WorldWideScience

Sample records for fluorinated amorphous carbon

  1. Structures and properties of fluorinated amorphous carbon films

    Science.gov (United States)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  2. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    Science.gov (United States)

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  3. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  4. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  5. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  6. Method for producing fluorinated diamond-like carbon films

    Science.gov (United States)

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  7. Fluorine

    Science.gov (United States)

    Hayes, Timothy S.; Miller, M. Michael; Orris, Greta J.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    is likely to become a source of commercially produced fluorine as a primary product as long as supplies from relatively thick and high-grade fluorite deposits continue to be available.At least seven classes (which include one subclass) of hydrothermal fluorite deposits are recognized; they are classified according to their tectonic and (or) magmatic settings, as follows: (1) carbonatite-related fluorspar deposits; (2) alkaline-intrusion-related fluorspar deposits; (3) alkaline-volcanic-related epithermal fluorspar deposits; (4) Mississippi Valley-type fluorspar deposits (and a subclass of salt-related carbonate-hosted fluorspar deposits); (5) fluorspar deposits related to strongly differentiated granites; (6) subalkaline-volcanic-related epithermal fluospar deposits; and (7) fluorspar deposits that appear to be conformable within tuffaceous limy lacustrine sediments. An eighth class (not hydrothermal) is that of fluorspar deposits concentrated in soils and weathered zones; that is, residual fluorspar deposits. Generally, fluorspar deposits related to strongly differentiated granites have larger tonnages and lower grades than carbonatite-related fluorspar deposits, which, in turn, have larger tonnages and lower grades than fluorspar vein deposits from various other classes.The United States has a few identified resources of fluorspar, most notably the Klondike II property in the Illinois- Kentucky fluorspar district located about 8 kilometers southwest of Salem, Kentucky, which has a large vein that contains at least 1.6 million metric tons at a grade of 60 percent CaF2 (Feytis, 2009). Additional fluorspar resources of lower grade but larger tonnage have been identified at Hicks Dome in the Illinois-Kentucky fluorspar district and at Lost River near the western tip of the Seward Peninsula in Alaska, along with a couple of dozen smaller, higher grade resources.Internationally, new mines that either opened before the beginning of 2013 or were scheduled to open soon

  8. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Lyubov G. Bulusheva

    2017-08-01

    Full Text Available Double-walled carbon nanotubes (DWCNTs are fluorinated using (1 fluorine F2 at 200 °C, (2 gaseous BrF3 at room temperature, and (3 CF4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron microscopy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS spectroscopy. A formation of covalent C–F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C–F vibrations for three kinds of the fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-chemical calculations of various models. It is proposed that fluorination with F2 and BrF3 produces small fully fluorinated areas and short fluorinated chains, respectively, while the treatment with CF4 plasma results in various attached species, including single or paired fluorine atoms and –CF3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through choosing the fluorination method.

  9. Fluorine Abundances in AGB Carbon Stars: New Results?

    Science.gov (United States)

    Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.

    2009-09-01

    A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.

  10. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  11. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  12. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  13. Photoemission studies of fluorine functionalized porous graphitic carbon

    Science.gov (United States)

    Ganegoda, Hasitha; Jensen, David S.; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Linford, Matthew R.; Terry, Jeff

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF2 along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  14. Photoemission studies of fluorine functionalized porous graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Terry, Jeff [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Jensen, David S.; Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  15. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  16. Effect of Fluorine Diffusion on Amorphous-InGaZnO-Based Thin-Film Transistors.

    Science.gov (United States)

    Jiang, Jingxin; Furuta, Mamoru

    2018-08-01

    This study investigated the effect of fluorine (F) diffusion from a fluorinated siliconnitride passivation layer (SiNX:F-Pa) into amorphous-InGaZnO-based thin-film transistors (a-IGZO TFTs). The results of thermal desorption spectroscopy and secondary ion mass spectrometry revealed that F was introduced into the SiOX etch-stopper layer (SiOX-ES) during the deposition of a SiNX:F-Pa, and did not originate from desorption of Si-F bonds; and that long annealing times enhanced F diffusion from the SiOX-ES layer to the a-IGZO channel. Improvements to the performance and threshold-voltage (Vth) negative shift of IGZO TFTs were achieved when annealing time increased from 1 h to 3 h; and capacitance-voltage results indicated that F acted as a shallow donor near the source side in a-IGZO and induced the negative Vth shift. In addition, it was found that when IGZO TFTs with SiNX:F-Pa were annealed 4 h, a low-resistance region was formed at the backchannel of the TFT, leading to a drastic negative Vth shift.

  17. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  18. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  19. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  20. Memristive effects in oxygenated amorphous carbon nanodevices

    Science.gov (United States)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  1. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  2. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  3. Production of fluorine-18 from eithium carbonate in a research reactor

    International Nuclear Information System (INIS)

    Gasiglia, H.T.

    1978-01-01

    A method for the production of fluorine-18 in a research reactor, from irradiated lithium carbonate, is described. Fluorine-18 is separated from impurities in a alumina column, which is an appropriate procedure for its production as a carrier-free radioisotope for oral administration. Characteristics of the product, when fluorine is separated from irradiated target in an usual alumina column, are compared with those when fluorine is separated in a previously calcined(1000 0 C) alumina column: Yields of chemical separation and chemical forms of radioisotope obtained are studied. Fluorine elution is investigated for several eluant concentrations and the use of a lower concentrated eluant is emphasized. Purity degree of fluorine-18 solutions separated. A routine production procedure is determined by irradiating enriched lithium carbonate (95% 6 Li). Theoretical yields are compared with fluorine-18 production yields obtained in several irradiations [pt

  4. Synthesis of Antimony Doped Amorphous Carbon Films

    Science.gov (United States)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  5. Synthesis of Antimony Doped Amorphous Carbon Films

    International Nuclear Information System (INIS)

    Okuyama, H; Takashima, M; Akasaka, H; Ohtake, N

    2013-01-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp 2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  6. FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED

    International Nuclear Information System (INIS)

    Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.

    2009-01-01

    A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.

  7. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Martinez-Miranda, L. J. [University of Maryland, Department of Materials and Nuclear Engineering, College Park, Maryland 20742 (United States); Barbour, J. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2000-04-15

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetics and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of three- and four-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetics of PLD growth results in films becoming more ''diamondlike,'' i.e., increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film. (c) 2000 The American Physical Society.

  8. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  9. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  10. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization.

    Science.gov (United States)

    Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  11. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

    Directory of Open Access Journals (Sweden)

    Claudia Struzzi

    2017-08-01

    Full Text Available The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  12. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  13. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.

    Science.gov (United States)

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  14. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

    Directory of Open Access Journals (Sweden)

    Claudia Struzzi

    2015-12-01

    Full Text Available Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  15. Buckling instability in amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X D [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Narumi, K [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2007-06-13

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with {pi}-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 {mu}m with a height of {approx}500 nm and a wavelength of {approx}8.2 {mu}m. However, the length decreases dramatically to 70 {mu}m as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)

  16. Buckling instability in amorphous carbon films

    International Nuclear Information System (INIS)

    Zhu, X D; Narumi, K; Naramoto, H

    2007-01-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 μm with a height of ∼500 nm and a wavelength of ∼8.2 μm. However, the length decreases dramatically to 70 μm as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)

  17. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  18. Stabilization of amorphous calcium carbonate by controlling its particle size

    NARCIS (Netherlands)

    Nudelman, F.; Sonmezler, E.; Bomans, P.H.H.; With, de G.; Sommerdijk, N.A.J.M.

    2010-01-01

    Amorphous calcium carbonate (ACC) nanoparticles of different size are prepared using a flow system. Post-synthesis stabilization with a layer of poly[(a,ß)-DL-aspartic acid] leads to stabilization of the ACC, but only for particles

  19. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2001-01-01

    The nitrogen doping effects in C 60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C 60 molecules and changed them into amorphous carbon. Based on these results, formation of C 60 /amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  20. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  1. Material transfer mechanisms between aluminum and fluorinated carbon interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sen, F.G. [NSERC/General Motors of Canada Industrial Research Chair, Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4 (Canada); Qi, Y. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T., E-mail: aalpas@uwindsor.ca [NSERC/General Motors of Canada Industrial Research Chair, Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4 (Canada)

    2011-04-15

    First-principles calculations and sliding contact experiments were conducted to elucidate material transfer mechanisms between aluminum and fluorinated carbon (diamond, diamond-like carbon (DLC)) surfaces. An interface model that examined interactions between Al (1 1 1) and F-terminated diamond (1 1 1) surfaces revealed that F atoms would transfer to the Al surface in increasing quantities with an increase in the contact pressure, and this F transfer would lead to the formation of a stable AlF{sub 3} compound at the Al surface. The presence of AlF{sub 3} on the transfer layers formed at the Al counterface placed in sliding contact against DLC containing 3 at.% F was confirmed by both X-ray photoelectron spectroscopy and cross-sectional focussed-ion beam transmission electron microscopy analyses. The coefficient of friction (COF) of the DLC coating was high initially due to deformation and wear of Al counterface, but formation of -OH and -H passivated C-rich transfer layers on Al reduced the COF to a low steady-state value of 0.20. The repulsive forces generated between the two F-passivated surfaces further decreased the COF to 0.14.

  2. Material transfer mechanisms between aluminum and fluorinated carbon interfaces

    International Nuclear Information System (INIS)

    Sen, F.G.; Qi, Y.; Alpas, A.T.

    2011-01-01

    First-principles calculations and sliding contact experiments were conducted to elucidate material transfer mechanisms between aluminum and fluorinated carbon (diamond, diamond-like carbon (DLC)) surfaces. An interface model that examined interactions between Al (1 1 1) and F-terminated diamond (1 1 1) surfaces revealed that F atoms would transfer to the Al surface in increasing quantities with an increase in the contact pressure, and this F transfer would lead to the formation of a stable AlF 3 compound at the Al surface. The presence of AlF 3 on the transfer layers formed at the Al counterface placed in sliding contact against DLC containing 3 at.% F was confirmed by both X-ray photoelectron spectroscopy and cross-sectional focussed-ion beam transmission electron microscopy analyses. The coefficient of friction (COF) of the DLC coating was high initially due to deformation and wear of Al counterface, but formation of -OH and -H passivated C-rich transfer layers on Al reduced the COF to a low steady-state value of 0.20. The repulsive forces generated between the two F-passivated surfaces further decreased the COF to 0.14.

  3. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  4. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    moves from low preparation temperature to high preparation temperature. The amorphous .... nm and the interac- tion between the pi-electron clouds of the two layers re- .... sp2 configuration forms to minimize stress and making. C900 films ...

  5. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma

    Science.gov (United States)

    Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.

    2018-03-01

    In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.

  6. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  7. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  8. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    Science.gov (United States)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  9. Dibenzodiazepines (clozapine) and analogues were labelled with carrier-free carbon-11 and fluorine-18

    International Nuclear Information System (INIS)

    Bender, D.

    1993-12-01

    Pharmacologically active dibenzodiazepines were labelled with carbon-11 and fluorine-18, in particular the atypical neuroleptic clozapine (8-Cl-11-(4-methyl-1-piperazinyl)-5H-dibenzo[b,e]-[1,4]-diazepine) for pharmakokinetic studies with positron emission tomography (PET). (orig./EF)

  10. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  11. Sputtering of amorphous carbon layers studied by laser induced fluorescence

    International Nuclear Information System (INIS)

    Pasch, E.

    1992-07-01

    In order to minimize the radiation losses, it is desirable to keep the plasmas in nuclear fusion devices free of high-Z-impurities. Therefore, the walls of TEXTOR and other tokamaks are covered with thin layers of amorphous carbon layers (a-C:H) or amorphous carbon/boron layers (a-C/B:H). The sputtering behaviour of these layers has been studied under bombardment by Ar + ions with energies of 1.5 keV and current densities of a few mA/cm 2 . Investigations of these coatings were carried out with the object to measure the velocity distribution of the sputtered atoms and the sputtered yields by laser induced fluorescence in the vacuum ultraviolet. (orig.)

  12. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    International Nuclear Information System (INIS)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-01-01

    Both the mass density (1.37 kgm/m 3 ) and sp 2 +sp 3 bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C 60 , glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs

  13. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-06-01

    Both the mass density (1.37 kgm/m{sup 3}) and sp{sup 2}+sp{sup 3} bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C{sub 60}, glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs.

  14. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  15. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; PROVENCIO,PAULA P.; TALLANT,DAVID R.; SIMPSON,REGINA L.; KLEINSORGE,B.; MILNE,W.I.

    2000-01-27

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces and their thicknesses increase with increasing deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies < 60 eV and increases for films grown using ion energies > 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of 4-fold to 3-fold coordinated carbon atoms.

  16. Bonding topologies in diamondlike amorphous-carbon films

    International Nuclear Information System (INIS)

    Siegal, M. P.; Provencio, P. N.; Tallant, D. R.; Simpson, R. L.; Kleinsorge, B.; Milne, W. I.

    2000-01-01

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of σ- to π-bonded carbon atoms. (c) 2000 American Institute of Physics

  17. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Kleinsorge, B. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom); Milne, W. I. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom)

    2000-04-10

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies <60 eV and increases for films grown using ion energies >160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of {sigma}- to {pi}-bonded carbon atoms. (c) 2000 American Institute of Physics.

  18. Chemistry of Fluorinated Carbon Acids: Synthesis, Physicochemical Properties, and Catalysis.

    Science.gov (United States)

    Yanai, Hikaru

    2015-01-01

    The bis[(trifluoromethyl)sulfonyl]methyl (Tf2CH; Tf=SO2CF3) group is known to be one of the strongest carbon acid functionalities. The acidity of such carbon acids in the gas phase is stronger than that of sulfuric acid. Our recent investigations have demonstrated that this type of carbon acids work as novel acid catalysts. In this paper, recent achievements in carbon acid chemistry by our research group, including synthesis, physicochemical properties, and catalysis, are summarized.

  19. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of /sup 11/C, /sup 18/F and /sup 13/N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume.

  20. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    International Nuclear Information System (INIS)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of 11 C, 18 F and 13 N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume

  1. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    Science.gov (United States)

    Dasgupta, Suman

    2011-12-01

    Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of

  2. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  3. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  4. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  5. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  6. Structure-property relations in amorphous carbon for photovoltaics

    International Nuclear Information System (INIS)

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-01-01

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  7. Structure-property relations in amorphous carbon for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Risplendi, Francesca; Cicero, Giancarlo [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bernardi, Marco [Department of Physics, University of California, Berkeley, California 94720 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  8. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  9. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  10. Resistance switching at the nanometre scale in amorphous carbon

    International Nuclear Information System (INIS)

    Sebastian, Abu; Rossel, Christophe; Pozidis, Haralampos; Eleftheriou, Evangelos; Pauza, Andrew; Shelby, Robert M; RodrIguez, Arantxa Fraile

    2011-01-01

    The electrical transport and resistance switching mechanism in amorphous carbon (a-C) is investigated at the nanoscale. The electrical conduction in a-C thin films is shown to be captured well by a Poole-Frenkel transport model that involves nonisolated traps. Moreover, at high electric fields a field-induced threshold switching phenomenon is observed. The following resistance change is attributed to Joule heating and subsequent localized thermal annealing. We demonstrate that the mechanism is mostly due to clustering of the existing sp 2 sites within the sp 3 matrix. The electrical conduction behaviour, field-induced switching and Joule-heating-induced rearrangement of atomic order resulting in a resistance change are all reminiscent of conventional phase-change memory materials. This suggests the potential of a-C as a similar nonvolatile memory candidate material.

  11. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  12. Effect of ultraviolet light irradiation on amorphous carbon nitride films

    International Nuclear Information System (INIS)

    Zhang, M.; Nakayama, Y.

    1997-01-01

    The amorphous carbon nitride films were produced using electron cyclotron resonance nitrogen plasma with various mixtures of N 2 and CH 4 gases. The dependence of film structures on the nitrogen incorporation and the structural modifications of the film due to ultraviolet (UV) light irradiation were investigated using infrared and UV-VIS spectroscopy. It is found that UV irradiation results in the decrease of CH bonding, increase of CC and CN double bonding in the film and increase of the optical band gap of the film. It appears that both bond removal and reordering have taken place as a result of UV irradiation. The structural modifications due to nitrogen incorporation and UV light irradiation are explained by a cluster model. copyright 1997 American Institute of Physics

  13. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  14. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    International Nuclear Information System (INIS)

    Paul, S.

    2000-11-01

    My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configured to study the electrical properties of the grown a-C:H films, has been reported. Since device performance is crucially linked to the density of states in the film, a study of the same was undertaken in my doctoral research. I present a mathematical formalism to estimate the density of states in a-C:H. The most commonly used metal, (aluminium), for contact formation on a-C:H films, has been concluded to be the least suitable. On the basis of the study presented in this thesis, copper and chromium are judged to be the best alternatives. The resilience of a-C:H/Si heterostructures under high voltages (upto 900 V) has been reported in this thesis for the first time. The performance of a-C:H grown at room temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). (author)

  15. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  16. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  17. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  18. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  19. Piezoresistive effect observed in flexible amorphous carbon films

    Science.gov (United States)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  20. The application of Car-Parrinello molecular dynamics to the study of tetrahedral amorphous carbon

    International Nuclear Information System (INIS)

    McKenzie, D.R.; McCulloch, D.G.; Goringe, C.M.

    1998-01-01

    The Car-Parrinello method for carrying out molecular dynamics enables the forces between atoms to be calculated by solving Schroedinger's equation for the valence electrons using Density Functional Theory. The method is capable of giving good structural predictions for amorphous network solids by quenching from the melt, even in situations where the bonding changes from one site to another. In amorphous carbon where, depending on its environment, carbon may show sp 2 or sp 3 bonds. The method is applied here to the study of network solids using the example of tetrahedral amorphous carbon

  1. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  2. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    Science.gov (United States)

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  3. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    Science.gov (United States)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  4. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  5. Degree of functionalization and stability of fluorine groups fixed to carbon nanotubes and graphite nanoplates by CF{sub 4} microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader-Fernández, V.K.; Morales-Lara, F. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Melguizo, M.; García-Gallarín, C.; López-Garzón, R.; Godino-Salido, M.L. [Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén (Spain); López-Garzón, F.J., E-mail: flopez@ugr.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Domingo-García, M.; Pérez-Mendoza, M.J. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2015-12-01

    Highlights: • The surface area of GNPs and MWCNTs determines the degree of fluorination by plasma. • Fluorine is bound to carbon atoms in up to eight chemical environments. • The stability of the fluorine groups varies in a wide range of temperature. • The electronic properties of MWCNTs are changed as a consequence of fluorination. • The textural characteristics of the materials are not changed after fluorination. - Abstract: The fluorination of graphite nanoplates (GNPs) and multi-wall carbon nanotubes (MWCNTs) by CF{sub 4} cold plasma is reported. The aim is to analyze the influence of the textural characteristics in the degree of fluorination and in the thermal stability of the fluorine groups. We have used thermal programmed desorption which clearly discriminates the nature of the desorbing species and their stability. The degree of fluorination of both materials is similar up to 20 min of treatment and then it decreases in GNPs at longer treatments. Nevertheless, the fluorine content in MWCNTs keeps increasing after 45 min. This different evolution of the fluorination degree with the time is related to the surface areas. The fluorine bonding is produced not only in defects and irregularities but also on the external graphene sheets of both materials, and it results in up to eight different chemical environments having different thermal stabilities from 150 °C up to temperatures higher than 900 °C. The fluorination increases the electronic states near the Fermi level of the nanotubes whereas it does not affect the electronic properties of graphite nanoplates. It is shown that no intercalation compounds are formed and that the textural characteristics of the materials remain unchanged after fluorination.

  6. Optical and luminescence properties of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Rusli

    1996-03-01

    In this thesis, the optical and luminescence properties of hydrogenated amorphous carbon(a - C:H) thin films deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) system are studied. A photoluminescence (PL) measuring system with a wavelength range of 300nm to 900nm, used for the above study, has been set up as a main part of the research. Firstly, a simple yet powerful method developed to solve for the optical constants and thickness of a - C : H deposited on Si is presented. This is followed by an investigation into the optical properties of band gap modulated a - C : H thin films superlattice structures. a - C : H films, obtained from a wide range of deposition conditions, are then characterised in terms of their optical absorption, infrared absorption, Raman scattering, fraction of sp 2 to sp 3 bondings and unpaired electron spin density. Their PL characteristics, such as the peak emission energy, spectral bandwidth, quantum efficiency, fatigue and polarisation memory are investigated in relation to their microstructure. The results, taken together with those obtained from photoconductivity study and electric field quenching of PL, are used to understand the origin of the strong PL in a - C : H. Preliminary work on a - C : H electroluminescent celbis also presented. (author)

  7. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  8. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  9. Modification of carbon nanotubes with fluorinated ionic liquid for improving processability of fluoro-ethylene-propylene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hongyang; Chu, Benjamin; Hsiao, Benjamin S.

    2017-02-01

    Fluorinated ionic liquid (F-IL), 1-(3-perfluorooctylpropyl)-3-methylimidazolium bis(perfluoroethylsufonyl)amine, had been successfully prepared and employed to modify multi-wall carbon nanotubes (MWCNTs) for improving the processability of fluoro-ethylene-propylene (FEP). The thermally decomposed temperature of F-IL was higher than 350 °C measured by thermal gravimetric analysis (TGA) which indicated that the fluorinated ionic liquid could be suitable for melting blend with FEP (blending at 290 °C) by a twin-screw extruder. Through “cation-π” interaction between the imidazolium cation of F-IL and the graphene surface of MWCNTs, MWCNTs can be modified with F-IL and used as nanofillers to improve the dispersity of MWCNTs in fluorocopolymer FEP verified by SEM images of the FEP nanocomposite. The structural characterization and mechanical property of FEP nanocomposite during the deformation were investigated by tensile experiments and simultaneous time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques.

  10. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  11. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  12. Band-gap sensitive adsorption of fluorine molecules on sidewalls of carbon nanotubes: an ab initio study

    International Nuclear Information System (INIS)

    Choi, Woon Ih; Park, Sohee; Kim, Tae-Eun; Park, Noejung; Lee, Kwang-Ryeol; Lee, Young Hee; Ihm, Jisoon; Han, Seungwu

    2006-01-01

    We report from ab initio calculations that the band-gap sensitive side-wall functionalization of a carbon nanotube is feasible with the fluorine molecule (F 2 ), which can provide a route to the extraction of semiconducting nanotubes by etching away metallic ones. In the small diameter cases like (11, 0) and (12, 0), the nanotubes are easily functionalized with F 2 regardless of their electronic properties. As the diameter becomes larger, however, the fluorination is favoured on metallic CNTs with smaller activation barriers than those of semiconducting ones. Our results suggest that low-temperature exposure to F 2 molecules in the gas phase can make a dominant portion of fluorinated metallic nanotubes and unfluorinated semiconducting ones. This is consistent with recent experimental reports

  13. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  14. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  15. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  16. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  17. Role of carbon atoms in the remote plasma deposition of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Benedikt, J.; Wisse, M.; Woen, R.V.; Engeln, R.; Sanden, M.C.M. van de

    2003-01-01

    The aim of this article is to determine the role of carbon atoms in the growth of hydrogenated amorphous carbon (a-C:H) films by means of an argon/acetylene expanding thermal plasma. Cavity ring down absorption spectroscopy is used to detect metastable carbon atoms by probing the 1s 2 2s 2 2p 3s 1 P 1 2 2s 2 2p 2 1 S 0 electronic transition. In addition to absorption measurements, the emission of the same transition is monitored by means of optical emission spectroscopy. These two measurements provide information about the local production of the C atoms and about their reactivity in the gas phase. It will be shown that under growth conditions in an Ar/C 2 H 2 expanding thermal plasma, the metastable carbon density is also representative for the ground state carbon density. From obtained results it is concluded that the carbon atoms react rapidly with acetylene in the gas phase and therefore their contribution to the growth of hard diamond-like a-C:H films can be neglected. Only at low acetylene flows, the condition when soft polymer-like films are deposited, carbon atoms are detected close to the substrate and can possibly contribute to the film growth

  18. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  19. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  20. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  1. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  2. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    International Nuclear Information System (INIS)

    Zobir, S. A. M.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-01-01

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheres size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm -1 for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.

  3. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  4. Three-dimensional structure of Au nanoparticles supported on amorphous silica and carbon substrates

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2012-01-01

    Scanning Transmission Electron Microscope (STEM) has been employed to study the three-dimensional structure of gold (Au) nanoparticles deposited by means of thermal evaporation in high vacuum on amorphous silica (a-SiO 2 ) and amorphous carbon (a-C) supports. By performing quantitative analysis on the evolution of the high angle annular dark field (HAADF) images, we studied the influence of the nature and the temperature of support on the growth mode of gold nanoparticles.

  5. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor.

    Science.gov (United States)

    Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak

    2012-09-01

    The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  7. Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Department of Radiology, Tachikawa Hospital, 4-2-22, Nishiki-cho, Tachikawa, Tokyo 190-8531 (Japan)], E-mail: teru_hasebe@hotmail.com; Nagashima, So [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Kamijo, Aki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Yoshimura, Taichi; Ishimaru, Tetsuya; Yoshimoto, Yukihiro; Yohena, Satoshi; Kodama, Hideyuki; Hotta, Atsushi [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Takahashi, Koki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2007-12-03

    Fluorine-doped diamond-like carbon (F-DLC) has recently drawn a great deal of attention as a more non-thrombogenic coating than conventional DLC for blood-contacting medical devices. We conducted quantitative depth profiling of F-DLC film by X-ray photoelectron spectroscopy (XPS) in order to elucidate the effects of fluorine and fluorine distribution in F-DLC film in connection with the prevention of surface blood adhesion. F-DLC films were prepared on silicon substrates using the radio frequency plasma enhanced chemical vapor deposition method, and the thickness of films was {approx} 50 nm. 50-nm-thick F-DLC film samples were etched at 10-nm thickness intervals using argon plasma, and each surface was examined by XPS. Thereafter, each etched film layer was incubated with platelet-rich plasma isolated from human whole blood, and the platelet-covered area per unit area was evaluated for each surface. XPS spectra showed the localization of doped fluorine in the top-most thin layer of the film. Platelet-covered areas represented progressively larger portions of the surfaces of deeper etched layers, corresponding to the decreasing fluorine content in such sample surfaces. These results indicate that the localized fluorine in the top-most thin layer is one of the key factors in the promotion of the non-thrombogenicity of F-DLC film.

  8. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte......Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid...

  9. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  10. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  11. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  12. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES) Membrane

    Science.gov (United States)

    Prihandana, Gunawan S.; Sanada, Ippei; Ito, Hikaru; Noborisaka, Mayui; Kanno, Yoshihiko; Suzuki, Tetsuya; Miki, Norihisa

    2013-01-01

    A nano porous polyethersulfone (PES) membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC) onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems. PMID:28788333

  13. Structure and giant magnetoresistance of carbon-based amorphous films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ma, L.; He, M.F.; Liu, Z.W.; Zeng, D.C.; Gu, Z.F.; Cheng, G.

    2014-01-01

    Pure amorphous carbon (a-C) and Co-doped Co x C 1−x films were prepared on n-Si(100) substrates by dc magnetron sputtering. In Co–C films, the nano-sized amorphous Co particles were homogeneously dispersed in the amorphous cross-linked carbon matrix. The structures of a-C and Co x C 1−x films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The results showed that the a-C films were diamond-like carbon (DLC) films. After doping cobalt into DLC film, the sp 3 -hybridized carbon content in DLC composite films almost had no change. The as-deposited Co x C 1−x granular films had larger value of magnetoresistance (MR) than the amorphous carbon film. A very high positive MR, up to 15.5% at magnetic field B = 0.8 T and x = 2.5 at.% was observed in a Co x C 1−x granular film with thickness of 80 nm at room temperature when the external magnetic field was perpendicular to the electric current and the film surface. With increase of the film thickness and Co-doped content, the MR decreased gradually. It remains a challenge to well explain the observed MR effect in the Co x C 1−x granular films. - Highlights: • The amorphous carbon films were diamond-like carbon films. • No carbide appearing, the Co–C composite films form a good metal/insulator system. • A high positive magnetoresistance, up to 15.5% at B = 0.8 T was observed in Co–C films

  14. Theoretical investigation of magnetic properties in interfaces of magnetic nanoparticles and amorphous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Ovchinnikov, Sergei [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036 (Russian Federation); Chen, Guan-Long [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2017-06-15

    Highlights: • The interfaces of amorphous carbons will be graphited and antiferromagnetic. • The ferromagnetism on the Co interfaces is induced by the medium electrons. • The spin-wave excitation will change between the acoustic and optical modes. • The charge exchange in the interfaces changes the magnetism of the interfaces. - Abstract: Based on the experimental finding of the exchange bias in amorphous carbon samples with embedded Co nanoparticles and on the graphited character of the amorphous carbon interface confirmed by molecular dynamics simulations we have proposed the interface of graphited carbon to be antiferromagnetic. A theoretical model, which comprises the Kondo interactions in the interfaces of Co nanoparticles and the induced antiferromagnetic interactions in the graphited carbons, is employed to evaluate the ferromagnetism of the interfaces of Co nanoparticles. We have shown that the ferromagnetism of interfaces of Co nanoparticles will be enhanced by the increase of antiferromagnetic interaction as well as the increase of electron density in the graphited carbons. In particular, we found that the antiferromagnetic interactions in graphited carbons will change the spin-wave excitation in interfaces of Co nanoparticles from the quasiacoustic mode to the quasioptical one.

  15. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  16. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  17. Hard graphitelike hydrogenated amorphous carbon grown at high rates by a remote plasma

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Zaharia, T.; Creatore, M.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) deposited from an Ar-C 2H2 expanding thermal plasma chemical vapor deposition (ETP-CVD) is reported. The downstream plasma region of an ETP is characterized by a low electron temperature (∼0.3 eV), which leads to an ion driven chemistry and negligible physical...

  18. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    NARCIS (Netherlands)

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens

    2005-01-01

    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and

  19. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  20. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  1. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  2. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  3. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  4. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Naoto Tsubouchi; Hidekazu Hayashi; Akiyuki Kawashima; Masahide Sato; Noboru Suzuki; Yasuo Ohtsuka [Tohoku University, Sendai (Japan). Institute of Multidisciplinary Research for Advanced Materials

    2011-01-15

    The functionalities of the fluorine and carbon present in fly ashes formed in pulverized coal combustion have been studied with X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques. The ash samples include 20-130 {mu}g/g-dry and 0.4-4.1 mass%-dry of fluorine and carbon elements, respectively, and these components are enriched at the outermost layer of the ash surface. The F consists of both inorganic and organic functionalities, and the proportion of the latter is as high as 84-98 mol%. The C has different types of surface oxygen species, such as carboxyl, lactone/acid anhydride and phenolic groups, and most of these groups decompose to CO{sub 2} or CO up to 700{sup o}C to yield carbon active sites. When the amount of the O-functional forms increases, the content of organic C-F forms tends to increase almost linearly. On the basis of the above results, it may be speculated as one possibility that the formation of covalent C-F bonds takes place mainly through secondary reactions between gaseous F-containing compounds (HF and/or F{sub 2}) in flue gas and carbon active sites produced below 700{sup o}C downstream of coal-fired boilers. 30 refs., 8 figs., 4 tabs.

  5. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  6. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)

  7. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    International Nuclear Information System (INIS)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-01-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  8. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  9. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  10. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  11. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    International Nuclear Information System (INIS)

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  12. Study of SEY degradation of amorphous carbon coatings

    CERN Document Server

    Bundaleski, N.; Santos, A.; Teodoro, O.M.N.D.; Silva, A.G.

    2013-04-22

    Deposition of low secondary electron yield (SEY) carbon coatings by magnetron sputtering onto the inner walls of the accelerator seems to be the most promising solution for suppressing the electron cloud problem. However, these coatings change their electron emission properties during long term exposure to air. The ageing process of carbon coated samples with initial SEY of about 0.9 received from CERN is studied as a function of exposure to different environments. It is shown that samples having the same initial SEY may age with different rates. The SEY increase can be correlated with the surface concentration of oxygen. Annealing of samples in air at 100-200 {\\deg}C reduces the ageing rate and even recovers previously degraded samples. The result of annealing is reduction of the hydrogen content in the coatings by triggering its surface segregation followed by desorption.

  13. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  14. Tribological studies of nitrogen ion implantation induced overlayer coatings of amorphous carbon and carbonitride phase

    International Nuclear Information System (INIS)

    Kumar, N.; Srivastava, S.K.; Pandian, R.; Bahuguna, Ashok; Dhara, S.; Nair, K.G.M.; Dash, S.; Tyagi, A.K.

    2013-01-01

    Highlights: ► Composite phase of amorphous carbon and carbonitride phase is observed on the N + ion implanted surface of steel. ► Advanced properties of implanted surface shows low friction coefficient of ∼0.05. ► High wear resistance 4.3 × 10 −8 mm 3 /Nm of N + implanted surface is obtained. -- Abstract: Morphology and microstructure of N + ion implanted 316 LN steel are found to modify with irradiated substrate temperature. At low temperature of 100 °C, self-similar micro-ripples are formed but at high temperature of 200 and 300 °C, micro-pores and blisters are observed on the implanted surface. Chemically modified surface is found to consist of amorphous carbon and carbonitride phase. Such composite characteristic of implanted steel surface at irradiated substrate temperature of 300 °C shows improved tribological properties with low friction coefficient and high wear resistance

  15. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol

    International Nuclear Information System (INIS)

    Shao, Penghui; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Gao, Shanshan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Amorphous TiO 2 doped with carbon is prepared as a visible photocatalyst. • RhB and 4-chlorophenol are decomposed effectively by carbon-doped amorphous TiO 2 . • The mechanism for visible light photocatalysis is discussed detailedly. - Abstract: Visible light photocatalytic activity of amorphous TiO 2 doped with carbon is prepared by a facile sol-gel route for the first time. The most active sample with mesostructure of amorphous phase, high surface area (273 m 2 g −1 ) and large pore volume (0.33 cm 3 g −1 ) is identified by X-ray diffractometer, Raman spectrometer, transmission electron microscope and N 2 adsorption–desorption isotherms. In addition, the most active sample is characterized by Fourier transform-infrared spectrometer, X-ray photoelectron spectrometer, UV–vis diffuse reflectance spectrometer and luminescence spectrometer. The results show that the most active sample with oxygenic groups has a narrower bandgap and lower recombination of electron–hole, due to the carbon doping and phase of amorphous. Effective photodegradation capability and stability of rhodamine B and colorless 4-chlorophenol are verified by photocatalytic tests under visible light irradiation. A possible mechanism of amorphous TiO 2 doped with carbon for visible light photocatalysis is proposed. The findings of this paper will provide new insights to design visible light-induced photocatalyst based on amorphous TiO 2 for organic removal

  16. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  17. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  18. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  19. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  20. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  1. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    Science.gov (United States)

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  2. Amorphous calcium carbonate associated with biofilms in hot spring deposits

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2012-08-01

    Calcium carbonate nanoparticles are intimately associated with crystalline calcite and aragonite in the Eryuan, Gongxiaoshe, and Zhuyuan hot springs (water temperature > 75 °C), which are located in Yunnan Province, China. The nanoparticles, springs, the ACC is always found under, in, or on top of biofilms, commonly in close proximity to crystalline calcite and/or aragonite. Textural evidence indicates that the ACC probably developed in microdomains that develop in the complex biofilm hydrogels. Critically, there is no evidence to support the notion that the nanoparticles are calcified nannobacteria. In the Chinese springs, ACC appears to play a formative role in the development of wheat-sheaf arrays of aragonite crystals and some of the calcite crystals. Hollow cores in some of the aragonite bundles probably formed as ACC was dissolved and many of the aragonite crystals appear to have developed as ACC recrystallized. Similarly, layers of ACC that coat the surfaces of some calcite crystals could be diagenetically transformed into calcite. The development of ACC in hot spring systems may be widespread and may play a critical but transitory role in the development of crystalline CaCO3 in these high temperature environments.

  3. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  4. Micro-friction behavior of amorphous carbon films on porous AAO membrane synthesized by the pyrolysis of polyethleneglycol 400

    International Nuclear Information System (INIS)

    Tu, J.P.; Jiang, C.X.; Guo, S.Y.; Fu, M.F.

    2005-01-01

    The amorphous carbon films with different degrees of graphitization were synthesized by the pyrolysis of polyethleneglycol 400 infiltrated in the nano-sized pores of anodic aluminum oxide (AAO) membrane. The morphology and microstructure of the carbon films were characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The micro-friction behavior of the amorphous carbon films sliding against GCr15 steel in ambient air was investigated using a ball-on-disk tester at an applied load of 980 mN and a sliding velocity of 0.2 m s -1 . The graphitization degree in the carbon films had effect on the micro-friction properties. In comparison, the amorphous carbon film with high graphitization degree showed low friction coefficient and high wear resistance. An efficient approach was brought for enhancing the friction performance of aluminum

  5. Micro-friction behavior of amorphous carbon films on porous AAO membrane synthesized by the pyrolysis of polyethleneglycol 400

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J P [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, C X [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330029 (China); Guo, S Y [Department of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310033 (China); Fu, M F [Department of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330029 (China)

    2005-05-25

    The amorphous carbon films with different degrees of graphitization were synthesized by the pyrolysis of polyethleneglycol 400 infiltrated in the nano-sized pores of anodic aluminum oxide (AAO) membrane. The morphology and microstructure of the carbon films were characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The micro-friction behavior of the amorphous carbon films sliding against GCr15 steel in ambient air was investigated using a ball-on-disk tester at an applied load of 980 mN and a sliding velocity of 0.2 m s{sup -1}. The graphitization degree in the carbon films had effect on the micro-friction properties. In comparison, the amorphous carbon film with high graphitization degree showed low friction coefficient and high wear resistance. An efficient approach was brought for enhancing the friction performance of aluminum.

  6. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  7. Crystalline and Amorphous Phosphorus – Carbon Nanotube Composites as Promising Anodes for Lithium-Ion Batteries

    KAUST Repository

    Smajic, Jasmin

    2016-05-04

    Battery research has been going full steam and with that the search for alternative anodes. Among many proposed electrode materials, little attention has been given to phosphorus. Phosphorus boasts the third highest gravimetric charge capacity and the highest volumetric charge capacity of all elements. Because of that, it would be an attractive battery anode material were it not for its poor cyclability with significant capacity loss immediately after the first cycle. This is known to be the consequence of considerable volume changes of phosphorus during charge/discharge cycles. In this work, we propose circumventing this issue by mixing amorphous red phosphorus with carbon nanotubes. By employing a non-destructive sublimation-deposition method, we have synthesized composites where the synergetic effect between phosphorus and carbon nanotubes allow for an improvement in the electrochemical performance of battery anodes. In fact, it has been shown that carbon nanotubes can act as an effective buffer to phosphorus volumetric expansions and contractions during charging and discharging of the half-cells [1]. By modifying the synthesis parameters, we have also been able to change the degree of crystallinity of the phosphorus matrix in the composites. In fact, the less common phase of red phosphorus, named fibrous phosphorus, was obtained, and that explains some of the varying electrochemical performances observed in the composites. Overall, it is found that a higher surface area of amorphous phosphorus allows for a better anode material when using single-walled carbon nanotubes as fillers.

  8. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  9. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    Science.gov (United States)

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  10. Triple layered core–shell structure with surface fluorinated ZnO-carbon nanotube composites and its electron emission properties

    International Nuclear Information System (INIS)

    Wang, H.Y.; Chua, Daniel H.C.

    2013-01-01

    Highlights: ► The effects of CF 4 plasma on ZnO-CNT core–shell structures were studied. ► ZnO was effective in protecting the aligned CNTs core for as long as 30 min of plasma etching. ► SEM showed the surface morphology was nearly similar between pristine, 2 min and 30 min plasma etched specimens. ► F was observed to displace O in ZnO. ► This is the first report of an ultra long plasma etch of fluorine onto ZnO surface. - Abstract: Core-shelled structures such as zinc oxide (ZnO) on carbon nanotubes (CNTs) give rise to interesting material properties. In this work, a triple-layered core–shell–shell structure is presented where the effects of fluorine (F) incorporation on the outmost shell of the ZnO-CNT structure are studied. The samples prepared ranged from a short 2 min to a 30 min immersion in carbon tetraflouride (CF 4 ) plasma. In addition, its effects on the electron emission properties also studied and it is shown that the plasma immersions create thinner field emitters with sharp tiny wrinkles giving rise to more electron emission sites and higher enhancement factor. In addition, X-ray photoelectron spectroscopy measurements showed that F ions replace O in ZnO coatings during immersion process, thus increasing the electrical conductivity and shifts the Fermi level of ZnO upwards. Both physical and electronic effects further contribute to a lower threshold field.

  11. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  12. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  13. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    International Nuclear Information System (INIS)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R.; Restrepo-Parra, E.; Arango, P.J.

    2010-01-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T room ), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I D /I G or sp 3 /sp 2 ratio and not by the absolute sp 3 or sp 2 concentration.

  14. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  15. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu (China)

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed a reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.

  16. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    International Nuclear Information System (INIS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-01-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N 2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (∼33.6 at. % N at 150 deg. C) but decreases strongly when the synthesis temperature increases (∼15 at. % N at 450 deg. C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp 2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties

  17. THE EFFECT OF DIAMETER ON THE MECHANICAL-PROPERTIES OF AMORPHOUS-CARBON FIBERS FROM LINEAR LOW-DENSITY POLYETHYLENE

    NARCIS (Netherlands)

    PENNING, JP; LAGCHER, R; PENNINGS, AJ

    The mechanical properties of amorphous carbon fibers, derived from linear low density polyethylene strongly depend on the fibre diameter, which may be attributed to the presence of a skin/core structure in these fibres. High strength carbon fibres could thus be prepared by using thin precursor

  18. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany

    2016-09-09

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.

  19. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2018-01-01

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al 2 O 3 , Fe 2 O 3 , and MnO 2 ). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp 3 C sites instead of sp 2 C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O 3 ) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O 2 - ) and singlet oxygen ( 1 O 2 ) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  2. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  4. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  5. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  6. From empirical to ab initio: transferable potentials in the atomistic simulation of amorphous carbons

    International Nuclear Information System (INIS)

    Marks, N.A.; Goringe, C.M.; McKenzie, D.R.; McCulloch, D.G.; Royal Melbourne Institute of Technology University, Melbourne, VIC

    2000-01-01

    Full text: Silicon is often described as the prototype covalent material, and when it comes to developing atomistic models this situation is well described by the sentiment that 'everything works for silicon'. The same cannot be said for carbon though, where the interaction potential has always proved problematical, be it with empirical, tight-binding or ab initio methods. Thus far the most decisive contributions to understanding amorphous carbon networks have come from ab initio simulations using the Car-Parrinello method, where the fully quantum treatment of the valence electrons has provided unexpected insight into the local structure. However such first principles calculations are restricted spatially and temporally to systems with approximately 100 atoms and times of order one picosecond. There is therefore demand for less expensive techniques capable of resolving important questions whose solution can only to found with larger simulations running for longer times. In the case of tetrahedral amorphous carbon, such issues include the release of compressive stress through annealing, the origin of graphitic surface layers and the nature of the film growth process and thermal spike. Against this background tight-binding molecular dynamics has emerged as a popular alternative to first principles methods, and our group has an ongoing program to understand film growth using one of the efficient variants of tight-binding. Another direction of research is a new empirical potential based on the Environment Dependent Interaction Potential (EDIP) recently developed for silicon. The EDIP approach represents a promising direction for empirical potentials through its use of ab initio data to motivate the functional form as well as the more conventional parametrisation. By inverting ab initio cohesive energy curves the authors of EDIP arrived at a pair potential expression which reduces to the well-known Stillinger-Weber form at integer coordination, while providing

  7. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  8. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  9. Self-selection in size and structure in argon clusters formed on amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krainyukova, Nina V.; Waal, Benjamin W. van de

    2004-07-01

    Argon clusters formed on an amorphous carbon substrate as deposited from the vapor phase were studied by means of transmission high energy electron diffraction using the liquid helium cryostat. Electron diffractograms were analysed on the basis of assumption that there exist a cluster size distribution in samples formed on substrate and multi-shell structures such as icosahedra, decahedra, fcc and hcp were probed for different sizes up to {approx}15 000 atoms. The experimental data were considered as a result of a superposition of diffracted intensities from clusters of different sizes and structures. The comparative analysis was based on the R-factor minimization that was found to be equal to 0.014 for the best fit between experiment and modelling. The total size and structure distribution function shows the presence of 'non-crystallographic' structures such as icosahedra and decahedra with five-fold symmetry that was found to prevail and a smaller amount of fcc and hcp structures. Possible growth mechanisms as well as observed general tendency to self-selection in sizes and structures are presumably governed by confined pore-like geometry in an amorphous carbon substrate.

  10. Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Zhang, Dong [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-05-31

    First-principles calculation was performed to investigate the effect of metal doping on the structural characteristics of amorphous carbon system, and the 3d transition metals (TM) were particularly selected as representative case. Results showed that the total energy in TM–C systems caused by distorting the bond angles was reduced distinctly for comparison with that in C–C system. Further electronic structure revealed that as the 3d electrons of doped TM increased, the bond characteristic of highest occupied molecular orbital changed from bonding (Sc, Ti) to nonbonding (V, Cr, Mn, Fe) and finally to antibonding (Co, Ni, Cu) between the TM and C atoms. Meanwhile, the TM–C bond presented a mixture of the covalent and ionic characters. The decrease of strength and directionality of TM–C bonds resulted in the total energy change upon bond angle distortion, which demonstrated that the bond characteristics played an important role in reducing residual stress of TM-doped amorphous carbon systems. - Highlights: • The bond characteristics as 3d electrons changed from bonding, nonbonding to antibonding. • The TM–C bond was a mixture of covalent and ionic characters. • Reduced strength and directionality of TM–C bond led to small distortion energy change. • The weak TM–C bond accounted for the reduced compressive stress caused by TM.

  11. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  12. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  13. Implantation of xenon in amorphous carbon and silicon for brachytherapy application

    International Nuclear Information System (INIS)

    Marques, F.C.; Barbieri, P.F.; Viana, G.A.; Silva, D.S. da

    2013-01-01

    We report a procedure to implant high dose of xenon atoms (Xe) in amorphous carbon, a-C, and amorphous silicon, a-Si, for application in brachytherapy seeds. An ion beam assisted deposition (IBAD) system was used for the deposition of the films, where one ion gun was used for sputtering a carbon (or silicon) target, while the other ion gun was used to simultaneously bombard the growing film with a beam of xenon ion Xe + in the 0–300 eV range. Xe atoms were implanted into the film with concentration up to 5.5 at.%, obtained with Xe bombardment energy in the 50–150 eV range. X-ray absorption spectroscopy was used to investigate the local arrangement of the implanted Xe atoms through the Xe L III absorption edge (4.75 keV). It was observed that Xe atoms tend to agglomerate in nanoclusters in a-C and are dispersed in a-Si.

  14. Structural and mechanical properties of amorphous carbon films deposited by the dual plasma technique

    Institute of Scientific and Technical Information of China (English)

    Yaohui Wang; Xu Zhang; Xianying Wu; Huixing Zhang; Xiaoji Zhang

    2008-01-01

    Direct current metal filtered cathodic vacuum are (FCVA) and acetylene gas (C2H2) were wielded to synthesize Ti-containing amorphous carbon films on Si (100). The influence of substrate bias voltage and acetylene gas on the microstructure and mechanical properties of the films were investigated. The results show that the phase of TiC in the (111) preferential crystallo-graphic orientation exists in the film, and rite main existing pattern of carbon is sp2. With increasing the acetylene flow rate, the con-tents of Ti and TiC phase of the film gradually reduce; however, the thickness of the film increases. When the substrate bias voltage reaches -600 V, the internal stress of the film reaches 1.6 GPa. The micro-hardness and elastic modulus of the film can reach 33.9 and 237.6 GPa, respectively, and the friction coefficient of the film is 0.25.

  15. Amorphous hydrogenated carbon films treated by SF{sub 6} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Marins, N M S; Mota, R P; Santos, D C R; Honda, R Y; Kayama, M E; Kostov, K G; Algatti, M A [Laboratorio de Plasma, Faculdade de Engenharia, UNESP, Av. Dr. Ariberto Pereira da Cunha-333, 12516-410, Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: nazir@feg.unesp.b [Laboratorio de Plasmas Tecnologicos, Unidade Diferenciada Sorocaba/Ipero, UNESP, Av. Tres de Marco-511, 18085-180, Sorocaba, SP (Brazil)

    2009-05-01

    This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF{sub 6} plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp{sup 3} hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF{sub 6} plasma treatment.

  16. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  17. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    Science.gov (United States)

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  18. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained ;solubility product; of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  19. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    International Nuclear Information System (INIS)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-01-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films

  20. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-23

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  1. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Science.gov (United States)

    Martínez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 °C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 °C. Film surfaces roughen upon annealing to 300 °C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 °C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  2. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    Science.gov (United States)

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  3. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  4. Annealing effect on the microstructure modification and tribological properties of amorphous carbon nitride films

    Science.gov (United States)

    Wang, Zhou; Wang, Chengbing; Wang, Qi; Zhang, Junyan

    2008-10-01

    The influences of thermal annealing on the microstructural and tribological properties of amorphous carbon nitride films were investigated. X-ray photoelectron spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometer were utilized to characterize bond configuration and chemical state of the films. The results indicated that at low annealing temperatures (200 and 300 °C), the volatile species and surface contamination are easily dissociated without obvious bulk modification; while at high annealing temperatures (400 and 500 °C), the microstructure of carbon nitride films changed and favored a graphitization process, which indicated the growth of more graphitic film structures. The faint Raman signal of C≡N decreased with annealing temperature (TA) and completely disappeared at TA of 500 °C, indicating that nitrile bonds were thermal unstable under high temperature. Surprisingly, the tribological properties of the films showed a remarkably decreasing in friction coefficient as the TA increased; it is attributed to the graphitization of carbon nitride films during thermal annealing, which favored transfer film formation between the carbon nitride films and counterface materials. The transfer films benefit the decrease in coefficient of friction.

  5. Impact of carbon-fluorine doped titanium dioxide in the performance of an electrochemical sensing of dopamine and rosebengal sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Abinaya C

    2015-01-01

    Full Text Available The role of Fluorine and Carbon as dopants in the TiO2 based electrochemical sensor and DSSC were presented in this work. A series of Carbon nano-cones and disc doped TiO2 (TC, Fluorine doped TiO2 (FT and C & F co-doped TiO2 (CFT powdered samples were prepared via solid state synthesis. The CFT film showed excellent electrochemical sensitivity to the oxidation of dopamine in aqueous solution and could be employed as a dopamine sensor. The proposed sensor exhibited good linear response in the range of 10-820 μM with a detection limit of 3.6 μM under optimum conditions. The photovoltaic performances of Rose Bengal sensitized solar cells were assessed through I-V measurements. The CFT based DSSC shows a short-circuit current density and a power conversion efficiency (η of 0.908 mA/cm2 and 0.163% respectively, which is 35% and 38% greater than the performance of other PT based cells. The characterization studies such as UV-Visible spectroscopy, Photoluminescence, TEM and EPR spectroscopy were utilized for further investigation, which helps us to understand how fluorine and carbon play a part in dopamine sensing and solar energy conversion.

  6. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  7. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  8. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun

    2007-01-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films

  9. Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD

    CERN Document Server

    Pereyra, I; Carreno, M N P; Prado, R J; Fantini, M C A

    2000-01-01

    We have shown that close to stoichiometry RF PECVD amorphous silicon carbon alloys deposited under silane starving plasma conditions exhibit a tendency towards c-Si C chemical order. Motivated by this trend, we further explore the effect of increasing RF power and H sub 2 dilution of the gaseous mixtures, aiming to obtain the amorphous counterpart of c-Si C by the RF-PECVD technique. Doping experiments were also performed on ordered material using phosphorus and nitrogen as donor impurities and boron and aluminum as acceptor ones. For nitrogen a doping efficiency close to device quality a-Si:H was obtained, the lower activation energy being 0,12 eV with room temperature dark conductivity of 2.10 sup - sup 3 (OMEGA.cm). Nitrogen doping efficiency was higher than phosphorous for all studied samples. For p-type doping, results indicate that, even though the attained conductivity values are not device levels, aluminum doping conducted to a promising shift in the Fermi level. Also, aluminum resulted a more efficie...

  10. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    Science.gov (United States)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  11. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  12. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  13. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    International Nuclear Information System (INIS)

    Lan, Yung-Hsiang; Brahma, Sanjaya; Tzeng, Y.H.; Ting, Jyh-Ming

    2014-01-01

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film

  14. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  15. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  16. Sizeable magnetic circular dichroism of artificially precipitated Co clusters in amorphous carbon

    Directory of Open Access Journals (Sweden)

    H. S. Hsu

    2012-09-01

    Full Text Available This study examines sizeable magnetic circular dichroism (MCD in Co(20%-doped amorphous carbon (a-C films. While as-grown films exhibit a non-detectable MCD signal, films that undergo rapid thermal annealing (RTA at 600°C in a vacuum yield broad MCD spectra with a large amplitude of ∼3.9 × 104 deg/cm in saturation field 0.78 T at the σ-σ* gap transition (∼5.5 eV. In such films after RTA, the metastable Co-C bonding is decomposed and suitable Co nanoparticles/a-C interfaces are thus formed. Our results indicate that the large change in MCD is contributed from Co nanoparticles and associated with the spin-dependent electronic structure at the Co/a-C interfaces.

  17. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  18. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  19. Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips

    Directory of Open Access Journals (Sweden)

    Lebrón-Colón M

    2009-01-01

    Full Text Available Abstract The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM. The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k and the reduced radial distribution functionG(r were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.

  20. Interdispersed amorphous MnO{sub x}-carbon nanocomposites with superior electrochemical performance as lithium-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Liu, Qing; Zachariah, Michael R. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD (United States)

    2012-02-22

    The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnO{sub x}-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO{sub x} blocks the penetration of liquid electrolyte to the inside of MnO{sub x}, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnO{sub x} brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnO{sub x}-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    Science.gov (United States)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  2. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  3. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  4. Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases.

    Science.gov (United States)

    Zubrienė, Asta; Smirnov, Alexey; Dudutienė, Virginija; Timm, David D; Matulienė, Jurgita; Michailovienė, Vilma; Zakšauskas, Audrius; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2017-01-20

    The goal of rational drug design is to understand structure-thermodynamics correlations in order to predict the chemical structure of a drug that would exhibit excellent affinity and selectivity for a target protein. In this study we explored the contribution of added functionalities of benzenesulfonamide inhibitors to the intrinsic binding affinity, enthalpy, and entropy for recombinant human carbonic anhydrases (CA) CA I, CA II, CA VII, CA IX, CA XII, and CA XIII. The binding enthalpies of compounds possessing similar chemical structures and affinities were found to be very different, spanning a range from -90 to +10 kJ mol -1 , and are compensated by a similar opposing entropy contribution. The intrinsic parameters of binding were determined by subtracting the linked protonation reactions. The sulfonamide group pK a values of the compounds were measured spectrophotometrically, and the protonation enthalpies were measured by isothermal titration calorimetry (ITC). Herein we describe the development of meta- or ortho-substituted fluorinated benzenesulfonamides toward the highly potent compound 10 h, which exhibits an observed dissociation constant value of 43 pm and an intrinsic dissociation constant value of 1.1 pm toward CA IX, an anticancer target that is highly overexpressed in various tumors. Fluorescence thermal shift assays, ITC, and X-ray crystallography were all applied in this work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multiscale simulation of thermal disruption in resistance switching process in amorphous carbon

    International Nuclear Information System (INIS)

    Popov, A M; Nikishin, N G; Shumkin, G N

    2015-01-01

    The switching of material atomic structure and electric conductivity is used in novel technologies of making memory on the base of phase change. The possibility of making memory on the base of amorphous carbon is shown in experiment [1]. Present work is directed to simulation of experimentally observed effects. Ab initio quantum calculations were used for simulation of atomic structure changes in amorphous carbon [2]. These simulations showed that the resistance change is connected with thermally induced effects. The temperature was supposed to be the function of time. In present paper we propose a new multiscale, self-consistent model which combines three levels of simulation scales and takes into account the space and time dependencies of the temperature. On the first level of quantum molecular dynamic we provide the calculations of phase change in atomic structure with space and time dependence of the temperature. Nose-Hover thermostats are used for MD simulations to reproduce space dependency of the temperature. It is shown that atomic structure is localized near graphitic layers in conducting dot. Structure parameter is used then on the next levels of the modeling. Modified Ehrenfest Molecular Dynamics is used on the second level. Switching evolution of electronic subsystem is obtained. In macroscopic scale level the heat conductivity equation for continuous media is used for calculation space-time dependence of the temperature. Joule heat source depends on structure parameter and electric conductivity profiles obtained on previous levels of modeling. Iterative procedure is self-consistently repeated combining three levels of simulation. Space localization of Joule heat source leads to the thermal disruption. Obtained results allow us to explain S-form of the Volt-Ampere characteristic observed in experiment. Simulations were performed on IBM Blue Gene/P supercomputer at Moscow State University. (paper)

  6. Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon

    Science.gov (United States)

    Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor

    2018-04-01

    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.

  7. Polymer functionalized single-walled carbon nanotube composites and semi-fluorinated quaternary ammonium polymer colloids and coatings

    Science.gov (United States)

    Paul, Abhijit

    Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that

  8. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  9. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    Science.gov (United States)

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  10. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    Science.gov (United States)

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  12. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  13. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  14. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  15. Preclinical evaluation of carbon-11 and fluorine-18 sulfonamide derivatives for in vivo radiolabeling of erythrocytes

    OpenAIRE

    Gheysens, Olivier; Akurathi, Vamsidhar; Chekol, Rufael; Dresselaers, Tom; Celen, Sofie; Koole, Michel; Dauwe, Dieter; Cleynhens, Bernard J; Claus, Piet; Janssens, Stefan; Verbruggen, Alfons M; Nuyts, Johan; Himmelreich, Uwe; Bormans, Guy M

    2013-01-01

    Background To date, few PET tracers for in vivo labeling of red blood cells (RBCs) are available. In this study, we report the radiosynthesis and in vitro and in vivo evaluation of 11C and 18F sulfonamide derivatives targeting carbonic anhydrase II (CA II), a metallo-enzyme expressed in RBCs, as potential blood pool tracers. A proof-of-concept in vivo imaging study was performed to demonstrate the feasibility to assess cardiac function and volumes using electrocardiogram (ECG)-gated positron ...

  16. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  17. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Navarro, C.; Elert, K.; Ševčík, Radek

    2016-01-01

    Roč. 18, č. 35 (2016), s. 6594-6607 ISSN 1466-8033 R&D Projects: GA ČR(CZ) GP14-20374P; GA MŠk(CZ) LO1219 Keywords : carbonation * nanolime * kinetics * CaCO3 polymorphs Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 3.474, year: 2016 http://pubs.rsc.org/en/Content/ArticleLanding/2016/CE/c6ce01202g#!divAbstract

  18. Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films

    International Nuclear Information System (INIS)

    Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi

    2017-01-01

    Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the

  19. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  20. Fluorination reaction uranium dioxide by fluorine

    International Nuclear Information System (INIS)

    Ogata, Shinji; Homma, Shunji; Koga, Jiro; Matsumoto, Shiro; Sasahira, Akira; Kawamura, Fumio

    2004-01-01

    Kinetics of the fluorination reaction of uranium dioxide is studied using un-reacted core model with shrinking particles. The model includes the film mass transfer of fluorine gas and its diffusion in the particle. The rate constants of the model are determined by fitting the experimental data for 370-450degC. The model successfully represents the fluorination in this temperature range. The rate control step is identified by examining the rate constants of the model for 300-1,800degC. For temperature range up to 900degC, the fluorination reaction is rate controlling. For over 900degC, both mechanisms of the mass transfer of fluorine and the fluorination reaction control the rate of the fluorination. With further increase of the temperature, however, the fluorination reaction becomes so fast that the mass transfer of fluorine eventually controls the rate of the fluorination. (author)

  1. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  2. Mapping residual organics and carbonate at grain boundaries and in the amorphous interphase in mouse incisor enamel

    Directory of Open Access Journals (Sweden)

    Lyle M Gordon

    2015-03-01

    Full Text Available Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis.

  3. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Zhang, Xu; Liang, Hong; Wu, Zhenglong; Wu, Xiangying; Zhang, Huixing

    2013-01-01

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment

  4. Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation

    CERN Document Server

    Yin Vallgren, C; Chiggiato, P; Costa Pinto, P; Neupert, H; Taborelli, M; Rumolo, G; Shaposhnikova, E; Vollenberg, W

    2011-01-01

    Amorphous carbon (a-C) thin films, produced in different coating configurations by using DC magnetron sputtering, have been investigated in laboratory for low secondary electron yield (SEY) applications. After the coatings had shown a reliable low initial SEY, the a-C thin films have been applied in the CERN Super Proton Synchrotron (SPS) and tested with Large Hadron Collider (LHC) type beams.Currently, we have used a-C thin film coated in so-called liner configuration for the electron cloud monitors. In addition the vacuum chambers of three dipole magnets have been coated and inserted into the machine. After describing the different configurations used for the coatings, results of the tests in the machine and a summary of the analyses after extraction will be presented. Based on comparison between different coating configurations, a new series of coatings has been applied on three further dipole magnet vacuum chambers. They have been installed and will be tested in coming machine development runs.

  5. Ion-Assisted Pulsed Laser Deposition of amorphous tetrahedral-coordinated carbon films

    Science.gov (United States)

    Friedmann, T. A.; Tallant, D. R.; Sullivan, J. P.; Siegal, M. P.; Simpson, R. L.

    1994-04-01

    A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion-assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (G) peak and the disorder (D) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200-500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500-1500 V) the D peak intensity is less sensitive to the nitrogen content of the beam.

  6. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  7. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  8. Origin of temperature-induced low friction of sputtered Si-containing amorphous carbon coatings

    International Nuclear Information System (INIS)

    Jantschner, O.; Field, S.K.; Holec, D.; Fian, A.; Music, D.; Schneider, J.M.; Zorn, K.; Mitterer, C.

    2015-01-01

    This work reports on a tribological study of magnetron-sputtered silicon-containing amorphous carbon thin films vs. their alumina counterparts. Temperature cycling during ball-on-disk tests in humid air revealed a decrease in the coefficient of friction from 0.3 to <0.02 beyond 240 ± 15 °C. Systematic variation of the environment confirmed oxygen to be responsible for the low friction. X-ray photoelectron spectroscopy of the wear tracks indicates oxidation of Si-C bonds and formation of Si-O-C bonds, followed by further oxidation to SiO 2 above 450 °C. Ab initio molecular dynamics simulations of gas interactions with the a-C surface revealed dissociation of O 2 and the formation of oxides. Additional density functional theory calculations of Si incorporation into a graphene layer, resembling the surface of the film, showed preferential attraction of gaseous species (H, O, -OH, H 2 O), to Si-sites as compared to C-sites. Hence, the temperature- and atmosphere-induced changes in friction coefficient can be understood based on correlative X-ray photoelectron spectroscopy and ab initio data: the formation of Si-O-C bonds stemming from a reaction of the as-deposited coating with atmosphere in the tribological contact is observed by theory and experiment

  9. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  10. Evolution of sp2 networks with substrate temperature in amorphous carbon films: Experiment and theory

    International Nuclear Information System (INIS)

    Gago, R.; Vinnichenko, M.; Jaeger, H.U.; Maitz, M.F.; Belov, A.Yu.; Jimenez, I.; Huang, N.; Sun, H.

    2005-01-01

    The evolution of sp 2 hybrids in amorphous carbon (a-C) films deposited at different substrate temperatures was studied experimentally and theoretically. The bonding structure of a-C films prepared by filtered cathodic vacuum arc was assessed by the combination of visible Raman spectroscopy, x-ray absorption, and spectroscopic ellipsometry, while a-C structures were generated by molecular-dynamics deposition simulations with the Brenner interatomic potential to determine theoretical sp 2 site distributions. The experimental results show a transition from tetrahedral a-C (ta-C) to sp 2 -rich structures at ∼500 K. The sp 2 hybrids are mainly arranged in chains or pairs whereas graphitic structures are only promoted for sp 2 fractions above 80%. The theoretical analysis confirms the preferred pairing of isolated sp 2 sites in ta-C, the coalescence of sp 2 clusters for medium sp 2 fractions, and the pronounced formation of rings for sp 2 fractions >80%. However, the dominance of sixfold rings is not reproduced theoretically, probably related to the functional form of the interatomic potential used

  11. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  12. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  13. Etching characteristics and application of physical-vapor-deposited amorphous carbon for multilevel resist

    International Nuclear Information System (INIS)

    Kim, H. T.; Kwon, B. S.; Lee, N.-E.; Park, Y. S.; Cho, H. J.; Hong, B.

    2008-01-01

    For the fabrication of a multilevel resist (MLR) based on a very thin, physical-vapor-deposited (PVD) amorphous carbon (a-C) layer, the etching characteristics of the PVD a-C layer with a SiO x hard mask were investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in O 2 /N 2 /Ar plasmas: high-frequency/low-frequency combination (f HF /f LF ), HF/LF power ratio (P HF /P LF ), and O 2 and N 2 flow rates. The very thin nature of the a-C layer helps to keep the aspect ratio of the etched features low. The etch rate of the PVD a-C layer increased with decreasing f HF /f LF combination and increasing P LF and was initially increased but then decreased with increasing N 2 flow rate in O 2 /N 2 /Ar plasmas. The application of a 30 nm PVD a-C layer in the MLR structure of ArF PR/BARC/SiO x /PVD a-C/TEOS oxide supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the TEOS-oxide layer

  14. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.

  15. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N; Komvopoulos, K

    2014-01-01

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures

  16. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    Science.gov (United States)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  17. Formation of hydrogenated amorphous carbon films of controlled hardness from a methane plasma

    International Nuclear Information System (INIS)

    Vandentop, G.J.; Kawasaki, M.; Nix, R.M.; Brown, I.G.; Salmeron, M.; Somorjai, G.A.; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720)

    1990-01-01

    Studies of amorphous hydrogenated carbon (a-C:H) film deposition revealed that methyl radicals are the precursor species responsible for the bulk mass deposition of the films, while the ions act to improve the mechanical properties. The films were deposited on Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from a methane rf plasma (13.56 MHz) at 68 to 70 mTorr and 300 to 370 K. The films produced on the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. Methyl radicals were incident on the electrode surface with an estimated flux of 10 16 cm -2 s -1 , for a rf power of 50 W. Methyl radicals appear to be the dominant intermediates in the growth of the soft carbon polymer, and there is a remarkable decrease in deposition rate due to the introduction of NO, a radical scavenger. A novel pulsed biasing technique was used so that the role of ions in the plasma could be studied separately. It was found that the hardness of the films depends on the power supplied by the ions to the growing film surface (the time averaged difference between the plasma potential and the electrode potential), but not on the energy of individual ions. The pulsed biasing technique offers an efficient method to adjust the film hardness by independent control of the neutral radical and ion fluxes to the surface

  18. Tribological properties of nitrogen-containing amorphous carbon film produced by dc plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang Wei; Wazumi, Koichiro; Tanaka, Akihiro; Koga, Yoshinori

    2003-01-01

    The nitrogen-contained amorphous carbon (a-C:N) films were deposited in a dc plasma chemical vapor deposition system with different substrate bias voltages. The structural, mechanical, and tribological properties of the a-C:N films were investigated. The influence of the bias voltage on the tribological behaviors of the a-C:N films was evaluated under various environments (dry air, O 2 , N 2 , and vacuum) using a ball-on-disk friction tester. It showed that the sp 3 C and hydrogen concentration of the a-C:N films decreases with increasing the bias voltage. However, the nitrogen concentration increases with increasing the bias voltage. As a result, the hardness and internal stress decrease and the critical load for fracturing increases as the substrate bias increases. For the tribological properties of the a-C:N films, the friction coefficient of the films slightly decreases in the environments of N 2 , O 2 , or dry air, but increases slightly in the vacuum environment by increasing the bias voltage. It indicates that the incorporated nitrogen in the a-C:N films would decrease the friction coefficient of the films in N 2 or O 2 environments, but slightly increases the friction coefficient of the films in a vacuum. The excellent wear resistance of the a-C:N films, in the level of 10 -9 -10 -8 mm 3 /Nm, can be observed in N 2 , vacuum, and dry air environments. In addition, the effect of the bias voltage on the wear rate of the a-C:N films becomes less obvious by nitrogen incorporation. So, we suggest the incorporated nitrogen, which bonded to carbon and restrained the increase of the fraction of sp 2 C-C, would restrain the wear of the a-C:N films in different environments, especially in dry air

  19. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin; Zhang, Jie; Ma, Junjun; Zhang, Yuxin; Yao, Kexin

    2015-01-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  20. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin

    2015-03-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  1. The transformation of amorphous calcium carbonate, ACC, to crystalline phases as function of time and temperature.

    Science.gov (United States)

    Gies, Hermann; Happel, Marian; Niedermayr, Andrea; Immenhauser, Adrian

    2017-04-01

    We present results from a structural study of the transformation of freeze dried amorphous calcium carbonate, ACC, in crystalline material using pair distribution function analysis, PDF analysis, of X-ray powder diffraction data, XPD data. PDF analysis allows for the analysis of local order of structural subunit in the range between molecular unit (1. and 2. coordination sphere) and long range periodicity as in crystalline materials. ACC was precipitated from aqueous solutions at 298 K and 278 K using different amounts of Mg cations as stabilizer. The samples were immediately separated from the solution and freeze dried. For the transformation study, the samples were heated and analysed using XPD until they were crystallized. The radial distribution obtained from the XPD data were compared to simulated radial distributions of the calcium carbonate polymorphs and their hydrated phases. An ACC precipitated from a solution with Ca:Mg:CO3 = 1:5:4 at 298 K (ration in mmol, pH = 8.2) and freeze dried right after isolation from the solution revealed a close resemblance with ikaite in its local order. Another ACC with Ca:Mg:CO3 = 1:10:1.4 (T = 298, pH = 8.7) showed distinctly different local order resembling monohydrocalcite. Both ACC, however, still had considerable amounts of water dominating the Ca-coordination sphere. During the transformation to calcite, the structural changes in the sample concerned the hydrate water coordinating Ca which was removed and replaced by the carbonate oxygens. The study shows that ACC obtained from different starting solutions show specific local order. Freeze drying leads to solid ACC powder which still contain considerable amounts of hydrate water. Structural subunits are distinct in ACC and different from the crystalline phase. The study supplements recent reports presented by Konrad et al., Purgstaller et al., and Tobler et al.. F. Konrad et al., Cryst. Growth Des. 16, 6310-6317(2016) B. Purgstaller et al., Geochimica et Cosmochimica

  2. On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Tay, B.K.; Zhang, P.

    2002-01-01

    It is known to deposit hard thin films, such as tetrahedral amorphous carbon (ta-C), using a filtered cathode vacuum arc (FCVA). These ta-C films have interesting and useful properties because of the high sp 3 fraction of carbon atoms (up to 87%) in the film. However, the high internal stress in the films can limit their applications as the film may flake away from the substrate. In order to reduce the internal stress of the ta-C films and in an attempt to improve adhesion of thick films of this type, growth modifications such as incorporating metal into the ta-C films have been carried out. Nanocomposite amorphous carbon films were deposited by FCVA technique using metal-carbon composite target. Atomic force microscopy, Raman, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the films. Nanoindenter and surface profilometer were used to determine the hardness, Young's modulus, and internal stress. The same metal composition targets for different elements results in different metal composition in the corresponding nanocomposite amorphous carbon films. We attribute this observation to the dynamic balance deposition effect of the FCVA deposition process. The influence of the type of metallic elements and its composition in the films on the structural, mechanical properties, surface energy and field emission (FE) performance was studied. The incorporation of metal into the films results in the decrease of sp 3 fraction, internal stress in the films, but the hardness and Young's modulus remains at high level. The surface energy of the films increases with incorporating Ni atoms, but decreases after incorporating Fe and Al atoms into the films. After heat-treatment, the incorporation of metal into ta-C films can greatly improve the FE performance

  3. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-01-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH 4 as the source of carbon and with different nitrogen flow rates (N 2 /CH 4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp 2 -bonded carbon or a change in sp 2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band. [copyright] 2001 American Institute of Physics

  4. Synthesis and biological evaluation of carbon-11- and fluorine-18-labeled 2-oxoquinoline derivatives for type 2 cannabinoid receptor positron emission tomography imaging

    International Nuclear Information System (INIS)

    Evens, Nele; Muccioli, Giulio G.; Houbrechts, Nele; Lambert, Didier M.; Verbruggen, Alfons M.; Van Laere, Koen; Bormans, Guy M.

    2009-01-01

    Introduction: The type 2 cannabinoid (CB 2 ) receptor is part of the endocannabinoid system and has been suggested as a mediator of several central and peripheral inflammatory processes. Imaging of the CB 2 receptor has been unsuccessful so far. We synthesized and evaluated a carbon-11- and a fluorine-18-labeled 2-oxoquinoline derivative as new PET tracers with high specificity and affinity for the CB 2 receptor. Methods: Two 2-oxoquinoline derivatives were synthesized and radiolabeled with either carbon-11 or fluorine-18. Their affinity and selectivity for the human CB 2 receptor were determined. Biological evaluation was done by biodistribution, radiometabolite and autoradiography studies in mice. Results: In vitro studies showed that both compounds are high affinity CB 2 -specific inverse agonists. Biodistribution study of the tracers in mice showed a high in vivo initial brain uptake and fast brain washout, in accordance with the low CB 2 receptor expression levels in normal brain. A persistently high in vivo binding to the spleen was observed, which was inhibited by pretreatment with two structurally unrelated CB 2 selective inverse agonists. In vitro autoradiography studies with the radioligands confirmed CB 2 -specific binding to the mouse spleen. Conclusion: We synthesized two novel CB 2 receptor PET tracers that show high affinity/selectivity for CB 2 receptors. Both tracers show favourable characteristics as radioligands for central and peripheral in vivo visualization of the CB 2 receptor and are promising candidates for primate and human CB 2 PET imaging.

  5. Development of amorphous carbon protective coatings on poly(vinyl)chloride

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Souza, Eduardo S. de; Moraes, Francine S. de; Marins, Nazir M.S.; Schreiner, Wido H.; Cruz, Nilson C.

    2010-01-01

    The great versatility of polymers has promoted their application in a series of ordinary situations. The development of specific devices from polymers, however, requires modifications to fit specific stipulations. In this work the surface properties of thin films grown onto polyvinylchloride (PVC) were investigated. Hydrogenated amorphous carbon films were deposited onto commercial PVC plates from acetylene and argon plasmas excited by radiofrequency (13.56 MHz, 70 W) power. The proportion of acetylene in the gas feed was varied against that of argon, keeping the total pressure constant at 2.5 Pa. Deposition time was 1800 s. Film elemental composition was analyzed by X-ray photoelectron spectroscopy, XPS. Water contact angle measurements were performed using the sessile drop technique. The root mean squared roughness was derived from 50 x 50 μm 2 surface topographic images, acquired by scanning probe microscopy. Nanoindentation and pin-on-disk techniques were employed on the determination of film hardness and sliding wear, respectively. Oxidation resistance was obtained through the etching rate of the samples in oxygen radiofrequency (1.3 Pa, 50 W) plasmas. From XPS analysis it was detected oxygen and nitrogen contamination in all the samples. It was also found that sp 3 /sp 2 ratio depends on the proportion of argon in the plasma. At lower argon concentrations, hardness, wear and oxidation resistances were all improved with respect to the uncoated PVC. In such conditions, the surface wettability is low indicating a moderate receptivity to water. This combination of properties, ascribed to a balance between the ion bombardment and deposition processes, is suitable for materials exposed to rigorous weathering conditions.

  6. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  7. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    International Nuclear Information System (INIS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-01-01

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp"2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  8. A study of the chemical, mechanical, and surface properties of thin films of hydrogenated amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Vandentop, G.J.

    1990-07-01

    Amorphous hydrogenated carbon (a-C:H) films were studied with the objective of elucidating the nucleation and growth mechanisms, and the origin of their unique physical properties. The films were deposited onto Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from methane in an rf plasma (13.56 MHz) at 65 mTorr and 300 to 370 K. The films produced at the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. The effect of varying ion energy flux on the properties of a-C:H films was investigated using a novel pulsed biasing technique. It was demonstrated that ions were not the dominant deposition species as the total ion flux measured was insufficient to account for the observed deposition rate. The interface between thin films of a-C:H and silicon substrates was investigated using angle resolved x-ray photoelectron spectroscopy. A silicon carbide layer was detected at the interface of a hard a-C:H film formed at the powered electrode. At the grounded electrode, where the kinetic energy is low, no interfacial carbide layer was observed. Scanning tunneling microscopy and high energy electron energy loss spectroscopy was used to investigate the initial stages of growth of a-C:H films. On graphite substrates, films formed at the powered electrode were observed to nucleate in clusters approximately 50 {Angstrom} in diameter, while at the grounded electrode no cluster formation was observed. 58 figs.

  9. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

    Directory of Open Access Journals (Sweden)

    Jinfan Yang

    2018-01-01

    Full Text Available The aim of this study was to develop an effective carbonaceous solid acid for synthesizing green fuel additive through esterification of lignocellulose-derived levulinic acid (LA and n-butanol. Two different sulfonated carbons were prepared from glucose-derived amorphous carbon (GC400 and commercial active carbon (AC400. They were contrastively studied by a series of characterizations (N2 adsorption, X-ray diffraction, elemental analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and NH3 temperature programmed desorption. The results indicated that GC400 possessed stronger acidity and higher –SO3H density than AC400, and the amorphous structure qualified GC400 for good swelling capacity in the reaction solution. Assessment experiments showed that GC400 displayed remarkably higher catalytic efficiency than AC400 and other typical solid acids (HZSM-5, Hβ, Amberlyst-15 and Nafion-212 resin. Up to 90.5% conversion of LA and 100% selectivity of n-butyl levulinate could be obtained on GC400 under the optimal reaction conditions. The sulfonated carbon retained 92% of its original catalytic activity even after five cycles.

  10. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  11. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    International Nuclear Information System (INIS)

    Wang Guigen; Kuang Xuping; Zhang Huayu; Zhu Can; Han Jiecai; Zuo Hongbo; Ma Hongtao

    2011-01-01

    Highlights: ► The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. ► It highlighted the influences of Si-N underlayers. ► The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of −150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of −150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  12. The potential of carbon-11 and fluorine-18 chemistry: illustration through the development of positron emission tomography radioligands targeting the translocator protein 18 kDa

    International Nuclear Information System (INIS)

    Damont, Annelaure; Roeda, Dirk; Dolle, Frederic

    2013-01-01

    The TSPO (translocator protein), also known as the peripheral benzodiazepine receptor, is up-regulated in the brain of subjects suffering from neuro-degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. Moreover, this overexpression has been proved to be linked to micro-glia activation making thus the TSPO a marker of choice of neuro-inflammatory processes and therefore a potential target for the development of radioligands for positron emission tomography imaging. The discovery of selective TSPO ligands and their labelling with the short-lived positron-emitter isotopes carbon-11 and fluorine-18 emerged in the mid-1980's with the preparation of the 3-iso-quinolinecarboxamide [ 11 C]PK11195. To date, an impressive number of promising compounds - [ 11 C]PK11195-challengers - have been developed; some radioligands - for example, [ 11 C]PBR28, [ 11 C]DPA-713, [ 18 F]FEDAA1106 and [ 18 F]DPA-714 - are currently used in clinical trials. As illustrated in this review, the methodologies applied for the preparation of these compounds remain mainly [ 11 C]methylations using [ 11 C]MeI or [ 11 C]MeOTf and SN2- type nucleophilic aliphatic [ 18 F]fluorinations - two processes illustrating the state-of-the-art arsenal of reactions that involves these two short-lived radioisotopes - but alternative processes, such as [ 11 C]carbonylations using [ 11 C]CO and [ 11 C]COCl 2 as well as SNAr-type nucleophilic [ 18 F]fluorinations, have also been reported and as such, reviewed herein. (authors)

  13. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    Science.gov (United States)

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  14. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-01-01

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO 3 @C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO 3 @C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g −1 after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO 3 (CoSnO 3 @C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO 3 @C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g −1 after 100 cycles

  15. Establishing the solubility and local structure(s) of Amorphous Calcium Carbonate (ACC): Toward an understanding of invertebrate biomineralization

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2017-12-01

    Recent advances in high-resolution imaging show the widespreadd occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015, Science). For example, carbonate biomineralization often involves precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that subsequently transforms to crystalline products with diverse structures. Although current carbonate mineral proxies are based upon the composition of final crystalline products, the final signatures may be recording the properties of the initial amorphous phase. Thus, it is critical to establish the physical properties of ACC and understand the factors that influence its evolution to final products at conditions that approximate biological environments. This disconnect limits our ability to build a process-based understanding of when/how minor and trace elements are recorded in mineral composition proxies. In this experimental study, we quantified the chemical and physical properties of ACC and its evolution to final products. We first determined ACC solubility under controlled chemical conditions using a new type of flow-through reactor developed by our research group (Blue and Dove, 2015, GCA; Blue et al., 2017, GCA). The experimental design varied Mg concentration and total alkalinity while maintaining a mild pH that approximates biological environments. ACC solubility was measured at specific time points during the precipitation (from super- and undersaturated conditions) and during its subsequent evolution. Parallel experiments characterized the structure of the corresponding amorphous products using in situ pair distribution function (PDF) and small-angle x-ray scattering (SAXS) analyses. The measurements demonstrate at least two types of ACC can be produced by tuning Mg concentration and alkalinity. Each "phase" exhibits distinct short-range ordering that demonstrates structure-specific solubility. We also find temporal changes in the

  16. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    Science.gov (United States)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  17. Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Hájková, Věra; Altapova, V.; Burian, T.; Gleeson, A.J.; Juha, Libor; Jurek, M.; Sinn, H.; Störmer, M.; Sobierajski, R.; Tiedtke, K.; Toleikis, S.; Tschentscher, T.; Vyšín, Luděk; Wabnitz, H.; Gaudin, J.

    2009-01-01

    Roč. 95, č. 3 (2009), 031111/1-031111/3 ISSN 0003-6951 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous state * carbon * coatings * graphitisation * laser beam effects * nanostructured materials * phase transformations * reflectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.554, year: 2009

  18. Discovery of amorphous carbon veins in the 2008 Wenchuan earthquake fault zone: implications for the fault weakening mechanism

    Science.gov (United States)

    Liu, J.; Zhang, J.; Zhang, B.; Li, H.

    2013-12-01

    The 2008 Wenchuan earthquake generated 270- and 80-km-long surface ruptures along Yingxiu-Beichuan fault and Guanxian-Anxian fault, respectively. At the outcrop near Hongkou village, southwest segment of Yingxiu-Beichuan rupture, network black amorphous carbon veins were discovered near fault planes in the 190-m-wide earthquake fault zone. These veins are mainly composed of ultrafine- and fine-grained amorphous carbon, usually narrower than 5mm and injected into faults and cracks as far as several meter. Flowage structures like asymmetrical structures around few stiff rock fragments indicate materials flew when the veins formed. Fluidization of cataclastic amorphous carbon and the powerful driving force in the veins imply high pore pressure built up during earthquakes. High pore pressure solution and graphite reported in the fault gouge (Togo et al., 2011) can lead very low dynamic friction during the Wenchuan earthquake. This deduction hypothesis is in accordance with the very low thermal abnormal measured on the principle fault zone following the Wenchuan earthquake (Mori et al., 2010). Furthermore, network amorphous carbon veins of different generations suggest similar weakening mechanism also worked on historical earthquakes in Longmenshan fault zone. Reference: Brodsky, E. E., Li, H., Mori, J. J., Kano, Y., and Xue, L., 2012, Frictional Stress Measured Through Temperature Profiles in the Wenchuan Scientific Fault Zone Drilling Project. American Geophysical Union, Fall Meeting. San Francisco, T44B-07 Li, H., Xu, Z., Si, J., Pei, J., Song, S., Sun, Z., and Chevalier, M., 2012, Wenchuan Earthquake Fault Scientific Drilling program (WFSD): Overview and Results. American Geophysical Union, Fall Meeting. San Francisco, T44B-01 Mori, J. J., Li, H., Wang, H., Kano, Y., Pei, J., Xu, Z., and Brodsky, E. E., 2010, Temperature measurements in the WFSD-1 borehole following the 2008 Wenchuan earthquake (MW7.9). American Geophysical Union, Fall Meeting. San Francisco, T53E

  19. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  20. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  1. Macroscale tribological properties of fluorinated graphene

    Science.gov (United States)

    Matsumura, Kento; Chiashi, Shohei; Maruyama, Shigeo; Choi, Junho

    2018-02-01

    Because graphene is carbon material and has excellent mechanical characteristics, its use as ultrathin lubrication protective films for machine elements is greatly expected. The durability of graphene strongly depends on the number of layers and the load scale. For use in ultrathin lubrication protective films for machine elements, it is also necessary to maintain low friction and high durability under macroscale loads in the atmosphere. In this study, we modified the surfaces of both monolayer and multilayer graphene by fluorine plasma treatment and examined the friction properties and durability of the fluorinated graphene under macroscale load. The durability of both monolayer and multilayer graphene improved by the surface fluorination owing to the reduction of adhesion forces between the friction interfaces. This occurs because the carbon film containing fluorine is transferred to the friction-mating material, and thus friction acts between the two carbon films containing fluorine. On the other hand, the friction coefficient decreased from 0.20 to 0.15 by the fluorine plasma treatment in the multilayer graphene, whereas it increased from 0.21 to 0.27 in the monolayer graphene. It is considered that, in the monolayer graphene, the change of the surface structure had a stronger influence on the friction coefficient than in the multilayer graphene, and the friction coefficient increased mainly due to the increase in defects on the graphene surface by the fluorine plasma treatment.

  2. Thionyl chloride assisted functionalization of amorphous carbon nanotubes: A better field emitter and stable nanofluid with better thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.K.; Jha, A. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film & Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India)

    2015-06-15

    Highlights: • Thionyl chloride assisted functionalization of amorphous carbon nanotubes (a-CNTs). • Improved dispersion enhanced thermal conductivity of engine oil. • Again f-a-CNTs showed enhanced field emission property compared to pure a-CNTs. - Abstract: Amorphous carbon nanotubes (a-CNTs) were synthesized at low temperature in open atmosphere and further functionalized by treating them in thionyl chloride added stearic acid-dichloro methane solution. The as prepared functionalized a-CNTs (f-a-CNTs) were characterized by Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission and scanning electron microscopy. The nanofluid was prepared by dispersing f-a-CNTs in engine oil using ultrasonic treatment. The effective thermal conductivity of as prepared nanofluid was investigated at different loading (volume fraction of f-a-CNTs). Obtained experimental data of thermal conductivity were compared with the predicted values, calculated using existing theoretical models. Stability of the nanofluid was tested by means of zeta potential measurement to optimize the loading. The as prepared f-a-CNTs sample also showed improved field emission result as compared to pristine a-CNTs. Dependence of field emission behavior on inter electrode distance was investigated too.

  3. Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage

    International Nuclear Information System (INIS)

    Pasaja, Nitisak; Sansongsiri, Sakon; Intarasiri, Saweat; Vilaithong, Thiraphat; Anders, Andre

    2007-01-01

    Metal-containing tetrahedral amorphous carbon films were produced by dual filtered cathodic vacuum arc plasma sources operated in sequentially pulsed mode. Negatively pulsed bias was applied to the substrate when carbon plasma was generated, whereas it was absent when the molybdenum plasma was presented. Film thickness was measured after deposition by profilometry. Glass slides with silver pads were used as substrates for the measurement of the sheet resistance. The microstructure and composition of the films were characterized by Raman spectroscopy and Rutherford backscattering, respectively. It was found that the electrical resistivity decreases with an increase of the Mo content, which can be ascribed to an increase of the sp 2 content and an increase of the sp 2 cluster size

  4. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  5. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  6. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  7. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  8. One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts

    International Nuclear Information System (INIS)

    Guo, Mengmeng; Wu, Qikang; Yu, Miaomiao; Wang, Yinling; Li, Maoguo

    2017-01-01

    Two different kinds of carbon-based amorphous molybdenum sulfide composite catalysts (activated carbon supported amorphous molybdenum sulfide and acetylene black supported amorphous molybdenum sulfide) had been prepared in a facile and scalable one-step liquid phase chemical method. The morphological and structural information of catalysts was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and it’s electro-catalytic HER activity were evaluated by linear sweep voltammetry(LSV), amperometric i-t technology and AC impedance technology. The as-prepared carbon-based amorphous molybdenum sulfides showed greatly enhanced electro-catalytic activity for HER compared with pure amorphous molybdenum sulfides. Especially, the nano-sized acetylene black supported molybdenum sulfide exhibited excellent electro-catalytic HER performances with a low onset potential of −116 mV versus reverse hydrogen electrode (RHE) and a small Tafel slope of 51 mV per decade.

  9. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  10. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  11. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  12. Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability

    International Nuclear Information System (INIS)

    Li, Mingqi; Gu, Jingwei; Feng, Xiaofang; He, Hongyan; Zeng, Chunmei

    2015-01-01

    Highlights: • A new amorphous-Si@SiO x /Cr/carbon anode composite for lithium-ion batteries is synthesized by a simple method. • At a current density of 100 mA g −1 , this as-prepared composite exhibit a stable discharge capacity of about 810 mAh g −1 with good capacity retention up to 200 cycles. Even at a current density of 800 mA g −1 , a stable discharge capacity of 570 mAh g −1 can be obtained. • This work creates a new method to improve the electrochemical performance of SiO-based electrode materials. - Abstract: A new amorphous-Si@SiO x /Cr/carbon (a-Si@SiO x /Cr/C) anode composite for lithium-ion batteries is synthesized, using SiO, chromium powder and graphite as starting materials. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) are employed to characterize the composition, morphology and microstructure of the composite. Coin-type cells are assembled to investigate the electrochemical behaviors of the as-prepared composites by constant current charge–discharge technique, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that chromium facilitates the crush of Si@SiO x and graphite during milling, and thus improves their mutual dispersion in the composite. When cycled at 100 mA g −1 , the a-Si@SiO x /Cr/C exhibits a stable discharge capacity of about 810 mAh g −1 (calculated on the mass of a-Si@SiO x /Cr/C) with good capacity retention up to 200 cycles. The improved electrochemical performance is attributed to the reduced particle size of a-Si@SiO x and the synergistic effect of carbon and chromium

  13. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    Science.gov (United States)

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  14. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO{sub 3}@C composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Fuqiang [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Xu, Yanhui; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2014-08-30

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO{sub 3}@C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO{sub 3}@C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO{sub 3} (CoSnO{sub 3}@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO{sub 3}@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles.

  15. Molecular dynamics simulation of chemical vapor deposition of amorphous carbon. Dependence on H/C ratio of source gas

    International Nuclear Information System (INIS)

    Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin

    2011-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)

  16. Mechanical properties of fluorinated DLC and Si interlayer on a Ti biomedical alloy

    International Nuclear Information System (INIS)

    Chou, Chau-Chang; Wu, Yi-Yang; Lee, Jyh-Wei; Huang, Jen-Ching; Yeh, Chi-Hsiao

    2013-01-01

    Fluorinated amorphous diamond-like carbon (F-DLC) films were deposited on Ti6Al4V substrates by radio frequency plasma enhanced chemical vapor deposition (rf PECVD) technique using a mixture of methane (CH 4 ) and tetrafluoromethane (CF 4 ) gasses. A 100 nm Si interlayer was coated in advance by physical vapor deposition (PVD) process to improve the adhesion between F-DLC and Ti alloy. The structure and surface properties of F-DLC coatings, prepared by various fluorine flow ratios, were investigated by using X-ray diffraction spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The mechanical properties were evaluated by nano-indentation, and the adhesion, by micro-scratch. The results showed that a moderate incorporation of the fluorine content in the DLC films can still maintain acceptable mechanical properties, which, on the other hand, obtains remarkable benefits of blood compatibility and anti-corrosion. - Highlights: ► F-DLC’s sp2 carbon cluster increases with the precursors’ CF 4 /CH 4 ratio. ► F-DLC’s reduced elastic modulus and hardness decrease with the CF 4 /CH 4 ratio. ► F-DLC film’s adhesion strength degrades as the CF 4 /CH 4 ratio elevated. ► An F-DLC deposited Ti6Al4V produced by a smaller CF 4 /CH 4 ratio, 1-3, is suggested

  17. Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE

    International Nuclear Information System (INIS)

    Peng, Hongliang; Liu, Fangfang; Qiao, Xiaochang; Xiong, Ziang; Li, Xiuhua; Shu, Ting; Liao, Shijun

    2015-01-01

    Graphical abstract: A novel N and F co-doped metal-free doped carbon catalyst with three dimensional vesicles structures and ultra thin walls are prepared by pyrolyzing the mixture of melamine and PTFE. The catalyst has high N and F contents (13 and 6 at.%), and exhibits high ORR activity, high stability, and high limitation current density in both alkaline and acid medium. - Highlights: • N and F co-doped carbon catalyst was derived from the mixture of PTFE and melamine. • The N and F contents of the catalyst are up to 13 and 6 at.%, respectively. • The catalyst has three dimensional vesicles structure with ultra thin walls. • ORR activity of the catalyst is superior to that of Pt/C catalyst in alkaline medium. - Abstract: A novel nitrogen and fluorine co-doped carbon catalyst (C-Mela-PTFE) is prepared by pyrolyzing a mixture of melamine and polytetrafluoroethylene (PTFE), the catalyst has a three-dimensional vesicular structure with ultrathin wall, and exhibits excellent ORR performance in both alkaline and acidic mediums. In an alkaline medium, the catalyst exhibits superior ORR activity to that of commercial Pt/C catalyst. Notably, the ORR activity of the catalyst is just slightly lower than that of Pt/C catalyst in acidic medium. It is interesting that the ORR limiting current density of our C-Mela-PTFE catalyst is much higher than that of Pt/C catalyst. The effects of the melamine/PTFE ratio and the pyrolysis temperature on the catalyst's ORR performance are investigated. The optimal melamine/PTFE ratio by weight is 1:1.5, and the optimal pyrolysis temperature is 950 °C. The catalyst samples are characterized by XRD, SEM/TEM, Raman analysis, and XPS, the results reveal the ultra-thin-walled vesicular structure, high surface area and porosity, and high doping amounts of N and F of the catalyst. For the optimal sample, the N and F contents are up to 13 and 6 at.%, respectively, the proportion of pyridinic N is up to 45 at.% according to the

  18. Compendium of fluorine data

    International Nuclear Information System (INIS)

    Detamore, J.A.

    1983-01-01

    Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report

  19. The effect of grooves in amorphous substrates on the orientation of metal deposits. I - Carbon substrates

    Science.gov (United States)

    Anton, R.; Poppa, H.; Flanders, D. C.

    1982-01-01

    The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.

  20. Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms

    International Nuclear Information System (INIS)

    Alibart, F.; Lejeune, M.; Durand Drouhin, O.; Zellama, K.; Benlahsen, M.

    2010-01-01

    We discuss in this paper the evolution of both the density of states (DOS) located between the band-tail states and the DOS around the Fermi level N(E F ) in amorphous carbon nitride films (a-CN x ) as a function of the total nitrogen partial pressure ratio in the Ar/N 2 plasma mixture. The films were deposited by three different deposition techniques and their microstructure was characterized using a combination of infrared and Raman spectroscopy and optical transmission experiments, completed with electrical conductivity measurements, as a function of temperature. The observed changes in the optoelectronic properties are attributed to the modification in the atomic bonding structures, which were induced by N incorporation, accompanied by an increase in the sp 2 carbon bonding configurations and their relative disorder. The electrical conductivity variation was interpreted in terms of local effects on the nature and energy distribution of π and π* states.

  1. Deposition of amorphous carbon films using Ar and/or N{sub 2} magnetron sputter with ring permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Haruhisa, E-mail: rdhkino@ipc.shizuoka.ac.jp; Kubota, Masaya; Ohno, Genji

    2012-11-15

    Magnetron sputter with a rotating ring permanent magnet using Ar and/or N{sub 2} gases were first used to form amorphous carbon (a-C and a-CN{sub x}) films on p-Si wafers set on a grounded lower electrode. The a-C film was hard while the a-CN{sub x} films were soft. These films include a little O and H atoms unintentionally. Optical band gap, refractive index, Fourier transform infrared spectroscopy absorption spectra, hardness and field emission threshold electric field were significantly different between a-C and a-CN{sub x} films. The optical band gap of the a-C film was 0.7 eV while those of a-CN{sub x} films were almost constant at about 1.25 eV. The low field emission threshold electric field of 13 V/{mu}m was obtained in hard a-C film.

  2. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2009-07-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 {sup o}C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp{sup 3}-bonded cross-link structure that was significantly affected by the substrate temperature.

  3. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2009-01-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 o C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp 3 -bonded cross-link structure that was significantly affected by the substrate temperature.

  4. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S.; Muhl S, S.

    2004-01-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H 2 /CH 4 in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10 -4 to 6x10 -4 Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  5. Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses

    Czech Academy of Sciences Publication Activity Database

    Gaudin, J.; Peyrusse, O.; Chalupský, Jaromír; Toufarová, Martina; Vyšín, Luděk; Hájková, Věra; Sobierajski, R.; Burian, Tomáš; Dastjani-Farahani, S.; Graf, A.; Amati, M.; Gregoratti, L.; Hau-Riege, S.P.; Hoffmann, G.; Juha, Libor; Krzywinski, J.; London, R.A.; Moeller, S.; Sinn, H.; Schorb, S.; Störmer, M.; Tschentscher, T.; Vorlíček, Vladimír; Vu, H.; Bozek, J.; Bostedt, C.

    2012-01-01

    Roč. 86, č. 2 (2012), "024103-1"-"024103-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA AV ČR IAAX00100903; GA MŠk EE.2.3.20.0087 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous carbon * phase transition * graphitization * x-ray laser * free-electron laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.767, year: 2012

  6. Efficient cold cathode emission in crystalline-amorphous hybrid: Study on carbon nanotube-cadmium selenide system

    Science.gov (United States)

    Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.

    2018-03-01

    Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.

  7. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  8. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  9. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    Science.gov (United States)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  10. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2012-01-01

    degradation of near-surface mechanical properties with increasing fluorine fluence. Implications of these observations in the creation of amorphous near-surface layers by high-dose ion implantation are discussed in this paper.

  11. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.; Komvopoulos, K.; Rose, F.; Marchon, B.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  12. A simple chemical synthesis of amorphous carbon nanotubes–MnO{sub 2} flake hybrids for cold cathode application

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sourav [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); Banerjee, Diptonil; Das, Nirmalya Sankar [School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, Kalyan Kumar, E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India)

    2015-08-30

    Highlights: • Amorphous carbon nanotubes (aCNTs) have been synthesized chemically. • The walls of the aCNTs have been anchored by MnO{sub 2} nanoflakes. • It is seen for the first time that MnO{sub 2} modified aCNTs show much better field emission property. • Experimental result has also been supported theoretically. • This can acts as doorstep to develop a new hybrid system as a novel cold cathode material. - Abstract: A simple approach has been implemented to synthesize amorphous carbon nanotubes (a-CNTs) and manganese oxide (MnO{sub 2}) hybrid nanostructure at temperature as low as ∼250 °C in open atmosphere. Microscopic studies of the samples revealed that the walls of the a-CNTs were coated uniformly by MnO{sub 2} nanoflakes. The composition of the as prepared sample was studied with the help of energy dispersive X-ray and X-ray photoelectron spectroscopy. Electron field emission study was done in a custom built high vacuum field emission setup for the prepared a-CNT and manganese oxide (MnO{sub 2}) hybrid nanostructure. It is seen that the performance of the a-CNTs as cold cathode emitter has been enhanced greatly when MnO{sub 2} nanoflakes were coated uniformly over it. The turn on field has been reduced from 7.17 to value as low as 3.82 V/mm with enhancement factor increases from 2428 to 6965. Finite element based simulation study theoretically confirms the enhancement of field emission properties of as prepared MnO{sub 2} nanoflake coated a-CNTs. The results have been explained due to enhanced surface roughness leading to higher enhancement factor and overall increase of emission sites.

  13. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  14. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  15. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  17. Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoriko; Furuta, Masahiro; Kuriyama, Koichi; Kuwabara, Ryosuke; Katsuki, Yukiko [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, Takeshi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Fujishima, Akira [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, Kensuke, E-mail: khonda@yamaguchi-u.ac.j [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)

    2011-01-01

    Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp{sup 3}/sp{sup 2}-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 {Omega} cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe{sup 2+/3+} and Fe(CN){sub 6}{sup 4-/3-} at N-doped DLC were sufficiently high. The redox reaction of Ce{sup 2+/3+} with standard potential higher than H{sub 2}O/O{sub 2} were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN){sub 6}{sup 3-/4-} by surface oxidation is different from that at BDD. The rate of Fe(CN){sub 6}{sup 3-/4-} was not varied before and after oxidative treatment on N-doped DLC includes sp{sup 2} carbons, which indicates high durability of the electrochemical activity against surface oxidation.

  18. Probing plasma fluorinated graphene via spectromicroscopy.

    Science.gov (United States)

    Struzzi, C; Scardamaglia, M; Reckinger, N; Sezen, H; Amati, M; Gregoratti, L; Colomer, J-F; Ewels, C; Snyders, R; Bittencourt, C

    2017-11-29

    Plasma fluorination of graphene is studied using a combination of spectroscopy and microscopy techniques, giving insight into the yield and fluorination mechanism for functionalization of supported graphene with both CF 4 and SF 6 gas precursors. Ion acceleration during fluorination is used to probe the effect on grafting functionalities. Adatom clustering, which occurs with CF 4 plasma treatment, is suppressed when higher kinetic energy is supplied to the ions. During SF 6 plasma functionalization, the sulfur atoms tend to bond to bare copper areas instead of affecting the graphene chemistry, except when the kinetic energy of the ions is restricted. Using scanning photoelectron microscopy, with a 100 nm spatial resolution, the chemical bonding environment is evaluated in the fluorinated carbon network at selected regions and the functionalization homogeneity is controlled in individual graphene flakes.

  19. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  20. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  1. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions.

    Science.gov (United States)

    Gao, G T; Mikulski, Paul T; Harrison, Judith A

    2002-06-19

    Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.

  3. Effect of nanoparticles as lubricant additives on friction and wear behavior of tetrahedral amorphous carbon (ta-C coating

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2018-03-01

    Full Text Available As diamond like carbon (DLC coating becomes increasingly popular in providing low friction and wear under lubricated conditions, the effect of various oil additives on tribological behavior of DLC coating is drawing more attention. Various oil additives, such as ZnDTP and MoDTC, have been widely used in automobile engine industry to pursuit excellent tribological performance in the insufficient lubrication condition. Although such commercial oil additives have been proven to reduce friction or/and wear to some extent, usage of such high -SAPS (sulphuric ash, phosphor, sulfphur conventional additives is bound to arouse concerns due to environmental reasons. In this research, we investigate the effect of two nanoparticle oil additives, which are cerium oxide (CeO2 and zirconium dioxide (ZrO2, on friction and wear of non-hydrogen tetrahedral amorphous carbon (ta-C coating. The results show that by adding ZrO2 nanoparticle, the friction of DLC coating could be reduced about 32% compared to non-additive base oil scenario, but specific wear rate increases by 40%. When CeO2 nanoparticle is used, friction increases by 22% compared to non-additive base oil scenario, however wear decreases by nearly 77%.

  4. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  5. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  6. Image Analysis of a Negatively Curved Graphitic Sheet Model for Amorphous Carbon

    Science.gov (United States)

    Bursill, L. A.; Bourgeois, Laure N.

    High-resolution electron micrographs are presented which show essentially curved single sheets of graphitic carbon. Image calculations are then presented for the random surface schwarzite-related model of Townsend et al. (Phys. Rev. Lett. 69, 921-924, 1992). Comparison with experimental images does not rule out the contention that such models, containing surfaces of negative curvature, may be useful for predicting some physical properties of specific forms of nanoporous carbon. Some difficulties of the model predictions, when compared with the experimental images, are pointed out. The range of application of this model, as well as competing models, is discussed briefly.

  7. Production of elemental fluorine at IPEN - S. Paulo, Brazil

    International Nuclear Information System (INIS)

    Abrao, A.; Ikuta, A.; Wirkner, F.M.; Silva, F.P. da.

    1981-04-01

    The construction, installation and operation of a pilot unit for electrolytic generation of elemental fluorine are described. The 400 A monel electrolytic cell is heated by a water jacket. The electrolyte has the composition KF.1,8 - 2,0 HF that is maintained by intermittent addition of gaseous HF. Pre-electrolysis is made using nickel anodes which are then exchanged by non-graphitized carbon ones. Systems for purification of elemental fluorine by cryoscopy and absortion of HF, compression and storage for fluorine are described. Pure fluorine is used for the preparation of uranium hexafluoride. Identification of problems and difficulties and their solution are pointed out. (Author) [pt

  8. Palladium-catalysed electrophilic aromatic C-H fluorination

    Science.gov (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  9. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  10. Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui

    NARCIS (Netherlands)

    Rivadeneyra, María Angustias; Martín-Algarra, Agustín; Sánchez-Román, Mónica; Sánchez-Navas, Antonio; Martín-Ramos, José Daniel

    Although diverse microbial metabolisms are known to induce the precipitation of carbonate minerals, the mechanisms involved in the bacterial mediation, in particular nucleation, are still debated. The study of aragonite precipitation by Chromohalobacter marismortui during the early stages (3-7 days)

  11. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  12. Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances.

    Science.gov (United States)

    Wu, Ying; Liu, Zheng; Zhong, Xiongwu; Cheng, Xiaolong; Fan, Zhuangjun; Yu, Yan

    2018-03-01

    The red P anode for sodium ion batteries has attracted great attention recently due to the high theoretical capacity, but the poor intrinsic electronic conductivity and large volume expansion restrain its widespread applications. Herein, the red P is successfully encapsulated into the cube shaped sandwich-like interconnected porous carbon building (denoted as P@C-GO/MOF-5) via the vaporization-condensation method. Superior cycling stability (high capacity retention of about 93% at 2 A g -1 after 100 cycles) and excellent rate performance (502 mAh g -1 at 10 A g -1 ) can be obtained for the P@C-GO/MOF-5 electrode. The superior electrochemical performance can be ascribed to the successful incorporation of red P into the unique carbon matrix with large surface area and pore volume, interconnected porous structure, excellent electronic conductivity and superior structural stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    assumptions in a variety of detectors. The library also includes simple particle transportation or can be interfaced to external transport codes. We applied our code to RL and OSL data from fiber-coupled Al2O3:C-detectors in a proton (nominal energies 10 MeV to 60 MeV) and a carbon beam (270 MeV/u). Results...

  14. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco, E-mail: jhe08@syr.edu, E-mail: gvidali@syr.edu [Physics Department, Syracuse University, Syracuse, NY 13244 (United States)

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly on an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.

  15. Enhancement of sp3 hybridized C in amorphous carbon films by Ar ion bombardment and Si incorporation

    International Nuclear Information System (INIS)

    Jung, Hae-Suk; Park, Hyung-Ho; Mendieta, I.R.; Smith, D.A.

    2003-01-01

    We report an effective method of increasing the sp 3 hybridization fraction in sputtered amorphous carbon (a-C) film by the combination of Ar ion bombardment and Si incorporation. In the deposition of an a-C film, Ar ion bombardment by controlling the applied bias voltage plays a role in creating high stress in film and causes the local bonding configuration to change to a sp 3 hybridized bond. Simultaneously, the incorporated Si in an a-C network breaks the sp 2 hybridized bonded ring and promotes the formation of a sp 3 hybridized bond. This enhancement of the sp 3 hybridized bonding characteristic is maximized for an a-C film with 23 at. % of Si and 100-150 V of applied bias voltage. In this region, the increase of resistivity, optical band gap, and mechanical hardness of a-C is attributed to the reduction of the sp 2 hybridized bonded ring and increased fraction of the sp 3 hybridized bond. However, at a higher bias voltage above 150 V, the enhancement effect is reduced due to the resputtering and thermally activated reconversion of a sp 3 to a sp 2 hybridized bond

  16. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  17. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-08

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Cremona, M.; Achete, C. A.

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  19. Conductivity enhancement of ion tracks in tetrahedral amorphous carbon by doping with N, B, Cu and Fe

    International Nuclear Information System (INIS)

    Krauser, J.; Nix, A.-K.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.

    2012-01-01

    Conducting ion tracks are formed when high-energy heavy ions (e.g. 1 GeV Au) pass through tetrahedral amorphous carbon (ta-C). These nanowires with a diameter of about 8 nm are embedded in the insulating ta-C matrix and of interest for various nanotechnological applications. Usually the overall conductivity of the tracks and the current/voltage characteristics (Ohmic or non-Ohmic) vary strongly from track to track, even when measured on the same sample, indicating that the track formation is neither complete nor homogeneous. To improve the track conductivity, doping of ta-C with N, B, Cu, or Fe is investigated. Beneficial changes in track conductivity after doping compete with a conductivity increase of the surrounding matrix material. Best results are achieved by incorporation of 1 at.% Cu, while for different reasons, the improvement of the tracks remains moderate for N, B, and Fe doping. Conductivity enhancement of the tracks is assumed to develop during the ion track formation process by an increased number of localized states which contribute to the current transport.

  20. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH 4 ) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  1. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    Science.gov (United States)

    Liu, Yangyi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-04-19

    Bio-inspired mineralization is an effective way for fabricating complicated inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as bio-macromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe3O4 nanoparticles to produce magnetic ACC/Fe3O4 hybrid nanosheets, which can be used to construct ACC/Fe3O4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged tellurium nanowires as bio-macromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for fabrication of biomimetic composite films.

  2. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment

    Science.gov (United States)

    Wang, Jianlei; Jia, Qian; Yuan, Xiaoyang; Wang, Shaopeng

    2012-10-01

    The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9 × 10-6 to 1.8 × 10-6 mm3 N-1 m-1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

  3. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  4. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    International Nuclear Information System (INIS)

    Reyes, R; Cremona, M; Achete, C A

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq 3 ) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq 3 /Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  5. AFM, SEM and in situ RHEED study of Cu texture evolution on amorphous carbon by oblique angle vapor deposition

    International Nuclear Information System (INIS)

    Tang, F.; Gaire, C.; Ye, D.-X.; Karabacak, T.; Lu, T.-M.; Wang, G.-C.

    2005-01-01

    The evolution of the crystal orientation of a Cu film grown on an amorphous carbon substrate without intentional heating under 75±6 deg. oblique angle vapor deposition was investigated ex-situ by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and in-situ by reflection high-energy electron diffraction (RHEED). At the initial stage of growth ( ∼100 nm thick) the diffraction pattern started to break symmetrically from the middle of the (111) and (200) rings representing the absence of (111) and (200) planes parallel to the substrate. However, after this transition stage, at the thickness of ∼410 nm, the intensity distribution of diffraction patterns appeared asymmetric about the middle of the rings, which is interpreted as the appearance of a tilted (111) texture. Finally the diffraction patterns developed into separated short arcs and showed only a II-O (two-orientation) texture. By comparing RHEED patterns with the SEM and AFM images of the final film, we argue that the tilted columns having tilted (111) top faces dominate in the later stage of growth. Furthermore, considering the geometry of crystals and shadowing effects, we argue that the vertices of columns having the highest growth velocity normal to the substrate and therefore receiving the maximum flux will dominate the film growth and determine the tilt angle of the texture and the preference of the azimuthal angle orientation

  6. Mesoporous calcium carbonate as a phase stabilizer of amorphous celecoxib--an approach to increase the bioavailability of poorly soluble pharmaceutical substances.

    Science.gov (United States)

    Forsgren, Johan; Andersson, Mattias; Nilsson, Peter; Mihranyan, Albert

    2013-11-01

    The bioavailability of crystalline pharmaceutical substances is often limited by their poor aqueous solubility but it can be improved by formulating the active substance in the amorphous state that is featured with a higher apparent solubility. Although the possibility of stabilizing amorphous drugs inside nano-sized pores of carbon nanotubes and ordered mesoporous silica has been shown, no conventional pharmaceutical excipients have so far been shown to possess this property. This study demonstrates the potential of using CaCO3 , a widely used excipient in oral drug formulations, to stabilize the amorphous state of active pharmaceutical ingredients, in particular celecoxib. After incorporation of celecoxib in the vaterite particles, a five to sixfold enhancement in apparent solubility of celecoxib is achieved due to pore-induced amorphization. To eliminate the possibility of uncontrolled phase transitions, the vaterite particles are stored in an inert atmosphere at 5 °C throughout the study. Also, to demonstrate that the amorphization effect is indeed associated with vaterite mesopores, accelerated stress conditions of 100% relative humidity are employed to impose transition from mesoporous vaterite to an essentially non-porous aragonite phase of CaCO3 , which shows only limited amorphization ability. Further, an improvement in solubility is also confirmed for ketoconazole when formulated with the mesoporous vaterite. Synthesis of the carrier particles and the incorporation of the active substances are carried out simultaneously in a one-step procedure, enabling easy fabrication. These results represent a promising approach to achieve enhanced bioavailability in new formulations of Type II BCS drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Panwar, O.S.; Khan, Mohd. Alim; Kumar, Mahesh; Shivaprasad, S.M.; Satyanarayana, B.S.; Dixit, P.N.; Bhattacharyya, R.; Khan, M.Y.

    2008-01-01

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp 3 bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp 3 content and sp 3 /sp 2 ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp 3 (80%) bonding and sp 3 /sp 2 (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp 3 (87-91%) bonding and sp 3 /sp 2 (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications

  8. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India)], E-mail: ospanwar@mail.nplindia.ernet.in; Khan, Mohd. Alim [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Kumar, Mahesh; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Satyanarayana, B.S. [MIT Innovation Centre and Electronics and Communication Department, Manipal Institute of Technology, Manipal-579104 (India); Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Bhattacharyya, R. [Emeritus Scientist, National Physical Laboratory, New Delhi-110012 (India); Khan, M.Y. [Department of Physics, Jamia Millia Islamia, Central University, New Delhi-110025 (India)

    2008-02-29

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp{sup 3} bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp{sup 3} content and sp{sup 3}/sp{sup 2} ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp{sup 3} (80%) bonding and sp{sup 3}/sp{sup 2} (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp{sup 3} (87-91%) bonding and sp{sup 3}/sp{sup 2} (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications.

  9. Electrochemical behavior of amorphous metal-silicon-carbon nanocomposites based on titanium or tungsten nanophase

    International Nuclear Information System (INIS)

    Pleskov, Yu.V.; Krotova, M.D.; Shupegin, M.L.; Bozhko, A.D.

    2009-01-01

    Electrode behavior of nanocomposite films containing titanium- or tungsten-based conducting nanophase embedded in dielectric silicon-carbon matrix, deposited onto glassceramics substrate, is studied by cyclic voltammetry and electrochemical impedance spectroscopy. As the films' resistivity decreases, their electrochemical behavior gradually changes from that of 'poor conductor' to the nearly metal-like behavior. In particular, the differential capacitance increases, the charge transfer in a model redox system [Fe(CN) 6 ] 3-/4- accelerates, which may be explained by the increasing number of metal-containing clusters at the film/electrolyte solution interface

  10. Erosion behavior of soft, amorphous deuterated carbon films by heat treatment in air and under vacuum

    International Nuclear Information System (INIS)

    Maruyama, K.

    1999-01-01

    The erosion of soft a-C:D films by heat treatment in air and under vacuum is studied by ion-beam analysis. When the films are heated in air above 500 K, the film thickness and the areal densities of C and especially D decrease, and oxygen is incorporated in the films. The initial atomic loss rates of carbon and deuterium from the films are 2.6 x 10 17 C atoms cm -2 h -1 and 4.8 x 10 17 D atoms cm -2 h -1 at 550 K. However, after D depletion the films show a resistivity against further erosion due to annealing in air. When the films are heated under vacuum erosion starts at about 600 K and all components including D decrease proportionally to the film thickness. Thermal desorption spectroscopy of the films reveals the evolution of C x D y type hydrocarbons. Infrared analysis shows that the incorporated oxygen is chemically bonded to carbon. The thermally-activated decomposition of the soft a-C:D films is compared to that of hard a-C:D films and a reaction scheme is suggested. (orig.)

  11. Plants and fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Garber, K

    1962-01-01

    A report is given about the contents of fluorine in soil and different plants. It is stated that spinach and several spice herbages are rich in fluorine (0.98 - 21.8 ppm) while in other plants are not more than 5 ppm maximum. An exception is found in Thea sinensis with 178 ppm and more. Tea is, therefore, a source of fluorine for contamination of the human body. An increase of the fluorine contents of plants by manuring with F-salts or mineral manure is possible but of long duration. Damage to plants by uptake of fluorine from soil as well as in a gaseous condition from the atmosphere are described. The rate of damage is related to the type of soil in which the plant is grown.

  12. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  13. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  14. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  15. Evolution of structural and electrical properties of carbon films from amorphous carbon to nanocrystalline graphene on quartz glass by HFCVD.

    Science.gov (United States)

    Zhai, Zihao; Shen, Honglie; Chen, Jieyi; Li, Xuemei; Jiang, Ye

    2018-04-25

    Direct growth of graphene films on glass is of great importance but has so far met with limited success. The non-catalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphite-like carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 % to over 80 %. Based on systematically structural and chemical characterizations, a schematic process with three steps including sp2 chains aggregation, aromatic rings formation and sp3 bonds etch was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm2/(V·s) and a resistivity of 5.24×10-3 Ω·cm over an area of 1 cm2. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localised and extended states respectively when increasing the temperature from 75 K to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

  16. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  17. Hydrothermal encapsulation of VO2(A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices.

    Science.gov (United States)

    Zheng, Jiqi; Zhang, Yifu; Wang, Qiushi; Jiang, Hanmei; Liu, Yanyan; Lv, Tianming; Meng, Changgong

    2018-01-02

    In recent decades, tremendous attention has been paid to the development of new electrode materials with high capacitance to meet the requirements of electrode materials in supercapacitors. Among vanadium oxides, VO 2 (A) has recently received increasing attention due to its unique layered structure, phase transformation and applications in Li-ion batteries. However, few studies have focused on the electrochemical properties of VO 2 (A) as electrochemical capacitors. Herein, we develop a facile hydrothermal method to prepare VO 2 (A)@C core-shell structured composites by carbonization of glucose in the presence of V 2 O 5 nanowires. The electrochemical properties of the VO 2 (A)@C core-shell composites are investigated as a supercapacitor electrode material for the first time; the composites show excellent pseudocapacitive behavior and display a specific capacitance as high as 179 F g -1 at 1 A g -1 . A flexible asymmetric supercapacitor device is fabricated using VO 2 (A)@C composites and activated carbon and delivers an excellent capacitance of 0.5 F cm -2 at a scan rate of 5 mV s -1 . Replacing the aqueous electrolyte with a LiCl/PVA gel electrolyte can efficiently improve the cycling performance to 85% retention after 1600 cycles. The good electrochemical performance of the composites indicates their high potential as electrode materials for supercapacitors.

  18. Bacterial degradation of fluorinated compounds

    NARCIS (Netherlands)

    Ferreira, Maria Isabel Martins

    2007-01-01

    Fluorine was produced for the first time by Henri Moissan in 1886, for which he received the Nobel Prize in chemistry in 1906. The unique properties of fluorine have led to the development of fluorine chemistry and numerous synthetic fluorinated compounds have been prepared and tested for different

  19. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  20. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique; Deposito de peliculas delgadas de carbono amorfo nitrurado utilizando la tecnica de ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, P.B.; Escobar A, L.; Camps C, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico); Haro P, E.; Camacho L, M.A. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa (Mexico); Muhl S, S. [Instituto de Investigacion en Materiales, UNAM (Mexico)

    2000-07-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 {sup -4} Torr until 7.5 x 10 {sup -2} Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  1. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    Science.gov (United States)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  2. Tape casting fluorinated YBC123

    International Nuclear Information System (INIS)

    Taylor, J.A.T.; Luke, D.M.; Whiteley, B.A.

    1991-01-01

    Tape casting the superconducting Ba-Y-Cu oxide was accomplished by several laboratories and show promise for being a versatile forming technique. The major problem is low current density, probably due to lack of grain alignment and grain boundary related weak links. The latter problem may be due to formation of carbonates and hydroxides during binder burnout. Preliminary work done at Alfred shows that a bimodal powder size distribution displays significant alignment after tape casting and that F treated powder is resistant to attack by steam at 100C. Such corrosion resistant powder cast as form tape should survive the binder burnout without the detrimental grain boundary phases that develop from reaction of the superconducting phase, steam and carbon dioxide. This paper presents the results of an investigation of tape casting fluorinated powder with a bimodal size distribution

  3. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  4. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  5. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  6. Direct and inverse Staebler-Wronski effects observed in carbon-doped hydrogenated amorphous silicon photo-detectors

    International Nuclear Information System (INIS)

    Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.

    2011-01-01

    The photo-response behaviour of Amorphous Silicon Position Detectors (ASPDs) under prolonged illumination with a 681 nm diode-laser and a 633 nm He-Ne laser is presented. Both direct and inverse Staebler-Wronski effects are observed.

  7. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  8. Fluorination methods in drug discovery

    OpenAIRE

    Yerien, Damián Emilio; Bonesi, Sergio Mauricio; Postigo, Jose Alberto

    2017-01-01

    Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that the fluorine atom can impart to targets of medicinal importance, such as a modulation of lipophilicity, electronegativity, basicity and bioavailability, this latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on c...

  9. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  10. Fluorine content of Fukien teas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T H; Lin, C S; Wu, C; Liao, C E; Lin, H Y

    1949-01-01

    A study was made on the fluorine contents of Fukien teas and analytical results indicated the amount ranged from 5.7 to 35.5 mg. per 100 grams of dry tea. The high content of fluorine was found not to be due to contamination nor to the high fluorine content of the soil in which the tea plant was cultivated. Differences in the methods of manufacture had no effect on the fluorine content of the final products. Different varieties of tea plants have different powers to absorb fluorine from the soil. Of the two varieties of tea plants studied, Shui-Sen leaves possessed the lower fluorine content. Age of the tea leaves exerted an important influence on the fluorine content, the older leaves containing considerably more fluorine than the younger. The amount of fluorine that may be extracted in a two per cent infusion varies from 29.1 per cent for fresh leaves to 50.5 per cent for black tea. The process of roasting and rolling rendered the fluorine more soluble, hence the amount extracted increased in green tea. Fermentation further increased the extractability of the fluorine; thus the amount extracted was the highest in black tea, which was fermented, less in the semi-fermented oolong tea, and least in the unfermented green tea. The extractability of fluorine was also increased with age of the leaves.

  11. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  12. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt

    International Nuclear Information System (INIS)

    Chen, Zhigang; Gu, Yuxing; Du, Kaifa; Wang, Xu; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2017-01-01

    Highlights: •The potential of electrolytic carbon as catalyst for oxygen reduction was evaluated. •A molten salt method for electrolytic-carbon modification was demonstrated. •The electrolytic carbon was activated for the ORR by the molten salt sulfidation. •Sulfur and cobalt dual modification further improved the ORR activity of the carbon. -- Abstract: The electrolytic carbon (E-carbon) derived from greenhouse gas CO 2 in molten carbonates at mild temperature possesses high electrical conductivity and suitable specific surface area. In this work, its potential as catalyst is investigated towards oxygen reduction reaction (ORR). It is revealed that the pristine E-carbon has no electrocatalytic activity for the ORR due to its high surface content of carboxyl group. The carbon was then treated in a Li 2 SO 4 containing Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 molten salt at 550 °C. Sulfur modified E-carbon was obtained in the melt via a galvanic sulfidation reaction, in which Li 2 SO 4 served as a nontoxic sulfur source and an oxidant. The sulfur modified E-carbon showed a significantly improved electrocatalytic activity. Subsequently, a sulfur/cobalt dual modified carbon with much higher catalysis activity was successfully prepared by treating an E-carbon/CoSO 4 composite in the same melt. The dual modified E-carbon showed excellent catalytic performance with activity close to the commercial Pt/C catalyst but a high tolerance towards methanol.

  13. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  14. A guide to and review of the use of Multiwavelength Raman Spectroscopy for characterizing defective aromatic carbon solids : From graphene to amorphous carbons

    NARCIS (Netherlands)

    Merlen, A.; Buijnsters, J.G.; Pardanaud, C.

    2017-01-01

    sp2 hybridized carbons constitute a broad class of solid phases composed primarily of elemental carbon and can be either synthetic or naturally occurring. Some examples are graphite, chars, soot, graphene, carbon nanotubes, pyrolytic carbon, and diamond-like carbon. They vary from highly ordered to

  15. Amorphous superconductors

    International Nuclear Information System (INIS)

    Missell, F.P.

    1985-01-01

    We describe briefly the strong coupling superconductivity observed in amorphous alloys based upon simple metals. For transition metal alloys we discuss the behavior of the superconducting transition temperature T c , the upper critical field H (sub)c2 and the critical current J c . A survey of current problems is presented. (author) [pt

  16. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  17. Structure and gas-barrier properties of amorphous hydrogenated carbon films deposited on inner walls of cylindrical polyethylene terephthalate by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Tian Xiubo; Yang Shiqin; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    The influence of radio-frequency (RF) power on the structure and gas permeation through amorphous hydrogenated carbon films deposited on cylindrical polyethylene terephthalate (PET) samples is investigated. The results show that a higher radio-frequency power leads to a smaller sp 3 /sp 2 value but produces fewer defects with smaller size. The permeability of PET samples decreases significantly after a-C:H deposition and the RF only exerts a small influence. However, the coating uniformity, color, and wettability of the surface are affected by the RF power. A higher RF power results in to better uniformity and it may be attributed to the combination of the high-density plasma and sample heating.

  18. Passivation of fluorinated activated charcoal

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C x F to carbon and ammonium fluoride, NH 4 F. The charcoal laden with NH 4 F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH 4 F as a mixture of NH 3 and HF, which would primarily recombine as NH 4 F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH 3 concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests

  19. Passivation of fluorinated activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  20. Fluorine-18 labelled compounds

    International Nuclear Information System (INIS)

    Kleijn, J.P. de

    1978-01-01

    The work presented in this thesis deals with the problems involved in the adaption of reactor-produced fluorine-18 to the synthesis of 18 F-labelled organic fluorine compounds. Several 18 F-labelling reagents were prepared and successfully applied. The limitations to the synthetic possibilities of reactor-produced fluoride- 18 become manifest in the last part of the thesis. An application to the synthesis of labelled aliphatic fluoro amino acids has appeared to be unsuccessful as yet, although some other synthetic approaches can be indicated. Seven journal articles (for which see the availability note) are used to compose the four chapters and three appendices. The connecting text gives a survey of known 18 F-compounds and methods for preparing such compounds. (Auth.)

  1. Influence of Magnesium Content on the Local Structure of Amorphous Calcium Carbonate (ACC): Real Time Determination by In Situ PDF Analysis

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2016-12-01

    Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise

  2. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries

    Science.gov (United States)

    Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin

    2018-02-01

    Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.

  3. Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity.

    Science.gov (United States)

    Murphy, Cormac D; Sandford, Graham

    2015-04-01

    Fluorine's unique physicochemical properties make it a key element for incorporation into pharmacologically active compounds. Its presence in a drug can alter a number of characteristics that affect ADME-Tox, which has prompted efforts at improving synthetic fluorination procedures. This review describes the influence of fluorine on attributes such as potency, lipophilicity, metabolic stability and bioavailablility and how the effects observed are related to the physicochemical characteristics of the element. Examples of more recently used larger scale synthetic methods for introduction of fluorine into drug leads are detailed and the potential for using biological systems for fluorinated drug production is discussed. The synthetic procedures for carbon-fluorine bond formation largely still rely on decades-old technology for the manufacturing scale and new reagents and methods are required to meet the demands for the preparation of structurally more complex drugs. The improvement of in vitro and computational methods should make fluorinated drug design more efficient and place less emphasis on approaches such as fluorine scanning and animal studies. The introduction of new fluorinated drugs, and in particular those that have novel fluorinated functional groups, should be accompanied by rigorous environmental assessment to determine the nature of transformation products that may cause ecological damage.

  4. Rhombohedral iron trifluoride with a hierarchized macroporous/mesoporous texture from gaseous fluorination of iron disilicide

    Energy Technology Data Exchange (ETDEWEB)

    Guérin, Katia, E-mail: katia.araujo_da_silva@univ-bpclermont.fr [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubière (France); Delbègue, Diane; Louvain, Nicolas; Doubtsof, Léa; Hamwi, André [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubière (France); Laik, Barbara; Pereira-Ramos, Jean-Pierre [Université Paris Est Créteil, Institut de Chimie et des Matériaux Paris-Est, UMR CNRS 7182, Thiais (France); Tahar-sougrati, Moulay; Jumas, Jean-Claude [Université Montpellier II, Institut Charles Gerhardt de Montpellier, UMR CNRS 5253, Montpellier (France); Willmann, Patrick; Cénac-Morthe, Céline [Centre National d' Etudes Spatiales, Toulouse (France)

    2016-04-15

    Stable low temperature rhombohedral iron trifluoride has been obtained by the fluorination under the pure fluorine gas of iron disilicide. The combination of both unusual fluorination process and precursor avoids to get unhydrated crystalline FeF{sub 3} particles and allows the formation of hierarchized channels of mesoporous/macroporous texture favorable for lithium diffusion. The fluorination mechanism proceeds by temperature steps from the formation, for a fluorination temperature below 200 °C, of an amorphous phase and an intermediate iron difluoride identified mainly by {sup 57}Fe Mössbauer spectroscopy before getting, as soon as a fluorination temperature of 260 °C is reached, the rhombohedral FeF{sub 3}. Both amorphous and crystallized samples display good ability for electrochemical process when used as cathode in lithium-ion battery. The low diameter of rhombohedral structure channels is balanced by an appropriate mesoporous texture and a capacity of 225 mAh.g{sup −1} after 5 cycles for a discharge cut-off of 2.5 V vs. Li{sup +}/Li at a current density of C/20 has been obtained and stabilized at 95 mAh.g{sup −1} after 116 cycles. - Highlights: • We investigated the synthesis of rhombohedral FeF{sub 3} by solid–gas reaction from iron disilicide. • We demonstrated that depending on the fluorination temperature various phases are stabilized. • We got a hierarchized macroporous/mesoporous texture. • We studied the electrochemical performances of amorphous and crystallized FeF{sub 3}. • Crystallized FeF{sub 3} presents a high faradic yield at first cycle focusing on insertion process.

  5. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Vila, M.; Abreu, C.S.; Salgueiredo, E.; Almeida, F.A.; Fernandes, A.J.S.; Costa, F.M.; Gomes, J.R.; Silva, R.F.

    2006-01-01

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si 3 N 4 /30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  6. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  7. Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage

    International Nuclear Information System (INIS)

    Sher Shah, Md. Selim Arif; Lee, Jooyoung; Park, A. Reum; Choi, Youngjin; Kim, Woo-Jae; Park, Juhyun; Chung, Chan-Hwa; Kim, Jaeyun; Lim, Byungkwon; Yoo, Pil J.

    2017-01-01

    SnO 2 is a well-studied anode material for lithium ion batteries (LIBs). However, it undergoes severe capacity fading because of a large volume change (∼300%) during cycling. Composites of SnO 2 with electro-conductive graphene would deliver improved capacity and rate performance. Nevertheless, achieving the theoretical capacity of SnO 2 is still elusive, mainly because of disintegration of the active material from graphene and severe aggregation of SnO 2 , or Sn nanoparticles produced upon cycling. To surmount these limitations, in this work, nanocomposites containing ultra-fine sized SnO 2 nanoparticles (UFSN) with reduced graphene oxide and amorphous carbon were synthesized in a single step at low temperature and environmentally benign way, in which ascorbic acid was employed as the carbon source and reducing agent. UFSN could decrease the lithium ion diffusion path length. As a result of effective buffering effect afforded by the mesoporous structure against volume change and improved lithium ion diffusivity, the ternary nanocomposite achieves ultra-high capacity of 1245 mAh g −1 after 210 cycles at 100 mA g −1 and excellent cycling stability. Since the proposed approach is facile, straightforward, and highly reproducible, it is anticipated that this system would be a potential alternative to the conventional graphite anode for LIBs.

  8. Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hualin [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Wang, Lu [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Deng, Shuo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zeng, Xiaoqiao [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Nie, Kaiqi [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Duchesne, Paul N. [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Wang, Bo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Liu, Simon [Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1 Canada; Zhou, Junhua [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhao, Feipeng [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Han, Na [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhang, Peng [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Zhong, Jun [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Sun, Xuhui [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Youyong [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Yanguang [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA

    2016-11-17

    The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.

  9. Rapid general microdetermination of fluorine

    NARCIS (Netherlands)

    Leuven, H.C.E. van; Rotscheid, G.J.; Buis, W.J.

    1979-01-01

    A rapid micromethod for the determination of fluorine in a wide variety of materials has been developed. The method is based on the liberation of the fluorine (as HF) from the sample by means of pyrohydrolysis with steam at 1120?? C, The amount of fluoride in the condensate is subsequently measured

  10. Improved critical current densities of bulk MgB.sub.2./sub. using carbon-coated amorphous boron

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Higuchi, M.; Jirsa, Miloš; Diko, P.; Kokal, I.; Murakami, M.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 1-4, č. článku 6201104. ISSN 1051-8223 Institutional support: RVO:68378271 Keywords : carbon-encapsulated boron * critical current density * flux pinning * micro-structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.092, year: 2015

  11. Evidences of the influence of the electronic stopping power in the elastic energy loss in thin films of amorphous carbon

    International Nuclear Information System (INIS)

    Grande, P.L.; Fichtner, P.F.P.; Behar, M.; Zawislak, E.F.C.

    1988-01-01

    Measurements of deepness of implanted ions in carbon films, show the possibility that the energy elastic component given to the medium, could be affected by the ineslastic stopping parcel, which could cause a total stopping power, smaller than the expected. (A.C.A.S.) [pt

  12. Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination.

    Science.gov (United States)

    Romero Aburto, Rebeca; Alemany, Lawrence B; Weldeghiorghis, Thomas K; Ozden, Sehmus; Peng, Zhiwei; Lherbier, Aurélien; Botello Méndez, Andrés Rafael; Tiwary, Chandra Sekhar; Taha-Tijerina, Jaime; Yan, Zheng; Tabata, Mika; Charlier, Jean-Christophe; Tour, James M; Ajayan, Pulickel M

    2015-07-28

    Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.

  13. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  14. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  15. Autoionizing states in highly ionized oxygen, fluorine and silicon

    International Nuclear Information System (INIS)

    Forester, J.P.; Peterson, R.S.; Griffin, P.M.; Pegg, D.J.; Haselton, H.H.; Liao, K.H.; Sellin, I.A.; Mowat, J.R.; Thoe, R.S.

    1975-01-01

    Autoionizing states in high Z 3-electron ions associated with core excited configurations of the type 1s2snl and 1s2pnl are reported. The electron decay-in-flight spectra of lithium-like oxygen, fluorine, and silicon ions are presented. Initial beam energies of 6.75-MeV oxygen and fluorine ions and 22.5-MeV silicon ions were used. Stripping and excitation were done by passing the beams through a thin carbon foil. The experimental technique is described. 4 figs, 1 table, 7 refs

  16. Highly Stereoselective Gold-Catalyzed Coupling of Diazo Reagents and Fluorinated Enol Silyl Ethers to Tetrasubstituted Alkenes.

    Science.gov (United States)

    Liao, Fu-Min; Cao, Zhong-Yan; Yu, Jin-Sheng; Zhou, Jian

    2017-02-20

    We report a highly stereoselective synthesis of all-carbon or fluorinated tetrasubstituted alkenes from diazo reagents and fluorinated enol silyl ethers, using C-F bond as a synthetic handle. Cationic Au I catalysis plays a key role in this reaction. Remarkable fluorine effects on the reactivity and selectivity was also observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluorination by fusion

    International Nuclear Information System (INIS)

    Gray, J.H.

    1986-01-01

    LECO crucibles and incinerator ash are two waste categories that cannot be discarded due to the presence of insoluble transuranics. Current chemical processing methods are not too effective, requiring a number of repeated operations in order to dissolve more than half the transuranics. An alternate dissolution approach has been developed involving the use of ammonium bifluoride. Low temperature fusion of the waste with ammonium bifluoride is followed by dissolution of the fused material in boiling nitric acid solutions. Greater than 60% of the transuranics contained in LECO crucibles and greater than 95% of the transuranics mixed with the incinerator ash are dissolved after a single fusion and dissolution step. Fluorination of the transuranics along with other impurities appears to render the waste material soluble in nitric acid

  18. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  19. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  20. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  1. Fluorine-18-labelled molecules: synthesis and application in medical imaging

    International Nuclear Information System (INIS)

    Dolle, F.; Perrio, C.; Barre, L.; Lasne, M.C.; Le Bars, D.

    2006-01-01

    Positron emission tomography (PET) is one of the more powerful available techniques for medical imaging. It relies on the use of molecules labelled with a positron emitter (β + ). Among those emitters, fluorine-18, available from a cyclotron, is a radionuclide of choice because of its relatively long-half-life (109.8 min) and the relatively low energy of the emitted-positron. The electrophilic form of fluorine-18 ([ 18 F]F 2 or reagents derived from [ 18 F]F 2 ) is mainly used for hydrogen or metal substitutions on aromatic or vinylic carbons. The presence of the stable isotope (fluorine-19) in the radiotracers limits their use in medical imaging. The nucleophilic form of fluorine-18 (alkaline mono-fluoride, K[ 18 F]F, the most used), obtained from irradiation of enriched water, is widely used in aliphatic and (hetero)aromatic substitutions for the synthesis of radiotracers with high specific radioactivity. Some examples of radio-fluorinated tracers used in PET are presented, as well as some of their in vivo applications in human. (authors)

  2. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  3. The influence of methane/argon plasma composition on the formation of the hydrogenated amorphous carbon films

    International Nuclear Information System (INIS)

    Chen, Hsin-Hung; Liao, Jiunn-Der; Weng, Chih-Chiang; Hsieh, Jui-Fu; Chang, Chia-Wei; Lin, Chao-Hsien; Cho, Ting-Pin

    2011-01-01

    The quality of the a-C:H films was particularly correlated with the mixed ratio of methane/argon plasma. For a constant supply of energy and flowing rate, the optical emission from H α intensity linearly increased with the addition of methane in argon plasma, while that from intensities of radiation of diatmoic radicals (CH*and C 2 *) exponentially decreased. For the a-C:H films, the added methane in argon plasma tended to raise the quantity of hydrogenated carbon or sp 3 C-H structure, which exponentially decreased the nano-hardness and friction coefficient of the films. In contrast, the electric resistance of the films enlarged dramatically with the increase of the methane content in argon plasma. It is therefore advantageous to balance the mechanical properties and electrical resistance of the a-C:H film by adjusting plasma composition in the course of the film-growing process.

  4. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    Science.gov (United States)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  5. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  6. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  7. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  8. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  10. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Bakoglidis, Konstantinos D.; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-01-01

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN x ) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN x films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N 2 /Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V s , was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V s  ≥ 60 V, V s  ≥ 100 V, and V s  = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V s for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V s , while CN x films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant

  11. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    Science.gov (United States)

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  12. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  13. Utilization of carbon dioxide for polymer electrolytes [I]: Effect of supercritical treatment conditions on ionic conduction in amorphous polyether/salt mixtures

    International Nuclear Information System (INIS)

    Oe, Yoshiyuki; Tominaga, Yoichi

    2011-01-01

    Highlights: ► Supercritical CO 2 treatment on amorphous polyether/salt mixtures improves ionic conductivity in the dry state. ► Suitable CO 2 condition for high conductivity exists in near the critical temperature and pressure. ► Conductivity decreases only 20% after 30 days. ► Dissociation of free ClO 4 − and interactions between ether chains and Li + increase in treated electrolytes. - Abstract: Supercritical carbon dioxide (scCO 2 ) as a treatment medium has a possibility to realize excellent room temperature conductivity more than 10 −4 S/cm for polymer electrolytes in the dry state. In this study, a typical high ion-conductive polyether-based electrolyte which consists of poly-[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) and lithium perchlorate (LiClO 4 ) was used as a model sample for the scCO 2 treatment. We found the suitable scCO 2 treatment conditions (pressure, temperature and time) for high conductivity. The conductivity of sample treated at 7.5 MPa and 40 °C for 40 min was more than 100-times higher than that of original without the treatment, and the value decreased only 20% after 30 days. DSC measurement revealed that the decrease in glass transition temperature (T g ) is caused by the scCO 2 -treatment. The change of ionic association in the scCO 2 -treated samples was confirmed using FT-IR measurement. The scCO 2 treatment gave rise to increase in peak fraction of free ClO 4 − anions (620–625 cm −1 ) and peak shift of ν(C–O–C) mode to lower frequency region (1060–1070 cm −1 ) depending on ether–Li + interactions.

  14. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  15. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

    Science.gov (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei

    2018-04-01

    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  16. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  17. Fluorine-18 labeling of proteins

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Dence, C.S.; Welch, M.J.; Mathias, C.J.

    1987-01-01

    Two fluorine-18-labeled reagents, methyl 3-[ 18 F]fluoro-5-nitrobenzimidate and 4-[ 18 F]fluorophenacyl bromide, have been prepared for covalent attachment of fluorine-18 to proteins. Both reagents can be prepared in moderate yields (30-50%, EOB) in synthesis times of 50-70 min. Reaction of these reagents with proteins (human serum albumin, human fibrinogen, and human immunoglobulin A) is pH independent, protein concentration dependent, and takes 5-60 min at mild pH (8.0) and temperature (25-37 degrees C), in yields up to 95% (corrected). The 18 F-labeled proteins are purified by size exclusion chromatography

  18. Effects of gas residence time of CH4/H2 on sp2 fraction of amorphous carbon films and dissociated methyl density during radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Sugiura, Hirotsugu; Jia, Lingyun; Kondo, Hiroki; Ishikawa, Kenji; Tsutsumi, Takayoshi; Hayashi, Toshio; Takeda, Keigo; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Quadruple mass spectrometric measurements of CH3 density during radical-injection plasma-enhanced chemical vapor deposition to consider the sp2 fraction of amorphous carbon (a-C) films were performed. The sp2 fraction of the a-C films reached a minimum of 46%, where the CH3 density was maximum for a residence time of 6 ms. The sp2 fraction of the a-C films was tailored with the gaseous phase CH3 density during the deposition. This knowledge is useful for understanding the formation mechanism of bonding structures in the a-C films, which enables the precise control of their electronic properties.

  19. Chronic intestinal intoxication with fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, H; Gautier, R

    1925-01-01

    The accumulation of fluorine in bones of guinea pigs which died of an osteomalacia-like condition is described. The time required for the condition to develop varied from a few weeks to several months when hay with a F content of 1:1000 to 1:10000 was used as food.

  20. Domino-Fluorination-Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis.

    Science.gov (United States)

    Zhang, Muliang; Xi, Junwei; Ruzi, Rehanguli; Li, Nan; Wu, Zhongkai; Li, Weipeng; Zhu, Chengjian

    2017-09-15

    Domino-fluorination-protodefluorination decarboxylative cross-coupling of α-keto acids with styrene has been developed via photoredox catalysis. The critical part of this strategy is the formation of the carbon-fluorine (C-F) bond by the capture of a carbon-centered radical intermediate, which will overcome side reactions during the styrene radical functionalization process. Experimental studies have provided evidence indicating a domino-fluorination-protodefluorination pathway with α-keto acid initiating the photoredox cycle. The present catalytic protocol also affords a novel approach for the construction of α,β-unsaturated ketones under mild conditions.

  1. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  2. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  3. Resilient Amorphous Networks Prepared by Photo-Crosslinking High-Molecular-Weight D,L-Lactide and Trimethylene Carbonate Macromers: Mechanical Properties and Shape-Memory Behavior

    NARCIS (Netherlands)

    Sharifi, Shahriar; Grijpma, Dirk W.

    2012-01-01

    Tough networks are prepared by photo-crosslinking high-molecular-weight DLLA and TMC macromers. These amorphous networks exhibit tunable thermal and mechanical properties and have excellent shape-memory features. Variation of the monomer ratio allows adjustment of Tg between approximately −13 and

  4. Fluorine atom subsurface diffusion and reaction in photoresist

    International Nuclear Information System (INIS)

    Greer, Frank; Fraser, D.; Coburn, J.W.; Graves, David B.

    2003-01-01

    Kinetic studies of fluorine and deuterium atoms interacting with an OiR 897 10i i-line photoresist (PR) are reported. All experiments were conducted at room temperature. Films of this PR were coated on quartz-crystal microbalance (QCM) substrates and exposed to alternating fluxes of these atoms in a high vacuum apparatus. Mass changes of the PR were observed in situ and in real time during the atom beam exposures using the QCM. A molecular-beam sampled differentially pumped quadrupole mass spectrometer (QMS) was used to measure the species desorbing from the PR surface during the F and D atom exposures. During the D atom exposures, hydrogen abstraction and etching of the PR was observed, but no DF formation was detected. However, during the F atom exposures, the major species observed to desorb from the surface was DF, formed from fluorine abstraction of deuterium from the photoresist. No evidence of film etching or fluorine self-abstraction was observed. The film mass increased during F atom exposure, evidently due to the replacement of D by F in the film. The rate of DF formation and mass uptake were both characterized by the same kinetics: An initially rapid step declining exponentially with time (e -t/τ ), followed by a much slower step following inverse square root of time (t -1/2 ) kinetics. The initially rapid step was interpreted as surface abstraction of D by F to form DF, which desorbs, with subsequent F impacting the surface inserted into surface C dangling bonds. The slower step was interpreted as F atoms diffusing into the fluorinated photoresist, forming DF at the boundary of the fluorinated carbon layer. The t -1/2 kinetics of this step are interpreted to indicate that F diffusion through the fluorinated carbon layer is much slower than the rate of F abstraction of D to form DF, or the rate of F insertion into the carbon dangling bonds left behind after DF formation. A diffusion-limited growth model was formulated, and the model parameters are

  5. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  6. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  7. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  8. Quantification of Fluorine Content in AFFF Concentrates

    Science.gov (United States)

    2017-09-29

    for MilSpec compliance. Fluorocarbon surfactants are the most active components in these concentrates, and analysis of the fluorine content in the... physical requirements for AFFF concentrates includes a total fluorine content determination and a requirement for subsequent evaluations of this AFFF...the standard for fluorine content as well as the reference for chemical shift. For preparation of an NMR solution, it is important that the TFE

  9. Chemoselective, Substrate-directed Fluorination of Functionalized Cyclopentane β-Amino Acids.

    Science.gov (United States)

    Kiss, Loránd; Nonn, Melinda; Sillanpää, Reijo; Haukka, Matti; Fustero, Santos; Fülöp, Ferenc

    2016-12-06

    This work describes a substrate-directed fluorination of some highly functionalized cyclopentane derivatives. The cyclic products incorporating CH 2 F or CHF 2 moieties in their structure have been synthesized from diexo- or diendo-norbornene β-amino acids following a stereocontrolled strategy. The synthetic study was based on an oxidative transformation of the ring carbon-carbon double bond of the norbornene β-amino acids, followed by transformation of the resulted "all cis" and "trans" diformyl intermediates by fluorination with "chemodifferentiation". © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  11. Structural and electrical properties of amorphous carbon–sulfur ...

    Indian Academy of Sciences (India)

    Unknown

    Amorphous carbon films; pyrolysis; scanning electron microscopy; electrical properties; thermal analysis. 1. Introduction ... phorus compounds may have useful mechanical or elec- .... SEM images of a-C:S samples with different S/P values.

  12. Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate.

    Science.gov (United States)

    Cifuentes-Araya, Nicolás; Astudillo-Castro, Carolina; Bazinet, Laurent

    2014-07-15

    Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Total cross-section measurements on aluminium, carbon, fluorine and hydrogen for d, d reaction neutrons using the coincidence method (1963); Mesure de la section efficace totale de l'aluminium, du carbone, du fluor et de l'hydrogene pour des neutrons de la reaction d, d par la methode des coincidences (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, G; Sorriaux, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The experiment described consists in the measurement of the total cross-section of various materials: aluminium, carbon, fluorine and hydrogen, for mono-energetic 2.77 MeV neutrons obtained from the d,d reaction. The measurement is carried out by transmission. The neutrons are detected by means of a plastic scintillator mounted on a 56 AVP photomultiplier, and are isolated from all secondary phenomena (background noise, scattered neutrons) by coincidence with helium 3. which particles are associated to the neutrons from the reaction {sup 2}{sub 1}D ({sup 2}{sub 1}D, n) {sup 3}{sub 2}H The helium 3 particles are detected by a PN junction diode used with inverted polarisation. An absorption exponential has been traced out using measurements made on seven aluminium bars. The accuracy of the total cross-section measurements is about 10{sup -2}. (authors) [French] L'experience exposee dans ce rapport consiste en la mesure des sections efficaces totales de differents materiaux: aluminium, carbone, fluor et hydrogene, pour des neutrons monoenergetiques de 2,77 MeV, obtenus par la reaction d,d. La mesure est faite par transmission. Les neutrons sont detectes par un scintillateur plastique monte sur un photomultiplicateur 56 AVP, et sont separes de tout phenomene secondaire (bruit de fond, neutrons diffuses) par coincidence avec les helium 3, particules associees aux neutrons de la reaction {sup 2}{sub 1}D ({sup 2}{sub 1}D, n) {sup 3}{sub 2}H Les helium 3 sont detectes par une diode a jonction PN utilisee en polarisation inverse. Une exponentielle d'absorption a ete tracee a partir de mesures faites sur sept barreaux d'aluminium. La precision des mesures des sections efficaces totales est de l'ordre de 10{sup -2}. (auteurs)

  14. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  15. Phytoindication of air pollution by fluorine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Holub, Z; Kontrisova, O

    1973-01-01

    Analytical techniques allowing quantitative chemical analysis of toxic materials in leaves are described. The method is specifically designed to examine foliage which has been exposed to fluorine. Naturally occurring plants (angiosperms) are effective as bioindicators of high levels of fluorine pollution, while lichens and/or carefully cultivated plants are more effective as indicators of low levels of F.

  16. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole

    1998-01-01

    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes ...

  17. Do defects enhance fluorination of graphene?

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Fridrichová, Michaela; Bastl, Zdeněk; Kalbáč, Martin

    2016-01-01

    Roč. 6, AUG 2016 (2016), s. 81471-81476 ISSN 2046-2069 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : fluorination * graphene * fluorine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  18. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma; Peliculas delgadas de carbono amorfo hidrogenado (a-C:H) obtenidas mediante deposito quimico de vapores asistido por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Muhl S, S. [IIM-UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H{sub 2}/CH{sub 4} in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10{sup -4} to 6x10{sup -4} Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  19. (Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids

    International Nuclear Information System (INIS)

    Martinho, S.; Araújo, J.M.M.; Rebelo, L.P.N.; Pereiro, A.B.; Marrucho, I.M.

    2013-01-01

    Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data

  20. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  1. Aliphatic Nucleophilic Radio-fluorination

    International Nuclear Information System (INIS)

    Roeda, D.; Dolle, F.

    2010-01-01

    In this review we are looking at some aspects of nucleophilic aliphatic radio-fluorination, notably the labelled fluoride source, design aspects, the leaving group and the solvent. It should be clear that there is more to this branch of radiolabelling than one would suspect from the frequently used standard tosylate replacement with kryptofix/[ 18 F]fluoride in acetonitrile or DMSO. Competitive elimination can be a serious problem that can affect both yield and purification. De-protection of sensitive groups after radiolabelling and its possible side reactions can complicate purification. The right choice of leaving group and protecting groups may be crucial. Newer developments such as the use of tertiary alcohols or ionic liquids as solvents, long-chain poly-fluorinated sulphonate leaving groups facilitating fluorous solid phase extraction, or immobilisation of the precursor on a solid phase support may help to solve these problems, for example the longstanding problems with [ 18 F]FLT, whereas older concepts such as certain cyclic reactive entities for ring opening or even an abandoned reagent as [ 18 F]DAST should not be forgotten. (authors)

  2. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  3. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  4. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  5. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  6. Neutron elastic scattering cross-sections measurement on carbon and fluorine in epithermal energy range using PEREN platform; Mesure des sections efficaces de diffusion elastique des neutrons sur le carbone et le fluor dans le domaine epithermique sur la plate-forme PEREN

    Energy Technology Data Exchange (ETDEWEB)

    Thiolliere, N

    2005-10-15

    Molten Salt Reactor (MSR) based on Th/U cycle is one of the new generation concepts for nuclear energy production. A typical MSR is a graphite-moderated core with liquid fuel ({sup 7}LiF +ThF{sub 4} + UF{sub 4}). Many numerical studies based on Monte-Carlo codes are currently carried out but the validity of these numerical result relies on the precise knowledge of neutron cross sections used such as elastic scattering on carbon ({sigma}{sub C}), fluorine ({sigma}{sub F}) and lithium 7 ({sigma}{sub Li}). The goal of this work is to obtain {sigma}{sub C} and {sigma}{sub F} between 1 eV and 100 keV. Such measurements have been performed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC) de Grenoble on the experimental platform PEREN using slowing-down time spectrometers (C and CF{sub 2}) associated to a pulsed neutron generator (GENEPI). Capture rates are obtained for reference materials (Au, Ag, Mo and In) using YAP scintillator coupled to a photo-multiplier. Very precise simulations (MCNP code) of the experimental setup have been performed and comparison with experiments has led to the determination of {sigma}{sub C} and {sigma}{sub F} with accuracies of 1% and 2% respectively. These results show a small discrepancy to evaluated nuclear data file (ENDF). Measures of total cross-sections {sigma}{sub C} and {sigma}{sub F} at higher energy (200 - 600 keV) were also carried out at Centre des Etudes Nucleaires de Bordeaux using a transmission method. Mono-energetic neutrons were produced by protons accelerated by a Van de Graaff accelerator on a LiF target and transmitted neutrons are counted in a proportional hydrogen gaseous detector. Discrepancies of 5% and 9% for {sigma}{sub C} and {sigma}{sub F} respectively with ENDF have been shown. (author)

  7. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  8. Conceptual design of a continuous fluorinator experimental facility (CFEF)

    International Nuclear Information System (INIS)

    Lindauer, R.B.; Hightower, J.R. Jr.

    1976-07-01

    A conceptual design has been made of a circulating salt system, consisting principally of a fluorinator and reduction column, to demonstrate uranium removal from the salt by fluorination. The fluorinator vessel wall will be protected from fluorine corrosion by a frozen salt film. The circulating salt in the fluorinator will be kept molten by electrical heating that simulates fission product heating in an actual MSBR system

  9. Studies on nitrile rubber degradation in zinc bromide completion fluid and its prevention by surface fluorination

    Science.gov (United States)

    Vega-Cantu, Yadira Itzel

    Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile

  10. Resolving intramolecular-distortion changes induced by the partial fluorination of pentacene adsorbed on Cu(111)

    Science.gov (United States)

    Franco-Cañellas, Antoni; Wang, Qi; Broch, Katharina; Shen, Bin; Gerlach, Alexander; Bettinger, Holger F.; Duhm, Steffen; Schreiber, Frank

    2018-04-01

    We experimentally quantify the molecular bending of a partially fluorinated pentacene (PEN) compound, namely 2,3,9,10-tetrafluoropentacene (F4PEN), adsorbed on Cu(111). By means of the x-ray standing wave (XSW) technique, we directly measure the adsorption distance of three inequivalent carbon sites, the fluorine atoms as well as the total and backbone carbon average adsorption distances. The precise positioning of different sites within the carbon core allows us to resolve two adsorption behaviors, namely a PEN-like strong coupling between the backbone and the substrate, and a repulsive interaction involving the fluorinated short molecular edges, which are 0.91 ±0.09 Å above the central benzene ring. This finding is further supported by additional electronic and in-plane-structure measurements, thus showing that the selective fluorination of a PEN molecule has only a local conformational effect and it is not sufficient to modify its interface properties. Yet, in the multilayer regime, the electronic and growth properties of the film differ completely from those of PEN and its perfluorinated derivative.

  11. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  12. Fluorine disposal processes for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Netzer, W.D.

    1977-04-08

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable.

  13. Fluorine disposal processes for nuclear applications

    International Nuclear Information System (INIS)

    Netzer, W.D.

    1977-01-01

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable

  14. Oxidative desulfurization-fluorination of thioethers. Application for the synthesis of fluorinated nitrogen containing building blocks.

    Science.gov (United States)

    Hugenberg, Verena; Fröhlich, Roland; Haufe, Günter

    2010-12-21

    An oxidative desulfurization-fluorination protocol has been used to synthesize (2S)-2-(difluoromethyl)-N-tosylpyrrolidine (6a) and (2S)-2-(trifluoromethyl)-N-tosylpyrrolidine (7a) from the (2S)-prolinol-derived (2S)-2-(4-chlorophenylthiomethyl)-N-tosylpyrrolidine (9) or (2S)-2-(dithian-2-yl)-N-tosylpyrrolidine (5). Efforts to prepare 3,3-difluoroalanine similarly from an N-protected S-aryl-cysteine ester 17 gave only traces of the target compound 18. Instead, an unique N-(α,α-difluorobenzyl)-N-α',α'-dibromoglycine ester 19 was formed by an unprecedented sequence of reaction steps. A plausible mechanism is suggested involving a sulfur-assisted deoxygenation-difluorination of an imino oxygen and a haloform reaction like carbon-carbon bond fission as key-steps. Efforts to prepare (2S)-2-(fluoromethyl)-N-tosylpyrrolidine (12) from (2S)-N-tosylprolinol (3) by treatment with Fluolead™ (1-tert-butyl-4-trifluorosulfanyl-3,5-dimethylbenzene) gave only 5% of the target compound, but 95% of (3R)-3-fluoro-N-tosylpiperidine (11a) by ring enlargement.

  15. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  16. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  17. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  18. Interfacial Transformation of an Amorphous Carbon Nanofilm upon Fe@Ag@Si Nanoparticle Landing and its Colloidal Nanoscrolls: Enhanced Nanocompositing-Based Performance for Bioapplications.

    Science.gov (United States)

    Kim, Jeong-Hwan; Benelmekki, Maria

    2016-12-07

    We report a novel method for generating magneto-plasmonic carbon nanofilms and nanoscrolls using a combination of two gas-phase synthetic techniques. Ternary Fe@Ag@Si "onion-like" nanoparticles (NPs) are produced by a magnetron sputtering inert gas condensation source and are in situ landed onto the surface of carbon nanofilms, which were previously deposited by a DC arc discharge technique. Subsequently, a polyethylenimine-mediated chemical exfoliation process is performed to obtain carbon nanoscrolls (CNS) with embedded NPs (CNS-NPs). Of note, the carbon nanofilms undergo an interfacial transition upon addition of NPs and become rich in the sp 2 phase. This transformation endows and enhances multiple functions, such as thermal conductivity and the plasmonic properties of the nanocomposites. The obtained two-dimentional (2D) nanocomposites not only exhibit a highly efficient surface-enhanced Raman scattering property, allowing sensitive detection of malachite green isothiocyanate (MGIT) and adenosine-triphosphate (ATP) molecules at concentrations as low as 1 × 10 -10 M, but also show enhanced near-infrared-responsive photothermal activity when forming stable colloidal 1D CNS-NPs. In addition, the CNS-NPs present an enhanced single- and two-photon fluorescence in comparison with pristine CNS and NPs. These results make them suitable for the rational fabrication of "all-in-one" multifunctional nanocomposites with tubular structures toward a wide range of biomedical solutions.

  19. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Mohamed Azuwa Mohamad; Wan Norharyati Wan Salleh; Juhana Jaafar; Mohamad Saufi Rosmi; Zul Adlan Mohd Hir; Muhazri Abd Mutalib; Ahmad Fauzi Ismail; Tanemura, Masaki

    2017-01-01

    Highlights: • RCM as bio-template and in-situ carbon shell and interstitial carbon doping. • Photo-sensitizers by carbonaceous layer grafted onto the surface of TiO 2 . • Visible light response could be tailored depending on the annealing temperature. • Photocatalytic properties and charge carrier transfer mechanism was proposed. - Abstract: Regenerated cellulose membrane was used as bio-template nanoreactor for the formation of rutile TiO 2 mesoporous, as well as in-situ carbon dopant in acidified sol-gel system. The effects of calcination temperature on the physicochemical characteristic of core-shell nanostructured of bio-templated C-doped mesoporous TiO 2 are highlighted in this study. By varying the calcination temperature, the thickness of the carbon shell coating on TiO 2 , crystallinity, surface area, and optical properties could be tuned as confirmed by HRTEM, nitrogen adsorption/desorption measurement, XRD and UV–vis-NIR spectroscopy. The results suggested that increment in the calcination temperature would lead to the band gap narrowing from 2.95 to 2.80 eV and the thickness of carbon shell increased from 0.40 to 1.20 nm. The x-ray photoelectron spectroscopy showed that the visible light absorption capability was mainly due to the incorporation of carbon dopant at interstitial position in the TiO 2 to form O−Ti−C or Ti−O−C bond. In addition, the formation of the carbon core-shell nanostructured was due to carbonaceous layer grafted onto the surface of TiO 2 via Ti−O−C and Ti−OCO bonds. The result indicated that bio-templated C-doped core-shell mesoporous TiO 2 prepared at 300 °C exhibited the highest photocatalytic activity. It is worthy to note that, the calcination temperature provided a huge impact towards improving the physicochemical and photocatalytic properties of the prepared bio-templated C-doped core-shell mesoporous TiO 2 .

  20. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO{sub 2}: Bio-template assisted sol-gel synthesis and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Azuwa Mohamad [Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Wan Norharyati Wan Salleh, E-mail: hayati@petroleum.utm.my [Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Juhana Jaafar, E-mail: juhana@petroleum.utm.my [Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Mohamad Saufi Rosmi [Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak (Malaysia); Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Zul Adlan Mohd Hir [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Muhazri Abd Mutalib; Ahmad Fauzi Ismail [Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru (Malaysia); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2017-01-30

    Highlights: • RCM as bio-template and in-situ carbon shell and interstitial carbon doping. • Photo-sensitizers by carbonaceous layer grafted onto the surface of TiO{sub 2}. • Visible light response could be tailored depending on the annealing temperature. • Photocatalytic properties and charge carrier transfer mechanism was proposed. - Abstract: Regenerated cellulose membrane was used as bio-template nanoreactor for the formation of rutile TiO{sub 2} mesoporous, as well as in-situ carbon dopant in acidified sol-gel system. The effects of calcination temperature on the physicochemical characteristic of core-shell nanostructured of bio-templated C-doped mesoporous TiO{sub 2} are highlighted in this study. By varying the calcination temperature, the thickness of the carbon shell coating on TiO{sub 2}, crystallinity, surface area, and optical properties could be tuned as confirmed by HRTEM, nitrogen adsorption/desorption measurement, XRD and UV–vis-NIR spectroscopy. The results suggested that increment in the calcination temperature would lead to the band gap narrowing from 2.95 to 2.80 eV and the thickness of carbon shell increased from 0.40 to 1.20 nm. The x-ray photoelectron spectroscopy showed that the visible light absorption capability was mainly due to the incorporation of carbon dopant at interstitial position in the TiO{sub 2} to form O−Ti−C or Ti−O−C bond. In addition, the formation of the carbon core-shell nanostructured was due to carbonaceous layer grafted onto the surface of TiO{sub 2} via Ti−O−C and Ti−OCO bonds. The result indicated that bio-templated C-doped core-shell mesoporous TiO{sub 2} prepared at 300 °C exhibited the highest photocatalytic activity. It is worthy to note that, the calcination temperature provided a huge impact towards improving the physicochemical and photocatalytic properties of the prepared bio-templated C-doped core-shell mesoporous TiO{sub 2}.

  1. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  2. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Sohei [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yang, Chang [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-30

    InO{sub x}F{sub y} thin films were epitaxially grown on Y-stabilized ZrO{sub 2} (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T{sub S}), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T{sub S} (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T{sub S}, y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T{sub S} ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO{sub x}F{sub y} epitaxial thin films with high fluorine concentration were grown on Y:ZrO{sub 2}. • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3.

  3. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    International Nuclear Information System (INIS)

    Okazaki, Sohei; Hirose, Yasushi; Nakao, Shoichiro; Yang, Chang; Harayama, Isao; Sekiba, Daiichiro; Hasegawa, Tetsuya

    2014-01-01

    InO x F y thin films were epitaxially grown on Y-stabilized ZrO 2 (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T S ), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T S (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T S , y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T S ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO x F y epitaxial thin films with high fluorine concentration were grown on Y:ZrO 2 . • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3

  4. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  5. Fluorination of uranium compounds by gaseous bromine trifluoride and a bromine-fluorine mixture

    International Nuclear Information System (INIS)

    Sakurai, Tsutomu

    1976-03-01

    This report summarizes the studies of fluorination of uranium compounds by gaseous BrF 3 and a Br 2 -F 2 mixture, which were carried out in Fluorine Chemistry Laboratory of JAERI in connection with the reprocessing method of nuclear fuels. Although thermodynamically more stable than F 2 , BrF 3 has higher reactivity at relatively low temperatures: fluorination of uranium compounds can be carried out at 100 0 -- 200 0 C by using gaseous BrF 3 . This fluorination temperature is lower than those of F 2 , BrF 5 , ClF and SF 4 , and close to that of ClF 3 . The usage of BrF 3 has however the drawbacks that it requires additional devices to heat the corrosive liquid and to remove Br 2 produced as a byproduct. In order to eliminate the difficulties indicated, a new method of fluorination was developed - the use of a Br 2 -F 2 mixture. Addition of small amounts of Br 2 to the fluorine flow (about 6% in relation to the fluorine concentration) gives marked effects on the rate of fluorination. (auth.)

  6. Reference values for fluorine-18-fluorodeoxyglucose and fluorine-18-sodium fluoride uptake in human arteries

    DEFF Research Database (Denmark)

    Blomberg, Björn A; Thomassen, Anders; de Jong, Pim A

    2017-01-01

    OBJECTIVE: Reference values of fluorine-18-fluorodeoxyglucose (F-FDG) and fluorine-18-sodium fluoride (F-NaF) uptake in human arteries are unknown. The aim of this study was to determine age-specific and sex-specific reference values of arterial F-FDG and F-NaF uptake. PARTICIPANTS AND METHODS...

  7. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  8. Effect of deposition parameter on hardness of amorphous carbon film prepared by plasma immersion ion implantation using C2H2

    International Nuclear Information System (INIS)

    Mitsuo, A.; Uchida, S.; Morikawa, K.; Kawaguchi, M.; Shiotani, K.; Suzuki, H.

    2007-01-01

    Carbon films were deposited on a cemented carbide substrate and silicon wafer at various bias voltages, acetylene (C 2 H 2 ) pressures and process times by plasma immersion ion implantation (PIII). In order to investigate the substrate temperature, the tool steel substrate was also simultaneously treated. The final substrate temperature was estimated from the hardness of the tool steel substrate. The surface and cross-sectional morphology of the deposited films were observed using a scanning electron microscope (SEM). Depth profiles of the carbon were obtained by Auger electron spectroscopy (AES). Raman spectroscopy was employed for the structural evaluation of the films. The hardness of the deposited films was measured using a nano-indenter with the maximum load of 0.5 mN. A variety of film hardnesses between 10 to 24 GPa was obtained. The hardness of the carbon films decreased with the increasing bias voltage, C 2 H 2 pressure and process time, although the intensity ratio of the disordered peak to graphitic peak in the Raman spectrum increased. It was considered that the decrease in the film hardness was caused by a stress reduction accompanied by a heating effect during the process as each PIII process parameter significantly influenced the substrate temperature

  9. The effect of fluorine in low thermal budget polysilicon emitters for SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Schiz, F.J.W.

    1999-03-01

    This thesis investigates the behaviour of fluorine in two types of polysilicon emitter. In the first type the emitter is deposited at 610 deg. C as polycrystalline silicon (p-Si). In the second type the emitter is deposited at 560 deg. C as amorphous silicon (α-Si). The amorphous silicon 1 then regrows to polysilicon during subsequent high temperature anneals. Remarkably different behaviour of fluorine is seen in as-deposited α-Si and as-deposited p-Si emitter bipolar transistors. In the most extreme case, fluorine-implanted as-deposited p-Si devices show a base current increase by a factor of 1.5 and equivalent α-Si devices a base current decrease by a factor of 10.0 compared to unimplanted devices. Cross-section TEM observations are made to study the structure of the polysilicon/silicon interface and SIMS measurements to study the distribution of the fluorine in the polysilicon. The TEM results correlate well with the electrical results and show that fluorine accelerates interfacial oxide breakup. Furthermore, they show that for a given thermal budget, more interfacial oxide breakup and thus more epitaxial regrowth is obtained for transistors with p-Si polysilicon emitters. This results in a lower emitter resistance, for example as low as 12Ωμm 2 for as-deposited p-Si devices. The base current suppression for as-deposited α-Si devices is explained by fluorine passivation of trapping states at the interface. Analysis of the fluorine SIMS profiles suggests that they do not resemble normal diffusion profiles, but are due to fluorine trapped at defects. It is shown that a reciprocal relationship exists between the fluorine dose in the bulk polysilicon layer and the fluorine dose at the interface. In as-deposited α-Si devices, there is more fluorine trapped at defects in the bulk polysilicon layer, so less is available to diffuse to the interface. As a result there is less interfacial oxide breakup and more passivation in the as-deposited α-Si devices. These

  10. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  11. Diagnosis of fluorine damage. II. Estimation of fluorine-containing emission by demonstration of the storage of fluorine in the cortex of trees

    Energy Technology Data Exchange (ETDEWEB)

    Lampadius, F

    1960-01-01

    The thorium titration method was employed for estimating the fluorine content of the cortex. The question as to what fluorine content in the bark is to be regarded as natural has not yet been exactly established. Various indications in the literature lead to the assumption that the storage in the bark of cortex of the trees from an area without fluorine-containing emissions gave <0.2 mg. F/100 ml. distillate in all samples. This fluorine content was initially taken as the limit for the natural fluorine content of the cortex. The investigation of the fluorine content of the cortex extended only to the bark and was calculated in mg. of F in 5 g. of air-dry ground bark. The results show a clear relation between the quantity of fluorine stored in the bark and the distance of the point of sampling from the source of emission and its disposition to it. With high fluorine emission and unfavorable wind conditions in the affected area, fluorine was found in considerable quantities in the bark at places quite a long way from the source of emission. The qualitative estimation of the fluorine content of gassed leaves and needles by the crystal precipitation method, and the quantitative estimation of the fluorine content of gassed bark by the thorium titration method led to results that were in good agreement, so it was possible in this way to define the area in which damage may occur with reliable accuracy.

  12. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  13. Controlled Synthesis of Fluorinated Copolymers with Pendant Sulfonates

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2008-01-01

    Novel fluorinated copolymers of different architectures and bearing sulfopropyl groups were synthesized by atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers and two modification reactions performed on the polymer chain - demethylation followed by sulfopropylation. As a ...

  14. Fluorine in plants in the areas of Yugoslav aluminum factories

    Energy Technology Data Exchange (ETDEWEB)

    Ivos, J.; Ciszek, H.; Rezek, A.; Marjanovic, L.

    1970-01-01

    Distribution of fluorine in the areas around aluminum production facilities was investigated. The plants in areas around the factories did indeed show increased levels of fluorine. Distribution patterns were found to be affected by wind and precipitation patterns.

  15. Simple electrolytic cell for production of elemental fluorine

    International Nuclear Information System (INIS)

    Dides F, M.; Padilla S, U.

    1990-01-01

    It was constructed and tested a simple electrolytic cell for the production of elemental fluorine. The fluorine production is essential in the obtainment of uranium hexafluoride, a compound for the nuclear fuel cycle. (A.C.A.S.)

  16. Fluorine and fluorine tolerance in fodder of domestic animals. Part 2. Pathophysiology of fluorine and fodder tests on domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Bronsch, K; Grieser, N

    1964-01-01

    Important tests with fluorine on domestic animals were critically evaluated with the aim of coming to some conclusion about fluorine tolerance in fodder for domestic animals, keeping various different factors in mind. Slightly lower concentrations were reached than those of the NRC in the USA, reckoning on a non-optimal mineral content, especially in calcium and phosphorus, since the USA obviously used a basis for feeding which was otherwise sufficient. According to these tests, fluoride is tolerated within certain limits by domestic animals without recognisable disadvantages. There are, however, important differences between different types of animals in regard to dosage.

  17. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    Science.gov (United States)

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Fluorinated Alq3 derivatives with tunable optical properties.

    Science.gov (United States)

    Shi, Yue-Wen; Shi, Min-Min; Huang, Jia-Chi; Chen, Hong-Zheng; Wang, Mang; Liu, Xiao-Dong; Ma, Yu-Guang; Xu, Hai; Yang, Bing

    2006-05-14

    This communication reports that not only the emission colour but also the photoluminescence quantum yield of Alq3 can be tuned by introducing fluorine atoms at different positions; with fluorination at C-5 the emission is red-shifted with a tremendously decreased intensity, fluorination at C-6 causes a blue-shift with a significantly increased intensity, and fluorination at C-7 has a minor effect on both the colour and intensity of Alq3's emission.

  19. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  20. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  1. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.; Bosch, P.; Bulbulian, S.

    1992-01-01

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O( 3 H, n) 18 F . In the present work was studied the LiAlO 2 and the Li 2 O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  2. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  3. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence

    Directory of Open Access Journals (Sweden)

    Attila Márió Remete

    2017-11-01

    Full Text Available A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy–fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  4. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence.

    Science.gov (United States)

    Remete, Attila Márió; Nonn, Melinda; Fustero, Santos; Haukka, Matti; Fülöp, Ferenc; Kiss, Loránd

    2017-01-01

    A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy-fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  5. Strontium and fluorine in tuatua shells

    International Nuclear Information System (INIS)

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  6. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  7. Depleted uranium processing and fluorine extraction

    International Nuclear Information System (INIS)

    Laflin, S.T.

    2010-01-01

    Since the beginning of the nuclear era, there has never been a commercial solution for the large quantities of depleted uranium hexafluoride generated from uranium enrichment. In the United States alone, there is already in excess of 1.6 billion pounds (730 million kilograms) of DUF_6 currently stored. INIS is constructing a commercial uranium processing and fluorine extraction facility. The INIS facility will convert depleted uranium hexafluoride and use it as feed material for the patented Fluorine Extraction Process to produce high purity fluoride gases and anhydrous hydrofluoric acid. The project will provide an environmentally friendly and commercially viable solution for DUF_6 tails management. (author)

  8. Preparation and analysis of amorphous carbon films deposited from (C{sub 6}H{sub 12})/Ar/He chemistry for application as the dry etch hard mask in the semiconductor manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungmoo [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Won, Jaihyung; Choi, Jongsik [TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Jang, Samseok [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jee, Yeonhong; Lee, Hyeondeok [TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Byun, Dongjin, E-mail: dbyun@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2011-08-01

    Amorphous carbon layers (ACL) were deposited on Si (100) wafers by plasma enhanced chemical vapor deposition (PECVD) by using 1-hexene (C{sub 6}H{sub 12}) as a carbon source for dry etch hard mask of semiconductor devices manufacturing process. The deposition characteristics and film properties were investigated by means of ellipsometry, Raman spectroscopy, X-ray photo electron spectroscopy (XPS) and stress analysis. Hardness, Young's modulus, and surface roughness of ACL deposited at 550 deg. C were investigated by using nano-indentation and AFM. The deposition rate was decreased from 5050 A/min to 2160 A/min, and dry etch rate was decreased from 2090 A/min to 1770 A/min, and extinction coefficient was increased from 0.1 to 0.5. Raman analysis revealed a higher shift of the G-peak and a lower shift of the D-peak and the increase of I(D)/I(G) ratio as the deposition temperature was increased from 350 deg. C to 550 deg. C. XPS results of ACL deposited at 550 deg. C revealed a carbon 1s binding energy of 284.4 eV. The compressive film stress was decreased from 2.95 GPa to 1.28 GPa with increasing deposition temperature. The hardness and Young's modulus of ACL deposited at 550 deg. C were 5.8 GPa and 48.7 GPa respectively. The surface roughness RMS of ACL deposited at 550 deg. C was 2.24 A, and that after cleaning in diluted HF solution (H{sub 2}O:HF = 200:1), SC1 (NH{sub 4}OH:H{sub 2}O{sub 2}:H{sub 2}O = 1:4:20) solution, and sulfuric acid solution (H{sub 2}SO{sub 4}:H{sub 2}O{sub 2} = 6:1) was 2.28 A, 2.30 A and 7.34 A, respectively. The removal amount of ACL deposited at 550 deg. C in diluted HF solution, SC1 solution and sulfuric acid solution was 6 A, 36 A and 110 A, respectively. These results demonstrated the viability of ACL deposited by PECVD from C{sub 6}H{sub 12} at 550 deg. C for application as the dry etch hard mask in fabrication of semiconductor devices.

  9. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  10. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  11. The bonding of protective films of amorphic diamond to titanium

    Science.gov (United States)

    Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.

    1992-04-01

    Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.

  12. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  13. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    Science.gov (United States)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  14. Optimization studies concerning the direct nucleophilic fluorination of butyrophenone neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A; Hamacher, K; Schnitter, J; Stoecklin, G [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie 1 - Nuklearchemie

    1993-07-01

    Based on the direct nucleophilic aromatic substitution described previously for [[sup 18]F]N-methylspiperone the butyrophenone neuroleptics benperidol, droperidol, fluanisone and haloperidol were labelled with fluorine-18. The n.c.a. aromatic nucleophilic NO[sub 2] [yields] [sup 18]F substitution takes place in the presence of the moderately basic cryptate system consisting of Kryptofix 2.2.2., potassium oxalate and potassium carbonate. The one step labeling reaction was performed in different solvents and is equally successful in dimethylsulfoxide, dimethylformamide or dimethylacetamide yielding 25-35% (EOS) within a reaction time of 5-30 min in the range of 140-160[sup o]C at analytical activity levels. (author).

  15. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Science.gov (United States)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  16. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  17. Decomposition of Fluorinated Graphene under Heat Treatment

    Czech Academy of Sciences Publication Activity Database

    Plšek, Jan; Drogowska, Karolina; Valeš, Václav; Ek Weis, Johan; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 26 (2016), s. 8990-8997 ISSN 1521-3765 R&D Projects: GA ČR(CZ) GAP208/12/1062 Institutional support: RVO:61388955 Keywords : fluorination * graphene * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Self-lubricating fluorine shaft seal material

    Science.gov (United States)

    Munk, W. R.

    1970-01-01

    Lubricating film is produced by a reaction of fluorine with a composite of aluminum oxide and nickel powder. The rate of nickel fluoride generation is proportional to the rate at which the fluoride is rubbed off the surface, allowing the seal to operate with the lowest possible heating.

  19. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  20. Uranium mineralization in fluorine-enriched volcanic rocks

    International Nuclear Information System (INIS)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements

  1. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  2. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  3. Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath

    International Nuclear Information System (INIS)

    Yao, Yingwu; Zhou, Tao; Zhao, Chunmei; Jing, Qiming; Wang, Yang

    2013-01-01

    The influence of ZrO 2 particles on fluorine-doped lead dioxide electrodeposition process on the glass carbon electrode (GCE) from lead nitrate electrolytes was studied by cyclic voltammetry (CV) and chronoamperometry (CA), coupled with the scanning electron microscope (SEM). Instantaneous nucleation mechanism is found for fluorine-doped lead dioxide electrodeposition in the presence of ZrO 2 particles according to Scharifker–Hills’ model with three-dimensional growth. The results show that the addition of ZrO 2 particles decrease the active surface area of the GCE, and the growth of the lead dioxide crystallites was obstructed

  4. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  5. Fluorine content in the soft tissues, blood and milk of ruminants outside and inside fluorine emission areas

    Energy Technology Data Exchange (ETDEWEB)

    Oelschlaeger, W; Feyler, L; Schwarz, E

    1972-01-01

    Data on the fluorine content of soft tissues, blood and milk inside and outside fluorine emission areas vary widely, probably because of analytical difficulties. Possible errors and their elimination are discussed. A large number of analyses was carried out to determine the fluorine content of heart, liver, lung, kidney, adrenal, muscle, spleen, pancreas, lymph nodes, thyroid, thymus, pituitary and cerebrum and cerebellum of cows and calves, as well as 388 milk samples and 232 blood samples. In calves born from cows kept for 3 1/2 years near a factory producing hydrofluoric acid, there was a clear relationship between the fluorine content during the suckling and drinking period, and also in a still-born calf, with the fluorine uptake of the dam during the months of pregnancy. In contrast to cattle, calves showed significantly higher fluorine levels in the adrenals compared with the kidneys. The soft tissues of cattle outside the fluorine emission areas contained more fluorine than in calves within the emission areas. Fluorine accumulation in liver, lung, kidney, cerebrum and cerebellum, thyroid and pituitary was markedly raised in animals with high fluorine uptake, whereas there was no significant change in the levels in the heart, musculature and spleen. So far as human health is concerned, the raised fluorine level in milk was significantly below the maximum level permitted in fluoridated drinking water.

  6. Synthesis and tissue distribution of fluorine-18 labeled trifluorohexadecanoic acids. Considerations in the development of metabolically blocked myocardial imaging agents

    International Nuclear Information System (INIS)

    Pochapsky, S.S.; Katzenellenbogen, J.A.; VanBrocklin, H.F.; Welch, M.J.

    1990-01-01

    A versatile method for the synthesis of trifluoro fatty acids, potential metabolically blocked myocardial imaging agents, has been developed. Two trifluorohexadecanoic (palmitic) acids have been prepared [6,6,16-trifluorohexadecanoic acid (I) and 7,7,16-trifluorohexadecanoic acid (II)], each of which bears two of the fluorine atoms as a gem-difluoromethylene unit on the fatty acid chain (at C-6 or C-7) and the third at the ω (C-16) position. The metabolic stability of carbon-fluorine bonds suggests the gem-difluoro group may block the β-oxidation pathway, while the terminal fluorine could be the site for labeling with fluorine-18. The convergent synthetic approach utilizes a 2-lithio-1,3-dithiane derived from 10-undecenal or 9-decenal, which is alkylated with the OBO (oxabicyclooctyl) ester of 5-bromopentanoic acid or 6-bromohexanoic acid, respectively. Hydroboration-oxidation and alcohol protection are followed by halofluorination to convert the 1,3-dithiane system to a gem-difluoro group. The third fluorine is introduced by fluoride ion displacement of a trifluoromethanesulfonate. This synthesis is adapted to the labeling of these trifluoro fatty acids with the short-lived radionuclide fluorine-18 (t 1/2 = 110 min), with the third fluorine introduced as fluoride ion in the penultimate step. The radiochemical syntheses proceed in 3-34% radiochemical yield (decay corrected), with an overall synthesis and purification time of 90 min. Tissue distribution studies in rats were performed with I and II, as well as with 16-[ 18 F]fluoropalmitic acid (III), [ 11 C]palmitic acid, and [ 11 C]octanoic acid. The heart uptake of the fluoropalmitic acids decreases with substitution, the 2-min activity level for 16-fluoropalmitic acid being 65% and that for both 6,6,16-and 7,7,17-trifluoropalmitic acids being 30% that of palmitic acid

  7. Amorphous track models: a numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Hahn, Ute

    in carbon ion treatment at the particle facility HIT in Heidelberg. Apparent differences between the LEM and the Katz model are the way how interactions of individual particle tracks and how extended targets are handled. Complex scenarios, however, can mask the actual effect of these differences. Here, we......Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization...

  8. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  9. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  10. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  11. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  12. Forging Fluorine-Containing Quaternary Stereocenters by a Light-Driven Organocatalytic Aldol Desymmetrization Process.

    Science.gov (United States)

    Cuadros, Sara; Dell'Amico, Luca; Melchiorre, Paolo

    2017-09-18

    Reported herein is a light-triggered organocatalytic strategy for the desymmetrization of achiral 2-fluoro-substituted cyclopentane-1,3-diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy-o-quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon-fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2-fluoro-3-hydroxycyclopentanones. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  14. Effects of fluorine on the human fetus

    Energy Technology Data Exchange (ETDEWEB)

    He, H.; Cheng, Z.S.; Liu, W.Q. [Huaxi Medical University, Huaxi (China)

    2008-10-15

    In an endemic fluorosis area, 16 fetuses that were delivered during their sixth to eighth month of gestation by means of artificial abortion were collected and studied. The results (compared to 10 control fetuses from a non-endemic area) show that fluorine levels in tissues are obviously high, especially in brain, calvarium, and femur. The activity of alkaline phosphatase in femur and kidney was raised. By observation of the ultrastructure of samples, the number of mitochondria, rough-surfaced endoplasmic reticulum, and free ribosome in neurons of cerebral cortex were reduced, and the rough-surfaced endoplasmic reticulum was obviously dilated. These findings indicate that the neurons of the cerebral cortex in the developing brain may be one of the targets of fluorine.

  15. 1,2-Fluorine Radical Rearrangements: Isomerization Events in Perfluorinated Radicals.

    Science.gov (United States)

    Van Hoomissen, Daniel J; Vyas, Shubham

    2017-11-16

    Devising effective degradation technologies for perfluoroalkyl substances (PFASs) is an active area of research, where the molecular mechanisms involving both oxidative and reductive pathways are still elusive. One commonly neglected pathway in PFAS degradation is fluorine atom migration in perfluoroalkyl radicals, which was largely assumed to be implausible because of the high C-F bond strength. Using density functional theory calculations, it was demonstrated that 1,2-F atom migrations are thermodynamically favored when the fluorine atom migrated from a less branched carbon center to a more branched carbon center. Activation barriers for these rearrangements were within 19-29 kcal/mol, which are possible to easily overcome at elevated temperatures or in photochemically activated species in the gas or aqueous phase. It was also found that the activation barriers for the 1,2-F atom migration are lowered as much as by 10 kcal/mol when common oxidative degradation products such as HF assisted the rearrangements or if the resulting radical center was stabilized by vicinal π-bonds. Natural bond orbital analyses showed that fluorine moves as a radical in a noncharge-separated state. These findings add an important reaction to the existing knowledge of mechanisms for PFAS degradation and highlights the fact that 1,2-F atom shifts may be a small channel for isomerization of these compounds, but upon availability of mineralization products, this isomerization process could become more prominent.

  16. A rapid stereoselective synthesis of fluorinated carbohydrates

    International Nuclear Information System (INIS)

    Adam, M.J.; Neeser, J-R.; Hall, L.D.; Pate, B.D.

    1983-01-01

    Acetyl hypofluorite has been added to six unsaturated carbohydrates which contain the vinyl ether moiety. All reactions were rapid (less than 5 min.) at -78 degrees C and gave, with one exception, high yields of isomerically pure products. The hypofluorite was shown to add exclusively in a cis mode and with a strong preference for a particular 'face' of the double bond. As well as the syntheses, NMR data and preferred conformations for the fluorinated products are also discussed

  17. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    International Nuclear Information System (INIS)

    Mobarak, H.M.; Masjuki, H.H.; Mohamad, E. Niza; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-01-01

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC

  18. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  19. Fluorine concentration profiles in archaeological bone

    International Nuclear Information System (INIS)

    Coote, G.E.; Sparks, R.J.

    1981-01-01

    The nuclear microprobe at the Institute of Nuclear Sciences was applied to the measurement of radial concentration profiles of fluorine, in transverse slices of archaeological bone from humans, moas, and other animals. A beam of 2.5 MeV protons was focused to a rectangular spot 250 microns by 50 microns, traversed along a radial line 3mm long, and gamma rays of 5-7 MeV from the reaction 19 F(p, α#betta#) 16 O were detected in a large sodium iodide crystal. Bombardment caused no detectable loss of fluorine from the bone. Measured profiles display a wide variety of shapes and maximum concentrations. In bones which had been exposed to ground water the fluorine concentration usually increases from the centre towards the surface, sometimes by as much as a factor of eight. The concentration at the surface is usually in the range 0.2 to 1%, though in moa bone from a limestone cave it is only 0.025%. Once a quantitative method of analysis has been developed, based on the shape of the profile rather than its magnitude, these profiles might be useful for dating bone. In the meantime, they could be used to distinguish bones of different ages from a common site

  20. [Health effects of fluorine and its compounds].

    Science.gov (United States)

    Kono, K

    1994-12-01

    Fluoride, the ionic form of fluorine, is a natural component of the biosphere and 13th most abundant element in the crust of the earth. It is, therefore, found in a wide range of concentrations in virtually all inanimate and living things. Many trace elements perform a definite function in human metabolism and the question of the value of fluoride, always found in the body, has been raised. Much evidence suggesting that the inclusion of fluoride in drinking water has beneficial as well as adverse effects on human health was obtained. Either alone or in combination with calcium and/or vitamin D, it is used in high daily doses for the treatment of osteoporosis. Although organic fluorine compounds are used in medicine and commerce, the inorganic fluorine compounds are of greater importance toxicologically because they are more readily available. The major pathway of fluoride elimination from the human body is via the kidney. When renal function deteriorates, the ability to excrete fluoride markedly decreases, possibly resulting in greater retention of fluoride in the body. At this point, more research is needed to evaluate the effects of physiological variables on the fluoride metabolism in humans.