radiation up to 00 MRad and 50 MRad, respectively. However, higher dose of radiation degrades the mechanical properties of polymer concrete. Hydrothermal treatment of polymer concrete at 80 deg. C and 1bar for 30 days causes about 25% reduction of bending strength and elastic modulus. The strength reduction arises from the hydrolysis of ester groups in unsaturated polyester catalyzed by hydrothermal condition. 13 refs., 37 figs., 15 tabs. (Author)

  9. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  10. Evaluation and comparison of anti-Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: An in vitro study

    Directory of Open Access Journals (Sweden)

    S Suganya

    2014-01-01

    Full Text Available Recent years have been dominated by research in nano science. Dentistry is no exception and there is increased research on nanoparticles in dentistry. Complete dentures increase the carriage of Candida in healthy patients, and the proliferation of C. albicans can be associated with denture-induced stomatitis. Purpose: To evaluate the anti-Candida effect of heat cure denture base resins reinforced with Ag° in the ratio of 4:1, 3:1, 2:1 (Groups B, C, and D, respectively to the weight of denture base resins. Materials and Methods: Ag° were synthesized by chemical reduction method, incorporated into the polymer powder according to the ratio for each group, subjected to polymerization and microbial assay was calculated for the reference C. albicans strains by agar diffusion method for the incubation period of 24 h. Results: Group D showed multifold decrease in the colony-forming units. Conclusion: The antimicrobial effect of silver could be used vividly in the denture base for immunocompromised and geriatric patients.

  11. Development of new and improved polymer matrix resin systems, phase 1

    Science.gov (United States)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  12. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  13. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  14. Encapsulation of Mg-Zr alloy in metakaolin-based geo-polymer

    International Nuclear Information System (INIS)

    Rooses, Adrien; Steins, Prune; Dannoux-Papin, Adeline; Lambertin, David; Poulesquen, Arnaud; Frizon, Fabien

    2013-01-01

    Investigations were carried out to propose a suitable material for the encapsulation of Mg-Zr alloy wastes issued from fuel cladding of the first generation nuclear reactors. Stability over time, good mechanical properties and low gas production are the main requirements that embedding matrices must comply with in order to be suitable for long run storage. One of the main issues encapsulating Mg-Zr alloy in mineral binder is the hydrogen production related to Mg-Zr alloys corrosion and water radiolysis process. In this context, metakaolin geo-polymers offer an interesting outlook: corrosion densities of Mg-Zr alloys are significantly lower than in Portland cement. This work firstly presents the hydrogen production of Mg-Zr alloy embedded in geo-polymers prepared from different the activation solution (NaOH or KOH). The effect of addition of fluorine on the magnesium corrosion in geo-polymer has been investigated too. The results point out that sodium geo-polymer is a suitable binder for Mg-Zr alloy encapsulation with respect to magnesium corrosion resistance. Furthermore the presence of fluorine reduces significantly the hydrogen release. Then, the impact of fluorine on the geo-polymer network formation was studied by rheological, calorimetric and 19 F NMR measurements. No direct effect resulting from the addition of fluorine has been shown on the geo-polymer binder. Secondly, the formulation of the encapsulation matrix has been adjusted to fulfil the expected physical and mechanical properties. Observations, dimensional evolutions and compressive strengths demonstrated that addition of sand to the geo-polymer binder is efficient to meet the storage criteria. Consequently, a matrix formulation compatible with Mg-Zr alloy encapsulation has been proposed. Finally, irradiation tests have been carried out to assess the hydrogen radiolytic yield of the matrix under exposure to γ radiation. (authors)

  15. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  16. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  17. 21 CFR 177.2260 - Filters, resin-bonded.

    Science.gov (United States)

    2010-04-01

    .... Potassium. Sodium. Triethanolamine. Fatty acid (C10-C18) mono- and diesters of polyoxyethylene glycol.... (3) Resins: Acrylic polymers produced by polymerizing ethyl acrylate alone or with one or more of the... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight...

  18. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  19. Synthesis of fluorinated poly(arylene ether)s with dibenzodioxin and spirobisindane units from new bis(pentafluorophenyl)- and bis(nonafluorobiphenyl)-containing monomers

    DEFF Research Database (Denmark)

    Tkachenko, Ihor M.; Belov, Nikolay A.; Kobzar, Yaroslav L.

    2017-01-01

    (nonafluorophenyl)-containing monomers have higher average molecular masses (Mw) in the range 47,000–88,300 and are able to form robust, solvent-cast films. Good thermal stabilities in air (up to 350 °C) were observed in all fluorinated polymers. The Brunauer–Emmett–Teller specific surface area and the pore size of polymers can...... be controlled by varying the type of the initial fluorinated monomers. It was shown that introduction of perfluorobiphenyl units is an effective tool for increasing the surface area up to 156.8 m2 g−1....

  20. Oxidative degradation property of the proton-exchange membranes based on fluorinated polymer using radiation-induced grafting

    International Nuclear Information System (INIS)

    Mitani, N.; Muto, F.; Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    To grow popularity of polymer electrolyte fuel cells (PEFCs), it is important that the life-time of FC will be evaluated. In the PEFCs operation, the oxygenated water would be produced by fuel gases crossover reaction. Moreover, the metal ions such as Fe 2+ would dissolve from piping and humidification bubblers in FC systems. As the results, the dissolved metal ions catalyze with oxygenated water, and then active oxidative radicals such as hydroxy and hydroperoxy radicals are induced by Fenton reaction. The oxidative radicals have considered one of the reasons of deterioration of FC performance. In our previous study, the partial-fluorinated sulfonic acid membranes based on crosslinked PTFE (sulfonated RX-PTFE) have been fabricated by pre EB-grafting method. In this study, in order to evaluate the chemical durability exerted on the PEFC performance of sulfonated RX-PTFE, we carried out the accelerated degradation test by Fenton reaction. The test conditions were 6 vol% H 2 O 2 with 5 ppm Fe 2+ solution at 60 degree C. The properties of sulfonated RX-PTFE before and after degradation tests were measured by means of X-ray photoelectron spectroscopy (XPS) and other methods. According to oxidative degradation test, the sulfonated RX-PTFE with higher crosslinking density of main chain became hard to deteriorate. On the contrary, the higher grafting yields became easy to degrade. It is suggested that the oxidative degradation would be greatly influenced to the grafted chain length and crosslinking density of main chain. From XPS after Fenton treated sulfonated RX-PTFE, the signal of S 2p and S 2s was disappeared. And also, by TGA and TG-MS analysis, it was found that the reduction of grafted chains was taken place. Furthermore, the crosslinked PTFE chains may be degraded through the reduction of grafted chain. The PEFC operation tests of sulfonated RX-PTFE before and after degradation tests were carried out. When the weight loss of sulfonated RX-PTFE was almost the same

  1. Fuel cell electrolyte membrane with basic polymer

    Science.gov (United States)

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  2. Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity.

    Science.gov (United States)

    Murphy, Cormac D; Sandford, Graham

    2015-04-01

    Fluorine's unique physicochemical properties make it a key element for incorporation into pharmacologically active compounds. Its presence in a drug can alter a number of characteristics that affect ADME-Tox, which has prompted efforts at improving synthetic fluorination procedures. This review describes the influence of fluorine on attributes such as potency, lipophilicity, metabolic stability and bioavailablility and how the effects observed are related to the physicochemical characteristics of the element. Examples of more recently used larger scale synthetic methods for introduction of fluorine into drug leads are detailed and the potential for using biological systems for fluorinated drug production is discussed. The synthetic procedures for carbon-fluorine bond formation largely still rely on decades-old technology for the manufacturing scale and new reagents and methods are required to meet the demands for the preparation of structurally more complex drugs. The improvement of in vitro and computational methods should make fluorinated drug design more efficient and place less emphasis on approaches such as fluorine scanning and animal studies. The introduction of new fluorinated drugs, and in particular those that have novel fluorinated functional groups, should be accompanied by rigorous environmental assessment to determine the nature of transformation products that may cause ecological damage.

  3. Engineered Multifunctional Fluorinated Film Based on Semicontinuous Emulsion Polymerization Using Polymerizable Quaternary Ammonium Emulsifiers

    Directory of Open Access Journals (Sweden)

    Hongzhu Liu

    2018-01-01

    Full Text Available Along with society’s progress, high-quality coatings are widely used. Although fluorinated polymers were successfully prepared by semicontinuous emulsion polymerization with surfactants, chlorotrifluoroethylene (CTFE, and acrylate monomers, the optimization collocation of surfactants still has room for improvement. The traditional emulsifiers are physically absorbed onto the surface of latex particles. The latex film generated by latex particles is unstable in water, which limits its application. Herein, a novel series of cationic quaternary ammonium polymerizable surfactant was selected because it can react with CTFE and acrylate monomers and can become a part of the polymers. We also studied the effects of emulsifier type on resultant emulsion properties. In addition, wonderful weatherability, water resistance, and antibacterial and antifouling of the multifunctional fluorinated films were observed, which would open up a bright future for coating industries.

  4. Attribute Based Selection of Thermoplastic Resin for Vacuum Infusion Process: A Decision Making Methodology

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Lystrup, Aage; Løgstrup Andersen, Tom

    2012-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...... for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection....

  5. Overview on resins available in microlithography

    International Nuclear Information System (INIS)

    Serre, B.; Schue, F.; Montginoul, C.; Giral, L.

    1985-01-01

    Lithographic equipments using electrons and X radiation are developed. Velocity and resolution requirements fix the nature of the material to irradiate. Circuit making principles are recalled here; resists (organic polymers) are employed for it. The different types of resins and then needed characteristics are reviewed here. In the scope of electron sensitive resins methyl polymethacrylate and derivative and its copolymers (and copolymers of methacrylonitrile) and reticulated copolymers are studied. Polysulfones are also presented (poly(buten-1 sulfone), poly(styrene sulfone), poly(methyl-1 cyclopentene-1 sulfone). The interest in photosensitive resins (such as AZ) as electron sensitive resins is recalled. In the field of negative resins, the polyepoxyds, polystyrene and halogenated derivates from polystyrene (CMS and PCMS), the poly(vinyl-2 naphtalene) and its derivatives (PSTTF) are presented. The X radiation sensitive resins are also reviewed: the methyl polymethacrylate and its halogenated derivates, the acrylic homopolymers and copolymers (example of poly(acrylate of chlorinated alcoyls). The resins developable by plasma are mentioned. At last, for photosensitive resins, the diazide polydiene systems are presented together with systems diazo-2 2H-naphtalenone-1. The systems with salt photolysis are just recalled [fr

  6. Statistical Analysis of 3-Point Bending Properties of Polymer Concretes Made From Marble Powder Waste, Sand Grains, and Polyester Resin

    Science.gov (United States)

    Benzannache, N.; Bezazi, A.; Bouchelaghem, H.; Boumaaza, M.; Amziane, S.; Scarpa, F.

    2018-01-01

    The mechanical performance of concrete polymer beams subjected to 3-point bending was investigated. The polymer concrete incorporates marble powder waste and quarry sand. The results obtained showed that the type of sand, and amount of marble powder and sand aggregate affected the resistance of the polymer concrete beams significantly. The marble waste increased their bending strength by reducing the porosity of polymer concrete.

  7. Chemoselective, Substrate-directed Fluorination of Functionalized Cyclopentane β-Amino Acids.

    Science.gov (United States)

    Kiss, Loránd; Nonn, Melinda; Sillanpää, Reijo; Haukka, Matti; Fustero, Santos; Fülöp, Ferenc

    2016-12-06

    This work describes a substrate-directed fluorination of some highly functionalized cyclopentane derivatives. The cyclic products incorporating CH 2 F or CHF 2 moieties in their structure have been synthesized from diexo- or diendo-norbornene β-amino acids following a stereocontrolled strategy. The synthetic study was based on an oxidative transformation of the ring carbon-carbon double bond of the norbornene β-amino acids, followed by transformation of the resulted "all cis" and "trans" diformyl intermediates by fluorination with "chemodifferentiation". © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Behavior study of spend ion exchange resins immobilized in pyrolyzed polymer matrix

    International Nuclear Information System (INIS)

    Ramos, P.B; Fuentes, N.O; Luca, V.

    2012-01-01

    The pyrolysis of spent ion exchange resins contained in epoxy resins represents an attractive alternative to cementation as a confining method. In this sense, a significant reduction of volume can be achieved, as well as avoiding the dispersion of the exhausted ion exchange resin by the means of an epoxy resin used as a matrix, while potentially limiting the release of highly radioactive long life isotopes such us Cs-137, Sr-90 and Co-60 among others. Three types of monoliths were made: (i) epoxy resin, (ii) epoxy resin with carbon and (iii) a binder of epoxy resin and clay. In every case, the monolith contained the ion exchange resin. They were prepared by the mixing of resin pearl loaded with epoxy cations and a subsequent pyrolysis process with a temperature increase ratio of 2 o C /min reaching maximum values in the range between 200 o C - 800 o C, remaining in it for 1 hour. Monoliths obtained for each final temperature had been characterized to obtain data corresponding to the mass loss, volume reduction and lixiviation, as well as mechanical and microstructural properties (author)

  9. Effect of tocopherols incorporation on physical properties of LDPE,PP and blend film of LDPE/PP

    Directory of Open Access Journals (Sweden)

    ZHU Xuntao

    2014-12-01

    Full Text Available The objectives of this study were to investigate the effects of added tocopherols and blending of different polymers on the film physical properties.Tocopherols (3 000 mg/kg were incorporate into low density polyethylene (LDPE,polypropylene (PP and a blend film of LDPE/PP (50/50 by extrusion process.Then films were evaluated to determine tocopherol recovery and physical properties.Results showed that extrusion did not significantly change film thermal properties (Tm,Tc and Tg as compared with synthetic polymer resin pellet (raw material.LDPE and PP did not seem to react with each other to form new polymers under the current extrusion conditions.Addition of tocopherol significantly changed film mechanical properties compared with control.The above results and other data seemed to support that polymer blending is a feasible approach for producing tocopherol containing packaging films.

  10. Relationship between the dielectric and mechanical properties and the ratio of epoxy resin to hardener of the hybrid thermosetting polymers

    International Nuclear Information System (INIS)

    Dias Filho, Newton Luiz; Aquino, Hermes Adolfo de; Pires, Geovanna; Caetano, Laercio

    2006-01-01

    The relationship between the dielectric properties (dielectric constant, ε'', and loss factor, ε''; activation energy, E a ) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the ε'' peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the ε'' peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E a . The curves of tensile modulus and fracture (author)

  11. Experience with the incorporation of low and medium-level wastes in thermosetting resins

    International Nuclear Information System (INIS)

    Aubouin, G.; Hallier, P.; Bruand, J.P.

    1980-01-01

    This paper deals with the experience gained in the packaging of low and medium-level radioactive wastes in thermosetting resins. A prototype workshop has been functioning in the Nuclear Research Centre at Grenoble since 1975. The wastes processed are evaporator concentrates and ion exchange resins. A pilot plant which has been built at the PWR power station in Chooz enables evaporator concentrates, ion-exchange resins and filter cartridges to be processed. In each case, the solidifying agent is based on a polyester or epoxy resin. The properties of the cured product (leaching rate, irradiation and fire resistance, and mechanical strength) are given. In order to widen the application of thermosetting resins, the containment of soluble radioactive salts has been studied. The use of this process for wastes arising from the decommissioning of nuclear power stations seems feasible. The coefficients of diffusion of radioactive elements through the thermosetting resins have been measured. Using them, the amounts of radioactivity released as a function of time have been calculated

  12. Non-ferrous metals, anorganic and organic materials resistent to fluorides

    International Nuclear Information System (INIS)

    Hauffe, K.

    1986-01-01

    Aluminium and its alloys are resistant in fluoride solutions up to 400 K. Aluminium is also a suitable reactor material for the thermal decomposition of acidic fluorides between 750 and 825 K. Brass corrodes at room temperature in a 0,1 m KF solution with and without inhibitors very slowly ( -1 ). Nickel and the nickel alloys Inconel 600, Hastelloy N and Monel 500 are the most resistant materials against fluoride solutions and melts. A similar behavior exhibit zirconium-titanium-iron and zirconium-titanium-molybdenum alloys, respectively. From the inorganic compounds, compressed graphite, Al 2 O 3 and hexaborides of earth and rare earth metals, particularly LaB 6 , are extraordinarily resistant against fluorine ions at high temperatures. If the reaction temperature remains below 370 K, then polymers and resins, e.g. polyolefines, PVC, acrylic and epoxy resins and fluorcarbon resins can be employed as coating or compound material (resin + carbon fibers) resistant against fluorine ions up to 370 K. (orig.) [de

  13. Bituminous solidification, disposal, transport and burial of spent ion-exchange resins. Part of a coordinated programme on treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    Mozes, G.; Kristof, M.

    1983-07-01

    The project dealing with the incorporation of spent ion-exchange resins into bitumen was performed within the Agency coordinated research programme on treatment of spent ion-exchange resins. Physical and chemical properties of commercial ion-exchange resins, bitumens and bituminized resins were studied. It was shown that bitumen with low oil content and with a softening point of 60-70 deg. C are applicable for the incorporation of resins. The final waste form is allowed to contain maximum 50% resin. The comprehensive study of the biological resistance of B-30 bitumen was performed. That showed that any bacteriological attack can be regarded as generally insignificant. A continuously operating technology was realized on a semi-plant scale. The best operating conditions of this technology were determined. On the basis of the experience gained from the experiments a design of the bituminization plant of 50m 3 dry resin/year treatment capacity was proposed

  14. Fluorine incorporation in solution-processed poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    Science.gov (United States)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-03-01

    We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to  +0.2 V and  -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.

  15. Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Jiang, Bo; Zhao, Liwei; Guo, Jiang; Yan, Xingru; Ding, Daowei; Zhu, Changcheng; Huang, Yudong; Guo, Zhanhu

    2016-01-01

    Nanoparticles play important roles in enhancing the thermal-resistance of hosting polymer resins. Despite tremendous efforts, developing thermally stable methylsilicone resin at high temperatures is still a challenge. Herein, we report a strategy to increase the activation energy to slow down the decomposition/degradation of methylsilicone resin using synergistic effects between the Co 3 O 4 nanoparticles and the nitrogen doped graphene oxide. The N-doped graphene oxides composited with Co 3 O 4 nanoparticles were prepared by hydrolysis of cobalt nitrate hexahydrate in the presence of graphene oxide and were incorporated into the methylsilicone resin. Two-stage decompositions were observed, i.e., 200–300 and 400–500 °C. The activation energy for the low temperature region was enhanced by 47.117 kJ/mol (vs. 57.76 kJ/mol for pure resin). The enhanced thermal stability was due to the fact that the nanofillers prevented the silicone hydroxyl chain ends ‘‘biting’’ to delay the degradation. The activation energy for high-temperature region was enhanced by 11.585 kJ/mol (vs. 171.95 kJ/mol for pure resin). The nanofillers formed a protective layer to isolate oxygen from the hosting resin. The mechanism for the enhanced thermal stability through prohibited degradation with synergism of these nitrogen-doped graphene oxide nanocomposites was proposed as well.Graphical Abstract

  16. Synthesis and Thermal Properties of a Novel Nitrogen-containing Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    Xing Hong ZHANG; Hong Mei WAN; Yu Qin MIN; Zuo FANG; Guo Rong QI

    2005-01-01

    A new nitrogen-containing epoxy resin (XT resin) was synthesized from chain extension of xylenephenolformaldehyde resin (XPF) and triglycidyl isocyanurate (TGIC) in the presence of base catalyst. FT-IR and 1H-NMR analysis confirmed the chemical structure of XT resin. It was cured with dicyandiamide (DICY) and diaminodiphenyl sulfone (DDS). Dynamic mechanical analysis (DMA) results showed that the introduction of triazine ring provides epoxy polymer with good thermal stability. Furthermore, high char yields at 800℃ in thermogravimetric (TGA)analysis indicated that XT resin had potential flame retardance.

  17. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  18. Chemoviscosity modeling for thermosetting resins, 2

    Science.gov (United States)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  19. [Ru(bipy)3]2+ nanoparticle-incorporate dental light cure resin to promote photobiomodulation therapy for enhanced vital pulp tissue repair

    Science.gov (United States)

    Mosca, Rodrigo C.; Young, Nicholas; Zeituni, Carlos A.; Arany, Praveen R.

    2018-02-01

    The use of nanoparticle on dental light cure resin is not new, currently several compounds (nanoadditives) are used to promote better communication between the restorative material and biological tissues. The interest for this application is growing up to enhance mechanical proprieties to dental tissue cells regeneration. Bioactive nanoparticles and complex compounds with multiple functions are the major target for optimizing the restorative materials. In this work, we incorporate [Ru(bipy)3]2+ nanoparticles, that absorbs energy at 450 nm (blue-light) and emits strongly at 620 nm (red-light), in PLGA Microspheres and insert it in Dental Light Cure Resin to promote the Photobiomodulation Therapy (PBM) effects to accelerate dental pulp repair by in vitro using cytotoxicity and proliferation assay.

  20. Photopolymerizable silicone monomers, oligomers, and resins

    International Nuclear Information System (INIS)

    Jacobine, A.F.; Nakos, S.T.

    1992-01-01

    The purpose of this chapter is to acquaint the general photopolymer researcher with the historical development of the chemistry and technology of photopolymerizable silicone monomers, fluids, and resins. The current status of research in these areas is assessed. The focus of this chapter is not only on the polymer chemistry and application of this technology, but also on important aspects of the synthetic chemistry involved in the preparation of UV-curable silicone monomers, oligomers, and resins. 236 refs., 6 tabs

  1. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  2. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  3. Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles

    Czech Academy of Sciences Publication Activity Database

    Riabtseva, Anna; Kaberov, Leonid; Noirez, L.; Ryukhtin, Vasyl; Nardin, C.; Verbraeken, B.; Hoogenboom, R.; Štěpánek, Petr; Filippov, Sergey K.

    2018-01-01

    Roč. 99, February (2018), s. 518-527 ISSN 0014-3057 R&D Projects: GA MŠk(CZ) LH15213; GA MŠk(CZ) LO1507 Grant - others:AV ČR(CZ) FWO-17-05 Program:Bilaterální spolupráce Institutional support: RVO:61389013 ; RVO:61389005 Keywords : poly(2-oxazolines) * fluorinated polymers * small-angle X-ray scattering Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (UJF-V) OBOR OECD: Polymer science; Condensed matter physics (including formerly solid state physics, supercond.) (UJF-V) Impact factor: 3.531, year: 2016

  4. Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination.

    Science.gov (United States)

    Romero Aburto, Rebeca; Alemany, Lawrence B; Weldeghiorghis, Thomas K; Ozden, Sehmus; Peng, Zhiwei; Lherbier, Aurélien; Botello Méndez, Andrés Rafael; Tiwary, Chandra Sekhar; Taha-Tijerina, Jaime; Yan, Zheng; Tabata, Mika; Charlier, Jean-Christophe; Tour, James M; Ajayan, Pulickel M

    2015-07-28

    Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.

  5. Thermosetting behavior of pitch-resin from heavy residue

    Energy Technology Data Exchange (ETDEWEB)

    Qingfang, Z.; Yansheng, G.; Baohua, H.; Yuzhen, Z. [China Univ. of Petroleum, Dongying, Shandong (China). State Key LAboratory of Heavy Oil Processing, Heavy Oil Research Inst.

    2006-07-01

    Thermosetting resins are widely employed as a basic matrix for c/c composites in carbon materials production. A new type of synthesized thermosetting resin is called pitch resin. Pitch resin is a cheaper resin and possesses a potential opportunity for future use. However, the thermosetting behavior of pitch resin is not very clear. The hardening process and conditions for thermosetting are very important for future use of pitch resin. B-stage pitch resin is a soluble and meltable inter-media condensed polymer, which is not fully reacted and is of a low molecular weight. The insoluble and unmelted pitch resin can only be obtained from synthesized B-stage resin after a hardening stage. This paper presented an experiment that synthesized B-stage pitch resin with a link agent (PXG) under catalyst action from fluid catalytic cracking (FCC) of the slurry's aromatic enriched component (FCCDF). The paper discussed the experiment, including the synthesis of pitch resin and thermosetting of pitch resin. Two kinds of thermosetting procedures were used in the study called one-step thermosetting and two-step thermosetting. It was concluded that the B-stage pitch resin could be hardened after a thermosetting procedure by heat treatment. The thermosetting pitch resin from 2-step thermosetting possesses was found to have better thermal resistant properties than that of the 1-step thermosetting pitch resin. 13 refs., 2 tabs., 6 figs.

  6. Relationship between the dielectric and mechanical properties and the ratio of epoxy resin to hardener of the hybrid thermosetting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dias Filho, Newton Luiz; Aquino, Hermes Adolfo de; Pires, Geovanna; Caetano, Laercio [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia. Dept. de Fisica e Quimica]. E-mail: nldias@dfq.feis.unesp.br

    2006-05-15

    The relationship between the dielectric properties (dielectric constant, {epsilon}'', and loss factor, {epsilon}''; activation energy, E{sub a}) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the {epsilon}'' peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the {epsilon}'' peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E{sub a}. The curves of tensile modulus and fracture (author)

  7. EPICOR-II resin degradation results from first resin samples of PF-8 and PF-20

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Sanders, R.D. Sr.

    1985-12-01

    The 28 March 1979 accident at Three Mile Island Unit 2 released approximately 560,000 gallons of contaminated water to the Auxiliary and Fuel Handling Buildings. The water was decontaminated using a demineralization system called EPICOR-II developed by Epicor, Inc. The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Project is studying the chemical and physical conditions of the synthetic ion exchange resins found in several EPICOR-II prefilters. This report summarizes results and analyses of the first sampling of ion exchange resins from EPICOR-II prefilters PE-8 and -20. Results are compared with baseline data from tests performed on unirradiated Epicor, Inc. resins to determine if degradation has occurred due to the high internal radiation dose received by the EPICOR-II resins. Results also are compared with recent findings on resin degradation by Battelle Columbus Laboratories and Brookhaven National Laboratory. Analyses comparing test results of resins from EPICOR-II prefilters PF-8 and -20 with unirradiated resins obtained from Epicor, Inc. show resin degradation has occurred in some of the EPICOR-II resins examined. The mechanism of degradation is compared with work of other researchers and is consistent with their findings. The strong acid cation resins (divinylbenzene, styrene base structure) are losing effective cross-linking along with scission of functional groups and are experiencing first an increase and eventually a decrease in total exchange capacity as the absorbed radiation dose increases. The phenolic cation resins (phenol-formaldehyde base structure) show a loss of effective cross-linking and oxidation of the polymer chain. Analyses of resins removed from EPICOR-II prefilters PF-8 and -20 over the next several years should show a further increase in degradation

  8. Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria

    Science.gov (United States)

    Reichmann, Nathalie T.; Cassona, Carolina Picarra

    2013-01-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with d-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA–D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers d-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for d-alanine incorporation through a process that has been proposed to proceed via a d-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of d-alanine, indicating that LTA has a role, either direct or indirect, in the efficient d-alanine incorporation into WTA in living cells. PMID:23858088

  9. Diagnosis of fluorine damage. II. Estimation of fluorine-containing emission by demonstration of the storage of fluorine in the cortex of trees

    Energy Technology Data Exchange (ETDEWEB)

    Lampadius, F

    1960-01-01

    The thorium titration method was employed for estimating the fluorine content of the cortex. The question as to what fluorine content in the bark is to be regarded as natural has not yet been exactly established. Various indications in the literature lead to the assumption that the storage in the bark of cortex of the trees from an area without fluorine-containing emissions gave <0.2 mg. F/100 ml. distillate in all samples. This fluorine content was initially taken as the limit for the natural fluorine content of the cortex. The investigation of the fluorine content of the cortex extended only to the bark and was calculated in mg. of F in 5 g. of air-dry ground bark. The results show a clear relation between the quantity of fluorine stored in the bark and the distance of the point of sampling from the source of emission and its disposition to it. With high fluorine emission and unfavorable wind conditions in the affected area, fluorine was found in considerable quantities in the bark at places quite a long way from the source of emission. The qualitative estimation of the fluorine content of gassed leaves and needles by the crystal precipitation method, and the quantitative estimation of the fluorine content of gassed bark by the thorium titration method led to results that were in good agreement, so it was possible in this way to define the area in which damage may occur with reliable accuracy.

  10. New RTM/RI Resins for the HSCT

    Science.gov (United States)

    Harris, Frank W.

    1999-01-01

    In the first portion of this work, 1,2,3,3,4,4-hexafluoro-1,2-bis[4-(dimethylhydroxysilyl)phenoxy]cyclobutane and 1,2,3,3,4,4-hexafluoro-1,2-bis[3-(dimethylhydroxysilyl)phenoxy]cyclobutane were prepared and homopolymerized to afford polymers with excellent thermal stability and Tgs of 27 C and -12 C, respectively. Despite the moderately high wt% of fluorin in the polymer structure (23.8%), these polymers had poor fuel resistance. In fact, swelling measurements indicate that these polymers had apparent solubility parameters of about 18.2 J (exp 1/2) m (exp -3/2) (toluene). Copolymerization of the disilanol monomers with fluorosilicone monomers afforded copolymers containing 20-30 wt% of the perfluorocyclobutane-containing structure displayed adequate fuel resistance, enhanced thermal stability, and a Tg low enough to meet the requirements of a High Speed Civil Transport (HSCT) fuel tank sealant. In the second part of this work, trifluorovinylether-terminated oligomers were prepared and polymerized via cyclodimerization. Initially, an alpha, omega-silanol-terminated fluorosilicone was endcapped with trifluorovinylether end groups via a two-step synthetic sequence. The oligomer was thermally cyclodimerized to a polymer that displayed thermal stability similar to that of a fluorosilicone homopolymer. Second, 1,3-bis[4-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane and 1,3-bis{3-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane were prepared and cyclodimerized to afford polymers that contained pendant trifluoropropyl groups. The pendant trifluoropropyl groups did enhance solvent resistance in aliphatic hydrocarbon solvents, however, no improvement was observed in aromatic hydrocarbon solvents. These polymers also displayed excellent thermal stability. In the last part of this work, a series of monomers was prepared by the DCC-promoted esterification of 4-[trifluorovinyl(oxy)benzoic acid with alpha, omega

  11. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  12. Calcium, strontium and fluorine patterns in shells of Pacific Oyster and Rock Oyster

    International Nuclear Information System (INIS)

    Coote, G.E.

    1996-01-01

    The IGNS proton microprobe has been applied in a study of the distribution of Calcium, Strontium and Fluorine in the calcite shells of Pacific Oyster (Crassostrea gigas) and the native Rock oyster (Crassostrea glomerata). The ultimate aim is to derive information which could have application in such fields as archaeology, biology, palaeontology, aquaculture and environmental studies. Calcium and strontium were determined from their emissions of K X-rays under proton bombardment, and fluorine from the 19 F (p,alpha gamma) 16 O nuclear reaction. The three elements were determined simultaneously at points no more than 20 micrometres apart. A total of 14 one and 17 two-dimensional scans were performed on sections of the shells embedded in epoxy resin. We studied shells from nine Pacific oysters (five transferred from the Marlborough Sounds to Wellington Harbour and four from the Bay of Islands). (author). 11 refs.; 5 figs

  13. Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units.

    Science.gov (United States)

    Liu, Jun; Wang, Tao; Dou, Chuandong; Wang, Lixiang

    2018-06-15

    Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic opto-electronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show the blue-shifted absorption spectra, decreased LUMO/HOMO energy levels and enhanced electron affinities, as well as the increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that the substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Additive manufacturing of short and mixed fibre-reinforced polymer

    Science.gov (United States)

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  15. Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity

    OpenAIRE

    Murphy, Cormac D.; Sandford, Graham

    2015-01-01

    Introduction: Fluorine’s unique physicochemical properties make it a key element for incorporation into pharmacologically active compounds. Its presence in a drug can alter a number of characteristics that affect ADME-Tox, which has prompted efforts at improving synthetic fluorination procedures. Areas covered: This review describes the influence of fluorine on attributes such as potency, lipophilicity, metabolic stability and bioavailablility and how the effects observed are related to the p...

  16. Plants and fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Garber, K

    1962-01-01

    A report is given about the contents of fluorine in soil and different plants. It is stated that spinach and several spice herbages are rich in fluorine (0.98 - 21.8 ppm) while in other plants are not more than 5 ppm maximum. An exception is found in Thea sinensis with 178 ppm and more. Tea is, therefore, a source of fluorine for contamination of the human body. An increase of the fluorine contents of plants by manuring with F-salts or mineral manure is possible but of long duration. Damage to plants by uptake of fluorine from soil as well as in a gaseous condition from the atmosphere are described. The rate of damage is related to the type of soil in which the plant is grown.

  17. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  18. Method for detecting resin leakage in LWR coolant

    International Nuclear Information System (INIS)

    Girard, J.E.

    1988-05-01

    Resin leakage from condensate polishing units can result in steam generator corrosion. This report describes the development of a resin leakage detection method based in analyzing the organic breakdown products released from resin on heating. The breakdown products are analyzed using high performance liquid chromatography (HPLC) with fluorescence detection. Some of the organic products formed have been identified. A design for a resin monitoring unit, suitable for incorporation into the IONTRAC system, is presented. Theoretically, detection of ppB levels of resin by processing about one liter of water, is possible

  19. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  20. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2015-07-01

    Full Text Available The aim of the study was to taste mask ciprofloxacin (CP by using ion-exchange resins (IERs followed by sustain release of CP by forming interpenetrating polymer network (IPN. IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised. Drug-resin complexes (DRCs with three different ratios of drug to IERs (1:1, 1:2, 1:4 were prepared & evaluated for taste masking by following in vivo and in vitro methods. Human volunteers graded ADC 1:4, acrylic acid-divinyl benzene (ADC-3 resin as tasteless. Characterization studies such as FTIR, SEM, DSC, P-XRD differentiated ADC 1:4, from physical mixture (PM 1:4 and confirmed the formation of complex. In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid (SGF i.e. pH 1.2. IPN beads were prepared with ADC 1:4 by using sodium alginate (AL and sodium alginate-chitosan (AL-CS for sustain release of CP at SGF pH and followed by simulated intestinal fluid (SIF i.e. pH 7.4. FTIR spectra confirmed the formation of IPN beads. The release of CP was sustain at SGF pH (75%. The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.

  1. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  2. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    Science.gov (United States)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  3. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    International Nuclear Information System (INIS)

    Lu, Jun; Oh, Il-Kwon; Kim, Sang-Gyun; Lee, Sunwoo

    2008-01-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on

  4. Vinyl Flanked Difluorobenzothiadiazole-Dithiophene Conjugated Polymer for High Performance Organic Field-Effect Transistors.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianfeng; Sun, Wandong; Chen, Yanlin; Tan, Luxi; Cai, Zheng-Xu; Liu, Zitong; Wang, Lin; Li, Jing; Chen, Wei; Dong, Lichun

    2018-02-21

    Fluorine containing conjugated polymers have been widely applied in high performance organic solar cells, but their use in field-effect transistors is still quite limited. In this work, a conjugated polymer PTFBTV based on difluorobenzothiadiazole (DFBT) and dithiophene was synthesized, utilizing multiple vinylene as linkers. The polymer exhibits a relatively high hole mobility up to 2.0 cm(2) V-1 s(-1) compared with the reported DFBT-oligothiophene based polymers, yet its structural complexity is much simpler. The polymer thin film exhibits a typical 'face on' molecular orientation. A single crystal of its monomer revealed a non-covalent intramolecular contact between fluorine and the neighbouring proton, which strengthens the backbone co-planarity. Meanwhile an intermolecular F...F contact was also observed, which might cause rather scattered lamellar crystallinity for PTFBTV in the solid state.

  5. Film packed lithium-ion battery with polymer stabilizer

    International Nuclear Information System (INIS)

    Satoh, Masaharu; Nakahara, Kentaro

    2004-01-01

    The 1600 mAh class of film packed lithium-ion battery has been fabricated with the polymer stabilizer. The adhesive polymer covered with fluorinated polymer beads enables to penetrate into the prismatically wounded jerry-roll layers and connects the electrode layers and separator film. The battery demonstrates the improved properties after repeating the charge and discharge processes and should be useful for the various electronics equipment such as notebook type computer

  6. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin.

    Science.gov (United States)

    Kim, Haseog; Park, Sangki; Lee, Seahyun

    2016-07-19

    There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  7. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin

    Directory of Open Access Journals (Sweden)

    Haseog Kim

    2016-07-01

    Full Text Available There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  8. Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE

    International Nuclear Information System (INIS)

    Senna, Mamoru; Šepelák, Vladimir; Shi, Jianmin; Bauer, Benjamin; Feldhoff, Armin; Laporte, Vincent; Becker, Klaus-Dieter

    2012-01-01

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO 2 nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm −1 (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d–d transitions of titanium ions. Incorporation of fluorine into n-TiO 2 was concentrated at the near surface region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO 2 was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO 2 lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO 6−n Vo n , located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO 2 particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO 2 and (c) fluorine migration from PTFE to TiO 2 . Highlights: Transfer of fluorine from PTFE to n-TiO 2 in a dry solid state process was confirmed. ► 40% of F in PTFE was incorporated to the near surface region of n-TiO 2 nanoparticles. ► The transfer process is

  9. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Lyubov G. Bulusheva

    2017-08-01

    Full Text Available Double-walled carbon nanotubes (DWCNTs are fluorinated using (1 fluorine F2 at 200 °C, (2 gaseous BrF3 at room temperature, and (3 CF4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron microscopy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS spectroscopy. A formation of covalent C–F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C–F vibrations for three kinds of the fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-chemical calculations of various models. It is proposed that fluorination with F2 and BrF3 produces small fully fluorinated areas and short fluorinated chains, respectively, while the treatment with CF4 plasma results in various attached species, including single or paired fluorine atoms and –CF3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through choosing the fluorination method.

  10. Treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Ikladious, N.E.; Eskander, S.B.

    1981-01-01

    PMMA was studied with the aim to evaluate its usefulness as an incorporation medium for the final containment of spent ion-exchange resins. The study of the effect of water content (ranging from 25 to 100%) of the incorporated resin into PMMA on the compression strength of the final solid products shows that with the increasing water content the compression strength of the final products decreases sharply. Hardness of the final products follows nearly the same trend of compression strength. Increasing gamma irradiation doses, up to 7.77x10 7 rad, PMMA shows increase in compression strength and hardness for small doses and then decreases with increasing irradiation dose due to the increase in polymerization process and the degradation of the incorporation medium

  11. Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis

    Science.gov (United States)

    Ruiz-Muelle, Ana Belén; Contreras-Cáceres, Rafael; Oña-Burgos, Pascual; Rodríguez-Dieguez, Antonio; López-Romero, Juan Manuel; Fernández, Ignacio

    2018-01-01

    The synthesis of amino-terminated anthraquinone derivatives and their incorporation onto polymer brushes for the fabrication of silicon-based nanometric functional coatings are described for the first time. The general process involves the covalent grafting of anthraquinone 1 onto two different polymer-brushes by amidation reactions. They are composed by amino- and carboxy-terminated poly(acrylic acid) chains (PAA-NH2- and PAA-COOH, respectively) tethered by one end to an underlying silicon oxide (SiO2) substrate in a polymer brush configuration. A third substrate is fabricated by UV induced hydrosilylation reaction using undecenoic acid as adsorbate on hydrogen-terminated Si(111) surfaces. One- and two-dimensional nuclear magnetic resonance (NMR), FT-IR, MS and X-ray diffraction (XRD) were used to characterize anthraquinone 1. Ellipsometric and X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the polymer brushes on the silicon wafers, and atomic force microscopy (AFM) was used to study its surface morphology. The covalent linkage between anthraquinone and polymer brushes was proven by XPS and confocal fluorescence microscopy. The resulting surfaces were assayed in the heterogenous organocatalytic transformation of (1H)-indole into 3-benzyl indole with moderate yields but with high recyclability.

  12. Daya Antibakteri Bahan Tumpat Amalgam dan Resin Komposit Berfluor Terhadap Bakteri Streptococcus Mutans Serotipe KPSK2

    Directory of Open Access Journals (Sweden)

    Dewa Ayu Nyoman Putri Artiningsih

    2015-09-01

    Full Text Available This research was carried out to study the difference in the antibacterial capacity of two kinds of filling materials, namely amalgam and composite resin, on S. mutans KPSK2 bacteria with different times of treatment. In total, 48 amalgam and composite resin samples each were prepared and then divided into four groups of treatment. Of each group, 6 samples were used to count the number of bacterial colonies and 6 samples to count the right obstacle zone. The results show that the best antibacterial capacity of composite resin occurred within one week, while for amalgam the best performance appears within one day. The antibacterial capacity of fluorine containing composites is stronger than that of amalgam for a time of 1 to 2 weeks.

  13. Fluorine content of Fukien teas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T H; Lin, C S; Wu, C; Liao, C E; Lin, H Y

    1949-01-01

    A study was made on the fluorine contents of Fukien teas and analytical results indicated the amount ranged from 5.7 to 35.5 mg. per 100 grams of dry tea. The high content of fluorine was found not to be due to contamination nor to the high fluorine content of the soil in which the tea plant was cultivated. Differences in the methods of manufacture had no effect on the fluorine content of the final products. Different varieties of tea plants have different powers to absorb fluorine from the soil. Of the two varieties of tea plants studied, Shui-Sen leaves possessed the lower fluorine content. Age of the tea leaves exerted an important influence on the fluorine content, the older leaves containing considerably more fluorine than the younger. The amount of fluorine that may be extracted in a two per cent infusion varies from 29.1 per cent for fresh leaves to 50.5 per cent for black tea. The process of roasting and rolling rendered the fluorine more soluble, hence the amount extracted increased in green tea. Fermentation further increased the extractability of the fluorine; thus the amount extracted was the highest in black tea, which was fermented, less in the semi-fermented oolong tea, and least in the unfermented green tea. The extractability of fluorine was also increased with age of the leaves.

  14. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  15. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    Science.gov (United States)

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  16. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    Science.gov (United States)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  17. Fluorination of uranium compounds by gaseous bromine trifluoride and a bromine-fluorine mixture

    International Nuclear Information System (INIS)

    Sakurai, Tsutomu

    1976-03-01

    This report summarizes the studies of fluorination of uranium compounds by gaseous BrF 3 and a Br 2 -F 2 mixture, which were carried out in Fluorine Chemistry Laboratory of JAERI in connection with the reprocessing method of nuclear fuels. Although thermodynamically more stable than F 2 , BrF 3 has higher reactivity at relatively low temperatures: fluorination of uranium compounds can be carried out at 100 0 -- 200 0 C by using gaseous BrF 3 . This fluorination temperature is lower than those of F 2 , BrF 5 , ClF and SF 4 , and close to that of ClF 3 . The usage of BrF 3 has however the drawbacks that it requires additional devices to heat the corrosive liquid and to remove Br 2 produced as a byproduct. In order to eliminate the difficulties indicated, a new method of fluorination was developed - the use of a Br 2 -F 2 mixture. Addition of small amounts of Br 2 to the fluorine flow (about 6% in relation to the fluorine concentration) gives marked effects on the rate of fluorination. (auth.)

  18. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    Science.gov (United States)

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. An Evaluation of Polymer Coatings for the Promotion of Dropwise Condensation of Steam.

    Science.gov (United States)

    1984-03-01

    thermosetting, modi- fied polyester insulating varnish . Although not expected to perfcrm as %ell as the fluorinated compounds, ease of appli- cation...xylylene which can he vapor deposited in very thin films. Unlike PTEE, parylene-N contains no fluorine and therefore would nct be expected to be as...perform. Knowing that water has a surface tensicz of approximately 71.9 dynes/cm and riferring tc Table I, it can be seen that the fluorinated polymers

  20. Film packed lithium-ion battery with polymer stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Masaharu; Nakahara, Kentaro [NEC Corp., Environment and Material Research Labs., Kawasaki, Kanagawa (Japan)

    2004-11-30

    The 1600 mAh class of film packed lithium-ion battery has been fabricated with the polymer stabilizer. The adhesive polymer covered with fluorinated polymer beads enables to penetrate into the prismatically wound jerry-roll layers and connects the electrode layers and separator film. The battery demonstrates the improved properties after repeating the charge and discharge processes and should be useful for the various electronic equipment such as notebook type computers. (Author)

  1. In-situ radiation grafting of polymer films and degradation studies of monomers for applications in fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, S.

    2007-02-15

    The present work consists of three parts which deal with the optimization of the properties of polymers finding application as proton exchange membranes in PEMFCs. The focus is the oxidative and photochemical stability of non-fluorinated polymer membranes, as well as the radiation-induced grafting of commercially available fluoropolymer films. The use of the ESR technique is common for the first two parts of the dissertation. ESR spectroscopy is the major method of study, because of its sensitivity and specificity for the detection of radical intermediates. It is a suitable spectroscopic technique to identify the nature of radiation generated radicals in organic polymers, and to monitor their concentration in-situ during the grafting process. The third part comprises the results and discussions of DFT calculations for non-fluorinated and fluorinated fragments.

  2. Fluorine

    Science.gov (United States)

    Hayes, Timothy S.; Miller, M. Michael; Orris, Greta J.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Fluorine compounds are essential in numerous chemical and manufacturing processes. Fluorspar is the commercial name for fluorite (isometric CaF2), which is the only fluorine mineral that is mined on a large scale. Fluorspar is used directly as a fluxing material and as an additive in different manufacturing processes. It is the source of fluorine in the production of hydrogen fluoride or hydrofluoric acid, which is used as the feedstock for numerous organic and inorganic chemical compounds.The United States was the world’s leading producer of fluorspar until the mid-1950s. In the mid-1970s, the U.S. fluorspar mining industry began to decline because of foreign competition. By 1982, there was essentially only a single U.S. producer left, and that company ceased mining in 1996. Consumption of fluorspar in the United States peaked in the early 1970s, which was also the peak period of U.S. steel production. Since then, U.S. fluorspar consumption has decreased substantially; the United States has nonetheless increased its imports of downstream fluorine compounds, such as, in order of tonnage imported, hydrofluoric acid, aluminum fluoride, and cryolite. This combination of no U.S. production (until recently) and high levels of consumption has made the United States the world’s leading fluorspar-importing country, in all its various forms.The number of fluorspar-exporting countries has decreased substantially in recent decades, and, as a result, the United States has become dependent on just a few countries to supply its needs. In 2013, the United States imported the majority of its fluorspar from three countries, which were, in descending order of the amount imported, Mexico, China, and South Africa.Geologically, in igneous systems, fluorine is one of a number of elements that are “incompatible.” These incompatible elements become concentrated in the residual magma while the common silicates crystallize upon magma ascent and cooling, leading to relatively high

  3. Epoxy resin-inspired reconfigurable supramolecular networks

    OpenAIRE

    Balkenende Diederik; Olson Rebecca; Balog Sandor; Weder Christoph; Montero de Espinosa Lucas

    2016-01-01

    With the goal to push the mechanical properties of reconfigurable supramolecular polymers toward those of thermoset resins we prepared and investigated a new family of hydrogen bonded polymer networks that are assembled from isophthalic acid terminated oligo(bisphenol A co epichlorohydrin) and different bipyridines. These materials display high storage moduli of up to 3.9 GPa can be disassembled upon heating to form melts with a viscosity of as low as 2.1 Pa·s and fully reassemble upon coolin...

  4. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    Science.gov (United States)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  5. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.

    Science.gov (United States)

    Wu, Qian; Zhang, Qian; Zhao, Li; Li, Shi-Neng; Wu, Lian-Bin; Jiang, Jian-Xiong; Tang, Long-Cheng

    2017-08-15

    In this study, a novel strategy was developed to fabricate highly flame retardant polymer foam composite materials coated by synthesized silicone resin (SiR) polymer via a facile dip-coating processing. Applying the SiR polymer coating, the mechanical property and thermal stability of SiR-coated polymer foam (PSiR) composites are greatly enhanced without significantly altering their structure and morphology. The minimum oxygen concentration to support the combustion of foam materials is greatly increased, i.e. from LOI 14.6% for pure foam to LOI 26-29% for the PSiR composites studied. Especially, adjusting pendant group to SiOSi group ratio (R/Si ratio) of SiRs produces highly flame retardant PSiR composites with low smoke toxicity. Cone calorimetry results demonstrate that 44-68% reduction in the peak heat release rate for the PSiR composites containing different R/Si ratios over pure foam is achieved by the presence of appropriate SiR coating. Digital and SEM images of post-burn chars indicate that the SiR polymer coating can be transformed into silica self-extinguishing porous layer as effective inorganic barrier effect, thus preserving the polymer foam structure from fire. Our results show that the SiR dip-coating technique is a promising strategy for producing flame retardant polymer foam composite materials with improved mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Recycling the construction and demolition waste to produce polymer concrete

    Science.gov (United States)

    Hamza, Mohammad T.; Hameed, Awham M., Dr.

    2018-05-01

    The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.

  7. Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan; Robertson, Megan L.

    2016-12-13

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glass transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.

  8. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance

    Science.gov (United States)

    Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi

    2018-01-01

    This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity. PMID:29515875

  9. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance

    Science.gov (United States)

    Chen, Youning; Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi

    2018-02-01

    This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity.

  10. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  11. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The properties of anion-exchange resines in mixtures of organic solvents and water

    International Nuclear Information System (INIS)

    Naveh, J.

    1978-02-01

    The behaviour of anion-exchange resins in water and mixtures of organic solvents and water was studied with special reference to the swelling of the polymer and to the density and enthalpy changes accompanying the swelling. A linear dependence was found between the swelling of dry resin and 1/X (X being the nominal cross-linking percent of the polymer). This dependence is interpreted theoretically. The nominal cross-linking percent,defined by the quantity ratio of the components, is corrected for real cross-linking percent. For the swelling of the resin in dilute aqueous alcohols, a preference for the alcohol was found which is enhanced as the molecular weight of the alcohol increases. Moreover, for certain mole fractions, the preference of the perchlorate form of the resin is greater than that of the chloride form. The temperature dependence of the swelling was measured and the invasion of an electrolyte (LiCl), dissolved in the aqueous-organic phase, into the resine phase was determined. Contrary to what usually happens in pure aqueous phase, where the electrolyte is rejected in accordance with the Donnan law, an almost total invasion of the electrolyte into the resin phase occurs. (author)

  13. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    Directory of Open Access Journals (Sweden)

    J. Toušek

    2015-12-01

    Full Text Available Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD − DTBTff was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT. We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV measurements and diffusion length determinaton using surface photovoltage measurements.

  14. Dynamic behavior of reactive aluminum nanoparticle-fluorinated acrylic (AlFA) polymer composites

    Science.gov (United States)

    Crouse, Christopher A.; White, Brad; Spowart, Jonathan E.

    2011-06-01

    The dynamic behavior of aluminum nanoparticle-fluorinated acrylic (AlFA) composite materials has been explored under high strain rates. Cylindrical pellets of the AlFA composite materials were mounted onto copper sabots and impacted against a rigid anvil at velocities between 100 and 400 m/s utilizing a Taylor gas gun apparatus to achieve strain rates on the order of 104 /s. A framing camera was used to record the compaction and reaction events that occurred upon contact of the pellet with the anvil. Under both open air and vacuum environments the AlFA composites demonstrated high reactivity suggesting that the particles are primarily reacting with the fluorinated matrix. We hypothesize, based upon the compaction history of these materials, that reaction is initiated when the oxide shells on the aluminum nanoparticles are broken due an interparticle contact deformation process. We have investigated this hypothesis through altering the particle loading in the AlFA composites as well as impact velocities. This data and the corresponding trends will be presented in detail.

  15. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  16. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  17. Polymer Nanocarriers for Dentin Adhesion

    Science.gov (United States)

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be incorporated into dental adhesive systems to provide the appropriate environment in which dentin MMP

  18. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  19. Bacterial degradation of fluorinated compounds

    NARCIS (Netherlands)

    Ferreira, Maria Isabel Martins

    2007-01-01

    Fluorine was produced for the first time by Henri Moissan in 1886, for which he received the Nobel Prize in chemistry in 1906. The unique properties of fluorine have led to the development of fluorine chemistry and numerous synthetic fluorinated compounds have been prepared and tested for different

  20. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  1. Hybrid conducting polymer materials incorporating poly-oxo-metalates for extraction of actinides; Materiaux polymeres conducteurs hybrides incorporant des polyoxometallates pour l'extraction d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Racimor, D

    2003-09-15

    The preparation and characterization of hybrid conducting polymers incorporating poly-oxo-metalates for extracting actinides is discussed. A study of the coordination of various lanthanide cations (Ce(III), Ce(IV), Nd(III)) by the mono-vacant poly-oxo-metalate {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} showed significant differences according to the cation.. Various {alpha}-A-[PW{sub 9}O{sub 34}(RPO){sub 2}]{sup 5-} hybrids were synthesized and their affinity for actinides or lanthanides was demonstrated through complexation. The first hybrid poly-oxo-metallic lanthanide complexes were then synthesized, as was the first hybrid functionalized with a pyrrole group. The electro-polymerization conditions of this pyrrole remain still to be optimized. Poly-pyrrole materials incorporating {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} or its neodymium or cerium complexes as doping agents proved to be the first conducting polymer incorporating poly-oxo-metalates capable of extracting plutonium from nitric acid. (author)

  2. New monomers for high performance polymers

    Science.gov (United States)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  3. Fluorinated bio-acceptable polymers via an ATRP macroinitiator approach

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Haddletion, D.M.; Hvilsted, Søren

    2007-01-01

    Polymers derived from bio-acceptable poly(methyl methacrylate) (PMMA), poly(2-methoxyethyl acrylate) (PMEA), and poly(oligo(ethylene glycol) methyl ether methacrylate) (PPEGMA) have been prepared via atom transfer radical polymerization (ATRP) utilizing an initiator prepared from a fluoroalkoxy-t...... in the advancing water contact angles of all fluoro-containing polymers....

  4. Evaluation of extractables in processed and unprocessed polymer materials used for pharmaceutical applications.

    Science.gov (United States)

    Stults, Cheryl L M; Ansell, Jennifer M; Shaw, Arthur J; Nagao, Lee M

    2015-02-01

    Polymeric materials are often used in pharmaceutical packaging, delivery systems, and manufacturing components. There is continued concern that chemical entities from polymeric components may leach into various dosage forms, particularly those that are comprised of liquids such as parenterals, injectables, ophthalmics, and inhalation products. In some cases, polymeric components are subjected to routine extractables testing as a control measure. To reduce the risk of discovering leachables during stability studies late in the development process, or components that may fail extractables release criteria, it is proposed that extractables testing on polymer resins may be useful as a screening tool. Two studies have been performed to evaluate whether the extractables profile generated from a polymer resin is representative of the extractables profile of components made from that same resin. The ELSIE Consortium pilot program examined polyvinyl chloride and polyethylene, and another study evaluated polypropylene and a copolymer of polycarbonate and acrylonitrile butadiene styrene. The test materials were comprised of polymer resin and processed resin or molded components. Volatile, semi-volatile, and nonvolatile chemical profiles were evaluated after headspace sampling and extraction with solvents of varying polarity and pH. The findings from these studies indicate that there may or may not be differences between extractables profiles obtained from resins and processed forms of the resin depending on the type of material, the compounds of interest, and extraction conditions used. Extractables testing of polymer resins is useful for material screening and in certain situations may replace routine component testing.

  5. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Parameters for Fickian diffusion and polymer relaxation models were determined by .... Water transport process of resin and polymer composite specimens at ..... simulation. ... Kwon Y W and Bang H 1997 Finite element method using matlab.

  6. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  7. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  8. Compendium of fluorine data

    International Nuclear Information System (INIS)

    Detamore, J.A.

    1983-01-01

    Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report

  9. High performance anode based on a partially fluorinated sulfonated polyether for direct methanol fuel cells operating at 130 °C

    Science.gov (United States)

    Mack, Florian; Gogel, Viktor; Jörissen, Ludwig; Kerres, Jochen

    2014-06-01

    Due to the disadvantages of the Nafion polymer for the application in the direct methanol fuel cell (DMFC) especial at temperatures above 100 °C several polymers of the hydrocarbon type have already been investigated as membranes and ionomers in the DMFC. Among them were nonfluorinated and partially fluorinated arylene main-chain hydrocarbon polymers. In previous work, sulfonated polysulfone (sPSU) has been applied as the proton-conductive binder in the anode of a DMFC, ending up in good and stable performance. In continuation of this work, in the study presented here a polymer was prepared by polycondensation of decafluorobiphenyl and bisphenol AF. The formed polymer was sulfonated after polycondensation by oleum and the obtained partially fluorinated sulfonated polyether (SFS) was used as the binder and proton conductor in a DMFC anode operating at a temperature of 130 °C. The SFS based anode with 5% as ionomer showed comparable performance for the methanol oxidation to Nafion based anodes and significant reduced performance degradation versus Nafion and sPSU based anodes on the Nafion 115 membrane. Membrane electrode assemblies (MEAs) with the SFS based anode showed drastically improved performance compared to MEAs with Nafion based anodes during operation with lower air pressure at the cathode.

  10. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  11. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    OpenAIRE

    Bangwar, Daddan Khan; Ali Soomro, Mohsin; Ali Laghari, Nasir; Ali Soomro, Mukhtiar; Ali Buriro, Ahsan

    2018-01-01

    This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was...

  12. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    Directory of Open Access Journals (Sweden)

    D. K. Bangwar

    2018-02-01

    Full Text Available This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was observed that the bond strength between concrete and steel decreases with the replacement of cement with ash, conversely the bond strength improves with the addition of polymer dosages.

  13. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  14. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  15. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.

  16. Aminoalkylated Merrifield Resins Reticulated by Tris-(2-chloroethyl Phosphate for Cadmium, Copper, and Iron (II Extraction

    Directory of Open Access Journals (Sweden)

    Mokhtar Dardouri

    2015-01-01

    Full Text Available We aimed to synthesize novel substituted polymers bearing functional groups to chelate heavy metals during depollution applications. Three polyamine functionalized Merrifield resins were prepared via ethylenediamine (EDA, diethylenetriamine (DETA, and triethylenetetramine (TETA modifications named, respectively, MR-EDA, MR-DETA, and MR-TETA. The aminoalkylated polymers were subsequently reticulated by tris-(2-chloroethyl phosphate (TCEP to obtain new polymeric resins called, respectively, MR-EDA-TCEP, MR-DETA-TCEP, and MR-TETA-TCEP. The obtained resins were characterized via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, elemental analysis (EA, and thermogravimetric (TGA, thermodynamic (DTA, and differential thermogravimetric (DTG analysis. The synthesized resins were then assayed to evaluate their efficiency to extract metallic ions such as Cd2+, Cu2+, and Fe2+ from aqueous solutions.

  17. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.

    Science.gov (United States)

    Alp, Gülce; Murat, Sema; Yilmaz, Burak

    2018-01-28

    To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p CAD/CAM PMMA-based M (p CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.

  18. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    DEFF Research Database (Denmark)

    Toušek, J.; Toušková, J.; Remeš, Z.

    2015-01-01

    Measurements of electrical conductivity, electron work function, carrier mobility ofholes and the diffusion length of excitons were performed on samples of conjugatedpolymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazolebased conjugated copolymer (PBDTTHD − DTBTff......) was studied and benchmarkedagainst the reference polymer poly-3-hexylthiophene (P3HT).We employed,respectively, four electrode conductivity measurements, Kelvin probe work functionmeasurements, carrier mobility using charge extraction by linearly increasing voltage(CELIV) measurements and diffusion length...

  19. Fluorination methods in drug discovery

    OpenAIRE

    Yerien, Damián Emilio; Bonesi, Sergio Mauricio; Postigo, Jose Alberto

    2017-01-01

    Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that the fluorine atom can impart to targets of medicinal importance, such as a modulation of lipophilicity, electronegativity, basicity and bioavailability, this latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on c...

  20. Fluorine incorporation during Si solid phase epitaxy

    International Nuclear Information System (INIS)

    Impellizzeri, G.; Mirabella, S.; Romano, L.; Napolitani, E.; Carnera, A.; Grimaldi, M.G.; Priolo, F.

    2006-01-01

    We have investigated the F incorporation and segregation in preamorphized Si during solid phase epitaxy (SPE) at different temperatures and for several implanted-F energies and fluences. The Si samples were amorphized to a depth of 550 nm by implanting Si at liquid nitrogen temperature and then enriched with F at different energies (65-150 keV) and fluences (0.07-5 x 10 14 F/cm 2 ). Subsequently, the samples were regrown by SPE at different temperatures: 580, 700 and 800 deg. C. We have found that the amount of F incorporated after SPE strongly depends on the SPE temperature and on the energy and fluence of the implanted-F, opening the possibility to tailor the F profile during SPE

  1. Phenolic cation exchange resin material for recovery of cesium and strontium

    Science.gov (United States)

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  2. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  3. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  4. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Studies on chemoviscosity modeling for thermosetting resins

    Science.gov (United States)

    Bai, J. M.; Hou, T. H.; Tiwari, S. N.

    1987-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resins has been formulated. The model is developed by modifying the well-established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature Tg(t) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants C sub 1 (t) and C sub 2 (t) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformation of the thermosetting resin systems during cure.

  6. From polymer chemistry to membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, C. [ERAS-Labo, 222 RN 90, F-38330 St. Nazaire-les-Eymes (France); Chabert, F.; Marechal, M.; Guindet, J.; Sanchez, J.-Y. [LEPMI ENSEEG, Domaine Universitaire, BP 75, F-38402 St. Martin d' Heres Cedex (France); Kissi, N.El. [Laboratoire de Rheologie, ENSHMG, Domaine Universitaire, BP 95, F-38402 St. Martin d' Heres Cedex (France)

    2006-02-28

    The paper tries to make a critical inventory of Ionomers, free of fluorine or fluorine less, which can be used as alternatives to Nafion{sup R} in polymer electrolytes fuel cells, as Ionomer is indisputably one of the main bolts of these technologies. All the Ionomer families are discussed, with their main advantages and drawbacks, in particular in terms of their possible industrial scale-up. Special attention has been paid to the discussions about the choice of the ionic functions and that of polymeric backbones of the Ionomers, with regard to the required electrochemical properties and also to their thermomechanical behaviour. It has been emphasized that a global approach of the polymer electrolytes is essential to progress. This must involve (i) a control of the syntheses up to the pilot scale, (ii) thorough characterizations, (iii) attention to the membrane and the MEA assembly and (iv) durability investigations, including post-mortem characterizations. (author)

  7. A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia

    Science.gov (United States)

    Van Aarssen, B. G. K.; Cox, H. C.; Hoogendoorn, P.; De Leeuw, J. W.

    1990-11-01

    The chemical composition of a fossil resin from a Miocene outcrop in Brunei, South East Asia, is compared with its extant counterpart dammar, obtained from trees of the family Dipterocarpaceae, to establish the nature of the precursor of bicadinanes. The alcohol soluble fractions of the resins consist of functionalised triterpenoids and a small amount of sesquiterpenoids. None of the compounds present in this fraction bears any structural relation to bicadinanes. The alcohol insoluble fractions of the resins consist of a polymer based on cadinene. A structure for this polymer is proposed. Heating the polymer in dammar resin resulted in the formation of monomeric, dimeric, and trimeric cadinenes. It is thought that the naturally occurring bicadinanes result from dimeric cadinenes upon cyclisation.

  8. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  9. Identification of Polymers in University Class Experiments.

    Science.gov (United States)

    Bowen, Humphry J. M.

    1990-01-01

    The apparatus, reagents, preliminary classification, nomenclature, acquisition, and procedures used in the identification of synthetic polymers are described. Specific tests for the identification of the presence of hydrocarbons, chlorine, fluorine, sulfur, and nitrogen and the absence of halogens and sulfur are discussed. (CW)

  10. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  11. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    International Nuclear Information System (INIS)

    Strečková, M.; Füzer, J.; Kobera, L.; Brus, J.; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, Ĺ.; Girman, V.; Hadraba, H.; Bat'ková, M.; Bat'ko, I.

    2014-01-01

    A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13 C and 29 Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability. - Highlights: • Soft magnetic composites are designed for electrotechnical applications. • Electroinsulating layer consists of phenolic resin modified with silica nano-rods. • NMR, FTIR and DSC analysis is used to characterize hybrid resin. • Spherical Fe–Si particles covered by hybrid resin form a core–shell composite. • Mechanical, electrical and magnetic properties are described in detail

  12. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  13. Fluorine content in the soft tissues, blood and milk of ruminants outside and inside fluorine emission areas

    Energy Technology Data Exchange (ETDEWEB)

    Oelschlaeger, W; Feyler, L; Schwarz, E

    1972-01-01

    Data on the fluorine content of soft tissues, blood and milk inside and outside fluorine emission areas vary widely, probably because of analytical difficulties. Possible errors and their elimination are discussed. A large number of analyses was carried out to determine the fluorine content of heart, liver, lung, kidney, adrenal, muscle, spleen, pancreas, lymph nodes, thyroid, thymus, pituitary and cerebrum and cerebellum of cows and calves, as well as 388 milk samples and 232 blood samples. In calves born from cows kept for 3 1/2 years near a factory producing hydrofluoric acid, there was a clear relationship between the fluorine content during the suckling and drinking period, and also in a still-born calf, with the fluorine uptake of the dam during the months of pregnancy. In contrast to cattle, calves showed significantly higher fluorine levels in the adrenals compared with the kidneys. The soft tissues of cattle outside the fluorine emission areas contained more fluorine than in calves within the emission areas. Fluorine accumulation in liver, lung, kidney, cerebrum and cerebellum, thyroid and pituitary was markedly raised in animals with high fluorine uptake, whereas there was no significant change in the levels in the heart, musculature and spleen. So far as human health is concerned, the raised fluorine level in milk was significantly below the maximum level permitted in fluoridated drinking water.

  14. Synthesis of a hollow fiber type porous chelating resin containing the amide oxime group by radiation induced graft polymerization for the uranium recovery

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1986-01-01

    A hollow fiber type porous chelating resin containing amide oxime as a functional group was synthesized and used as an adsorbent for the recovery of uranium. Hollow fiber type porous polyethylene was used as a base polymer. Acrylonitrile was grafted onto it by the radiation-induced graft polymerization. By changing the reaction time, four kinds of graft polymer were obtained. The degree of grafting ranged from 79 % to 127 %. Each resin was soaked in hydroxylamine solution, and the cyano group was converted to amide oxime group. By elemental analysis, the amount of nitrogen introduced on the graft polymer resin in amidoximation was determined to range from 4.3 mmol to 8.5 mmol per 1 g of base polymer. Most of the nitrogen is considered to belong to the amide oxime group. The pore radius, which was initially distributed broadly from about 500 A to 10000 A for the base polymer, was changed to about 1000 A with narrow distribution by the grafting. The pore volume was 1.2 ∼ 1.4 cm 3 per 1 gram of the amide oxime resin, which was about half of that of the initial base polymer. But the pore volume per 1 g base polymer of the amide oxime resin increased with an increase in the grafting degree, e.g. 4.5 cm 3 /g base polymer at 127 % of grafting degree. Specific surface area, which was 30 m 2 /g in base polymer, decreased with an increase in the grafting degree, e.g. 15 m 2 /g at 127 % of grafting degree. Both the amounts of the adsorbed hydrochloric acid and the adsorbed copper were about 1.5 times of the amount of nitrogen introduced in the amidoximation. The reason is considered to be caused by the formation of hydroxamic acid and amide from the measurements of the IR spectra. The amount of uranium adsorbed on the resin was 64 % of the amount of nitrogen introduced in the amidoximation. (author)

  15. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  16. XPS and surface resistivity measurements of plasma - treated FEP co-polymer

    International Nuclear Information System (INIS)

    Pitrus, R.K.; Brack, N.; Liesegang, J.; Pigram, P.J.

    2002-01-01

    Full text: Fluorinated polymers such as fluorinated ethylene propylene (FEP) and poly(tetrafluoroethylene) (PTFE) play an important role in many applications due to their many desirable properties such as chemical resistivity, inertness, electrical stability and low dielectric constant; however, one disadvantage of fluorinated polymers is their extreme surface hydrophobicity. Previous studies show that plasma treatment will modify the surface by increasing the surface free energy and also offer a rapid and convenient method for pre-treating the polymers for many purposes. This paper, through resistivity and XPS (x-ray photoelectron spectroscopy) measurements, attempts to discover basic effects of such plasma treatment. Fluorinated ethylene propylene (FEP) co-polymer film of (0.05) mm thickness (obtained commercially) and with the following structure (CF 2 -CF 2 )-(CF(CF 3 )CF 2 )- was used. A suitable cleaning procedure was used to remove adventitious carbon from the surface. XPS has been used to study FEP film properties. The spectra of XPS were analyzed with the main focus on carbon and fluorine as they compose the elemental component of FEP film. A value of 2.05 was obtained for the F/C ratio, which is slightly higher than the theoretical F/C value estimated from the chemical structure of FEP (F/C 2). The clean film was then air plasma treated (pressure 10 -1 torr and power 30W) for various treatment times to produce a higher energy fluoropolymer surface. XPS studies investigated changes to the polymer surface and determined that oxidation occurs on the FEP surface. The oxidation reactions on the FEP surface form oxygen functional groups such as C-O and C=O groups. The results also show that the percentage of CF 2 and CF 3 in the co-polymer surface decreased with exposure time and the percentage of CF, C-C, C-O and C=O increased. There is a sharp decrease in F/C ratio and increase in O/C ratio. In addition to XPS, the resistivity of FEP-film was measured by a

  17. A Fluorine-18 Radiolabeling Method Enabled by Rhenium(I) Complexation Circumvents the Requirement of Anhydrous Conditions.

    Science.gov (United States)

    Klenner, Mitchell A; Pascali, Giancarlo; Zhang, Bo; Sia, Tiffany R; Spare, Lawson K; Krause-Heuer, Anwen M; Aldrich-Wright, Janice R; Greguric, Ivan; Guastella, Adam J; Massi, Massimiliano; Fraser, Benjamin H

    2017-05-11

    Azeotropic distillation is typically required to achieve fluorine-18 radiolabeling during the production of positron emission tomography (PET) imaging agents. However, this time-consuming process also limits fluorine-18 incorporation, due to radioactive decay of the isotope and its adsorption to the drying vessel. In addressing these limitations, the fluorine-18 radiolabeling of one model rhenium(I) complex is reported here, which is significantly improved under conditions that do not require azeotropic drying. This work could open a route towards the investigation of a simplified metal-mediated late-stage radiofluorination method, which would expand upon the accessibility of new PET and PET-optical probes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  19. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    International Nuclear Information System (INIS)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-01-01

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material

  20. Copolymerization of carbon monoxide and styrene catalyzed by resin-supported palladium polymer

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Polyketone was prepared by the copolymerization of carbon monoxide (CO and styrene (ST catalyzed by o-phenylenediamine resin-supported palladium acetate. Effects of each catalytic system component such as 2,2’-bipyridine, 1,4-quinone and p-toluene-sulphonate on the copolymerization were investigated. The resin-supported catalyst and the copolymerization product were characterized by infrared spectroscopy (IR, differential scanning calorimetry (DSC, thermogravimetry (TG, X-ray photoelectron spectroscopy (XPS, Scanning Electron Microscopy (SEM. Results indicated that the resin-supported catalyst has excellent catalytic property. Furthermore, partial catalytic activity was maintained after the catalyst was used for five times.

  1. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; McGinnes, D.F.

    1988-07-01

    Organic anion exchange resins are evaluated for 99-TcO 4 - (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I - , NO 3 - , SO 4 = , CO 3 = , Cl - and OH - . Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  2. Tin(2) difluoride and antimony(3) trifluoride as fluorine donors in reactions with tantalum halides in various solvents

    International Nuclear Information System (INIS)

    Kokunov, Yu.V.; Ershova, M.M.; Razgonyaeva, G.A.; Buslaev, Yu.A.

    2001-01-01

    The reactions of SnF 2 , SbF 3 with TaF 5 and TaCl 5 in acetonitrile and dimethylsulfoxide were studied by means of 19 F and 119 Sn NMR. SnF 2 and SbF 3 were established to be donors of fluorine ions for the tantalum(5). It was found that the anion and cation tantalum fluorochloride complexes were formed in acetonitrile, and [TaF 6 ] - was dominated in dimethylsulfoxide. In the solution the tin(2) is present as fluorine-containing polymer cations. Dimethylsulfoxide, as distinct from acetonitrile, leads to disproportionation of tantalum fluorochlorides [ru

  3. Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation

    Science.gov (United States)

    Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.

    2013-12-01

    The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.

  4. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  5. Structure-to-property relationships in addition cured polymers. II - Resin Tg and composite initial mechanical properties of norbornenyl cured polyimide resins

    Science.gov (United States)

    Alston, William B.

    1986-01-01

    PRM (polymerization of monomeric reactants) methodology was used to prepare thirty different polyimide oligomeric resins. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on glass transition temperature (Tg) of the cured/postcured resins. An almost linear correlation of Tg versus molecular distance between the crosslinks was observed. An attempt was made to correlate Tg with initial mechanical properties (flexural strength and interlaminar shear strength) of unidirectional graphite fiber composites prepared with these resins. However, the scatter in mechanical strength data prevented obtaining as clear a correlation as was observed for the structural modification/crosslink distance versus Tg. Instead, only a range of composite mechanical properties was obtained at the test temperatures studied (room temperature, 288 and 316 C). Perhaps more importantly, what did become apparent during the attempted correlation study was: (1) that PMR methodology could be used to prepare composites from resins that contain a wide variety of monomer modifications, and (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins selected were melt processable.

  6. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  7. Cellular thermosetting fluorodiepoxide polymers

    Science.gov (United States)

    Lee, Sheng Y. (Inventor)

    1989-01-01

    Thermosetting fluoropolymer foams are made by mixing fluid form thermosetting fluoropolymer components having a substantial fluorine content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and thereafter heating the fluoropolymer at a relatively low temperature to simultaneously sure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.

  8. Chemoviscosity modeling for thermosetting resin systems, part 3

    Science.gov (United States)

    Hou, T. H.; Bai, J. M.

    1988-01-01

    A new analytical model for simulating chemoviscosity resin has been formulated. The model is developed by modifying the well established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature (T sub g (t)) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature-dependent functions of the modified WLF theory parameters C sub 1 (T) and C sub 2 (T) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents a progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure.

  9. Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation

    International Nuclear Information System (INIS)

    Román, Frida; Calventus, Yolanda; Colomer, Pere; Hutchinson, John M.

    2013-01-01

    Highlights: • The nanocomposite with low content of clay displayed improved thermal properties. • The vitrification was observed in the isothermal curing. • Dielectric relaxations outside and inside of the clay galleries were detected. - Abstract: The use of an initiator, 4-(dimethylamino) pyridine (DMAP), to promote an anionic homopolymerisation reaction for the isothermal cure of polymer layered silicate (PLS) nanocomposites based on an epoxy resin, as well as the effect of the nanoclay content, have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dielectric relaxation spectroscopy (DRS) and transmission electron microscopy (TEM). The vitrification phenomenon was observed during the isothermal cure process, and it was found that the nanocomposite with a low clay content (2 wt%), denoted EDM2, shows improved thermal properties with respect to the unreinforced resin (denoted ED), while the nanocomposite with a higher clay content (5 wt%), denoted EDM5, displayed inferior properties. The cure kinetics were analysed by different methods, and it was observed that the activation energy and kinetic parameters of EDM2 were lower compared to the other two systems. Examination of the nanostructure of the cured EDM2 nanocomposite showed partial exfoliation, while the EDM5 system retains an intercalated nanostructure. In the DRS studies of the curing process of the EDM2 system, two dielectric relaxations were detected, which are associated with the molecular mobility in the curing reaction which takes place both outside and inside the clay galleries

  10. Treatment of spent ion exchange resins IAEA research coordination programme

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.; Wattal, P.K.; Chanana, N.

    1981-09-01

    Spent ion-exchange resins arising from steam condensate systems, reactor coolant clean-up systems and rad-waste procession, are considered as a specific solid waste management problem. This is the second report on the product characterisation with respect to thermal properties, flammability, bio-organic degradation and leaching behaviours. All these studies are based on polyester-styrene polymer as a matrix for fixation of these spent Ix-resins. Choice of this matrix was dealt with in the first report. (author)

  11. Cellulose whisker/epoxy resin nanocomposites.

    Science.gov (United States)

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  12. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  13. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... resins may contain up to 0.2 percent by weight of titanium dioxide as an optional adjuvant substance. (c...-contact surface tested. (d) In accordance with good manufacturing practice, finished articles containing...

  14. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation.

    Science.gov (United States)

    Gayen, Pralay; Chaplin, Brian P

    2017-08-23

    This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO 4 - formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO 4 - formation decreased from rates of 0.45 ± 0.03 mmol m -2 min -1 during 1 mM NaClO 3 oxidation and 0.28 ± 0.01 mmol m -2 min -1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH • production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m -2 min -1 ) for up to 10 consecutive NaClO 3 oxidation experiments.

  15. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers....... The factors affecting the performance of these polymers and the structure-property relationships are reviewed. A comprehensive review of the techniques used to evaluate the performance of the polymeric inhibitors is given. This review also addresses recent developments, current and future challenges...

  16. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  17. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  18. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  19. Development of neutron shielding material using metathesis-polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori E-mail: ysakurai@rri.kyoto-u.ac.jp; Sasaki, Akira; Kobayashi, Tooru

    2004-04-21

    A neutron shielding material using a metathesis-polymer matrix, which is a thermosetting resin, was developed. This shielding material has characteristics that can be controlled for different mixing ratios of neutron absorbers and for formation in the laboratory. Additionally, the elastic modulus can be changed at the hardening process, from a flexible elastoma to a mechanically tough solid. Experiments were performed at the Kyoto University Research Reactor in order to determine the important characteristics of this metathesis-polymer shielding material, such as neutron shielding performance, secondary gamma-ray generation and activation. The metathesis-polymer shielding material was shown to be practical and as effective as the other available shielding materials, which mainly consist of thermoplastic resin.

  20. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    Directory of Open Access Journals (Sweden)

    Fatime Eren Erol

    2014-01-01

    Full Text Available Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP and Cu(I catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-MMA-block-PPEGMA block copolymers by using ATRP, followed by a modification step on the hydroxyl side groups of HEMA via Steglich esterification to afford propargyl side-functional polymer, alkyne-P(HEMA-co-MMA-block-PPEGMA. Finally, click coupling between side-chain acetylene functionalities and 2,3,4,5,6-pentafluorobenzyl azide yielded fluorinated amphiphilic block copolymers. The obtained polymers were structurally characterized by 1H-NMR, 19F-NMR, FT-IR, and GPC. Their thermal characterizations were performed using DSC and TGA.

  1. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    Science.gov (United States)

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  2. Fluorine analysis of human enamel around fluoride-containing materials under different pH-cycling by {mu}-PIGE/PIXE system

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, H., E-mail: kom@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Yamamoto, H. [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Matsuda, Y.; Kijimura, T.; Kinugawa, M.; Okuyama, K. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Nomachi, M. [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043 (Japan); Yasuda, K. [Wakasa Wan Energy Research Center, 64-52-1 Hase, Tsuruga 914-0192 (Japan); Satoh, T. [Advanced Radiation Technology, TARRI, JAEA, 1233 Watanuki-Machi, Takasaki 370-1292 (Japan); Oikawa, S. [National Institute of Radiological Science, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-10-15

    The caries preventive effect of fluoride-containing materials (FCMs) might depend on the caries risk of the individuals. Two pairs of demineralizing and remineralizing solutions of pH-cycling were prepared for simulating low and high caries risk. The purpose of this study was to determine fluorine (F) uptake into human enamel around FCMs under different pH-cycling using the in-air {mu}-PIGE/PIXE system. Fluoride-containing glass ionomer cement (Fuji IX{sub GP} FAST CAPSULE (FN)), and composite resin (BEAUTIFIL II with FLUORO BOND SHAKE ONE (BS)) were used in this study. The pH-cycling (pH 6.8-4.5) was carried out for 5 weeks. After pH-cycling, the caries progression was analyzed using transverse micro-radiography (TMR). The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the PIGE/PIXE system. From TMR analysis, there was a difference in caries risk between the two kinds of pH-cycling. Although the caries preventive effect of BS and FN was confirmed at low risk, the effect at high risk was confirmed for FN only. From the analysis of the fluorine uptake in the outer 200 {mu}m of the lesion we concluded that there was no significant difference between the pH-cycling solutions. However, we found different fluorine concentrations in the enamel for the two FCMs. The decreased caries progression under high risk for FN indicated that an adequate amount of fluorine supplied from the material is required at higher caries risk. It was confirmed that the caries preventive effect of FCM depends on the caries risk. The fluorine analysis of teeth under various pH-cycling conditions gives information to evaluate the caries preventive effect of fluoride-containing materials according to the caries risk.

  3. Fluorine analysis of human enamel around fluoride-containing materials under different pH-cycling by μ-PIGE/PIXE system

    International Nuclear Information System (INIS)

    Komatsu, H.; Yamamoto, H.; Matsuda, Y.; Kijimura, T.; Kinugawa, M.; Okuyama, K.; Nomachi, M.; Yasuda, K.; Satoh, T.; Oikawa, S.

    2011-01-01

    The caries preventive effect of fluoride-containing materials (FCMs) might depend on the caries risk of the individuals. Two pairs of demineralizing and remineralizing solutions of pH-cycling were prepared for simulating low and high caries risk. The purpose of this study was to determine fluorine (F) uptake into human enamel around FCMs under different pH-cycling using the in-air μ-PIGE/PIXE system. Fluoride-containing glass ionomer cement (Fuji IX GP FAST CAPSULE (FN)), and composite resin (BEAUTIFIL II with FLUORO BOND SHAKE ONE (BS)) were used in this study. The pH-cycling (pH 6.8-4.5) was carried out for 5 weeks. After pH-cycling, the caries progression was analyzed using transverse micro-radiography (TMR). The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the PIGE/PIXE system. From TMR analysis, there was a difference in caries risk between the two kinds of pH-cycling. Although the caries preventive effect of BS and FN was confirmed at low risk, the effect at high risk was confirmed for FN only. From the analysis of the fluorine uptake in the outer 200 μm of the lesion we concluded that there was no significant difference between the pH-cycling solutions. However, we found different fluorine concentrations in the enamel for the two FCMs. The decreased caries progression under high risk for FN indicated that an adequate amount of fluorine supplied from the material is required at higher caries risk. It was confirmed that the caries preventive effect of FCM depends on the caries risk. The fluorine analysis of teeth under various pH-cycling conditions gives information to evaluate the caries preventive effect of fluoride-containing materials according to the caries risk.

  4. 77 FR 1267 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Science.gov (United States)

    2012-01-09

    ... Cooling Tower PEPO--Polyether Polyols PET--Poly (Ethylene Terephthalate) Resin PM--Particulate Matter POM...., fixed roofs on storage vessels and oil water separators; covers on surface impoundments, containers and... category: Solid-state resins (PET bottle grade resins), polyester film and engineering resins. They are all...

  5. Derisking the Cu-Mediated 18F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands.

    Science.gov (United States)

    Taylor, Nicholas J; Emer, Enrico; Preshlock, Sean; Schedler, Michael; Tredwell, Matthew; Verhoog, Stefan; Mercier, Joel; Genicot, Christophe; Gouverneur, Véronique

    2017-06-21

    Molecules labeled with fluorine-18 ( 18 F) are used in positron emission tomography to visualize, characterize and measure biological processes in the body. Despite recent advances in the incorporation of 18 F onto arenes, the development of general and efficient approaches to label radioligands necessary for drug discovery programs remains a significant task. This full account describes a derisking approach toward the radiosynthesis of heterocyclic positron emission tomography (PET) radioligands using the copper-mediated 18 F-fluorination of aryl boron reagents with 18 F-fluoride as a model reaction. This approach is based on a study examining how the presence of heterocycles commonly used in drug development affects the efficiency of 18 F-fluorination for a representative aryl boron reagent, and on the labeling of more than 50 (hetero)aryl boronic esters. This set of data allows for the application of this derisking strategy to the successful radiosynthesis of seven structurally complex pharmaceutically relevant heterocycle-containing molecules.

  6. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    Science.gov (United States)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    mantle, and if they form connected networks as observed for some natural samples, regionally high electrical conductivities could be produced. It has been recently proposed that the transition zone is probably a major reservoir for fluorine in the mantle, due to the significant dissolution of fluorine in wadsleyite and ringwoodite and the coupled incorporation with hydroxyl groups. As such, geophysically-resolved high electrical conductivities in the transition zone may be accounted for by fluorine in the dominant minerals, rather than by hydroxyl groups. The results of this work would stimulate a wide scope of future studies on the deep fluorine cycle, the deep water cycle and the geodynamical properties of the mantle.

  7. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  8. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    Science.gov (United States)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  9. Sustainable polymers from renewable resources.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  10. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries

    Directory of Open Access Journals (Sweden)

    Xu Bi

    2018-06-01

    Full Text Available Fluorinated graphene (FG has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C–N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g−1 and a discharge plateau of 2.35 V at a current density of 10 mA g−1, corresponding to a high energy density of 1485 Wh kg−1.

  11. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  12. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    International Nuclear Information System (INIS)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-01-01

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model

  13. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  14. Application of xenon difluoride for surface modification of polymers

    International Nuclear Information System (INIS)

    Barsamyan, G.B.; Belokonov, K.V.; Vargasova, N.A.; Sokolov, V.B.; Chaivanov, B.B.; Zubov, V.P.

    1994-01-01

    Chemical interaction between xenon difluoride (XeF 2 ) and polymeric materials was investigated. It was shown that the reaction occurs on the surface of solid polymer layer and brings to chemical modification of the surface properties of the polymer leaving the bulk properties unchanged. The results of various analysis of the fluorinated samples (IR, FTIR-ATR, ESCA, bulk analysis etc) are presented. The mechanism of reaction is proposed. 12 refs.; 13 figs

  15. Dihydroxybenzene/benzoquinone-containing polymers: organic redox polymers

    Energy Technology Data Exchange (ETDEWEB)

    Moulay, S. [Universite de Blida, Lab. de Chimie-Physique Macromoleculaire, Institut de Chimie Industrielle (Algeria)

    2000-08-01

    Polymers containing hydroquinone, catechol or their corresponding benzoquinones are a special class of redox polymers. Three pathways of their syntheses are possible: condensation polymerization of suitable monomers, addition polymerization of vinyl monomers containing redox moiety, and chemical attachment of redox unit onto pre-made polymeric matrix. A range of functionalized matrices have been employed such as polyethers, polyesters, polycarbonates, polyurethanes, polyamides and others. Protection of their phenolic functionality has conducted to chemically interesting redox polymer precursors. The presence of a redox moiety coupled with the extant functionalization of the polymer matrix makes the materials very valuable, of wide properties and consequently of vast applicability. For instance, in the oil field, some polymers such as carboxy-methyl-cellulose (CMC) are often applied as to bring about a viscosity improvement and therefore to facilitate the oil drilling. In this regard, Patel evaluated sulfo-alkylated polymeric catechol, namely sulfo-methylated and sulfo-ethylated resins. Indeed, polymeric catechol chemically modified as such exhibited a marked ability to control the viscosity, the gel strength, as well as the filtrate loss of aqueous oil drilling fluids.

  16. Synthesis and properties of hydroxy acrylic resin with high solid content

    Science.gov (United States)

    Yu, Zhen; Hu, Mingguang; Cui, Han; Xiao, Jijun

    2017-10-01

    Manufacturers of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds in their paints in order to comply with increasingly strict environmental legislation. A high solid hydroxy acrylic resin was synthesised using CARDURA E10 and a type of hydroxyacrylic acid resin, its' acid value, hydroxylvalue, viscosity, structure, morphology was measured and film-forming properties after curing were characterised. The results show that the addition of CARDURA E10 in the copolymer composition significantly reduced the viscosity of the polymer system, improved the solid content of the resin and the physical properties of the coating. The hydroxyl acrylate resin with solid content of 90% and excellent comprehensive performance were successfully prepared by controlling the initiator dosage, polymerization temperature and monomer ratio.

  17. Palladium-catalysed electrophilic aromatic C-H fluorination

    Science.gov (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  18. Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Guorui [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi' an Jiaotong University, School of Life Science and Technology, Xi' an 710049 (China); Li, Jun [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Li, Kai, E-mail: kai_li_cn@hotmail.com [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, 94305 (United States)

    2017-01-01

    Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600–1200 nm). The photosensitive SP was then applied in electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold and evaluated its proliferative effect on HDFs under the illumination from red light-emitting diode (LED) with high tissue penetration. After 9 days of continuous stimulation, the hybrid electrospun PCL/PDBTT nanofibers with low cytotoxicity showed excellent support for HDFs adhesion, proliferation and collagen secretion than neat PCL nanofibers and HDFs on the stimulated PCL/PDBTT nanofibers gained typical spindle morphology, indicating the well cell spreading on the stimulated PCL/PDBTT nanofibers. The incorporation of functional materials within synthetic biomaterials could be a novel way in improving the performance of engineered tissue constructs by providing multiple cues (e.g. electrical stimulation) to the attached cells. - Highlights: • A photosensitive semiconducting polymer (SP) was applied in electrospun nanofibrous scaffold. • The SP-incorporated scaffold could promote cell proliferation upon light stimulation. • The designed photosensitive SP could be applied as functional material with low cost and high durability in skin tissue engineering.

  19. Mechanical performance of resol type phenolic resin/layered silicate nanocomposites

    NARCIS (Netherlands)

    Tasan, C.C.; Kaynak, C.

    2009-01-01

    Clay addition has been shown to affect polymer resins positively in terms of several physical and chemical properties, including mechanical performance, high temperature endurance and durability. These increases are limited only to relatively low concentrations of reinforcement phase, but at these

  20. Thermoset polymers via ring opening metathesis polymerization of functionalized oils

    Science.gov (United States)

    Larock, Richard C; Henna, Phillip H; Kessier, Michael R

    2012-11-27

    The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.

  1. Synthesis, characterization and thermal analysis of urea-formaldehyde/nanoSiO{sub 2} resins

    Energy Technology Data Exchange (ETDEWEB)

    Roumeli, E. [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, E. [Chimar Hellas S.A., Sofouli 88, 55131 Thessaloniki (Greece); Pavlidou, E.; Vourlias, G. [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Bikiaris, D. [Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K., E-mail: hrisafis@physics.auth.gr [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer UF/nanosilica resins have been produced using the minimum cost method. Black-Right-Pointing-Pointer The new resins had good dispersion and enhanced properties. Black-Right-Pointing-Pointer Nanosilica interacts with polymer chains as was proved by FTIR and DSC. Black-Right-Pointing-Pointer Nanosilica does not affect the resin's thermal stability but enhances its mechanical properties. - Abstract: In the present work urea-formaldehyde resins (UF) containing different amounts of SiO{sub 2} nanoparticles were synthesized and studied in depth. All the hybrids were characterized with Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffractometry (XRD), while the dispersion of nanoparticles was studied with scanning electron microscopy with associated energy dispersive X-ray spectrometer (SEM/EDS). It was found that even though silanol groups of SiO{sub 2} can interact with UF resin and form hydrogen bonds, aggregates of SiO{sub 2} nanoparticles can still be formed in UF resin. Their size increases as SiO{sub 2} content is increased. The curing reactions were examined with differential scanning calorimetry (DSC) and it was revealed that curing temperature of UF resin is slightly affected by the addition of nanoparticles. Furthermore, the activation energy of the curing reactions, for every hybrid, was calculated using the Kissinger's method, which implied the existence of interactions between the nanoparticles and the polymer chain. Thermogravimetric analysis (TGA) revealed that SiO{sub 2} nanoparticles do not have an effect in the thermal stability of the resin. From the application of the prepared UF/SiO{sub 2} resins in wood panels it was found that the mechanical properties of the panels, like the internal bond and the modulus of rapture, are enhanced with increasing nanoSiO{sub 2} concentration.

  2. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands

    International Nuclear Information System (INIS)

    Alexandratos, Spiro D.

    2007-01-01

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion

  3. Investigation of Resin Systems for Improved Ablative Materials

    Science.gov (United States)

    1966-04-01

    condensed rings, Boron linear chain of rings Carboranes B-P Resins Polymers Containing Si-O Silicon Si -C Si -N Furan Derivatives Furfural Base Furfural ...8217 Adsorption Theory of Adhesion’ presented at the 144th American Chemical Society Meeting, held in Los Angeles, April 1963. 15. Freeman, J. H. , L. W

  4. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  5. A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering

    Science.gov (United States)

    Wang, Mei; Duong, Le Dai; Ma, Yifei; Sun, Yan; Hong, Sung Yong; Kim, Ye Chan; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.

  6. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    Science.gov (United States)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  7. Aging in CTBN modified epoxy resin stocks

    International Nuclear Information System (INIS)

    Creed, K.E. Jr.

    1979-01-01

    The cause of degradation in the glass transition temperature (T/sub G/) of a partially crystallized polymer was investigated. Sample epoxy resin filled capacitors were cured at 90 0 C for 24 hours, then stored at room atmospheric conditions. These showed typical degradation in T/sub G/ after storage for one month. One set of epoxy resin castings was stored at room atmosphere and another set was stored in a dry box at 0% relative humidity and 27 0 C. The samples at room atmospheric conditions showed typical degradation in T/sub G/, while the T/sub G/ for those stored in the dry box increased. Further tests were then made on epoxy resin castings at various curing temperatures and times at both room atmosphere and 0% humidity. Resulting data indicated that absorption of moisture during storage was the predominant cause of T/sub G/ degradation, with stress relaxation another, though smaller, contributing factor

  8. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2011-01-01

    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.

  9. Further investigations of the properties of polymer modified cements

    International Nuclear Information System (INIS)

    Johnson, D.I.

    1988-05-01

    This report concludes the work done on behalf of the Department of the Environment on polymer modified cement composites. Topics covered include: the influence of cure schedule on flexural properties, observation of the onset and cracking during flexural testing, measurement of water permeability and caesium diffusion rates, and the use of Back Scattered Electron Imaging to identify the polymer phase. The properties of epoxide resin modified cements in the previous report were disappointing. Air entrainment of the mixing stage was a likely cause of the poor performance of these products and procedures to overcome this problem were devised. The range of polymer additives investigated was broadened by the inclusion of modified acrylic latexes and a polymensable acrylate resin additive. Properties for OPC and 9 BFS: 1 OPC cements are compared and the modification of properties achieved by polymer additions to both cement systems is discussed. (author)

  10. Column chromatographic separation of Y3+ from Sr2+ by polymeric ionizable crown ether resins

    International Nuclear Information System (INIS)

    Wood, D.J.; Elshani, S.; Wai, C.M.; Bartsch, R.A.; Huntley, M.; Hartenstein, S.

    1993-01-01

    Condensation polymers containing subunits of crown ether carboxylic acid monomers are effective stationary phases for the chromatographic separation of Y 3+ and Sr 2+ . The pH range and metal loading capacities for the resins have been determined under equilibrium conditions. The resin can be regenerated for repeated use without losing its separation capability. Altering the molecular structure of the monomer (sym-dibenzo-16-crown-5-oxyacetic acid) by an alkyl substitution on the macrocyclic cavity decreases the loading capacity of the resin

  11. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  12. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  13. A Polymethyl Methacrylate-Based Acrylic Dental Resin Surface Bound with a Photoreactive Polymer Inhibits Accumulation of Bacterial Plaque.

    Science.gov (United States)

    Fukunishi, Miya; Inoue, Yuuki; Morisaki, Hirobumi; Kuwata, Hirotaka; Ishihara, Kazuhiko; Baba, Kazuyoshi

    The aim of this study was to examine the ability of a poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butylmethacrylate-co-2-methacryloyloxyethyloxy-p-azidobenzoate) (PMBPAz) coating on polymethyl methacrylate (PMMA)-based dental resin to inhibit bacterial plaque formation, as well as the polymer's durability against water soaking and chemical exposure. Successful application of PMBPAz on PMMA surfaces was confirmed by x-ray photoelectron spectroscopy (XPS) and measuring the static air contact angle in water. The anti-adhesive effects to bacterial plaque were evaluated using Streptococcus mutans biofilm formation assay. The mechanical and chemical durabilities of the PMBPAz coating on the PMMA surfaces were examined using soaking and immersion tests, respectively. XPS signals for phosphorus and nitrogen atoms and hydrophilic status on PMMA surfaces treated with PMBPAz were observed, indicating the presence of the polymer on the substrates. The treated PMMA surfaces showed significant inhibition of S mutans biofilm formation compared to untreated surfaces. The PMBPAz coating was preserved after water soaking and chemical exposure. In addition, water soaking did not decrease the ability of treated PMMA to inhibit biofilm formation compared to treated PMMA specimens not subjected to water soaking. This study suggests that PMBPAz coating may represent a useful modification to PMMA surfaces for inhibiting denture plaque accumulation.

  14. Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, Ozge; Taniguchi, Ikuo; Mayes, Anne M. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kumar, Sundeep; Shao-Horn, Yang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2007-01-01

    Conductivity hysteresis and room temperature ionic conductivities >10{sup -3}S/cm were recently reported for electrolytes prepared from blends of an amphiphilic comb copolymer, poly[2,5,8,11,14-pentaoxapentadecamethylene (5-hexadecyloxy-1,3-phenylene)] (polymer I), and a linear multiblock copolymer, poly(oligotetrahydrofuran-co-dodecamethylene) (polymer II), following thermal treatment [F. Chia, Y. Zheng, J. Liu, N. Reeves, G. Ungar, P.V. Wright, Electrochim. Acta 43 (2003) 1939]. To investigate the origin of these effects, polymers I and II were synthesized in this work, and the conductivity and thermal properties of the individual polymers were investigated. AC impedance measurements were conducted on I and II doped with LiBF{sub 4} or LiClO{sub 4} during gradual heating to 110{sup o}C and slow cooling to room temperature. Significant conductivity hysteresis was seen for polymer II, and was similarly observed for poly(tetrahydrofuran) (PTHF) homopolymer at equivalent doping levels. From thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and {sup 1}H NMR spectroscopy, both polymer II and PTHF were found to partially decompose to THF during heat treatment, resulting in a self-plasticizing effect on conductivity. (author)

  15. A conditioning process for ion exchanger resins contaminated with radioactive elements

    International Nuclear Information System (INIS)

    Legros, R.; Wiegert, B.; Zeh, J.L.

    1993-01-01

    Ion exchanger resins are embedded in a pre-polymer syrup prepared from acrylic monomers having high boiling point. A curing catalyst (a peroxide) and an activation agent (a tertiary amine) are added. 12 examples are given. 9 p

  16. Immobilization in cement of ion exchange resins from Spanish nuclear reactors

    International Nuclear Information System (INIS)

    Huebra, A.G. de la; Murillo, R.; Ortiz, S.J.

    1990-01-01

    Ion exchange materials used at nuclear power plants can be immobilized in cements less expensive than polymer matrices. Cement solidification of spent ion exchange resins shows swelling and cracking troubles (during setting time, or of storage). The objective of this study was to select the types of cement that produce the best quality on immobilization of three kinds of resins and to set up cement formulations containing the maximum possible loading of resin. Four cements were selected to carried out the study. After a study of hydration-dehydration phenomena of ion exchange resins, a systematic work has been carried out on immobilization. Tests were performed to study compressive strength and underwater stability by changing water/cement ratio and resin/cement ratio. Mixtures made with water, cement and resin only were loaded with 10% by weight dry resin. Mixtures with higher loadings show poor workability. Tests were carried out by adding organic plasticizers and silica products to improve waste loading. Plasticizers reduced water demand and silica products permit the use of more water. Leaching tests have been performed at 40 O C. In conclusion Blast Furnace Slag is the best cement for immobilization of ion exchange resin both bead and powdered form for mechanical strength, stability and leaching

  17. Accumulation of fluorine in CF4 plasma-treated AlGaN/GaN heterostructure interface: An experimental investigation

    International Nuclear Information System (INIS)

    Basu, Anirban; Adesida, Ilesanmi

    2009-01-01

    The impact of CF 4 plasma treatment on the transport properties of the two dimensional electron gas (2DEG) in AlGaN/GaN heterostrustures has been studied. Systematic Hall measurements of the plasma-treated samples show a large degradation in mobility and sheet concentration, which can be partially recovered with short-duration rapid thermal annealing. Further annealing progressively degrades both mobility and sheet concentration. Secondary ion mass spectrometry of the heterostructure reveals accumulation of fluorine at the AlGaN/GaN interface close to the 2DEG channel as a result of annealing. Following our systematic electrical and analytical studies of the behavior of fluorine incorporated into the heterostructure epilayer due to bombardment, a vacancy-mediated postannealing redistribution of fluorine has been proposed

  18. Nucleophilic Fluorination Reactions in Novel Reaction Media for 18F-Fluorine Labeling Method

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Jeong, Hwan Jeong; Lim, Seok Tae; Sohn, Myung Hee

    2009-01-01

    Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography (PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with 18F-fluorine. In this review we describe recent methods and novel trends for the introduction of 18 F-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic 18 F-fluorination of some halo- and mesyloxyalkanes to the corresponding 18 F-fluoroalkanes with 18 F-fluoride obtained from an 18 O(p,n) 18 F reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for 18 F-fluorine labeling. Ionic liquid method is rapid and particularly convenient because 18 F-fluoride in H 2 O can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with 18 F-fluorine for PET imaging, and it is illustrated by the synthesis of 18 F-fluoride radiolabeled molecular imaging probes, such as 18 F-FDG, 18 F-FLT, 18 F-FP-CIT, and 18 F-FMISO, in high yield and purity and in shorter times compared to conventional syntheses

  19. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Wilber Yaote [Iowa State Univ., Ames, IA (United States)

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  20. Isothermal aging effects on PMR-15 resin

    Science.gov (United States)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.

    1993-01-01

    Specimens of PMR-15 polyimide neat resin were aged in air at temperatures of 288, 316, and 343 C. Weight losses and dimensional changes were monitored during the course of the exposure time. Physical changes were also observed by optical and electron microscopy. It was found that polyimide polymer degradation occurred within a thin surface layer that developed and grew during thermal aging. The cores of the polymer specimens were protected from oxidative degradation, and they were relatively unchanged by the thermal treatment. Surface cracking was observed at 343 C and was probably due to an interaction between voids and stresses that developed in the surface layer.

  1. Effect of the Alkyl Chain Length on the Adsorption Properties of Malonamide Chelating Resins

    International Nuclear Information System (INIS)

    Ismail, I.M.; Nogami, M.; Suzuki, K.

    2004-01-01

    In order to investigate the effect of the alkyl chain length of malonamide chelating resins on the rate of uptake of U(VI) ions and Ce(III) Ions, lV,N,N',N'-tetraethyl malonamide (TEMA), N,N,N',N'-tetra-n-propyl malonamide (TPrMA), lV,lV,N',N'-tetra-n-butyl malonamide (TBMA) and N,l V,N',N'-tetra-n-pentyl malonamide (Tamp) chelating resins were synthesized by chemically bonding these function groups to CMS-DVB co-polymer beads. N,lV,N',N'-tetraphenyl malonamide (TPhMA) chelating resin was also investigated and the results of these resins were compared with those of N,lY,N',N-tetra methylmalonamide (TMMA) previously reported. The batch technique was used to study the thermodynamic equilibrium, in terms of distribution coefficient, and the kinetics of the adsorption U(VI) and Ce(III) ions from 3 M HNO 3 , Acid, and 3 M NaNO 3 + 0.05 M HNO 3 , Salt, media. The introduction ratio of the function group into the polymer base and the uptake of U(VI) ions and C(III) ions were found to decrease with the increase in the alkyl chain length. The uptake was found to diminish in case of TPhMA resin due to the decrease of the function group ratio and the steric-hinder effect

  2. Macroscale tribological properties of fluorinated graphene

    Science.gov (United States)

    Matsumura, Kento; Chiashi, Shohei; Maruyama, Shigeo; Choi, Junho

    2018-02-01

    Because graphene is carbon material and has excellent mechanical characteristics, its use as ultrathin lubrication protective films for machine elements is greatly expected. The durability of graphene strongly depends on the number of layers and the load scale. For use in ultrathin lubrication protective films for machine elements, it is also necessary to maintain low friction and high durability under macroscale loads in the atmosphere. In this study, we modified the surfaces of both monolayer and multilayer graphene by fluorine plasma treatment and examined the friction properties and durability of the fluorinated graphene under macroscale load. The durability of both monolayer and multilayer graphene improved by the surface fluorination owing to the reduction of adhesion forces between the friction interfaces. This occurs because the carbon film containing fluorine is transferred to the friction-mating material, and thus friction acts between the two carbon films containing fluorine. On the other hand, the friction coefficient decreased from 0.20 to 0.15 by the fluorine plasma treatment in the multilayer graphene, whereas it increased from 0.21 to 0.27 in the monolayer graphene. It is considered that, in the monolayer graphene, the change of the surface structure had a stronger influence on the friction coefficient than in the multilayer graphene, and the friction coefficient increased mainly due to the increase in defects on the graphene surface by the fluorine plasma treatment.

  3. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  4. Development of critical molecular weight-property specifications for high performance polymers used as adhesives and composites

    Science.gov (United States)

    Kranbuehl, D. E.

    1982-01-01

    The polyimide resin, LARC-160, was prepared from diethyl-3, 3', 4,4'-benzophenone tetracarboxylate, ethyl-5-norbornene-2,3-dicarboxylate and Jeffamine AP-22. The imidization reactions of NE and BTDE were studied by HPLC, C-13-NMR and IR. NE imidizes slowly at 12 C; BTDE imidizes when the resin is heated above 100 C. Both imidization reactions proceed directly to the imide. Neither amic acid is present in significant quantities at any stage of the imidization reactions. The monomer mixture was stored at 12 C for periods up to 14 months. The effects of resin aging at this temperature on the chemical composition of the resin monomer mixture and the imidized polymer formed on curing were investigated. Aging the resin monomer mixture has the effect of partially advancing the imidization reaction. The average size of the cured polymer increases slightly with resin age.

  5. The addition of nanostructured hydroxyapatite to an experimental adhesive resin.

    Science.gov (United States)

    Leitune, Vicente Castelo Branco; Collares, Fabrício Mezzomo; Trommer, Rafael Mello; Andrioli, Daniela Guerra; Bergmann, Carlos Pérez; Samuel, Susana Maria Werner

    2013-04-01

    Was produced nanostructured hydroxyapatite (HAnano) and evaluated the influence of its incorporation in an adhesive resin. HAnano was produced by a flame-based process and was characterized by scanning electron microscopy. The surface area, particle size, micro-Raman and cytotoxicity were evaluated. The organic phase was formulated by mixing 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA. HAnano was added at seven different concentrations: 0; 0.5; 1; 2; 5; 10 and 20 wt.%. Adhesive resins with hydroxyapatite incorporation were evaluated for their radiopacity, degree of conversion, flexural strength, softening in solvent and microshear bond strength. The data were analyzed by one-way ANOVA and Tukey's post hoc test (α=0.05), except for softening in solvent (paired t-test) and cytotoxicity (two-way ANOVA and Bonferroni). HAnano presented 15.096 m(2)/g of specific surface area and a mean size of 26.7 nm. The radiopacity values were not different from those of 1-mm aluminium. The degree of conversion ranged from 52.2 to 63.8%. The incorporation of HAnano did not influence the flexural strength, which ranged from 123.3 to 143.4MPa. The percentage of reduction of the microhardness after immersion in the solvent became lower as the HAnano concentration increased. The addition of 2% nanostructured hydroxyapatite resulted in a higher value of microshear bond strength than the control group (phydroxyapatite into an adhesive resin presented the best results. The incorporation of nanostructured hydroxyapatite increases the adhesive properties and may be a promising filler for adhesive resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Post-modification by γ-radiation of VDF-based polymers: Electrochemical capacitor membrane application

    International Nuclear Information System (INIS)

    Dumas, L.

    2012-01-01

    This work deals with the modification of VDF-based polymer induced by γ-radiation as the polymer may be used in electrochemical super-capacitors. The main objective was to limit the swelling of the fluorinated matrix with a given electrolyte while a good wetting of the polymer by the liquid was also required. As the main basic process involved in polymer radiolysis is the formation of radicals, a part of the work was dedicated to the study of such species by using Electron Spin Resonance spectroscopy. A simulation model of ESR spectra was established in order to identify and quantify each radical species. The effect of several parameters such as radiation dose, annealing time or the nature of polymer matrix on the concentration of each species where investigated. A relation with the evolution of the crosslink density of the network formed during the radiolysis was proposed. In addition, one of the key steps of this work was to study the radiation crosslinking ability of VDF-based polymers and find a way to increase the crosslink density. This was achieved by incorporating, prior to the radiation process, a radiation sensitive cross linker: TAIC. Finally, a new strategy based on the modification of surface properties of PVDF was investigated. It consists in the radiation grafting of penta-fluor-styrene onto PVDF surface followed by the chemo-selective functionalization of the grafted segments. As a conclusion, the different approaches used in this thesis allowed us to understand the radiolysis of VDF-based polymers and take advantage of the elementary process involved in this type of chemistry, to build up robust and promising strategies for tuning properties. (author)

  7. The influence of fluorine on phase relations and REE enrichment in alkaline magmas

    Science.gov (United States)

    Beard, C. D.; van Hinsberg, V.; Stix, J.; Wilke, M.

    2017-12-01

    for incorporation into solid phases. An increasing fluorine content of the melt will thus make the REE progressively more incompatible and available for residual enrichment. 1. Vasyukova, O. & Williams-Jones, A. E. Geochim. Cosmochim. Acta 139, 110-130 (2014). 2. Ponader, C. W. & Brown Jr., G. E. Geochim. Cosmochim. Acta 53, 2905-2914 (1989).

  8. 21 CFR 173.70 - Chloromethylated aminated styrene-divinylbenzene resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chloromethylated aminated styrene-divinylbenzene resin. 173.70 Section 173.70 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer...

  9. Effect of textile waste on the mechanical properties of polymer concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2009-03-01

    Full Text Available The mechanical behavior of polymer concrete reinforced with textile trimming waste was investigated. Two series of polymer concrete formulations were studied, with different resin/sand (i.e. binder/fine aggregate weight ratios. In each series, recycled textile chopped fibers at 1 and 2% of the total weight was used. Flexural and compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. In the study, both the influence of fiber content and resin/sand weight ratio were considered relative to the behavior of polymer concrete reinforced with textile fibers. A decrease in properties was observed as function of textile fibers content. When specific properties were considered, this tendency was kept. However, higher textile fibers content lead to a smoother failure, unlike brittleness failure behavior of unreinforced polymer concrete.

  10. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  11. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  12. Polymers and block copolymers of fluorostyrenes by ATRP

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Borkar, Sachin; Abildgaard, Lillian

    2002-01-01

    Fully or partly fluorinated polymers have many desirable and intriguing properties. In the framework of a larger program on design and control of new functional block copolymers we recently employed the Atom Transfer Radical Polymerization (ATRP) protocol on 2,3,4,5,6-pentafluorostyrene (FS). We...... materials based on 2,3,5,6-tetrafiuoro-4-methoxy-styrene (TFMS). TFMS homopolymers as well as diblock copolymers with FS are produced by ATRP. Both types of novel polymers were subsequently demethylated and different side chains introduced on the resulting hydroxy sites....

  13. Characterization and disposal of ion exchange resins used in nuclear installations

    International Nuclear Information System (INIS)

    Flores E, R.M.; Ortiz O, H.B.; Olguin G, M.T.; Emeterio H, M.; Garcia M, H.

    2006-01-01

    To dispose of an appropriate way the used ion exchange resins so much in the pool water purification systems of the TRIGA Mark III reactor like in the JS6500 gamma irradiator, of the National Institute of Nuclear Research, were carried out a series of analytic nuclear techniques and complementary conventional to those recommended by the ASTM, with the object of to control and to manage 14 lots of worn out resins appropriately. For its were identified the radioactive isotopes, the resins type, the grade of chemical pollution and the physicochemical degradation of the same ones. The lots of resins that didn't contain radioactive isotopes its were regenerated in an usual way, as long as those that if they controlled them they selected options for its final disposition. The first selected option was the extraction method of ion radioactive isotopes, concentrating the elution product by evaporation. As second option it was carried out the resins stabilization damaged by micro-encapsulation by forged to ambient temperature, using an organic polymer. Previous to the immobilization the resins were pretreated by vacuum drying, pulverization and thermal drying, however before carrying out this last, it was carried out a thermal gravimetric analysis to determine the drying conditions of the resins avoiding its chemical decomposition. (Author)

  14. Ion Exchange Properties of a Terpolymer Resin Derived from 2, 4-Dihydroxybenzaldehyde, Oxamide and Formaldehyde

    Directory of Open Access Journals (Sweden)

    M. V. Tarase

    2009-01-01

    Full Text Available Terpolymer resins (2,4-DHBOF were synthesized by the condensation of 2,4-dihydroxybenzaldehyde and oxamide with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange terpolymer resins for certain metals. Chelation ion exchange properties of these polymers were studied for Fe+3, Cu+2, Hg+2, Cd+2, Co+2, Zn+2, Ni+2 and Pb+2 ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ionic strengths. The polymer showed a higher selectivity for Fe+3, Cd+2 and Co+2 ions than for Cu+2, Hg+2, Zn+2, Ni+2 and Pb+2 ions.

  15. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177.2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended...

  16. Synthesis of adhesive radiohardenable resins of the modified polyepoxide type

    International Nuclear Information System (INIS)

    Acquacalda, J.-M.

    1972-01-01

    Eight adhesive radiohardenable resins of the modified epoxide type have been synthesized. Four were obtained from commercial resins: EPON 812, 827, 871 and ARALDITE 106. The synthesis of the four others required the development of analytical techniques to characterize of the reagents beforehand and then to identify the resins themselves. From a study of behavior under irradiation it seems that all the compounds obey a law of acrylic double bond disappearance with the logarithm of irradiation dose for which it is hard to find a detailed theoretical interpretation. The fracture of irradiated adhesive assemblies and their comparison has shown that for acceptable irradiation doses the synthesized resins, especially the product of Bisphenol A condensation on glycidyl acrylate, behave quite as well as polyepoxide resins without possessing the disadvantages inherent to the incorporation of standard chemical hardeners [fr

  17. Are reactive thermoplastic polymers suitable for future wind turbine composite materials blades?

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    , it was found that only two potential reactive thermoplastic resin systems qualify for different processing requirements for blade manufacturing. Hence, the article focuses on the issues with the use of reactive polymers like APA-6 (Caprolactam) and CBT (Cyclic Butylene Terephtalate) resin systems for composite...

  18. SETH 200: new mobile unit for spent ion-exchange resins embedding in polymers

    International Nuclear Information System (INIS)

    de Buzonniere, A.; Raibaud, J.; Augustin, X.

    1985-01-01

    The CEA embedding process for low- and medium-activity waste in thermosetting resins (polyester or epoxy) has been used industrially. Recent developments (elimination of chemical pretreatment thanks to a new epoxy formulation and technological breakthroughs in the operating techniques) have greatly increased the potential of the process and have allowed with Technicatome's industrial experience, the elaboration of a new mobile unit easily operated and very competitive, particularly in spent resin processing

  19. Chemoviscosity modeling for thermosetting resins - I

    Science.gov (United States)

    Hou, T. H.

    1984-01-01

    A new analytical model for chemoviscosity variation during cure of thermosetting resins was developed. This model is derived by modifying the widely used WLF (Williams-Landel-Ferry) Theory in polymer rheology. Major assumptions involved are that the rate of reaction is diffusion controlled and is linearly inversely proportional to the viscosity of the medium over the entire cure cycle. The resultant first order nonlinear differential equation is solved numerically, and the model predictions compare favorably with experimental data of EPON 828/Agent U obtained on a Rheometrics System 4 Rheometer. The model describes chemoviscosity up to a range of six orders of magnitude under isothermal curing conditions. The extremely non-linear chemoviscosity profile for a dynamic heating cure cycle is predicted as well. The model is also shown to predict changes of glass transition temperature for the thermosetting resin during cure. The physical significance of this prediction is unclear at the present time, however, and further research is required. From the chemoviscosity simulation point of view, the technique of establishing an analytical model as described here is easily applied to any thermosetting resin. The model thus obtained is used in real-time process controls for fabricating composite materials.

  20. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    Science.gov (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  1. Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization

    Directory of Open Access Journals (Sweden)

    Edwin Murillo

    Full Text Available Abstract Four waterborne hyperbranched alkyd-acrylic resins (HBRAA were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR, methyl methacrylate (MMA, butyl acrylate (BA and acrylic acid (AA, by using benzoyl peroxide (BPO and ammonium persulfate (AP as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC, nuclear magnetic resonance (NMR and gel permeation chromatography (GPC. The conversion percentage, glass transition temperature (Tg, content of acrylic polymer (determined by soxhlet extraction and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time of the HBRAA were good.

  2. Conceptual design of a continuous fluorinator experimental facility (CFEF)

    International Nuclear Information System (INIS)

    Lindauer, R.B.; Hightower, J.R. Jr.

    1976-07-01

    A conceptual design has been made of a circulating salt system, consisting principally of a fluorinator and reduction column, to demonstrate uranium removal from the salt by fluorination. The fluorinator vessel wall will be protected from fluorine corrosion by a frozen salt film. The circulating salt in the fluorinator will be kept molten by electrical heating that simulates fission product heating in an actual MSBR system

  3. The influences of N-acetyl cysteine (NAC) on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA)-based dental resin.

    Science.gov (United States)

    Jiao, Yang; Ma, Sai; Li, Jing; Shan, Lequn; Yang, Yanwei; Li, Meng; Chen, Jihua

    2015-01-01

    Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC) on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA) dental resins. Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%). MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR). Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively. Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%. Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties.

  4. Polymer/Silicate Nanocomposites Developed for Improved Strength and Thermal Stability

    Science.gov (United States)

    Campbell, Sandi G.

    2003-01-01

    Over the past decade, polymer-silicate nanocomposites have been attracting considerable attention as a method of enhancing polymer properties. The nanometer dimensions of the dispersed silicate reinforcement can greatly improve the mechanical, thermal, and gas barrier properties of a polymer matrix. In a study at the NASA Glenn Research Center, the dispersion of small amounts (less than 5 wt%) of an organically modified layered silicate (OLS) into the polymer matrix of a carbon-fiber-reinforced composite has improved the thermal stability of the composite. The enhanced barrier properties of the polymer-clay hybrid are believed to slow the diffusion of oxygen into the bulk polymer, thereby slowing oxidative degradation of the polymer. Electron-backscattering images show cracking of a nanocomposite matrix composite in comparison to a neat resin matrix composite. The images show that dispersion of an OLS into the matrix resin reduces polymer oxidation during aging and reduces the amount of cracking in the matrix significantly. Improvements in composite flexural strength, flexural modulus, and interlaminar shear strength were also obtained with the addition of OLS. An increase of up to 15 percent in these mechanical properties was observed in composites tested at room temperature and 288 C. The best properties were seen with low silicate levels, 1 to 3 wt%, because of the better dispersion of the silicate in the polymer matrix.

  5. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    Ohtomo, K.

    1976-01-01

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  6. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  7. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  8. Evaluation of the resin oxidation process using Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro G.; Goes, Marcos M.; Marumo, Julio T.

    2013-01-01

    The ion exchange resin is considered radioactive waste after its final useful life in nuclear reactors. Usually, this type of waste is treated with the immobilization in cement Portland, in order to form a solid monolithic matrix, reducing the possibility of radionuclides release in to environment. Because of the characteristic of expansion and contraction of the resins in presence of water, its incorporation in the common Portland cement is limited in 10% in direct immobilization, causing high costs in the final product. A pre-treatment would be able to reduce the volume, degrading the resins and increasing the load capacity of this material. This paper is about a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Fenton's reagent. The resin evaluated was a mixture of cationic and anionic resins. The reactions were conducted by varying the concentration of the catalyst (25 to 80 mM), with and without external heat. The time of reaction was two hours. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%. The resin degradation was confirmed by the presence of CaCO 3 as a white precipitate resulting from the reaction between the Ca(OH) 2 and the CO 2 from the resin degradation. It was possible to degrade the resins without external heating. The calcium carbonates showed no correlation with the residual resin mass. (author)

  9. Use of polymer concrete for construction materials

    International Nuclear Information System (INIS)

    Vrtanoski, Gligorche; Dukovski, Vladimir; Yamaguchi, Kitazumi

    2002-01-01

    Polymer concrete (PC), or resin concrete, consists of a polymer binder, which may be a thermoplastic but more frequently is a thermosetting polymer, and a mineral filler such as aggregate, gravel and crushed stone. PC has higher strength, greater resistance to chemicals and corrosive agents, lower water absorption and higher freeze-thaw stability than the conventional Portland cement concrete and Cast Iron. This paper is a review of the key features of PC materials as a bases for comparison with the cast iron. (Original)

  10. National Symposium on Polymers in the Service of Man, State-of-the-Art Symposium (16th) held June 9-11, 1980, Carnegie Institution, Washington, DC

    Science.gov (United States)

    1980-01-01

    LINKING AGENTS FOR WATER-BORNE AND HIGH SOLIDS COATINGS, Werner J. Blank aECtNT DEVELOPMENTS IN OXIDATIVE POLYMERIZATION. William D. Emmons FLUORINATED ...either expressed or Implied, by th • National Aeronautic» and Space Administration. The standard epoxy resin varnish was modified with 2, 5, and 10...prepared by coacing the woven graphite cloth with the resin-solvent varnish » staging the cloth or "pre-preg," and curing the composites, using heat and

  11. Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Lu

    2017-11-01

    Full Text Available Basalt fiber-reinforced polymer (BFRP composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH. The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet.

  12. Phenolic resin-based porous carbons for adsorption and energy storage applications

    Science.gov (United States)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  13. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    Science.gov (United States)

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  14. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials.

    Science.gov (United States)

    Argyrou, Renos; Thompson, Geoffrey A; Cho, Seok-Hwan; Berzins, David W

    2016-09-01

    Two novel restorative materials, a polymer infiltrated ceramic network (PICN) and a resin nanoceramic (RNC), for computer-assisted design and computer-assisted manufacturing (CAD-CAM) applications have recently become commercially available. Little independent evidence regarding their mechanical properties exists to facilitate material selection. The purpose of this in vitro study was to measure the edge chipping resistance and flexural strength of the PICN and RNC materials and compare them with 2 commonly used feldspathic ceramic (FC) and leucite reinforced glass-ceramic (LRGC) CAD-CAM materials that share the same clinical indications. PICN, RNC, FC, and LRGC material specimens were obtained by sectioning commercially available CAD-CAM blocks. Edge chipping test specimens (n=20/material) were adhesively attached to a resin substrate before testing. Edge chips were produced using a 120-degree, sharp, conical diamond indenter mounted on a universal testing machine and positioned 0.1 to 0.7 mm horizontally from the specimen's edge. The chipping force was plotted against distance to the edge, and the data were fitted to linear and quadratic equations. One-way ANOVA determined intergroup differences (α=.05) in edge chipping toughness. Beam specimens (n=22/material) were tested for determining flexural strength using a 3-point bend test. Weibull statistics determined intergroup differences (α=.05). Flexural modulus and work of fracture were also calculated, and 1-way ANOVA determined intergroup differences (α=.05) RESULTS: Significant (Pmaterials for the 4 mechanical properties. Specifically, the material rankings were edge chipping toughness: RNC>LRGC=FC>PICN; flexural strength: RNC=LRGC>PICN>FC; flexural modulus: RNCLRGC=PICN>FC. The RNC material demonstrated superior performance for the mechanical properties tested compared with the other 3 materials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  15. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical

  16. Radiation curing of γ-Al2O3 filled epoxy resin

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Kim, Dong Jin; Nho, Young Chang

    2003-01-01

    Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Recently, the incorporation with rigid inorganic was suggested to improve the mechanical properties of epoxy resins. In the present work, an attempt has been taken to disperse nano-sized γ- Al 2 O 3 particles into diglycidyl ether of bisphenol-A (DGEBA) epoxy resins for improvement of the mechanical properties. These hybrid epoxy-alumina composites were prepared using by the γ-ray curing technique that was conducted with 100kGy under nitrogen at room temperature. The composites were characterized by determining gel content, UTM (Instron model 4443), SEM, FT-IR studies

  17. Aging of Organic Matrices, Epoxy Resins; Causas de envejecimiento de matrices organicas. Resinas epoxidicas

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, M.; Prendes, P.; Varela, M.; Paz, S. [Departamento de I mas D de Gairesa, La Coruna (Spain)

    1997-09-01

    Epoxy resins are very important polymers widely used in advance materials. Approximately 200.000 Tns/year are used in different fields such as coating, floor and paving, adhesives, composites, etc. Due to the importance of these polymers, aging studies are necessary. In this work most important aging-factors are described. We have observed that the water plays a very important role in the degradation-process. (Author)

  18. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  19. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  20. New hyperthermal thermosetting heterocyclic polymers

    Science.gov (United States)

    Bilow, N.; Landis, A. L.; Miller, L. J.

    1970-01-01

    Polyimidazopyrrolone polymers, formed by the condensation of aromatic dianhydrides with aromatic tetraamines in various solvents, form moldings that resist degradation in air and retain great strength at 400 to 700 degrees F. The resins have good insulating properties, are easy to mold, and make good protective coatings.

  1. Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping

    Science.gov (United States)

    Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.

    2017-08-01

    The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.

  2. Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491

    Energy Technology Data Exchange (ETDEWEB)

    Fehrmann, Henning [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

  3. Rapid general microdetermination of fluorine

    NARCIS (Netherlands)

    Leuven, H.C.E. van; Rotscheid, G.J.; Buis, W.J.

    1979-01-01

    A rapid micromethod for the determination of fluorine in a wide variety of materials has been developed. The method is based on the liberation of the fluorine (as HF) from the sample by means of pyrohydrolysis with steam at 1120?? C, The amount of fluoride in the condensate is subsequently measured

  4. A review of devices used for photocuring resin-based composites.

    Science.gov (United States)

    Small, B W

    2001-01-01

    Composite resin shrinks up to 5% by volume upon curing. This shrinkage and the associated contraction stress remain the two most significant clinical problems with curing resin composite restorations. Many patients continue to experience sensitivity following placement of direct composites and seating of indirect restorations utilizing resin cements. Unfortunately, some claims made by manufacturers or certain clinicians that promise to alleviate these problems are made from a marketing standpoint, with no refereed literature to support those claims. Even within the literature, contradictory results have been reported, perpetuating the confusion. It is of utmost importance that all practicing dentists be aware of the various types of curing systems available and the advantages and disadvantages of each system. It is the opinion of the author that no existing system will alleviate every problem. Until new composite systems are perfected, such as the cyclopolymerizable resins and expanding polymers, we will continue to have shrinkage and stress. Be aware of false claims, read and interpret the literature, and, most importantly, do what is best for your patients.

  5. Studies on the Use of Gamma Radiation-Induced for Preparation of Some Modified Resins for the Separation of Some Metal Ions

    International Nuclear Information System (INIS)

    Abo-Zahra, S.F.

    2012-01-01

    The work carried out in the present thesis is based on preparation, characterization and applications of some modified resins such as: poly(acrylamide)/poly(maleic acid) P(AAm)/P(MA) interpolymer complex (resin), poly(acrylamide-acrylic acid-amidoxime) P(AAm-AA-AO) resin and poly(hydroxamic acid) P(HA) resin. Poly(acrylamide)/poly(maleic acid) P(AAm)/P(MA) interpolymer complex (resin) was prepared by template polymerization of maleic acid (MA) monomer on poly(acrylamide) P(AAm) hydrogel as a template polymer in the presence of N,N'-methylenebisacrylamide (NMBA) as a crosslinker using gamma radiation-induced technique. Poly(acrylamide-acrylic acid-amidoxime) P(AAm-AA-AO) resin was prepared by template polymerization of acrylic acid (AA) and acrylonitrile (AN) monomers on P(AAm) hydrogel as a template polymer in the presence of NMBA as a crosslinker using gamma radiation-induced technique. The conversion of nitrile group to amidoxime one was carried out by the treatment of the prepared resin with an alkaline solution of hydroxylamine. Poly(hydroxamic acid) P(HA) resin was prepared from the reaction of the corresponding water-soluble P(AAm) previously prepared by gamma radiation-induced with hydroxylamine hydrochloride in an alkaline medium. The functional groups on the prepared polymeric resins were confirmed by using Fourier transform infrared (FTIR) spectra. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) measurements, scanning electron microscopy (SEM) and electron spin resonance (ESR) measurements were performed to evaluate the properties of the prepared polymeric resins, free or complexed with metal ions such as Cu 2+ metal ions.

  6. Cement solidification of spent ion exchange resins produced by the nuclear industry

    International Nuclear Information System (INIS)

    Jaouen, C.; Vigreux, B.

    1988-01-01

    Cement solidification technology has been applied to spent ion exchange resins for many years in countries throughout the world (at reactors, research centers and spent fuel reprocessing plants). Changing specifications for storage of radioactive waste have, however, confronted the operators of such facilities with a number of problems. Problems related both to the cement solidification process (water/cement/resin interactions and chemical interactions) and to its utilization (mixing, process control, variable feed composition, etc.) have often led waste producers to prefer other, polymer-based processes, which are very expensive and virtually incompatible with water. This paper discusses research on cement solidification of ion exchange resins since 1983 and the development of application technologies adapted to nuclear service conditions and stringent finished product quality requirements

  7. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    Science.gov (United States)

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  9. Probing plasma fluorinated graphene via spectromicroscopy.

    Science.gov (United States)

    Struzzi, C; Scardamaglia, M; Reckinger, N; Sezen, H; Amati, M; Gregoratti, L; Colomer, J-F; Ewels, C; Snyders, R; Bittencourt, C

    2017-11-29

    Plasma fluorination of graphene is studied using a combination of spectroscopy and microscopy techniques, giving insight into the yield and fluorination mechanism for functionalization of supported graphene with both CF 4 and SF 6 gas precursors. Ion acceleration during fluorination is used to probe the effect on grafting functionalities. Adatom clustering, which occurs with CF 4 plasma treatment, is suppressed when higher kinetic energy is supplied to the ions. During SF 6 plasma functionalization, the sulfur atoms tend to bond to bare copper areas instead of affecting the graphene chemistry, except when the kinetic energy of the ions is restricted. Using scanning photoelectron microscopy, with a 100 nm spatial resolution, the chemical bonding environment is evaluated in the fluorinated carbon network at selected regions and the functionalization homogeneity is controlled in individual graphene flakes.

  10. Ion exchange resins for water purification : properties and characterisation

    International Nuclear Information System (INIS)

    Gokhale, A.S.; Mathur, P.K.; Venkateswarlu, K.S.

    1987-01-01

    The report is divided into three sections. The first section contains a general introduction to ion exchange resins used in various processes, the second section describes characteristic properties of the polymer materials and the inter relation between them. This will, in turn, be useful to interpret the data obtained from the various tests carried out on the resins in the laboratory. In the third section of the report, are given the details of each method used for a particular test to be carried out on a routine basis. Each method describes the principle involved, the reagents and apparatus used in the experiment, the actual procedure and calculations and recording of the data. 3 refs. (author)

  11. Influence of hematite nanorods on the mechanical properties of epoxy resin

    Czech Academy of Sciences Publication Activity Database

    Bogdanović, G.; Kovač, T. S.; Džunuzović, E. S.; Špírková, Milena; Ahrenkiel, P. S.; Nedeljković, J. M.

    2017-01-01

    Roč. 82, č. 4 (2017), s. 437-447 ISSN 0352-5139 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : nanocomposites * thermosetting resin * mechanical measurements Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.822, year: 2016

  12. Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxane (PDMS) elastomers are well-known to be soft and highly stretchable, yet they never achieve maximum elongation when utilised as dielectric elastomers, simply because their dielectric permittivity remains rather low. Conversely, polyethyleneglycols (PEG) are not stretchable......, but they do possess high permittivity. Combining two such polymers in a block copolymer allows for further crosslinking and presents the possibility of substantial improvements in the actuation response of the resulting dielectric elastomer – if carefully designed. The objective is to synthesise a PDMS......, the discontinuity in PEG can be acquired and the relative permittivity (ε’) is significantly enhanced (60%) with 5wt% of PDMS-PEG block copolymer incorporated into the silicone elastomer....

  13. Preparation and characterization of MWCNT nanofiller incorporated polymer composite for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Raj, S. Edwin; Selvakumar, K.; Sowmya, G.; Prabhu, M. Ramesh, E-mail: mkram83@gmail.com [School of Physics, Alagappa University, Karaikudi-630 003, Tamil Nadu (India)

    2015-06-24

    Poly (ethyl methacrylate) based polymer electrolyte films were prepared by solution casting technique incorporating multi-walled carbon nanotube (MWCNT) as filler and characterized using XRD and Ac impedance analysis. The electrical conductivity is increased with increasing filler concentration (upto 6wt %), which is attributed to the formation of charge transfer complexes. The maximum ionic conductivity value is found to be 1.171×10{sup −3} Scm{sup −1} at 303K for PEMA (19wt %) -LiClO{sub 4} (8wt %) -MWCNT (6wt %) -PC (67wt %) electrolyte system. The temperature dependent ionic conductivity plot seems to obey Vogel -Tamman-Fulcher relation.

  14. Reference values for fluorine-18-fluorodeoxyglucose and fluorine-18-sodium fluoride uptake in human arteries

    DEFF Research Database (Denmark)

    Blomberg, Björn A; Thomassen, Anders; de Jong, Pim A

    2017-01-01

    OBJECTIVE: Reference values of fluorine-18-fluorodeoxyglucose (F-FDG) and fluorine-18-sodium fluoride (F-NaF) uptake in human arteries are unknown. The aim of this study was to determine age-specific and sex-specific reference values of arterial F-FDG and F-NaF uptake. PARTICIPANTS AND METHODS...

  15. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  16. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  17. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    Science.gov (United States)

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  18. Characterization of polymer-modified cement as a solidification agent for the radwaste

    International Nuclear Information System (INIS)

    Ji, Young-Yong; Kwak, Kyung-Kil; Hong, Dae-Seok; Ryu, Woo-Seog

    2012-01-01

    Highlights: ► Polymer-modified cement (PMC) by modification with water-based resins. ► Determination of the optimized polymer content. ► Evaluation of the improved chemical resistance of the PMC. ► Decrease of the amount of ions released into the demineralized water. ► Highly improved property for the nuclide diffusivity at the Co-60. - Abstract: Polymer-modified cement can be produced by partially replacing cement hydrate binders in ordinary Portland cement with polymeric compounds. It is known that the addition of the polymer to the cement paste leads to improved quality, which would be expected to have a high chemical resistance. In order to investigate the application as a solidification agent for the radwaste, polymer-modified cement specimens, by modification with water-based resins, were prepared according to the polymer content from 0% to 30%. The optimized polymer content in the cement pastes was then determined through the compressive strength and the porosity test. Finally, the improved chemical resistance of the polymer-modified cement with the optimized polymer content was evaluated by the thermal cycling, the immersion, and the leaching tests. From the test results, the amount of ions released into the water showed lower values of about 20% at the polymer-modified cement. Especially, a highly improved nuclide diffusivity of Co-60 was observed in the polymer-modified cement.

  19. Fluorinated Alq3 derivatives with tunable optical properties.

    Science.gov (United States)

    Shi, Yue-Wen; Shi, Min-Min; Huang, Jia-Chi; Chen, Hong-Zheng; Wang, Mang; Liu, Xiao-Dong; Ma, Yu-Guang; Xu, Hai; Yang, Bing

    2006-05-14

    This communication reports that not only the emission colour but also the photoluminescence quantum yield of Alq3 can be tuned by introducing fluorine atoms at different positions; with fluorination at C-5 the emission is red-shifted with a tremendously decreased intensity, fluorination at C-6 causes a blue-shift with a significantly increased intensity, and fluorination at C-7 has a minor effect on both the colour and intensity of Alq3's emission.

  20. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin.

    Science.gov (United States)

    Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-06-01

    To evaluate the influence of zinc oxide quantum dots (ZnO QDs ) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. ZnO QDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnO QDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student's t-test (α = 0.05). The antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnO QDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). ZnO QDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnO QDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. ZnO QDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Resin Systems and Chemistry-Degradation Mechanisms and Durability in Long-Term Durability of Polymeric Matrix Composites. Chapter 1

    Science.gov (United States)

    Hinkley, Jeffrey A.; Connell, John W.

    2012-01-01

    In choosing a polymer-matrix composite material for a particular application, a number of factors need to be weighed. Among these are mechanical requirements, fabrication method (e.g. press-molding, resin infusion, filament winding, tape layup), and use conditions. Primary among the environmental exposures encountered in aerospace structures are moisture and elevated temperatures, but certain applications may require resistance to other fluids and solvents, alkaline agents, thermal cycling, radiation, or rapid, localized heating (for example, lightning strike). In this chapter, the main classes of polymer resin systems found in aerospace composites will be discussed. Within each class, their responses to environmental factors and the associated degradation mechanisms will be reviewed.

  2. New highly fluorinated styrene-based materials with low surface energy prepared by ATRP

    DEFF Research Database (Denmark)

    Borkar, Sachin; Jankova Atanasova, Katja; Siesler, Heinz W

    2004-01-01

    2,3,5,6-Tetrafluoro-4-(2,2,3,3,3-pentafluoropropoxy)styrene (TF(F-5)S) and 2,3,5,6-tetrafluoro-4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctaoxy)styrene (TF(F,5)S) are prepared by nucleophilic substitution of 2,3,4,5,6-pentafluorostyrene. The neat monomers are subjected to atom transfer...... radical polymerization (ATRP) at 110 degreesC to high conversions in relatively short times, 10-120 min; TF(F-5)S is additionally polymerized at 70 and 90 degreesC. Block copolymers with styrene are prepared by the macroinitiator approach. All polymers, in the number-average molecular weight range from...... than 10 mol %. The fluorinated side chains of P(TF(F-5)S) and P(TF(F-15)S) enrich the surface of thin films, which results in an advancing water contact angle of 117degrees and 122degrees, respectively. Both XPS analyses and contact angle measurements strongly imply that the fluorinated parts...

  3. Fast and Easy Drying Method for the Preparation of Activated [{sup 18}F]Fluoride Using Polymer Cartridge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jai Woong [Inha University, Inchon (Korea, Republic of); Lee, Byoung Se; Chi, Dae Yoon [FutureChem Co., Ltd., Seoul (Korea, Republic of); Lee, Sang Ju [Sogang University, Seoul (Korea, Republic of); Oh, Seung Jun [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2011-01-15

    An efficient nucleophilic [{sup 18}F]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of K{sub 2}CO{sub 3}-K{sub 222}, several organic solution containing inert organic salts were used to release [{sup 18}F]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix (PS-HCO{sub 3}) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [{sup 18}F]fluorination by suppressing eliminated side product. Consequent [{sup 18}F]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.

  4. Fluorine-18 nuclide and its PET imaging agent

    International Nuclear Information System (INIS)

    Wang Mingfang

    2003-01-01

    Fluorine-18 has predominant physical features with long half-life and the enough time for preparation of radiopharmaceuticals and PET imaging. Also, the chemical nature of fluorine-18 is similar to that of hydrogen, and the fluorine-18 labelled organic molecules can not change the non-labelled molecular character. Therefore, fluorine-18 is widely applied in the labelled glucose, amino acids, fatty acids, nucleotide, receptor-ligand and neurotransmitter molecular etc., with the propose of detecting the blood flow, metabolism, synthesis of the protein and the neurotransmitter function in brain by PET imaging. It is very important in the basic science and clinical research to understand and master the preparation of the fluorine-18 and its labelled compounds

  5. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    Science.gov (United States)

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  6. Quantification of Fluorine Content in AFFF Concentrates

    Science.gov (United States)

    2017-09-29

    for MilSpec compliance. Fluorocarbon surfactants are the most active components in these concentrates, and analysis of the fluorine content in the... physical requirements for AFFF concentrates includes a total fluorine content determination and a requirement for subsequent evaluations of this AFFF...the standard for fluorine content as well as the reference for chemical shift. For preparation of an NMR solution, it is important that the TFE

  7. Features of the supercritical CO2-assisted immobilization of fluorinated tetraphenylporphyrins into tetrafluoroethylene copolymers

    Science.gov (United States)

    Shershnev, I. V.; Cherkasova, A. V.; Kopylov, A. S.; Glagolev, N. N.; Bragina, N. A.; Solov'eva, A. B.

    2017-07-01

    The immobilization of fluorinated tetraphenylporphyrins (FTPPs) into tetrafluoroethylene copolymers (fluoroplast F-42 and MF-4SK, a perfluorinated sulfonic acid cation exchanger in H+-form) is conducted in supercritical CO2 (scCO2). The effects the conditions of immobilization (the temperature and pressure of scCO2, reaction time, and the addition of cosolvents) and the structure of the carrier polymer have on the content of porphyrin in these polymers is studied. The porphyrin-loaded polymer systems are shown to exhibit photosensitizing activity in anthracene and cholesterol oxidation in scCO2. Under conditions of photocatalysis, chemical and functional stability is a feature of only MF-4SK polymer systems; this is attributed to the formation of protonated forms of the porphyrins and their interaction with SO3 --groups of the polymer (an ion exchange process), which prevents leaching of the FTPP from the polymer matrix. The photocatalytic process actually occurs inside the matrix of the perfluorinated copolymer, with the protonated form of the porphyrin acting as a photosensitizer. The rate constant of anthracene photooxidation in the presence of FTPP-loaded MF-4SK films in scCO2 is found to pass through a maximum as a function of the porphyrin content and the polymer film thickness. The use of such catalytic systems for cholesterol photooxidation in scCO2 is shown to produce a virtual monoproduct (yield, 10%): 6-formyl-B-norcholestane-3,5-diol, a compound with high biological activity.

  8. Waterborne hyperbranched alkyd-acrylic resin obtained by mini emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Grupo de Investigacion en Materiales Polimericos (GIMAPOL), Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia); Lopez, Betty [Grupo de Investigacion en Ciencia de los Materiales, Universidad de Antioquia, Calle, Medellin (Colombia)

    2016-10-15

    Four waterborne hyper branched alkyd-acrylic resins (HBRAA) were synthesized by mini emulsion polymerization from a hyper branched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (T{sub g}), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly mono modal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good. (author)

  9. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

    Science.gov (United States)

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Yan, Hongping; Yang, Bei; Liu, Delong; Li, Wanning; Ade, Harald; Hou, Jianhui

    2018-05-21

    To simultaneously achieve low photon energy loss ( E loss ) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. -5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low E loss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π-π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory-Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.

  10. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-05-01

    Full Text Available Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30. The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683 and Lactobacillus (PTCC 1643 were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05. The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05. There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

  11. Do defects enhance fluorination of graphene?

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Fridrichová, Michaela; Bastl, Zdeněk; Kalbáč, Martin

    2016-01-01

    Roč. 6, AUG 2016 (2016), s. 81471-81476 ISSN 2046-2069 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : fluorination * graphene * fluorine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  12. Effects of LDEF flight exposure on selected polymer matrix resin composite materials

    Science.gov (United States)

    Slemp, Wayne S.; Young, Philip R.; Witte, William G., Jr.; Shen, James Y.

    1992-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composites materials which received over five years and nine months of exposure to the low earth orbit (LEO) environment in experiment AO134 on the Long Duration Exposure Facility is reported. The changes in mechanical properties of ultimate tensile strength and tensile modulus for exposed flight specimens are compared to the three sets of control specimens. Marked changes in surface appearance are discussed, and resin loss is reported. The chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymetric matrix had not changed significantly in response to this exposure.

  13. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  14. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    B. Soltannia

    2016-01-01

    Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.

  15. Novel Alkyd-Type Coating Resins Produced Using Cationic Polymerization [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Bret; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2014-04-07

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(vinyl ether)s provide several advantages. These advantages include miler, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimmers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerable as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  16. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    Science.gov (United States)

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Fluorine disposal processes for nuclear applications

    International Nuclear Information System (INIS)

    Netzer, W.D.

    1977-01-01

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable

  18. Fluorine disposal processes for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Netzer, W.D.

    1977-04-08

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable.

  19. Adsorption equilibrium of uranium from seawater on chelating resin containing amide oxime group

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1987-01-01

    Chelating resins containing amide oxime group were synthesized by radiation-induced graft polymerization. The amount of the amide oxime groups was controlled below about 0.1 mol per kg of base polymer. The adsorption equilibrium of uranium from seawater on this resin was investigated. It was suggested that two neighboring amide oxime groups on the grafted chain captured one uranyl ion, and that single amide oxime ligand had little capacity for the adsorption of uranium. The adsorption equilibrium was correlated by a Langmuir-type equation. The content of neighboring amide oxime groups was 0.406 x 10 -3 mol per kg of base polymer, which corresponded to 0.39 % of the total amount of amide oxime groups. The apparent stoichiometric stability constant for the complex of uranyl ion with the neighboring amide oxime groups in seawater was calculated to be 10 -21.7 . (author)

  20. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    Science.gov (United States)

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  1. Determination of fluorine in biological materials: reaction paper.

    Science.gov (United States)

    Ophaug, R

    1994-06-01

    Although the fluorine in human tissues may exist in both inorganic and organic (covalently bound) forms, the inorganic fraction is clearly the most relevant for assessing human exposure to, and utilization of, environmental fluoride. There is now general agreement that the inorganic fraction of total tissue fluorine can be accurately determined by a variety of analytical techniques. One of the basic questions considered at this workshop is whether the analysis of a specific tissue or body fluid can provide an estimate of how much of the fluoride to which an individual is exposed actually enters and accumulates in the body. The analysis of hair and nails has been used as an indicator of exposure and utilization for several trace elements, including fluoride. Due to methodological uncertainties regarding sampling and pre-analysis treatment, however, it is presently not possible clearly to distinguish fluoride which is incorporated into hair and nails during formation (endogenous) from that which becomes associated with the tissues following exposure to the environment (exogenous). Consequently, although the fluoride content of hair and nails is clearly increased by environmental exposure to fluoride, the conclusion that these tissues are suitable indicators of fluoride utilization and accumulation in the body is premature.

  2. Development of an extractive-scintillating chromatographic resin for the detection of radioactive isotopes

    International Nuclear Information System (INIS)

    Vincze, A.; Halasz, L.; Solymosi, J.; Molnar, A.; Safrany, A.

    2007-01-01

    In this paper, the development of a new-type of resin is presented, which contains selective complexing and scintillating molecules in a chemically bonded form. The resin material is produced via radiation polymerization of a solution of 2-(4-allyloxy-phenyl)-5-phenyl oxazole, 5-(allyloxyphenyl)- 2-[4-(5-phenyl-oxazole-2-il)-phenyl] oxazole, diethylene glycol dimethacrylate (DEGMA), styrene and the allyl derivative of a 18C6 crown ether-dicarbolic acid complexing agent. The product is a macroporous polymer matrix that shows fluorescent properties and ion binding capacity excellent for radioanalytical purposes. (author)

  3. Research of radiation firmness of transparent melamine-formaldehyde polymers

    International Nuclear Information System (INIS)

    Lebedev, V.V.

    2007-01-01

    Radiation properties of the transparent melamine-formaldehyde polymers offered in quality polymeric basis for making of plastic scintillators are explored in this work. Plastic scintillator is composition, that consists of polymer (polymeric basis) and organic fluorescent addition. Scintillation efficiency and light output are basic properties of plastic scintillators. Firmness to influencing of ionizing radiation is important property of scintillators. From all types of scintillators the plastic are most radiation-proof. Cured melamine-formaldehyde resin and melamine-formaldehyde resin modified by different polyol modifiers was a research object. It is shown that radiation firmness for given types of polymeric material considerably depends on composition of polymer and from technology and temperature condition of its receipt. By the method IR-spectroscopy the structural changes in melamine-formaldehyde polymers under action of irradiation were explored. The maximal falling after the irradiation was marked in intensity of luminescence, which went down to 50% from an initial level. Like the coefficients of admission for all compositions got worse of a to 30-35% level from initial one. Mechanical properties went down on 20-30%. The radiation loss of mass made less than 1% for all polymers. With the increase of temperature of curing firmness rises. Thus, on the basis of the conducted researches radiation firmness for different melamine-formaldehyde polymers is determined and processes what is going on in material under action of radiation are studied. The limited doses of irradiation for each of explored polymers are determined. (authors)

  4. Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties

    Directory of Open Access Journals (Sweden)

    Pierre Boufflet

    2016-10-01

    Full Text Available The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophenes and poly(3-octylthiophene (F-P3OT-b-P3OT. Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems.

  5. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  6. Highly hydrated poly(allylamine)/silica magnetic resin

    International Nuclear Information System (INIS)

    Johnson, Andrew K.; Kaczor, Jozef; Han, Hongmei; Kaur, Maninder; Tian, Guoxin; Rao, Linfeng; Qiang, You; Paszczynski, Andrzej J.

    2011-01-01

    The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80–90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing >95% water, with >0.5 mmol amines g −1 available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel.

  7. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass.

    Science.gov (United States)

    Korkut, Emre; Torlak, Emrah; Altunsoy, Mustafa

    2016-07-26

    The aim of this study was to evaluate the antimicrobial efficacy and mechanical properties of dental resin composites containing different amounts of microparticulate bioactive glass (BAG). Experimental resin composites were prepared by mixing resin matrix (70% BisGMA and 30% TEGDMA) and inorganic filler with various fractions of BAG to achieve final BAG concentrations of 5, 10 and 30 wt%. Antimicrobial efficacy was assessed in aqueous suspension against Escherichia coli, Staphylococcus aureus and Streptococcus mutans and in biofilm against S. mutans. The effect of incorporation of BAG on the mechanical properties of resin composite was evaluated by measuring the surface roughness, compressive strength and flexural strength. Under the dynamic contact condition, viable counts of E. coli, S. aureus and S. mutans in suspensions were reduced up to 78%, 57% and 50%, respectively, after 90 minutes of exposure to disc-shaped composite specimens, depending on the BAG contents. In 2-day-old S. mutans biofilm, incorporation of BAG into composite at ratios of 10% and 30% resulted in 0.8 and 1.4 log reductions in the viable cell counts compared with the BAG-free composite, respectively. The surface roughness values of composite specimens did not show any significant difference (p>0.05) at any concentration of BAG. However, compressive and flexural strengths of composite were decreased significantly with addition of 30% BAG (p<0.05). The results demonstrated the successful utilization of BAG as a promising biomaterial in resin composites to provide antimicrobial function.

  8. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    International Nuclear Information System (INIS)

    Diaz A, Laura V.; Pacheco S, Joel O.; Pacheco P, Marquidia; Monroy G, Fabiola; Emeterio H, Miguel; Ramos F, Fidel

    2006-01-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment

  9. Mechanical characterisation of agarose-based chromatography resins for biopharmaceutical manufacture.

    Science.gov (United States)

    Nweke, Mauryn C; McCartney, R Graham; Bracewell, Daniel G

    2017-12-29

    Mechanical characterisation of agarose-based resins is an important factor in ensuring robust chromatographic performance in the manufacture of biopharmaceuticals. Pressure-flow profiles are most commonly used to characterise these properties. There are a number of drawbacks with this method, including the potential need for several re-packs to achieve the desired packing quality, the impact of wall effects on experimental set up and the quantities of chromatography media and buffers required. To address these issues, we have developed a dynamic mechanical analysis (DMA) technique that characterises the mechanical properties of resins based on the viscoelasticity of a 1ml sample of slurry. This technique was conducted on seven resins with varying degrees of mechanical robustness and the results were compared to pressure-flow test results on the same resins. Results show a strong correlation between the two techniques. The most mechanically robust resin (Capto Q) had a critical velocity 3.3 times higher than the weakest (Sepharose CL-4B), whilst the DMA technique showed Capto Q to have a slurry deformation rate 8.3 times lower than Sepharose CL-4B. To ascertain whether polymer structure is indicative of mechanical strength, scanning electron microscopy images were also used to study the structural properties of each resin. Results indicate that DMA can be used as a small volume, complementary technique for the mechanical characterisation of chromatography media. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Fluorine and fluorine tolerance in fodder of domestic animals. Part 2. Pathophysiology of fluorine and fodder tests on domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Bronsch, K; Grieser, N

    1964-01-01

    Important tests with fluorine on domestic animals were critically evaluated with the aim of coming to some conclusion about fluorine tolerance in fodder for domestic animals, keeping various different factors in mind. Slightly lower concentrations were reached than those of the NRC in the USA, reckoning on a non-optimal mineral content, especially in calcium and phosphorus, since the USA obviously used a basis for feeding which was otherwise sufficient. According to these tests, fluoride is tolerated within certain limits by domestic animals without recognisable disadvantages. There are, however, important differences between different types of animals in regard to dosage.

  11. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  12. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too.

  13. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma

    Science.gov (United States)

    Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.

    2018-03-01

    In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.

  14. Application of a silver–olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    International Nuclear Information System (INIS)

    Everitt, D T; Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2015-01-01

    A silver–olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver–olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h. (paper)

  15. PENGARUH PENAMBAHAN SILIKON TERHADAP SUDUT KONTAK HIDROPOBIK DAN KARAKTERISTIK ARUS BOCOR PERMUKAAN BAHAN RESIN EPOKSI

    Directory of Open Access Journals (Sweden)

    Abdul Syakur

    2012-02-01

    Full Text Available Currently, polymer materials such as epoxy resin have been used as an insulator in the distribution andtransmission line. Some advantages of using this epoxy resin material having the dielectric properties are betterthan porcelain and glass insulators. On the other side, epoxy resins are also disadvantage the surface ishygroscopic. For the repair was done by adding the surface properties of silicone rubber materialThis paper describes the effect of adding silicone rubber against contact angle of hidrophobicity and surfaceleakage current characteristics of epoxy resin materials ( Di-Glycidyl Ether of Bisphenol A (DGEBA andMethaphenilene Diamine (MPDA. The study was conducted in the laboratory using the electrode method IEC587:1984 with NH4Cl contaminants. The voltage applied to the epoxy resin sample at 3.5 kV and 50 HzfrequencyThe experimental results showed that the addition of silicon rubber in epoxy resin makes the surface materialcontact angle increases. The higher percentage of silicone rubber, the greater the contact angle and the longertime required for the occurrence of surface discharge.

  16. Strengthening carbonate roof rock of workings by the use of resins in Karst disturbance zones

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, O.V.; Gerovich, E.G.

    1977-12-01

    Test results are given for a proposed method of injection strengthening of rock in sinkhole areas in order to stabilize the rock of mining areas. Tests were made of appropriately selected NaOH solutions to act as catalysts in the injection of resins. Relationships are given between the hardening time of the aqueous resin solutions and the concentration of the NaOH catalyst, the relationship between the viscosity of the resin solutions and the temperature at specific ratios, between the hardness of the polymer materials and age, and between the resinous mixture compression strength and its age at specific temperatures. A diagram is presented of the injection equipment, and data are presented on the number of boreholes receiving the injected resin in relation to physical measurements. The tests of the resinated areas indicate that the rock hardness of the treated zones approaches that of the fissured zones so that props with less supporting power can be used, and work safety is increased. 3 references, 6 figures, 1 table.

  17. Design of a Fluorine-18 Production System at ORNL Cyclotron Facility. Part 2

    International Nuclear Information System (INIS)

    Chu, Y.E.; Engstrom, S.D.; Sundberg, D.G.

    1977-01-01

    A fluorine-18 recovery system using an anion-exchange side-stream column was designed for the H 2 18 O target at the ORNL 86-inch cyclotron. The extent of radiolysis was determined and a catalyst vessel, containing a palladium catalyst, was incorporated to recombine the radiolysis product gases. The preliminary design of an externally bombarded gas target for the production of 18 F 2 from 18 O 2 was also completed

  18. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins.

    Science.gov (United States)

    Sadler, Joshua M; Toulan, Faye R; Nguyen, Anh-Phuong T; Kayea, Ronald V; Ziaee, Saeed; Palmese, Giuseppe R; La Scala, John J

    2014-01-16

    In recent years, the development of renewable bio-based resins has gained interest as potential replacements for petroleum based resins. Modified carbohydrate-based derivatives have favorable structural features such as fused bicyclic rings that offer promising candidates for the development of novel renewable polymers with improved thermomechanical properties when compared to early bio-based resins. Isosorbide is one such compound and has been utilized as the stiffness component for the synthesis of novel unsaturated polyesters (UPE) resins. Resin blends of BioUPE systems with styrene were shown to possess viscosities (120-2200 cP) amenable to a variety of liquid molding techniques, and after cure had Tgs (53-107 °C) and storage moduli (430-1650 MPa) that are in the desired range for composite materials. These investigations show that BioUPEs containing isosorbide can be tailored during synthesis of the prepolymer to meet the needs of different property profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Multimode-singlemode-multimode optical fiber sensor coated with novolac resin for detecting liquid phase alcohol

    Science.gov (United States)

    Marfu'ah, Amalia, Niza Rosyda; Hatta, Agus Muhamad; Pratama, Detak Yan

    2018-04-01

    Alcohol sensor based on multimode-singlemode-multimode (MSM) optical fiber with novolac resin as the external medium is proposed and demonstrated experimentally. Novolac resin swells when it is exposed by the alcohol. This effect causes a change in the polymer density leading to the refractive index's variation. The transmission light of the sensor depends on the refractive index of external medium. Based on the results, alcohol sensor based on MSM optical fiber structure using novolac resin has a higher sensitivity compared to the sensor without using novolac resin in the mixture of alcohol and distilled water. Alcohol sensor based on MSM optical fiber structure using novolac resin in the mixture of alcohol and distilled water with a singlemode fiber length of 5 mm has a sensitivity of 0.028972 dBm per % V/V, and in the mixture of alcohol and sugar solution of 10% w/w has a sensitivity of 0.005005 dBm per % V/V.

  20. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    Science.gov (United States)

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  1. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing

    NARCIS (Netherlands)

    Holmquist, Hanna; Schellenberger, Steffen; van der Veen, I.; Peters, G; Leonards, P.E.G.; Cousins, I

    2016-01-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent

  2. Production of uranium hexafluoride by fluorination tetra-fluoride with elemental fluorine under pressure; Proizvodnja uraovega heksafluorida s tlacnim fluoriranjem uranovega tetrafluorida z elementarnim fluorom

    Energy Technology Data Exchange (ETDEWEB)

    Lutar, K; Smalc, A; Zemljic, A [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    In the introduction a brief description of some activities of fluorine chemistry department at the J. Stefan Institute is given - from production of elemental fluorine to the investigations in the field of uranium technology. Furthermore, a new method for the production of uranium hexafluoride is described more in detail. The method is based on the fluorination of uranium tetrafluoride with elemental fluorine. (author)

  3. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  4. Determining the degree of grafting for poly (vinylidene fluoride) graft-copolymers using fluorine elemental analysis

    International Nuclear Information System (INIS)

    Yu Yang; Zhang Bowu; Yang Xuanxuan; Deng Bo; Li Linfan; Yu Ming; Li Jingye

    2011-01-01

    Acrylic acid (AAc) and styrene (St) were grafted onto poly (vinylidene fluoride) (PVDF) powder or membrane samples by pre-irradiation graft copolymerization. The grafted chains were proved by FT-IR spectroscopy analysis. The degree of grafting (DG) of the grafted PVDF was determined by fluorine elemental analysis (FEA) method, and was compared with the DGs determined by weighing method, acid-base back titration method and quantitative FT-IR method. The results show that the FEA method is accurate, convenient and universal, especially for the grafted polymer powders. (authors)

  5. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole

    1998-01-01

    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes ...

  6. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    Science.gov (United States)

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  7. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  8. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites

    Science.gov (United States)

    Ayandele, Ebunoluwa; Sarkar, Biswajit; Alexandridis, Paschalis

    2012-01-01

    Hybrid materials with superior structural and functional properties can be obtained by incorporating nanofillers into polymer matrices. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have attracted much attention recently due to their nanometer size, the ease of which these particles can be incorporated into polymeric materials and the unique capability to reinforce polymers. We review here the state of POSS-containing polymer nanocomposites. We discuss the influence of the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending on the structure of nanocomposites, as affected by surface functional groups, and the POSS concentration. PMID:28348318

  9. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    Science.gov (United States)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  10. Radiation curing of {gamma}-Al{sub 2}O{sub 3} filled epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Kim, Dong Jin; Nho, Young Chang [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Recently, the incorporation with rigid inorganic was suggested to improve the mechanical properties of epoxy resins. In the present work, an attempt has been taken to disperse nano-sized {gamma}- Al{sub 2}O{sub 3} particles into diglycidyl ether of bisphenol-A (DGEBA) epoxy resins for improvement of the mechanical properties. These hybrid epoxy-alumina composites were prepared using by the {gamma}-ray curing technique that was conducted with 100kGy under nitrogen at room temperature. The composites were characterized by determining gel content, UTM (Instron model 4443), SEM, FT-IR studies.

  11. Thermotropic resin systems. Relationships between formulation parameters, material structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Katharina [Polymer Competence Center Leoben GmbH, Leoben (Austria); Wallner, Gernot M. [Univ. of Leoben (Austria)

    2008-07-01

    This paper focuses on a comprehensive characterization of various thermotropic resins under polymer physical aspects. Numerous thermotropic layers were produced under systematic variation of resin base, thermotropic additives and additive concentration. A detailed investigation of optical properties, switching temperature, switching process and residual transmittance was performed with a UV/Vis/NIR spectrophotometer. Switching temperatures are compared with thermal transitions in the material determined by Differential Scanning Calorimetry (DSC). Whereas the different film types show a direct solar transparency between 64 and 83% in the clear state, the direct solar transmittance decreases to values of about 27% to 80% above the switching temperature. In general the thermotropic resins are characterized by a steep and rapid switching process. The switching temperature can be adapted by varying the additives. The comparison of films thermal transitions with the switching performance reveals a good correlation. (orig.)

  12. Evaluation and improvement of gamma-ray stability of chelating resins containing oxy-acid groups of phosphorus

    International Nuclear Information System (INIS)

    Jyo, Akinori; Yamabe, Kazunori; Shuto, Taketomi

    1998-01-01

    Chelating resins containing oxy-acid groups of phosphorus, such as phosphonic and phosphoric acid groups have been studied from the point of view of solvent extraction processes for the separation of nuclear fuel elements as well as of fission product ones. The present work was planned to evaluate the effect of gamma-ray on properties of the resins and to obtain directional information for design of the resins having high stability to gamma-ray. It was clarified that gamma-ray stability of the resins is not high; tolerance limit is ca. 2.3x10 3 C/kg. The present work also clarified that polymers crosslinked with divinylbenzene have much higher gamma-ray stability than ones crosslinked with dimetacrylate esters of oligo (ethylene glycol)s. (J.P.N.)

  13. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  14. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing.

    Science.gov (United States)

    Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T

    2016-05-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the

  15. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  16. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  17. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    Science.gov (United States)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  18. Single and double stereoselective fluorination of (E-allylsilanes

    Directory of Open Access Journals (Sweden)

    Tredwell Matthew

    2007-10-01

    Full Text Available Abstract Acyclic allylic monofluorides were prepared by electrophilic fluorination of branched (E-allylsilanes with Selectfluor. These reactions proceeded with efficient transfer of chirality from the silylated to the fluorinated stereocentre. Upon double fluorination, an unsymmetrical ethyl syn-2,5-difluoroalk-3-enoic ester was prepared, the silyl group acting as an anti stereodirecting group for the two C-F bond forming events.

  19. Positron lifetime study of electron-irradiated epoxy resins

    International Nuclear Information System (INIS)

    Suevegh, K.; Vertes, A.; Wojnarovits, L.; Foeldiak, G.; Liszkai, L.; Kajcsos, Zs.

    1990-01-01

    Two bisphenol-A type epoxy resins were irradiated by electron beam and studied afterwards by positron lifetime spectroscopy. An interesting result is that despite of the considerable amount of free-radicals, no inhibition of positronium formation was observed in the two epoxies. Nevertheless, several serious differences were detected between the studied polymers. The results suggest that the radiation-resistant properties of epoxies depend strongly on the amount of the curing agent. (author) 8 refs.; 2 figs

  20. Polymerization of epoxy resins studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Radiation Science Center, High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hayashi, T. [Fine Chemical Research Lab., Sumitomo Chemical, Tsukuba (Japan); Ito, Y. [Research Center for Nuclear Science and Technology, Univ. of Tokyo (Japan)

    2001-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been applied to study polymerization of epoxy resins of cresole novolac with a hardener of phenol novolac. PALS uses positrons to probe the microstructure of a nanometer (nm) size. Using PALS polymerization can be followed through three states: powder (monomer), liquid and solid. PALS is a unique method for the detection of intermolecular spaces, hence polymerization was followed from the point of view of free spaces (inter-molecular spaces) between polymer networks. The glass transition temperature (T{sub g}) was determined from the temperature dependence of the positronium (Ps) lifetime. Although Tg determined by PALS is usually lower than that determined by a mechanical analysis (TMA), it was observed that T{sub g} approached the value determined by TMA after long curing. Ps can form bubbles in a liquid, and the surface tension of a mixture of the resin and the hardener was calculated from a simple empirical formula using the Ps lifetime; the resulting value is similar to that of the bisphenol-A epoxy resin. Gelation was observed as an increase in the intensity of Ps and a sharp decrease in the lifetime. (orig.)

  1. Fluorinated ceramide trafficking inhibitors as Alzheimer's disease radiomarkers

    International Nuclear Information System (INIS)

    Ferko, B.; Berkes, D.; Crivelli, S. M.

    2017-01-01

    Herein, we describe the synthesis of the most potent analogues of HPA-12 radiolabeled with fluorine-18 from the universal precursor m-Br-HPA-12. The enantioselective access to this precursor is based on a practical and reliable crystallization induced asymmetric transformation (CIAT) of 3- Bromo-benzoylacrylic acid and suitable chiral auxiliary. Incorporation of alkynol chains was accomplished by Sonogashira coupling, followed by triple bond reduction and protection of primary hydroxyl group delivering the intermediates for the radiofluorinated analogues of HPA-12. Radiofluorination of analogues of HPA-12 and PET imaging was carried out by our partners at University of Maastricht. (authors)

  2. Method for coating a resinous coating material. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, T; Fujioka, S; Mibae, J; Takahashi, M

    1968-07-13

    The strength, flexibility and durability of a vinyl chloride resin, acryl resin and the like are improved. This method of application comprises the steps of applying and thereafter radically curing a mixture composed of a polymer (II) having double bond(s) on its side chain and an ethylenic unsaturated monomer, said polymer (II) being obtained by the reaction between an unsaturated carboxylic acid or anhydride represented by the formula XCH = CHY (X = (CH/sub 2/)sub(n)COOH, where 0 <= n <= 2, Y = COOR/sub 1/ or R/sub 2/(R/sub 1/ and R/sub 2/ are hydrogen or an alkyl group having from 1 to 10 atoms of carbon)) and the acrylic copolymer (I), containing a hydroxyl group, obtained by copolymerization of 10 to 50% by weight of at least one selected from the group of beta-hydroxy alkyl acrylate, beta-hydroxy alkyl methacrylate, N-methylol acrylamide and N-methylol methacryl amide with at least one selected from the group of acrylic ester, methacrylic ester and stylene. The copolymer (I) can be obtained by the usual radical polymerization such as bulk polymerization, solution polymerization, suspension polymerization or the like. The polymer (II) is dissolved in the ethylenic unsaturated monomer and radically cured with radical polymerization catalysts or electron beams, etc. The energy range of the electron beams may be 0.1 to 3 MeV. Any type of electron accelerator may be used.

  3. Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Hansen, Ole; Boisen, Anja

    2006-01-01

    Stress in polymeric resins is tailored by a thermomechanical process. It allows for controlled self-positioning of membranes in microdevices (see Figure). The process makes specific use of plastic deformation that results from the low viscosity of the polymer. This demonstrates that polymers offer...... new approaches to microfabrication that cannot be realized for common semiconductor materials without severe difficulties....

  4. Nuclear Magnetic Resonance Study of Fluorine-Graphite Intercalation Compounds

    International Nuclear Information System (INIS)

    Panich, A.M.; Goren, S.D.; Nakajima, T.; Vieth, H.-M.; Privalov, A.

    1998-01-01

    To study the origin of semimetal-metal and metal-insulator transformations, localization effects and C-E bonding in fluorine-intercalated graphite C x F, 13 C and 19 F NMR investigations have been carried out for a wide range of fluorine content, 3.8 8, are attributed to mobile fluorine acceptor species which are responsible for the increase of electric conductivity in the dilute compound. When increasing the fluorine content to x ∼ 8 corresponding to the maximum electric conductivity, covalent C-P bonds start to oc- cur. The number of these bonds grows with fluorine content resulting in the decrease in conductivity which is caused by a percolation mechanism rather than by a change in bond length. A difference in 19 F chemical shift for fluorine-intercalated graphite C x F and covalent graphite fluoride (CF) n has been observed and is attributed to different C-P bonding in these compounds

  5. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides

    Science.gov (United States)

    Fetouhi, Louiza; Petitgas, Benoit; Dantras, Eric; Martinez-Vega, Juan

    2017-10-01

    This work aims to characterize the dielectric and the mechanical properties of a resin based on an unsaturated polyesterimide diluted in methacrylate reactive diluents used in the impregnation of rotating machines. The broadband dielectric spectrometry and the dynamic mechanical analysis were used to quantify the changes in dielectric and mechanical properties of the network PEI resin, as a function of temperature and frequency. The network characterizations highlight the presence of two main relaxations, α and α', confirmed by the differential scanning calorimetry analysis, showing the complexity of the chemical composition of this resin. The dielectric spectroscopy shows a significant increase in the dielectric values due to an increase of the material conductivity, while the mechanical spectroscopy shows an important decrease of the polymer rigidity and viscosity expressed by an important decrease in the storage modulus. The PEI resin shows a high reactivity when it is submitted in successive heating ramps, which involves in a post-cross-linking reaction. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  6. Competitive light absorbers in photoactive dental resin-based materials.

    Science.gov (United States)

    Hadis, Mohammed A; Shortall, Adrian C; Palin, William M

    2012-08-01

    The absorbance profile of photoinitiators prior to, during and following polymerization of light curable resin-based materials will have a significant effect on the cure and color properties of the final material. So-called "colorless" photoinitiators are used in some light-activated resin-based composite restorative materials to lessen the yellowing effect of camphoroquinone (CQ) in order to improve the esthetic quality of dental restorations. This work characterizes absorption properties of commonly used photoinitiators, an acylphosphine oxide (TPO) and CQ, and assesses their influence on material discoloration. Dimethacrylate resin formulations contained low (0.0134 mol/dm(3)), intermediate (0.0405 mol/dm(3)) or high (0.0678 mol/dm(3)) concentrations of the photoinitiators and the inhibitor, butylated hydroxytoluene (BHT) at 0, 0.1 or 0.2% by mass. Disc shaped specimens (n = 3) of each resin were polymerized for 60s using a halogen light curing unit. Dynamic measurements of photoinitiator absorption, polymer conversion and reaction temperature were performed. A spectrophotometer was used to measure the color change before and after cure. GLM three-way analysis of variance revealed significant differences (pphotoinitiator type (df = 1; F = 176.12)>% BHT (df = 2, F = 13.17). BHT concentration affected the rate of polymerization and produced lower conversion in some of the CQ-based resins. Significant differences between photoinitiator type and concentrations were seen in color (where TPO resins became yellower and camphoroquinone resins became less yellow upon irradiation). Reaction temperature, kinetics and conversion also differed significantly for both initiators (presins producing a visually perceptible color change upon polymerization, the color change was significantly less than that produced with CQ-based resins. Although some photoinitiators such as TPO may be a more esthetic alternative to CQ, they may actually cause significant color contamination when

  7. The effects of gamma radiation on polymer matrix waste forms

    International Nuclear Information System (INIS)

    Johnson, D.I.; Burnay, S.G.; Phillips, D.C.

    1986-06-01

    A study has been made of the volume and weight changes, mechanical properties, and radiolytic gas production of polymer matrix waste forms during γ irradiation in open containers. The work has been commissioned by the Department of the Environment as part of its radioactive waste management research programme. The materials included polyester, vinyl ester, epoxide and polystyrene resins containing ion exchangers; and polyester and epoxide resins containing a PWR evaporator concentrate. (author)

  8. Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone.

    Science.gov (United States)

    Chen, Meiling; Ouyang, Liping; Lu, Tao; Wang, Heying; Meng, Fanhao; Yang, Yan; Ning, Congqin; Ma, Jingzhi; Liu, Xuanyong

    2017-05-24

    Although polyetheretherketone (PEEK) has been considered as a potential orthopedic and dental application material due to its similar elastic modulus as bones, inferior osseointegration and bacteriostasis of PEEK hampers its clinical application. In this work, fluorinated PEEK was constructed via plasma immersion ion implantation (PIII) followed by hydrofluoric acid treatment to ameliorate the osseointegration and antibacterial properties of PEEK. The surface microstructure, composition, and hydrophilicity of all samples were investigated. Rat bone mesenchymal stem cells (rBMSCs) were cultured on their surfaces to estimate bioactivity. The fluorinated PEEK can enhance the cell adhesion, cell spreading, proliferation, and alkaline phosphatase (ALP) activity compared to pristine PEEK. Furthermore, the fluorinated PEEK surface exhibits good bacteriostatic effect against Porphyromonas gingivalis, which is one of the major periodontal pathogens. In summary, we provide an effective route to introduce fluorine and the results reveal that the fluorinated PEEK can enhance the osseointegration and bacteriostasis, which provides a potential candidate for dental implants.

  9. Purification of degraded TBP solvent using macroreticular anion exchange resin

    International Nuclear Information System (INIS)

    Kartha, P.K.S.; Kutty, P.V.E.; Janaradanan, C.; Ramanujam, A.; Dhumwad, R.K.

    1989-01-01

    Tri-n-butyl phosphate (TBP) diluted with a suitable diluent is commonly used for solvent extraction in Purex process for the recovery of uranium and plutonium from irradiated nuclear fuels. This solvent gets degraded due to various factors, the main degradation product being dibutyl phosphoric acid (HDBP). A solvent cleanup step is generally incorporated in the process for removing the degradation products from the used solvent. A liquid-liquid cleanup system using sodium carbonate or sodium hydroxide solution is routinely used. Considering certain advantages, like the possibility of loading the resin almost to saturation capacity and the subsequent disposal of the spent resin by incineration and the feasibility of adopting it to the process, a liquid-solid system has been tried as an alternate method, employing various available macroreticular anion exchange resins in OH - form for the sorption of HDBP from TBP. After standardizing the various conditions for the satisfactory removal of HDBP from TBP using synthetic mixtures, resins were tested with process solvent in batch contacts. The parameters studied were (1) capacity of different resins for HDBP sorption (2) influence of acidity, uranium and HDBP on the sorption behaviour of the latter (3) removal of fission products from the solvent by the resin and (4) regeneration and recycling of the resin. (author). 2 figs., 13 tabs., 17 refs

  10. Fluorine in the solar neighborhood: Chemical evolution models

    Science.gov (United States)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  11. Fluorine-fixing efficiency on calcium-based briquette: pilot experiment, demonstration and promotion.

    Science.gov (United States)

    Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo

    2010-02-05

    The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant

  12. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  13. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  14. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    International Nuclear Information System (INIS)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE's Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin

  15. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE`s Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin.

  16. Durability of polymer matrix composites for infrastructure: The role of the interphase

    Science.gov (United States)

    Verghese, Kandathil Nikhil Eapen

    1999-12-01

    As fiber reinforced polymer matrix composites find greater use in markets such as civil infrastructure and ground transportation, the expectations placed on these materials are ever increasing. The overall cost and reliability have become the drivers of these high performance materials and have led to the disappearance of resins such as bismaleimides (BMI). cyanate esters and other high performance polyimides and epoxys. In their place polymers, such polyester and vinylester have arisen. The reinforcing fiber scenario has also undergone changes from the high quality and performance assured IM7 and AS4 to cheaper and hybrid systems consisting of both glass and low cost carbon. Manufacturing processes have had their share of changes too with processes such as pultrusion and other mass production techniques replacing hand lay-up and resin transfer molding. All of this has however come with little or no concession on material performance. The motivation of the present research has therefore been to try to improve the properties of these low cost composites by better understanding the constituent materials (fiber and matrix) and the region that lies in-between them namely the interphase. In order to achieve this. working with controls is necessary and the present discourse therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester resin, Derakane 441-400 from The Dow Chemical Company. The following eight chapters sum up the work done thus far on composites made with sized fibers and the above mentioned resin and fiber systems. They are in the form of publications that have either been accepted. submitted or going to be submitted to various peer reviewed journals. The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether (Phenoxy) thermoplastic polymers and G' an industrial sizing material supplied by Hexcel. A number of issues have been addressed ranging from viscoelastic relaxation to enviro-mechanical durability. Chapter 1

  17. Comparison of topotactic fluorination methods for complex oxide films

    Science.gov (United States)

    Moon, E. J.; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; Barbash, D.; May, S. J.

    2015-06-01

    We have investigated the synthesis of SrFeO3-αFγ (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  18. Synthesis and characterization of triglyceride based thermosetting polymers

    Science.gov (United States)

    Can, Erde

    2005-07-01

    Plant oils, which are found in abundance in all parts of the world and are easily replenished annually, have the potential to replace petroleum as a chemical feedstock for making polymers. Within the past few years, there has been growing interest to use triglycerides as the basic constituent of thermosetting polymers with the necessary rigidity, strength and glass transition temperatures required for engineering applications. Plant oils are not polymerizable in their natural form, however various functional groups that can polymerize can easily be attached to the triglyceride structure making them ideal cross-linking monomers for thermosetting liquid molding resins. Through this research project a number of thermosetting liquid molding resins based on soybean and castor oil, which is a specialty oil with hydroxyls on its fatty acids, have been developed. The triglyceride based monomers were prepared via the malination of the alcoholysis products of soybean and castor oil with various polyols, such as pentaerythritol, glycerol, and Bisphenol A propoxylate. The malinated glycerides were then cured in the presence of a reactive diluent, such as styrene, to form rigid glassy materials with a wide range of properties. In addition to maleate half-esters, methacrylates were also introduced to the glyceride structure via methacrylation of the soybean oil glycerolysis product with methacrylic anhydride. This product, which contains methacrylic acid as by-product, and its blends with styrene also gave rigid materials when cured. The triglyceride based monomers were characterized via conventional spectroscopic techniques. Time resolved FTIR analysis was used to determine the curing kinetics and the final conversions of polymerization of the malinated glyceride-styrene blends. Dynamic Mechanical Analysis (DMA) was used to determine the thermomechanical behavior of these polymers and other mechanical properties were determined via standard mechanical tests. The use of lignin

  19. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  20. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.

    Science.gov (United States)

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.